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Abstract

Background: Temperatures in arctic-boreal regions are increasing rapidly and pose significant challenges to moose
(Alces alces), a heat-sensitive large-bodied mammal. Moose act as ecosystem engineers, by regulating forest carbon
and structure, below ground nitrogen cycling processes, and predator-prey dynamics. Previous studies showed that
during hotter periods, moose displayed stronger selection for wetland habitats, taller and denser forest canopies,
and minimized exposure to solar radiation. However, previous studies regarding moose behavioral
thermoregulation occurred in Europe or southern moose range in North America. Understanding whether ambient
temperature elicits a behavioral response in high-northern latitude moose populations in North America may be
increasingly important as these arctic-boreal systems have been warming at a rate two to three times the global
mean.

Methods: We assessed how Alaska moose habitat selection changed as a function of ambient temperature using a
step-selection function approach to identify habitat features important for behavioral thermoregulation in summer
(June–August). We used Global Positioning System telemetry locations from four populations of Alaska moose (n =
169) from 2008 to 2016. We assessed model fit using the quasi-likelihood under independence criterion and
conduction a leave-one-out cross validation.

Results: Both male and female moose in all populations increasingly, and nonlinearly, selected for denser canopy
cover as ambient temperature increased during summer, where initial increases in the conditional probability of
selection were initially sharper then leveled out as canopy density increased above ~ 50%. However, the magnitude
of selection response varied by population and sex. In two of the three populations containing both sexes, females
demonstrated a stronger selection response for denser canopy at higher temperatures than males. We also
observed a stronger selection response in the most southerly and northerly populations compared to populations
in the west and central Alaska.
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Conclusions: The impacts of climate change in arctic-boreal regions increase landscape heterogeneity through
processes such as increased wildfire intensity and annual area burned, which may significantly alter the thermal
environment available to an animal. Understanding habitat selection related to behavioral thermoregulation is a
first step toward identifying areas capable of providing thermal relief for moose and other species impacted by
climate change in arctic-boreal regions.

Keywords: Climate change, Behavioral thermoregulation, Thermal stress, Ambient temperature, Habitat selection,
Wildlife, Alces alces

Background
Global temperatures are drastically increasing [36],
which directly affect animal behavior and fitness [9, 88,
91]. When ambient temperatures rise above an animal’s
thermal neutral zone, they use physiological and behav-
ioral mechanisms to dissipate heat and mitigate thermal
stress. For instance, additional energy may be spent to
augment the cardiovascular and respiratory systems en-
abling evaporative cooling but may also lead to dehydra-
tion [16, 54, 73]. Consequentially, increases in ambient
temperature may contribute to a negative energy balance
within an animal [5, 85, 87]. Energetic requirements of
mammals vary by season and traits (e.g., body mass, lac-
tation). Summer is an important season for mammals as
they need to recover from winter food deficits, lactate
and rear young, and store fat [14, 75, 85]. Climate
change puts further stress on these important activities,
which may, in turn, limit the ability of mammals to meet
energetic requirements for reproduction and survival
[25, 50, 90]. Recent work suggests that large-bodied
mammals respond more strongly to climate change,
when compared to smaller-bodied mammals, through
contraction or expansion of elevational ranges and also
experience increased extinction risk [53].
Moose (Alces alces) are an important, large-bodied

mammal vulnerable to increasing temperatures because
they are well-adapted to cold climates [73, 76]. Moose also
act as ecosystem engineers, by regulating forest carbon
and structure, below ground nitrogen cycling processes,
and predator-prey dynamics [12, 15, 48, 55]. According to
the seminal physiological study by Renecker and Hudson
[73], moose reached their upper critical temperature
threshold at 14 °C in summer where they increased their
heart and respiration rates, while open-mouthed panting
began at 20 °C. However, recent works call these thresh-
olds into question and suggest there is no static
temperature threshold where free-ranging moose become
heat stressed [83, 84]. Similarly, behavioral changes are
often observed at temperatures that exceeds the upper
critical summer threshold proposed by Renecker and
Hudson [73] [11, 56].
Behavioral alterations elicited by changes in

temperature influence both resource selection patterns

and movement rates. For example, previous studies
showed that during hotter periods, moose displayed
stronger selection for riparian or wetland habitats [74,
80], taller and denser forest canopies that provide ther-
mal cover [20, 56, 88], and minimized exposure to solar
radiation [54]. Additionally, moose may also decrease
their activity and movement rates in response to warmer
daytime temperatures [58, 80].
Moose thermoregulatory behaviors are indeed a ‘hot

topic’ in applied ecology because of rising temperatures
related to climate change and their important ecosystem
role (e.g., [56, 58, 80]). However, most previous studies
occurred in Europe or the southern end of moose range
in North America [50, 56, 88]. Understanding whether
ambient temperature elicits a behavioral response in
high-northern latitude (i.e., ≥ 60°N) moose populations
in North America may be increasingly important as
these arctic-boreal systems have been warming at a rate
two to three times the global mean [2, 36, 77, 95] and
current projections anticipate continued increases in
temperature [36, 51]. Thus, it is important to explore
how movement patterns of moose, a heat-sensitive
large-bodied mammal, are influenced by changes in
temperature at the northern extent of their range.
Accordingly, our study objective was to assess Alaska

moose (Alces alces gigas) habitat selection as a function
of ambient temperature. We tested the hypothesis that
moose modified resource selection in response to ambi-
ent temperature as predicted by physiological models.
To accomplish this, we used Global Positioning System
(GPS) -telemetry locations from four Alaska moose pop-
ulations (n = 169 moose; Fig. 1 & Table 1) from 2008 to
2016 that were located in four unique ecoregions [65].
We combined moose GPS locations with remotely
sensed products important to thermoregulatory behav-
iors. We analyzed only summer months (June–August)
because of their importance in moose life history and
because thermal stress is most likely to occur in summer
[23, 88]. Each population was analyzed independently
and separated into male and female subsets because
fine-scale movements vary by sex and local habitat char-
acteristics [41, 43, 49]. We predicted that Alaska moose
exhibit a detectable behavioral response to increasing
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summer temperatures, and, that as temperature in-
creased, moose would select for cooler locations, such as
thermal refugia provided through increased canopy
cover, areas closer to water, and/or low exposure to solar
radiation.

Methods
Study areas
All four study areas span a mixture of subarctic and arc-
tic boreal forest vegetation including black spruce (Picea
mariana), alders (Alnus spp.), willows (Salix spp.), Al-
aska birch (Betula neoalaskaa), white spruce (Picea
glauca), quaking aspen (Populus tremuloides), and

balsam poplar (Populus balsmifera). The upper Koyukuk
region located in the Brooks Mountain Range (Fig. 1) is
rugged and varies from 500 to 2600 m above sea level
[1]. Wildfire is common in this region, which experi-
ences strongly continental climate patterns where sum-
mers are short, but temperatures can exceed 30 °C [41].
Average daily summer (June–August) temperature
ranged from 7.5 °C to 15 °C from 1986 to 2016 [64]. The
Tanana Flats region is located south of Fairbanks, where
the alluvial plane from the Alaska Mountain Range
slopes northward making meandering rivers and oxbow
lakes common [1]. Elevation ranges from 0 to 700 m,
however the highest elevations occurred in the northern

Fig. 1 Moose (Alces alces gigas) study area locations in four distinct ecoregions of Alaska, USA. In total, 169 moose were included in these
analyses (111 females; 58 males)
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portion of the Alaska Mountain Range [1]. The Tanana
region experiences dry-continental climate, and average
daily summer temperature ranged from 11 °C to 19.5 °C
from 1986 to 2016 [64]. The Innoko region lies in south-
west Alaska and includes a portion of the lower Yukon
River. Meandering waterways, oxbow lakes and floods
are common in the lowlands while upland areas experi-
ence more wildfire disturbance [67]. Elevation varies lit-
tle (30–850 m) and average daily summer temperatures
ranged from 9.5 °C to 17.5 °C from 1989 to 2016 [64].
The Susitna moose range lies south of Alaska Mountain
Range, and is characterized by numerous wetlands, hilly
moraines, black spruce woodlands, and mountains. Ele-
vation varies widely from 400 to 3500m. This region is
primarily located in temperate-continental climate, with
some exposure to temperate coastal climates in the
southern portion of the range [1]. Average daily summer
temperatures ranged from 11.5 °C to 19 °C from 1988 to
2016 in this region [64].

Moose data
All capture protocols and handling protocols adhered to
the Alaska Animal Care and Use Committee approval
process (#07–11) as well as the Institutional Animal
Care and Use Committee Protocol (#09–01). Moose in
all regions were darted from helicopter (Robison R-44)
and injected using carfentanil citrate (Wildnil® Wildlife
Pharmaceuticals, Incorporated, Fort Collins, CO) and
xylazine hydrochloride (Anaset®; Lloyd Laboratories,
Shenandoah, IA). Moose were instrumented with GPS
radio-collars with three and a half to eight-hour fix rates
(Table 1). Specifically, moose were fitted with the follow-
ing collars from Telonics Inc. (Telonics, Mesa, AZ): Koy-
ukuk – GW-4780, Tanana –TGW-4780-3, Susitna –
TGW-4780-2, Innoko –CLM-340.

Statistical analyses
Habitat selection
We used a step-selection function (SSF) to assess moose
behavioral responses to changing temperatures. SSF’s
model habitat selection in a used-available design that
accounts for changing availability of resources at any
point in time [27, 86]. We aggregated moose datasets to
a near eight-hour fix rate to enable regional comparisons
of behavior (Table 1). We chose this modeling frame-
work because it allows for assessments of fine-scale
habitat selection, and the effect of temperature on large
herbivore movement behavior are most pronounced at
fine to intermediate spatial and temporal scales [89]. To
sample availability, we generated ten-paired available lo-
cations based on empirical distributions of an individ-
ual’s step length and turning angles between sampling
intervals, which were estimated using the “ABoVE-
NASA” R package [29]. We used conditional-logistic re-
gression (CLR, [35]) in the “survival” R package [82] to
compare each used location with the concurrent avail-
able locations at the same point in time and space (i.e.,
one stratum contained one used point and ten randomly
generated available points). The equation can be written
as:

w� xð Þ ¼ exp β1x1þ β2x2þ…þ βnxnþ eð Þ
1þ exp β1x1þ β2x2þ…þ βnxnþ eð Þ

ð1Þ

where w*(x), the relative probability of selection, is
dependent on habitat covariates X1 through Xn, and
their estimated regression coefficients β1 to βn, respect-
ively. Steps with higher w*(x) indicate a greater chance
of selection. CLR compares strata (i.e., one used point
and ten available points) individually, which enabled us

Table 1 Summaries of Alaska moose (Alces alces gigas) Global Positioning System (GPS) datasets by study area. Information on the
number of fixes and the fix success rate are specific to summer (June 1 – August 31). The number of clusters for each population-
sex partition refer to the unique combination of individual-year, which were used in our conditional logistic regression models as a
clustering variable for estimating robust variance estimates using generalized estimating equations

Dataset Number of
moose

Number females
(clusters)

Number males
(clusters)

Years Fix rate
(hours)

Fix
success

Number of
fixes

Koyukuk 30 19 (45) 11 (22) 2008–
2013

8 91% F- 11,324

M- 3949

Susitna 61 38 (71) 23 (36) 2012–
2016

8 98% F- 14,984

M-6003

Innoko 45 21 (63) 24 (65) 2010–
2014

4a 95% F- 2319

M- 1987

Tanana 33 33 (145) 0 2011–
2016

3.5a 99% F- 21,530

Totals: 169 111 58 – – 96% F-50,157

M- 11,939
a data with less than 8-h fix rates were aggregated to near 8-h fix rates
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to assess selection of fine-scale habitat features rather
than broader-scale landscape characteristics [6]. We did
not directly incorporate random effects into our SSF
models as the analytical techniques for doing this are
sparse and often computationally prohibitive for com-
plex model sets [61]. In our models, we would have a
needed to incorporate a random effect of individual for
each covariate in the model – the equivalent of random
slopes. We believe this would likely have led to conver-
gence issues as our models are already complex (see sec-
tion regarding temperature interaction terms). Instead,
we fit our CLR models with generalized estimating equa-
tions (GEE) using a clustering variable of “animal-year”
to split the data into statistically independent clusters.
This allowed us to account for lack of independence be-
tween steps within an individual for a given summer,
and provided unbiased (i.e., robust) variance estimates
provided there are at least 20 independent clusters and
preferably 30 [71]. Our data all had at least 20 unique
animal year clusters, and all but one had greater than 30
(Table 1).

Habitat covariates
We obtained temperature estimates from the North
American Regional Reanalysis (NARR) as opposed to
weather stations. NARR provides a suite of highly-
temporally dynamic (eight times daily; 32 km) set of me-
teorological variables [57]. We annotated NARR
temperature estimates using the environmental-data au-
tomated track annotation (Env-DATA) system available
from Movebank [21]. To ensure accuracy of these
temperature estimates, we performed a validation exer-
cise on the two populations of moose which included
temperature sensors on their collars (Innoko and Koyu-
kuk). We found a moderate relationship between the
two (Supplementary material (S)1; R2 = 0.47–0.58,
RMSE = 3.88–4.43 °C). NARR temperature estimates
represent an ambient, neighborhood temperature, allow-
ing us to investigate how moose respond to ambient
variation in temperature via fine-scale selection for en-
vironmental characteristics that are likely to create
cooler microclimates. We excluded ambient temperature
as a main effect within CLR models because it did not
vary within strata, and only included it as an interaction
term with other covariates.
Moose may move to areas that provide thermal cover

when temperatures increase such as denser canopied
forests [56]. In our models, a United States Geological
Survey (USGS) percent canopy product for 2010 (30 m
cell size, [31]) was used as an index of thermal cover.
Moose use canopy cover for purposes other than
thermoregulation such as predator avoidance [85]. How-
ever, by considering the interaction between temperature

and canopy cover, it is likely that we captured behavioral
thermoregulation in our models.
We assessed the importance of water habitats in be-

havioral thermoregulation using a distance-to-water co-
variate. We estimated this covariate from Pekel et al.’s
[68] percent global surface water map, which quantified
global surface water from 1984 to 2015. We used the R
“raster” package [34] to estimate the Euclidian distance
of the nearest water pixel (30 m cell size) from a given
moose location. Elevation estimations (in meters) were
extracted from the ArcticDEM (version 6, 5 m cell size
[69];). The solar radiation index (SRI [46];) was esti-
mated mathematically as a function of latitude, aspect,
and slope using the “RSAGA” package [8] – which were
derived from the ArcticDEM, with the resultant values
representing the hourly extraterrestrial radiation striking
an arbitrarily oriented surface [46].
We chose to consider only continuous covariates as

predictors to represent habitat as dynamic and continu-
ous (sensu [17]). Covariates were standardized by divid-
ing them by two times their standard deviation [28],
allowing coefficients to be directly comparable across
models. Collinearity was assessed using Pearson correl-
ation coefficients, if correlation coefficients between pre-
dictors exceeded 0.70 we excluded collinear metrics
from being present in the same model [22].

Two-way temperature interactions
We considered both linear and nonlinear interactions
between habitat covariates and ambient temperature as
nonlinear processes are widespread in ecology particu-
larly in response to climate change [13, 92]. In total,
three model variants for each population-sex partition
were considered: (1) a base model that included habitat
covariates as described above with no interaction terms
or consideration of temperature, (2) linear interaction
models where habitat covariates sequentially interacted
with temperature linearly, and (3) spline interaction
models where habitat covariates sequentially interacted
nonlinearly with temperature using natural cubic splines.
Because nonlinear terms are at risk of overfitting
models, we constrained any nonlinear relationships ex-
plored in the spline interactions to two or three knots in
CLR models using the “splines” package [72].

Habitat selection model evaluation and validation
We evaluated model fit for each population-sex partition
using the quasi-likelihood under independence criterion
(QIC [66];) because it is well suited for case-control
models [19]. Finally, predictive ability of model variants
were assessed using leave-one-out cross validation
(LOOCV), which is a k-fold cross validation variant [7]
where each individual animal is sequentially left out and
predicted based on the remaining data. Mean Spearman
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rank coefficients were used to determine the predict-
ive ability of model variants. For each population-sex
partition, the model with the highest correlation coef-
ficients from LOOCV and lowest QIC was considered
the best. All spatial processing and statistical analyses
were conducted in the statistical software R version
3.6.1 [72].

Results
In total, seven base, 28 linear interaction, and 28 spline
interaction models were estimated. For the sake of parsi-
mony, only the most biologically significant results are
presented and summarized by sex and population. Eleva-
tion was collinear with distance-to-water in the Innoko
population, we retained the latter because of its known
importance in moose ecology [74, 80]. In all but one
case (Koyukuk males, S2), spline-based models where
percent canopy interacted with temperature outper-
formed linear interaction and base models and are thus
the only models discussed (Tables 2 and 3). In contrast
to the strong habitat selection responses of moose for
canopy cover, we did not find evidence for other behav-
ioral thermoregulation strategies. For example, we found
no support that Alaska moose altered resource selection
with increasing summer temperatures in response to
topography (i.e., more northerly, cooler slopes), elevation
(with the exception of one population, S2), nor hydrol-
ogy (i.e., by selecting to be closer to water).

Females
The best fit spline models across all four populations oc-
curred when percent canopy interacted with
temperature using two to three knots. These spline
interaction models had significant improvements in
model fit compared to both the base models (ΔQIC = −
108 to − 284; Table 2) and the linear interaction models
(not shown). Cross validation scores for spline inter-
action models experienced small to moderate improve-
ments when compared to the base model (ΔLOOCV = +
1% to + 10%; Table 3).
In summer, female moose in all four regions selected

for increased canopy cover nonlinearly as temperature
increased (Fig. 2; S3). However, the magnitude of the se-
lection response to thermal cover was most pronounced
in the most southerly region (Susitna; β%canopy1 = 33.90,
p < 0.001; β%canopy2 = 20.09, p < 0.001; Table 4) as well as
the most northerly region (Koyukuk; β%canopy1 = 24.91,
p < 0.001; β%canopy2 = 20. 03, p < 0.001). Although the ef-
fect of canopy cover was reduced in both the Innoko
moose (β%canopy1 = 14.82, p < 0.001; β%canopy2 = 9.01, p <
0.001) and the Tanana moose (β%canopy1 = 4.71, p < 0.001;
β%canopy2 = 8.97, β%canopy3 = 7.70, p < 0.001), both popula-
tions still revealed highly statistically significant results
indicating female moose selected nonlinearly for in-
creased canopy cover as temperature increased.
Female moose in the Koyukuk and Susitna regions

also showed an increased affinity for water demonstrated

Table 2 Model evaluation (QIC) and cross validation (LOOCV) for female moose organized by population. Base models contain no
temperature covariates, while spline models incorporate nonlinear interactions between a given covariate and ambient temperature.
In this case, “Spline %can2” refers to percent canopy interacted with ambient temperature with two spline segments, while “Spline
%can3” refers to percent canopy interacted with ambient temperature with three spline segments. Decreases in QIC indicate a
better model fit while increases in LOOCV indicate more predictive ability

Koyukuk Susitna Innoko Tanana

Base Spline %can2 Base Spline %can2 Base Spline %can2 Base Spline %can3

QIC 47,070 46,918 70,707 70,423 73,361 73,184 102,854 102,746

ΔQIC – − 152 – −284 – − 177 – −108

LOOCV 68% 69% 62% 64% 60% 63% 36% 46%

ΔLOOCV – + 1% – + 2% – + 3% – + 10%

Note: %can = percent canopy cover

Table 3 Model model evaluation (QIC) and cross validation (LOOCV) for male moose summary of organized by population. See
additional descriptors in Table 3

Koyukuk Susitna Innoko

Base Spline %can2 Base Spline %can2 Base Spline %can2

QIC 18,583 18,529 27,919 27,777 62,946 62,849

ΔQIC – −54 – − 142 – −97

LOOCV 42% 45% 57% 62% 50% 56%

ΔLOOCV – + 3% – + 5% – + 6%
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in the significant negative beta coefficients for the “dis-
tance-to-water” predictor (Table 4), suggesting that
moose in these regions preferred to be closer to water.
Additionally, we observed additional selection behaviors
in the Innoko and Susitna female moose. Female moose
in the Innoko population showed an avoidance of areas
of high solar radiation (βSRI = − 0.18, p < 0.001), while fe-
males in the Susitna population showed an avoidance of

higher elevation locations (βelevation = − 1.21, p < 0.001),
but these results were independent of temperature.

Males
For males, the best fit spline models in the Susitna and
Innoko populations were also from percent canopy
interacted with temperature (ΔQIC = −142 and − 97 re-
spectively; Table 3). For the Koyukuk males, the best fit

Fig. 2 Conditional probability of selection of spline-based thermal cover as a function of temperature for Alaskan female moose by region in
summer months (June–August). We used natural splines with two to three degrees of freedom to represent the relationship between canopy
cover and temperature. The probability of selection of denser canopy increased significantly with temperature during summer for all four regions,
where red lines indicated the 90% temperature percentiles of experienced temperature and the blue lines indicate the 10% temperature percentiles
experienced temperature by region. Shaded bands represent a 95% confidence interval. Plots were created in the ‘ggplot2’ R package [94]
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spline model came from elevation interacted with
temperature (S2), but males in this region also saw im-
proved model fit from percent canopy interacted with
temperature (ΔQIC = − 54). Cross validation scores for
spline interaction models (percent canopy interacted
with temperature) in all three male populations experi-
enced small to moderate increases when compared to
the base model (ΔLOOCV = + 3% to + 6%).
Male moose in all three populations (no males were

collared in the Tanana population, see Table 1) selected
for increased canopy cover as temperature increased
(Fig. 3; S3). However, like with the females, the response
to selection of thermal cover was most pronounced in
the most northerly region (Koyukuk; β%canopy1 = 27.84,
p < 0.001; β%canopy2 = 24.30, p < 0.001; Table 5) as well as
the most southerly region (Susitna; β%canopy1 = 22.51, p <
0.001; β%canopy2 = 14.71, p < 0.001). The effect of canopy
cover was reduced in the Innoko males (β%canopy1 =
13.02, p < 0.001; β%canopy2 = 8.50, p < 0.001), yet the re-
sults still revealed highly statistically significant results
indicating moose selected for increased canopy cover as
temperature increased.
Additionally, male moose in the Susitna population

showed increased selection of locations closer to water
and, like their female counterparts, avoided areas of
higher elevation (βelevation = − 1.11, p < 0.001). Similarly,
Innoko males showed avoidance for areas with increased
topographical solar radiation exposure (βSRI = − 0.12, p <
0.001), but these selection behaviors were independent
of temperature.

Discussion
Our results demonstrate that moose at the northern ex-
tent of their range altered habitat selection patterns in

response to temperature. Across all populations and
sexes, moose selected for denser canopy cover as
temperature increased, which is consistent with previous
studies [20, 56, 88], and our prediction that moose
would select cooler locations as ambient temperature
increased.

Magnitude of selection response to temperature varied
by sex and population
Our habitat selection results also demonstrated that the
magnitude of moose selection for dense canopy cover at
higher temperatures varied between populations and
sexes (Figs. 2 and 3; S2 and S3; Tables 4 and 5). In two
(Innoko and Susitna) of the three populations containing
both male and female moose, females demonstrated a
stronger selection response for denser canopy at higher
temperatures than males. This may be linked to calving
and nursing demands on female moose [79] who may
more strongly select for denser canopy cover to avoid
spending calories to thermoregulate using physiological
mechanisms. However, we were unable to distinguish
between females with and without calves in this study.
This likely influenced our results as females accompan-
ied by their calves tend to increase selection for areas
that provide cover for predator avoidance [24, 43] and
drastically change their movements both before and after
parturition [81].
We also considered whether population differences in

selection strength may be related to the availability of
thermal cover between regions (i.e., a functional re-
sponse) where animals alter their habitat selection based
on habitat availability [3, 63]. However, our results can-
not entirely be explained by a functional response in
habitat selection for thermal cover. For example, the

Table 4 Best habitat selection models by population for female moose (Alces alces gigas) in Alaska from the step-selection function
analysis. The best models across all four populations occurred when percent canopy interacted with temperature nonlinearly and
are presented here. Natural spline (sp) predictors, where percent canopy interacted with temperature, have coefficients estimated for
each line segment. Therefore, numbers one through three in the spline predictor terms represent an individual line segment. Only
one of four populations (Tanana) has a third set of coefficients. In the Innoko population, elevation was collinear with distance-to-
water and was thus excluded. All predictors were standardized by dividing by two times their standard deviation, making
coefficients directly comparable. Robust standard errors are reported

Predictor Population

Koyukuk Susitna Innoko Tanana

Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficient (SE)

Elevation 0.09 (0.16) −1.21 (0.25)b NA 0.28 (0.39)

sp(Percent Canopy x Temperature) 1 24.91 (3.7)b 33.90 (3.1)b 14.82 (3.32)b 4.71 (1.07)b

sp(Percent Canopy x Temperature)2 20. 03 (3.1)b 20.09 (1.9)b 9.01 (2.14)b 8.97 (2.22)b

sp(Percent Canopy x Temperature)3 NA NA NA 7.70 (1.97)b

Percent Canopy −13.90 (2.2)b −16.60 (1.6)b −7.90 (1.92)b −4.80 (1.21)b

Solar Radiation Index 0.02 (0.02) 0.003 (0.02) −0.18 (0.02)b −0.0006 (0.02)

Distance-to-Water −0.66 (0.3)a − 0.48 (0.09)b −0.22 (0.16) − 0.09 (0.07)
a0.05; **0.01; b0.001
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Koyukuk moose showed strong selection for thermal
cover as temperature increased but also had the second
lowest available canopy cover regionally (37.6%; S4).
Thus, we do not think a functional response per se ex-
plains regional differences in the selection strength, ra-
ther we anticipate that it is likely a combination of
environmental factors interacting in complex ways to

create a suite of unique habitat differences across re-
gions (S5). However, to fully understand functional re-
sponses in habitat selection one must also consider the
different spatial scales of selection [38, 63], as such re-
sponses are often evaluated at the landscape or home
range scale [30, 32, 33, 60]. Thus, the lack of functional
response of moose to canopy cover in our study may be

Fig. 3 Conditional probability of selection of spline-based thermal cover as a function of temperature for Alaskan male moose by region in
summer months (June–August). We used natural splines with two to three degrees of freedom to represent the relationship between canopy
cover and temperature. The probability of selection of denser canopy increased significantly with temperature during summer for all four regions,
where red lines indicated the 90% temperature percentiles of experienced temperature and the blue lines indicate the 10% temperature
percentiles experienced temperature by region. Shaded bands represent a 95% confidence interval. Plots were created in the ‘ggplot2’
R package [94]
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related to the fine-scale nature of our analytical frame-
work and not an absence of a functional response of
moose to thermal cover.

Implications of habitat selection results within a changing
climate
The consistent patterns of resource selection for thermal
refugia under increasing temperatures found in this
study may have important implications for moose resili-
ence in arctic-boreal landscapes responding to increased
temperatures from global climate change. For instance,
landscape changes associated with wildfire are generally
reducing canopy cover from coniferous species, and an-
nual area burned in North American boreal systems
doubled in the last half century [44], which is strongly
linked to climate and annual weather patterns [37, 45].
Vegetation in interior Alaska now has less older spruce
forests, the most common thermal refugia by moose,
and a greater proportion of early successional vegetation
than before 1990 [51]. Burn severity also plays a major
role in how boreal forests recover after wildfire [26],
where areas of low burn severity in black spruce stands
tend to undergo self-replacement succession [39] and
areas of high burn severity favor relay succession of de-
ciduous species over black spruce because of increased
exposure of mineral soil and reduced seedbank availabil-
ity [40, 78]. For moose, such changes in habitat structure
may provide new forage resources [4, 47], but also may
limit the available thermal refugia needed for behavioral
thermoregulation immediately after disturbance events
prior to vegetation regeneration, or in late spring
(March–April) prior to budburst when moose have not
yet shed their winter coats.

Limitations and future work
Our results showed moose did not select for areas closer
to water as temperature increased, which differ from

previous observations where moose sought wetland or
riparian areas to thermoregulate [76, 80]. We believe our
results differed due to the spatial resolution (30 m grid
cell size) used to represent this behavioral strategy. This
restricted detection of smaller aquatic microhabitats im-
portant to moose. Unfortunately, no finer-scale map cur-
rently exists andlimited our ability to study selection for
aquatic microhabitats, which may be especially relevant
in flatter, more swamp-like areas such as the Tanana
and Innoko regions.
Based on our results and limitations encountered, we

make three broad recommendations for future work re-
garding animal behavioral thermoregulation. First, fu-
ture work should investigate the vulnerability and
resilience of arctic-boreal animals to structural habitat
changes as forage resources increase and thermal cover
decreases (e.g., [52, 88]). For example, recent work on
Alpine ibex (Capra ibex) – another heat-sensitive un-
gulate – indicates that male ibex response to minimize
heat stress comes at the expense of optimal foraging
[9]. Unfortunately, we did not have a detailed forage
quality or biomass model calibrated for our study areas
and hesitated to use categorical land cover maps be-
cause of criticisms regarding their use [17]. In Alaska,
there is not a wide distinction between shrub classes in
landcover maps that would enable us to determine if
selected shrub habitats correspond to palatable species
and foraging behavior. For instance, “shrub” in most
vegetative classifications does not distinguish between
shade forages (Salicaceae, Betula neoalaskana) and
shade only (Alnus, B. nana) species, which is critical for
parsing selection behavior. Moose maximize energy in-
take in the hottest parts of summer, so selection for
forage biomass and quality plausibly overrides thermal
stress and predation risk for a time. However, we were
unable to directly assess this tradeoff due to data
limitations.

Table 5 Best habitat selection models for male Alaska moose from the step-selection function analysis. Natural spline (sp) predictors,
where percent canopy interacted with temperature, have coefficients estimated for each line segment. Numbers one and two in the
spline predictors represent an individual line segment. All three populations had temperature-canopy interactions with two-line
segments. In the Innoko population, elevation was collinear with distance-to-water and was thus excluded. All predictors were
standardized by dividing by two times their standard deviation. Robust standard errors are reported

Predictor Population

Koyukuk Susitna Innoko

Coefficient (SE) Coefficient (SE) Coefficient (SE)

Elevation −0.45 (0.37) −1.11 (0.28)b NA

sp(Percent Canopy a Temperature)1 27.84 (4.6)b 22.51 (5.5)b 13.02 (3.3)b

sp(Percent Canopy a Temperature)2 24.30 (4.1)b 14.71 (3.8)b 8.50 (2.4)b

Percent Canopy −16.63 (2.9)b −11.81 (3.1)b − 17.60 (2.04)b

Solar Radiation Index 0.02 (0.03) −0.005 (0.003) − 0.12 (0.02)b

Distance-to-Water 0.34 (0.31) −0.59 (0.11)b −0.02 (0.33)
a0.05; **0.01; b0.001
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Second, we suggest testing for differences in female se-
lection and movement relative to presence or absence of
offspring. Such a distinction would connect nicely to
calls to link behavior and movement to population out-
comes [10, 59], especially when considering the thermal
environment as survival and fitness often depend on the
availability of suitable habitat to buffer against thermal
extremes in a landscape [25].
Finally, a critical next step is to evaluate how habitat se-

lection under thermal stress impacts individual fitness and
population dynamics, as temperature plays an important
role in limiting fecundity in other mammals [18, 93] includ-
ing moose [50, 62]. This is especially important as popula-
tion responses to climate change can vary dramatically. For
instance, Joly et al. [42] found the influence of climate on
caribou herds in Alaska was not uniform, instead, western
populations increased in size while northwestern popula-
tions declined as a result of intensity changes in the Pacific
Decadal Oscillation. Similarly, using detailed demographic
information for caribou (Rangifer tarandus), red deer (Cer-
vus elaphus), and elk (C. canadensis) across the Northern
Hemisphere, Post et al. [70] showed that that different
population responses to climate varied in both direction
and magnitude.

Conclusion
The impacts of climate change in arctic-boreal regions in-
crease landscape heterogeneity through processes such as
increased wildfire intensity and area burned, which can
significantly alter the thermal environment available to an
animal. Despite recognizing the importance of thermal
conditions to animals, there is a distinct lack of research
on how animals might respond to climate driven changes
in thermal refugia. Our regional assessment provides
insight on how Alaska moose may respond to changes in
ambient temperature, where statewide annual tempera-
tures are averaging an increase of 0.4 °C per decade and
summer temperatures are projected to increase 2–5 °C by
midcentury [51]. Understanding habitat selection and
movement patterns related to behavioral thermoregula-
tion is a first step toward identifying areas capable of pro-
viding thermal relief for moose and other species
impacted by climate change.
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