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reading tons and tons of literature, I can finally say that I can build a (rather simple) model of 
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I would like to thank my supervisors for their excellent guidance and support during the process. 

Karen-Marie Mathisen and Alain De Vocht, who guided me through the first part of my thesis 
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I would like to thank you as well for the many support. We all had our highs and lows, but 

together we got through it. I would also like to thank my family and boyfriend. Even though 

they did not understand much of the subject, they tried to listen when I needed to ventilate, and 

they motivated me to push through, even at times when I wanted to give up.   

I hope you enjoy your reading as much as I enjoyed writing this. 
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1. Introduction 

The American bullfrog, also called Lithobates catesbeianus or Rana catesbeiana, is a species 

native to Canada, the USA and Mexico, but now settled in many countries. The population of 

bullfrogs is currently increasing all over the world. The American bullfrog is understood to be 

an invasive alien species (IAS) in many countries (IUCN SSC Amphibian Specialist Group, 

2015). Alien species are species introduced outside their natural range where they often seem 

to do better than in their native habitat. Sometimes they thrive so well that they become a risk 

to native species. In this case they are called invasive alien species. There are many problems 

that come with IAS (Mcneely, 2001). Mayer et al. showed in 2015 that the cane toad, an 

invasive alien species in Australia, poses a threat towards the native anurans since they inhibit 

the activity by inducing avoidance or by reducing activity, such as feeding and breeding (Mayer 

et al., 2015). Sometimes it concerns a direct threat as in the Cuban treefrog, which predate of 

Florida’s native treefrogs (Mayer et al., 2015). IAS are sometimes capable of disturbing an 

entire ecosystem and destroy habitats. IAS might also bring diseases that can transfer to other 

native animals or even humans. Predictions say that climate change will cause invasive species 

to spread even more (Hoegh-Guldberg O., Jacob, & Taylor, 2018). Drastic measures are needed 

to eradicate IAS before they cause too much damage. It is very important to act fast and use the 

correct, specific eradication method for each kind of IAS. The best method to avoid IAS is to 

prevent them from being introduced. It can be very hard to eradicate some kinds of IAS once 

they have spread too far. A first step towards eradicating IAS is to gain knowledge about the 

species’ behaviour, ecology and impacts (Mcneely, 2001).  

The American bullfrog was introduced in Belgium and other European countries in the 1990s 

for culinary reasons and was later used for ornamental purposes. The bullfrog escaped from 

several gardens to nature and also entered Belgium together with live fish transports from other 

European countries (van Ham et al. 2013). The American bullfrog is listed as ‘least concern’ 

on the IUCN red list, because of its great spread, increasing trend and large number of 

subpopulations and locations (IUCN SSC Amphibian Specialist Group, 2015). The American 

bullfrog is thriving in Belgium because of the presence of their ideal habitat, their high 

reproductive rate (up to 20.000 eggs per clutch) and having no predators (van Ham et al., 2013).   

The American bullfrog causes many problems in Belgian ecosystems. First of all, they are 

carriers of the feared chytrid fungus, Batrachochytrium dendrobatidis, which causes 
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chytridiomycosis, a fungal infection. American bullfrogs are immune to this infection and thus 

do not experience any symptoms, but they can pass it to other species, which are not immune 

to the disease. Batrachochytrium dendrobatidis has already caused hundreds of amphibian 

species (mostly frog species) to go extinct (Garner et al. 2006). Secondly, American bullfrogs 

eat anything that fits in their mouth, even their own species, which makes them cannibalistic. 

As such generalists, they have a very reliable food source and are very competitive towards 

other species. At last, the bullfrogs can travel great distances which makes it very hard to 

eradicate the species (Roach, 2004). They are very hard to eradicate because of their complex 

developmental stages, their abundance, high fertility and the far distances they can cover 

(Ficetola, Thuiller, & Miaud, 2007). New methods are needed for effective eradication. 

This Master thesis study is part of LIFE 3n-bullfrog, a five-year long funded European LIFE 

project that started in October 2019 (De Vocht, 2019b). LIFE 3n-bullfrog’s main purpose is 

eradicating or controlling isolated American bullfrog populations using a new method based on 

the sterile insect technique (SIT) (Dyck, Hendrichs, & Robinson, 2005) and the sterile male 

release technique (SMRT) (Great Lakes Fishery Commission, 2000), namely the sterile triploid 

method (STM). They want to integrate this method in the existing management plan of the 

bullfrog in Flanders. The sterile triploid method was created to eventually control invasive 

aquatic fauna. Within this project, the sterile triploid method is tested using the American 

bullfrog as a pilot case. Fertile (diploid) females are caught, whereafter the eggs are farmed and 

fertilized using the extracted sperm from the captured males. The eggs  then go into a high-

pressure chamber for several minutes that makes the eggs triploid and, in the case of American 

bullfrog, sterile (Full method: (Descamps & De Vocht, 2017)). When the eggs develop to be 

larvae, they are moved to an outdoor closed complex to grow further. An initial catch effort in 

the concerned ponds will be executed before releasing the sterile bullfrogs. After introduction, 

the population is expected to decline because of infertile egg clutches, which is expected to 

result in a population decline of 90% (Descamps & De Vocht, 2019).  One of the goals of LIFE-

3n-bullfrog is to reduce the American bullfrog population by 75% by the end of the project and 

by 90% three years after the project. It is expected that implementing STM will result in a 

population decline to a level where ecological effects of the invasive population would not 

threaten local ecosystems any longer (De Vocht, 2019a). Currently, sexually active and calling 

triploid males have been created successfully. The STM has been tested in the lab and 

preliminary assessment of its efficiency in outdoor mesocosms has been carried out. But, more 

research is needed to gain knowledge about sexually mature triploid bullfrogs their behaviour, 
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foraging and sexual activity, compared with wild bullfrogs. Also, an accurate estimation of the 

size of the target population has to be made, as well as an accurate estimation of the population 

structure to gain insight on how many sterile individuals have to be released in order to have a 

successful reduction of the population. Mathematical models will clear out what amount of 

triploid bullfrogs is favourable to release so that survival, population reduction and cost-

efficiency is optimal. Population models are often used to assess the effectivity of management 

actions (Caswell, 2001). The initiation of this step will be carried out in this Master thesis.  

The eventual outcome of my Master project contains two parts. In the first part, I will carry out 

the first steps towards estimating the population size by trying out two different methods and 

evaluating these methods whilst comparing results. I will evaluate and compare catch-depletion 

and eDNA analysis as population size estimation techniques. I will also estimate the catch per 

unit of effort (CPUE) based on the data collected using the catch-depletion method, which can 

be used as an indication on how to approach control measures other than STM. The second part 

includes a method for modelling the population of American bullfrogs in Scheps, a small nature 

reserve in Balen, Flanders. In this part, the first step is to create a conceptual model concluding 

various parameters such as the life cycle of diploid and triploid individuals, in which sterile 

individuals will be introduced in a wild population of fertile American bullfrogs whilst and after 

conducting other control methods. In this conceptual model it is possible to see the expected 

outcome of the population declining.  Hereafter, I will determine and decribe the parameters 

that need to be involved in the population model. The model is supposed to give insights about 

the amount of triploid bullfrogs that need to be released to reach the goal and to gain information 

about the amount that the population should decline before implementing STM in order to get 

a successful result. I will discuss the recommended type of population model as well as in which 

program the model should be built and describe how to analyse the population model. Using 

data from other bullfrog populations, I will create a model and discuss the results, serving as an 

example.   



9 

2. Background information 

2.1 Study species 

 Taxonomy 

The American bullfrog is part of the kingdom Animalia, the phylum Chordata, the class 

Amphibia, the order Anura and the family Ranidae (IUCN SSC Amphibian Specialist Group, 

2015). The official taxon name is Lithobates catesbeianus (Shaw, 1802).  

 Description and ecology 

The American bullfrog is native to North America. 

It is known to be the largest North American frog 

with males measuring about 180 mm long and 

female about 200 mm (B. Bury & Whelan A., 

1984). An adult can weigh up to 700 g (National 

Geographic Society, 2015). The tadpoles are also 

exceptionally large, reaching lengths up to 178 

mm. They can be recognized by their green or olive 

dorsum with a straw- or maize-coloured belly, and 

many small dark and fine yellow dots (figure 1). 

Adults are olive, green or brown on the back, but 

can vary in colour. The legs of an adult are banded 

and blotched and there is variable spotting on the 

back. The underside is white blotchy with grey 

spots. The head is flat and broad. This frog can be 

distinguished from other frogs by the lack of dorso-

lateral folds. The males’ tympanum (i.e. middle ear) 

is brown and larger in diameter than the eye (figure 2). The females’ tympanum is about the 

same size as the eye. This characteristic is only visible when they reach sexual maternity (B. 

Bury & Whelan A., 1984). The American bullfrog reaches its adult size two years after 

metamorphosis. The year after, in its third year, the bullfrog starts to reproduce. Sometimes 

they reach sexual maternity after only one year, this depends, among other things, on the climate 

(R. B. Bury, 1984; Govindarajulu, Altwegg, & Anholt, 2005). The clutch size becomes larger 

Figure 2: Adult North American 
bullfrog (Howes, 2004) 

Figure 1: American bullfrog 
tadpole (Nafis, n.d.) 
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as the females get older and bigger. An individual clutch size can be as larger than 40,000 eggs. 

Sometimes females lay a second clutch, which contains fewer and smaller eggs than those of 

the first clutch (Rep, Wingert, & Meshaka, 2015). The average life span of the bullfrog is 7 to 

9 years, but some research has shown that they can live up to 16 years or even more (Stoutamire, 

1931; Lougheed & Taylor, 2010). A feature that distinguishes the American bullfrog from other 

frog species is their call. The males’ call is very different from other species of frogs. People 

say that it resembles the mooing of a cow (National Geographic Society, 2015). American 

bullfrogs are nocturnal predators. They will ambush and eat anything they can fit in their 

mouths, including insects, rodents, birds, fish and snakes. They wait quietly for their prey to 

pass and then lunge with their powerful hind legs and mouths wide open (B. Bury & Whelan 

A., 1984).  

 Problems 

One of the most important threats to biodiversity are invasive species (Richardson et al., 2000), 

additionally causing many problems in amphibian populations. The invasive bullfrog causes 

indigenous species to decline because of the bullfrogs’ large size, high densities, loud 

vocalizations high fecundity and broad diet, which makes them very successful regarding 

competition. The bullfrog is additionally known to have severe effects on native amphibian 

species through competition (mainly from larvae) and predation (Blaustein & Kiesecker, 2002). 

Males are assumed to be territorial and can be aggressive when guarding their land (National 

Geographic Society, 2015).  Because of its large body size, the bullfrog often is a very important 

part of aquatic ecosystems (R. B. Bury, 1984) and can act as a structuring predator in aquatic 

ecosystems (van Ham et al., 2013). They can survive in a broad range of conditions and thus 

spread easily (R. B. Bury, 1984). Bullfrog populations are hard to manage once established 

(Adams, Pearl, & Gherardi, 2007). 

In Flanders, the American bullfrog is listed by ISEIA as a black list species (A1-score = 12). 

Here, the bullfrog mainly has an impact on species level and less on the environment and 

ecosystem-functioning (De Wavrin et al., 2007). Native species to Flanders that are affected 

indirectly are Bufo bufo, Epidalae calamita, Lissotriton vulgaris, Alytes obstetrican and 

Salamandra Salamandra. They are affected by transmission of pathogens or/and competition. 

Pelophylax esculenta is affected directly through predation (Devisscher et al., 2012; F. Pasmans 

et al., 2010; Frank Pasmans & Martel, 2011; Anon., 2005; Bovero et al., 2008). 
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 Control measures 

There is a general regulation with guidelines for controlling IAS in Europe (European 

Parliament, 2014). The first step of it is prevention. People need to be aware of the problem so 

they will not be introducing species consciously. It is very important to communicate the 

problem towards the people and create a support base. The second step is rapid detection, 

followed by quick intervention. Creating detection systems for discovering new IAS is very 

essential in the combat against IAS. Some channels were used to allow people to share their 

sightings of IAS with others. These channels often include websites or apps where they can 

report their sightings (van Ham et al., 2013) , but this depends on the country. As a last resort, 

combatting the IAS is the only solution. When combatting IAS, it is important to focus on all 

developmental stages (adults, metamorphs and larvae). Otherwise, the population will be able 

to recover in a short time (Ficetola & Miaud, 2008). Over time, several techniques have been 

invented to eradicate invasive species, which are mostly very specific to a species. Some of the 

methods that are adequate for controlling a population of bullfrogs are removing the egg 

clutches and larvae using nets, removing the adults and subadults using funnel traps, nets or by 

shooting them (Kamoroff et al., 2020). The most successful eradication method currently 

carried out is to combine number regulation measures (mostly capture with traps) and measures 

on habitat level, conducted frequently (one or twice a year) 

for 10-40 years (Ficetola et al., 2007). This method is 

efficient in a small pond with a closed population, which is 

often not the case. Bullfrogs are often very wide spread in 

high numbers (Ficetola et al., 2007).  

LIFE 3n-bullfrog is a project that is testing a innovative 

method for controlling bullfrogs in more open populations, 

as which is the case in Flanders, Belgium (De Vocht, 2019a). 

The method is called the sterile triploid method (STM) and 

is based on the same principles as the already existing sterile 

insect technique (SIT) (Dyck et al., 2005; Gentile, Rund, & 

Madey, 2015) and sterile male release technique (SMRT) 

(Great Lakes Fishery Commission, 2000). SIT is a method 

that was first invented for combatting screwworm flies 

(Cochliomyia ssp.). Screwworm is a deadly parasite of Figure 3: Sterile insect 
technique theory (Yan, 2019) 
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livestock. By sterilising the screwworm through radiation and then releasing it in big amounts, 

they were able to eradicate the screwworm (figure 3). SIT is still being used to eradicate 

different kind of insect species (Dyck et al., 2005; Gentile et al., 2015). SMRT is similar in the 

way that it sterilizes the male individuals to then release into the wild resulting in a decline of 

the population. The sterile males will compete with the fertile males and mate with the females. 

The resulting egg clutches will be unviable. This technique was used on sea lampreys (Great 

Lakes Fishery Commission, 2000) and large mammals (Gonçalves da Silva, Kolokotronis, & 

Wharton, 2010). The sterile triploid method (STM) is a recently created method within LIFE 

3n-bullfrog, where both sterile male and female larvae are released into the wild population 

(Descamps & De Vocht, 2017).  

2.2 Study area 

The American bullfrog is present in five distinct locations in Flanders, which is the northern 

part of Belgium. One of those areas is a large one from around 200 km² called the valley of the 

Grote Nete. The bullfrog is known to be very present there with a very high abundance (figure 

4) (Descamps & de Vocht, 2016). Flanders consists of many small, shallow, permanent and 

nutrient-rich ponds, which provide the optimal conditions for reproduction of the American 

bullfrog such as presence of many algae and the lack of predators in the water bodies for 

breeding (van Ham et al., 2013). This pilot case is focused on the more or less closed population 

in Scheps, which is a nature reserve part of the Valley of the Grote Nete, situated in Balen 

(figure 5).  

 

Figure 4: Heath map of the distribution of the American bullfrog in Flanders 
(www.waarnemingen.be, 2021). The study area Scheps is situated in the 
largest area with highest density.  
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Figure 5: Map of the big Neteforest (Natuurpunt, n.d.), Scheps is indicated with red 
arrow and circle. 

2.3 Study design 

The objective of this study was to gain some insights on two elements. First, I wanted to 

evaluate two different methods of population size estimation to determine which method is the 

best for this case study, as well make an estimation of the catch per unit of effort (CPUE). These 

factors are both essential for building a population model and determining how to approach the 

release of triploid bullfrogs. Secondly, I wanted to gain insight into how a population model for 

this pilot case, the eradication of the American bullfrog using the sterile triploid method, is best 

built. The population model is required to give some insights into how to approach the release 

of sterile larvae into the population, e.g. how to make the eradication method efficient. By 

knowing the size and growth rate of the population and the life stages that are most sensitive to 

changes, it is possible to determine how many triploids are best to release when. The eventual 

population model will also be able to reveal how much the population needs to decline before 

implementing STM. Specifically in my thesis, I wanted to gain insight on what type of model 

to choose, what parameters to include, what program to use and which analysis to conduct. 

There was no data of use collected to build the actual model, so I used data from other bullfrog 

populations to give insights on how the model should be built and analysed.  
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3. Population size estimation: evaluation of 
methods 

3.1 Methods  

Two methods for estimating the population size were tested, compared, and evaluated, namely 

catch-depletion and analysing eDNA concentrations. This to determine which method is most 

efficient for estimating the population size of bullfrogs. Factors that are considered are 

accuracy, time requirement, expenses, and potential other variables that you can gain from the 

method. We collected all data for the estimates of population sizes in the valley of the Grote 

Nete, in different conservation areas. The catch-depletion data also gave insight on the average 

catch per unit of effort (CPUE) in Scheps, which is essential information in the eradication plan 

of the American bullfrog. The CPUE can reveal how many funnel traps to place in order to 

make the population decline the desired amount. By distinguishing trap angles in the calculation 

of the CPUE, the results indicated in which angle it is best to put the funnel traps in order to 

catch the desired life stages (tadpoles/metamorphs or adults). 

 

Catch-depletion has successfully been used in the past to estimate the population size of aquatic 

(invasive) species (Henderson, 2002; Maceina, Rider, & Lowery, 1993). Previous research has 

shown that catch-depletion can also be used to reduce a population of bullfrogs in Flanders 

when conducted persistently over several years (Devisscher et al., 2012). But it has also been 

shown that some populations of bullfrogs in Flanders have grown out of control, as the 

population in the Valley of the Grote Nete (study area). Therefore, other control methods are 

needed, like the sterile triploid method (Descamps & de Vocht, 2016).  

eDNA analysis is a method used for indicating the presence of bullfrogs that has been tested in 

Flanders in a wild population of bullfrogs before, with success (Halfmaerten, 2015). This 

method also showed to be promising in other populations of bullfrogs and other species 

(Lacoursière-Roussel, Rosabal, & Bernatchez, 2016; Lin, Zhang, & Yao, 2019; Yates, Fraser, 

& Derry, 2019). In Flanders, the method has also been tested in a mesocosm experiment on a 

population of bullfrogs very recently to refine the method (INBO, 2020), and has now been 

conducted on a larger scale. Environmental DNA concentrations can now show the abundance 

and biomass estimates of bullfrogs (as a signal) whereafter a population estimate can be made 

per pond (Ficetola & Miaud, 2008; INBO, 2020).  
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 Data collection 

The data for catch-depletion was collected in Veerle, Scheps and Nijlen-Lier by Natuurwerk, 

commissioned by Life 3n-bullfrog. They started to collect data for the area of interest, Scheps, 

in spring of 2017. The data was not specifically collected for the analyses made in this thesis 

but in general to keep track of management. Bullfrogs, both adults and tadpoles, were caught 

using double funnel traps. Double funnel traps were shown to be mostly effective to catch 

bullfrog larva. On average, 6% of the population is caught with one catch per unit of effort (= 

one double funnel trap placed during 24 hours) (Devisscher et al., 2012). Every 24 hours the 

traps were emptied by employees of Natuurwerk. The largest adults caught were used for the 

triploid breeding program for creating triploid individuals (mostly at the beginning of spring), 

while other bullfrogs caught were eliminated. The number of traps placed and how they were 

placed depended on the size, depth, and shape of the pond. In general they tried to place the 

traps parallel to the shores, which was proven to be the best method with the highest catch rates 

for larvae (Devisscher et al., 2012). The variables that were collected include timestamp, name 

of collector, GPS coordinates, number of ponds, number of traps, angle of traps, number of 

bullfrogs caught per trap for each life stage, bycatches, and notes. The trap angle was not 

included at the very beginning of the captures (2018). The distinguished life stages are defined 

in table 1 (Devisscher et al., 2012).  

Table 1: Description of distinguished life stages for catch-depletion on the 
American bullfrog (Devisscher et al., 2012), (Gosner, 1960) 

  

Samples of eDNA were taken in Scheps, Veerle, Nijlen-Lier and Molse Nete by the Institute 

for Nature and Forest Research (INBO, 2020). The selected ponds were all located at the edge 

of the estimated bullfrog’s distribution range to see how far the bullfrogs were spread. They 

were not randomly selected and thus biased. Only the samples collected in Scheps will be 

discussed in this thesis. From each water body selected, a large number (20-40, depending on 
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the size) of at least 0.5 litre water samples were taken. The water was sampled at five meter 

intervals, just below the water surface, using a long sterile sampling pole. The samples were 

then pooled into a merged sample and immediately filtered. After filtering, the filters were air 

dried, capped and stored at -21°C for transportation to the lab, where the samples were analysed. 

Variables that were collected are ID, period, nr of pond, surface (ha and m2), filter, litres filtered, 

copies of DNA, number of bullfrogs, capture (as a control measure) and details regarding the 

captures (INBO, 2020).  

 Data analysis  

There were two analysing methods considered in this research to estimate the population size 

out of the collected data using the catch-depletion method. Only tadpoles that were caught were 

considered for both methods. The first method was the Leslie method. This method requires a 

minimum of 3 catches. Each catch is plotted against the sum of all previous catches. The catch 

effort is also considered. If the points lie on a straight line, p is consistent. The abscissa will be 

cut by the line at a value of x which is the total population (Leslie and Davis, 1939). Another 

possible method was the Zippin method, also known as the removal method. This method 

includes the calculation of a goodness of fit test statistic in which n is replaced by its maximum 

likelihood estimate ñ (mean population size). If there are less than 5 catches, it is possible to 

pool some of the captures (Zippin, 1958). Both methods were tested in R (Rstudio Team, 2020), 

using the FSA-package (Ogle, Wheeler, & Dinno, 2021). Since both methods did not show very 

adequate results, some plots with the total amount of bullfrogs caught per life stage were created 

using the package ggplot2 in R (Rstudio Team, 2020; Wickham, 2016) 

The catch per unit of effort (CPUE) was defined by estimating the total amount of individuals 

caught per funnel trap (double trap) per 24 hours. This was done separately for 

tadpoles/metamorphs and adults. The angle in which the traps were placed was also taken into 

consideration. Since data from other areas than Scheps were inconsistent (traps were sometimes 

placed for more than 24 hours), only the data collected in Scheps was included in the 

estimations. Only the ponds where any bullfrog was caught were included. The CPUE was 

calculated in Excel (Microsoft Corporation, 2021), whereafter boxplots were created in R, using 

the ggplot2 package (Rstudio Team, 2020; Wickham, 2016). 

The environmental DNA samples were analysed by INBO. The bullfrog abundance can be 

estimated from the derived eDNA concentrations out of the filter residues of the water samples. 
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eDNA emission rated do not differ between bullfrog larvae and juveniles and adults only 

occasionally derive in the water column, which means that the linear regression for larval 

bullfrogs could serve as a valuable link between eDNA signals and bullfrog abundance 

estimates. The eDNA concentration per litre filtered water for each water body is first corrected 

according to the surface are relative to that of the water body. Then, an estimate of the 

abundance of bullfrogs in the entire water body can be derived from following formula: Ccorr / 

r where Ccorr  is the eDNA concentration per filtered litre water corrected for pond surface area, 

and r is the regression coefficient obtained from the mesocosm experiment (108.888), 

conducted by INBO before sampling the ponds discussed in this thesis (INBO, 2020). Plots to 

summarize the collected data were created in R, using the package ggplot2 (Rstudio Team, 

2020; Wickham, 2016). 

3.2 Results 

 Catch-depletion 

The population size could only be estimated for two ponds in the Scheps area since many of the 

collected catch-depletion results were biased and because of the small amount of caught 

individuals. The Zippin method seemed less effective since it does not consider the catch effort 

and the catch effort sometimes differed between catches. The Leslie method shows a population 

size estimate of 18,576 (N0) in Scheps 2 (figure 6) and 82,416 (N0) in Scheps 20. The slope 

resulting from the Leslie method is not significantly different from 0, which indicates that the 

catch unit per effort (CPUE) does not decrease sufficiently through time. Most likely, not 

enough individuals were removed at each capture to respect the assumptions of the Leslie 

method. Thus, the results are perhaps doubtful.  
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We do have some indication of the abundance in bullfrogs per pond in Scheps since they have 

been catching in these ponds for several years. Scheps 2 and Scheps 20 have by far the highest 

abundance of bullfrogs. Scheps 6 and Scheps 7 also showed a higher number of bullfrogs in 

previous years but have not been captured last year (figure 7). The catch effort (nTraps x hours) 

in Scheps also grew exponentially over the years with a total catch effort of 8088 in 2017 in 10 

different ponds, 9952 in 2018 in 10 different ponds, 13992 in 2019 in 8 different ponds and 

17304 in 2020 in 10 different ponds.  

Figure 6: Population size estimation using Leslie method - Scheps 2; the 
negative slope is unsignificant (p>0.05) which makes the estimation 
unreliable (Rstudio 2020, package = FSA) 
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Figure 7: Total amount of bullfrogs caught in Scheps using catch-depletion 
over time (Rstudio 2020, package = ggplot2) with unequal catch efforts 

The mean CPUE considering tadpoles and metamorphs is 233.2 catches when the funnel traps 

are placed parallel to the shore (0°) and 350.9 when funnel traps are placed under a 45° angle. 

The mean CPUE considering adults is 0.4 catches when the funnel traps are placed at 0° and 

0.3 when the traps are placed under a 45° angle. The median for all mean values is lower than 

the mean (figure 8). 

 

Figure 8: CPUE per trap angle, seperating tadpoles/metamorphs and adults. 
The data applies to the area of Scheps. Ponds where no bullfrogs were caught 
are not included in the selection. NA’s indicate early captures (2018) when the 
trap angle was not considered  
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 e-DNA analysis 

eDNA analysis indicated that some ponds in Scheps showed a high density of bullfrogs, 

namely pond 2 and 19B (figure 9). Pond 2 has an average of 3.6 bullfrogs per m2 (estimated 

total abundance of 3967) and pond 19B of 10.7 bullfrogs per m2 (estimated total abundance of 

6517). The results of catch-depletion also indicated that pond 2 had a very high density in 

bullfrog, but not pond 19B. 

 

Figure 9: Estimated density of bullfrog per pond in Scheps based on eDNA. 
The invasion front, as suggested by the eDNA data, is indicated by the 
orange line (INBO, 2020). 

3.3 Discussion 

 Catch-depletion 

Conclusions that can be made considering the population density based on the catch-depletion 

results are that pond 2 and pond 20 in Scheps inhabit by far the highest density in bullfrogs and 

thus should probably be prioritised in the management plan for the bullfrog. The population 

seems to be inclining in the last few years, but this cannot be reassured since the capture effort 

also increased in the past years. 
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In order to estimate the (sub)population size with reliable results, the catch-depletion data 

collection needs to be done adequately with more catches. The data for this project was 

collected by a governmental organisation as a control method for the American bullfrog with, 

initially, no purpose to use it for research. That is why methods were not always as adequate. It 

is very important to follow next assumptions to obtain an unbiased estimation of the population 

size by conducting catch-depletion method. 

- Always use same position of funnel traps 

- Always use same angle of funnel traps 

- Always use same amount of funnel traps (for an equal catch effort) 

- Always same amount of time in between captures (for an equal catch effort) 

- Captures until there are no or almost no individuals found anymore 

- All ponds, located close together, need to be done in a certain time frame 

- Data needs to be put in the dataset correctly, without typos, without mistakes 

Catch-depletion is a very time-consuming method for estimating the population size. The water 

body of interest has to be visited several times which also comes with a cost of transport and 

most often required two employees. The method itself, is rather cheap because funnel nets are 

reused but the work cost can get high. An advantage of catch-depletion is that it is possible to 

collect a variety of information about the population such as population structure, sex ratio, 

reproductive timing, … Catch-depletion also acts as a control method since the captured 

bullfrogs are euthanised after every catch.  

The CPUE when placing the funnel traps at 0° compared to 45° to the shore are quite similar 

(estimate of 233 compared to 350). There were almost no adults caught in either angle. It was 

expected that most tadpoles and metamorphs would be caught when placing the funnel traps 

parallel to shore (0°) and more adults would be caught in a 45° angle, since adults jump from 

the shores into the water and would then bump into the nets. Though, results showed that 

placing the trap in an angle is most efficient for catching tadpoles. The use of funnel traps is 

not effective for catching adults. Other control measures should be implemented to decrease 

the number of adult bullfrogs. 

 e-DNA analysis 

All the ponds that were situated in- and right outside the suspected perimeter of the bullfrog 

distribution area were sampled. Most of the ponds in which bullfrogs are being captured as a 
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control method, did show a bullfrog signal in the eDNA. Also, most of the ponds that are not 

being captured showed no bullfrogs at all. There are still some (about 20) ponds in which they 

are not capturing the bullfrogs even though there are some or many present. It is important to 

start conducting control measures on these ponds too. There were some outliers in the data 

indicating a presence of over 200.000 bullfrogs. Previous research has shown that in Flanders, 

the population densities of the American bullfrog go up to averagely 120.000 tadpoles per ha 

(Devisscher et al., 2012). Since all ponds that showed such high densities were smaller than 0.4 

ha, we can assume that the outliers are real. This indicates that the method is not fully effective 

for estimating population sizes, especially for large populations.  

eDNA concentrations may vary with water temperature and time so it is important to consider 

this when estimating the abundance of a population (Lacoursière-Roussel et al. 2016). This has 

not been considered during this data collection. It is recommended that this variable will be 

added in the future to get an accurate estimation of the population size. 

eDNA samples sometimes showed a presence of bullfrogs while there were no captures (figure 

10). This information is of great importance since bullfrog eradication programs are focussed 

on infected ponds. Until now, infected ponds were identified based on the capture data. 

Overlooking an infected pond could nullify the eradication measures taken (Descamps & de 

Vocht, 2016; INBO, 2020). It is currently unknown if the signal found in eDNA represents a 

reliable and accurate source for estimating the population size of wild bullfrogs. The mesocosm 

experiment conducted beforehand, showed that eDNA concentrations can accurately describe 

the population size of bullfrogs, but under controlled conditions, in a small population 

(Devisscher et al., 2012). The results in this project showed that estimations for larger 

populations of bullfrog might not be correct. Accurate population size estimations using other 

methods (or proper conduction of catch-depletion) have to be made to compare and assess 

whether eDNA bullfrog signals of wild populations can be translated to an estimation of the 

population size. 
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Figure 10: Relation between eDNA-based population size estimates and 
number of bullfrogs captures (catch-depletion). Ponds where bullfrog capture 
was performed twice, a distinction between first (filled orange diamonds) and 
second time (empty diamonds) was made, because bullfrogs were killed after 
first capture. Blue stars represent the ponds where no bullfrog signal in eDNA 
was found. Orange stars represent the ponds where no bullfrogs were caught. 
Note: the y-axis contains a break (INBO, 2020). 

eDNA analysis is rather expensive because it requires analysis in a lab. An advantage of eDNA 

is that it is only required to visit the water body of interest once, by one person, to collect the 

sample, which reduces the costs. However, it is not possible to collect any other possible 

variables of interest and the accuracy is questionable. eDNA analysis was shown to be effective 

as a population size estimation method in other bullfrog populations (Lin et al., 2019), but is 

also sometimes used only as an indicator for the presence of bullfrogs in order to build a 

management plan for infected ponds (Kamoroff et al., 2020) 
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4. Matrix population modelling 

4.1 Conceptual model 

A first critical step in the modelling approach was constructing a conceptual model. This model 

was based on an existing model of the American bullfrog made by Govindarajulu et al. in 2005 

on a population of bullfrogs on Vancouver Island (Govindarajulu et al., 2005). Other 

inspirations were the model for Ae. Albopictus (Erickson et al. 2010) and the guide for 

developing amphibian population models (Awkerman et al., 2020). This conceptual model 

would provide a base for determining what parameters should be included in the population 

model and what type of model is best to use.  

In this model, the life cycle of diploid and triploid bullfrogs was described in developmental 

stages. In the Canadian bullfrog population, Govindarajulu et al. describe two development 

tracks, fast and slow track. This indicates the duration of the development from larva to 

metamorph. Slow track is the ‘normal’ development which takes averagely 2 years. Some 

populations showed that it only takes one year to develop to metamorph (Govindarajulu et al., 

2005).  In 2005, Jooris stated that the development of larva to metamorph in Flanders takes on 

average 2 years, so that there is no proof of the fast developmental track occurring in Flanders 

(Jooris, 2005). Looking at the data of recent years, this seems to have changed. Tadpoles are 

mostly present for only one year before the metamorphosis. Warm and early summers can cause 

more tadpoles to metamorph in a fast track. Climate warming is causing this to happen more 

frequently. Ponds warm up faster which speeds up the process of metamorphosis (O’Regan, 

Palen, & Anderson, 2014). For now, both developmental tracks were included in the conceptual 

model until there is more information on the percentage of bullfrogs that develop fast track in 

Flanders. The development from one stage to another was supplemented with the transition 

probabilities, and for the adult stage, the survival rate. 

Another important factor that was included in the conceptual model is the introduction of 

triploid individuals in the population and the resulting decline. Research has shown that 

postmetamorphic stages are most vulnerable to changes (i.e. the population is mostly affected 

when changes take place in postmetamorphic stages) (Govindarajulu et al., 2005), so it would 

be most beneficial to release metamorphosed triploid bullfrog. It was also discovered that there 

is a difference in weight between triploid and diploid tadpoles (Descamps & De Vocht, 2017).  

So again, it would be beneficial to release triploid bullfrogs after metamorphosis to avoid size 



25 

differences, which might disadvantage the triploids (e.g. lower chance of mating when small, 

higher chance of predation). Unfortunately, this is not possible because there is not enough 

room available to let the triploid bullfrogs develop in a protected area. Thousands of triploids 

will have to be released at the same time. The only option is to release triploid larvae.  

Another factor that was included are other control methods, such as catch-depletion, which is a 

method that is currently being implemented on a regular basis. Before releasing triploid larvae 

into the population, the wild bullfrogs in the ponds where they will be released will be captured 

with funnel nets to make the population decline as much as possible. By focusing on a certain 

life stage, depending on the period, the population can be reduced drastically using this method 

(Govindarajulu et al., 2005; Louette, Devisscher, & Adriaens, 2013). Other possible control 

methods are also considered. The catching mortality of other control measures conducted is 

currently unknown and thus not added in the figure (figure 11).
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Figure 11: Conceptual model 
with the life cycle of diploid 
and triploid (sterilized) 
American bullfrogs together 
with the transition 
probabilities (% of individuals 
alive after transforming to the 
next life stage), estimated 
fecundity, other control 
method and its estimated 
catching mortality 
(Devisscher et al., 2012), and 
the desired outcome 
(reduction of 90%) of 
introducing triploid individuals 
in a diploid population of 
American bullfrogs. The 
green area represents the 
targeted population. There is 
no record of the survival rates 
for triploid males. The life 
stages of diploid bullfrogs, 
transition probability and 
fecundity were based on the 
conceptual model of 
Govindarajulu et al., 2005. 
These might not be accurate 
for the considering 
population. Note: ‘a’ is symbol 

for transition probability; ‘ ’ is 

symbol for survival rate.
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4.2 Description of the population model 

Matrix population models (MPM) are known to be useful when the life cycle can be described 

in developmental stages, which is the case for the American Bullfrog (Govindarajulu et al., 

2005). They integrate population dynamics and population structure (Caswell, 2001). The data 

that was collected and will be collected in the future is based on stage-classified life cycles. The 

population dynamics in the model were simulated with the deterministic model n(t + 1) = An(t) 

where n(t+1) is the vector of proportions for each developmental stage at time (t) + 1 and A is 

the Leslie matrix (which is constant through time), containing transition probability from one 

developmental stage to the other (pij) and fecundity values of each category (Fij) (Caswell, 2001; 

Zambrano, Vega, Herrera, Prado, & Reynoso, 2007).  

Population projections mostly match the duration of one reproduction cycle, which is in most 

cases one year (Caswell, 2001). In general, the American bullfrog has a standard reproduction 

cycle of 1 year, although this can differ a bit, depending on temperatures (Devisscher et al., 

2012). In this model, a projection interval of 1 year was used. 

The assumptions that were made to build the model are: 

1. A closed population (no immigration/emigration) 

2. A single intermingling breeding population 

3. Equal or higher mating success, competition, and probability of predation for triploid 

individuals compared to diploid individuals (throughout all life stages) 

4. Tadpoles in the population develop fast track (in 1 year instead of 2 years)  

5. Reproductive cycle of 1 year (sexually mature after 3-4 years) 

6. Equal sex ratio in both wild population and introduced triploid population 

7. No carrying capacity (infinite number of bullfrogs able to be in an ecosystem without 

the ecosystem or population collapsing) 

The data used for the analyses (chapter 4.3) came from another research (Govindarajulu, 

Altwegg, & Anholt, 2005). N, the population vector, was unknown for each life stage so a 

random vector was chosen for the analysis. This is a parameter that does need to be calculated 

in the future, before implementing the STM, in order to know exactly how many triploid 

bullfrogs to release.  
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In the model, six life stages were distinguished as embryo (N1), hatchling (N2; L00), tadpole 

(N3; L1/L2), metamorph (N4; M1/M2), juvenile (N5; AM/AV <30g) and adult (N6; AM/AV 

>30g), based on the distinguishments made for catch-depletion (table 1) and the 

distinguishments in Govindarajulu’s research (Govindarajulu et al., 2005).  

The matrix model (A) with transition matrix looks like this for the bullfrog population in 

Scheps, in which F stands for the fecundity, G stands for transition probability and P stands for 

probability for surviving and staying in the same life stage. In the model tested in chapter 4.3, 

F1 was not included since data is missing for this parameter. 

 

 

 

 

 

 

 

 

 Parameters 

A simple matrix model with the goal of showing the population growth and structure consists 

of the main demographic data of the population, survival rates, fecundity and sex ratio (Caswell, 

2001). Within this project, the effectivity of the sterile triploid method was tested. The STM 

relates to the fecundity of bullfrogs and the effectivity can thus be analysed by perturbating the 

fecundity. Extra parameters that can be included are those that are linked to the vulnerability of 

a population and those that influence inherent species sensitivity, exposure regime, life-history 

strategy, or extrinsic environmental factors (Awkerman et al., 2020). More parameters would 

provide a more realistic estimation of the (expected) population growth. All parameters were 

determined based upon the biology of the introduced bullfrog inspired by the created conceptual 

model and relevant literature, like chapter 3 from ‘Matrix population models’, written by Hal 

Caswell (Caswell, 2001), the article on population matrix model of bullfrogs on Vancouver 

Island, written by Govindarajulu et al. (Govindarajulu et al., 2005) and other articles 

considering matrix modelling of invasive (amphibian) species (Andersen, Martin, & Roemer, 

2004; Awkerman et al., 2020; Erickson et al., 2010; Gonçalves da Silva et al., 2010; Martelloni, 

Bagnoli, & Marsili Libelli, n.d.). Another important variable that should be derived from the 

model is the required catch mortality before implementing the STM. The model is expected to 

show how much the population has to decline before releasing the sterile larvae in order to gain 

0 0 0 0 F1 F2 

G1 0 0 0 0 0 

0 G2 0 0 0 0 

0 0 G3 0 0 0 

0 0 0 G4 0 0 

0 0 0 0 G5 P6 

A     = 
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the desired results (De Vocht, 2019b), by perturbating the survival rates of different life stages. 

The catching mortality has not been tested in the model analysed in this thesis because there 

was no sufficient data available. 

Survival rate and transition probability 

The survival rate is an essential part of a stage-based matrix population model (Caswell, 2001). 

First of all, the probability for yearly survival and transitioning to the next life stage needs to 

be estimated for each life stage. This is called the transition probability (G). The transition 

probability is calculated by multiplying the survival rate of life stage A by life stage B, to gain 

the transition probability to life stage B. Besides that, the probability for surviving and staying 

in the same life stage of the adults needs to be estimated (P), which is simply the survival rate 

of that life stage (Caswell, 2001; Govindarajulu et al., 2005). Currently, there is no relevant 

data of the concerned populations to estimate the survival rates. Govindarajulu et al. estimated 

and collected the survival rates of four populations of bullfrogs in Canada (table 2). It also 

concerned an introduced population with invasive characteristics but, in this area in Canada, 

the bullfrog was introduced since the 1960s (Govindarajulu et al., 2005). The bullfrog in 

Flanders was most likely introduced later, around the 2000s (Devisscher et al., 2012). Habitat 

and climate are very likely to differ as well, although no ecological or climatical characteristics 

of the study area were described in Govindarajulu’s research. There is absolutely no certainty 

that the demographics of the bullfrog population in Scheps are similar to the population in 

Canada. Research has shown that the survival rate may vary among different ponds 

(Govindarajulu et al., 2005; Turner, 1960) and years (Govindarajulu et al., 2005). Fast track is 

the main development occurring in Flanders and it is thus decided to leave out slow track, while 

Govinadarajulu made a distinguishment between tadpoles developing fast and slow track 

(Govindarajulu et al., 2005). 

More information is required to make an accurate representation of the survival rates and 

transition probability of the bullfrog population in Scheps. The survival rates can be estimated 

for each life stage from recapture data, recovery data or complete follow-up data (including 

survivors and deaths), of which recapture data is mostly used (Lebreton, Pradel, & Clobert, 

1993). In the case of invasive species, with the main goal of estimating survival rates, the 

recovery method is most interesting. The main difference with recapture data is that the animals 

are permanently removed from the population after reobservation, thus the method also acts as 

a control method (Brownie, Anderson, Burnham, & Robson, 1985; Powell, 2017).  
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Fecundity 

Fecundity is a crucial parameter to include in a matrix population model (Caswell, 2001). It can 

be defined as the measure of an individual’s reproductive performance (Bradshaw & McMahon, 

2008). When implementing STM, the fecundity of the wild population is expected to lower 

gradually because of the mating with infertile, triploid bullfrogs. By manipulating the fecundity 

in the model to lower numbers, the model can show the effects of the sterile triploid method on 

the population growth.  

The fecundity can be estimated by the formula S x sex ratio x clutch size in which S is the 

survival rate over the first interval of a bullfrogs’ life (until they reproduce for the first time). 

Govindarajulu et al. estimated the fecundity of the juvenile American bullfrog in a population 

in British-Columbia at 2080 surviving eggs/juvenile female (table 2) (Govindarajulu et al., 

2005). Fecundity can sometimes differ with age. In previous research, it occurred that an older 

bullfrog female laid a significantly higher amount of eggs (Kaefer, Boelter, & Cechin, 2007). 

Including fecundity rates of both juveniles and adults is thus of importance to create a reliable 

model. There are other factors that influence the fecundity of bullfrogs, such as temperature. In 

the coldest months, females do not show any sign of fecundity (Kaefer et al., 2007). When 

temperatures are high, females sometimes lay two egg clutches in one year. It was shown that 

it is very likely that this is also happening in the concerned population (Jooris, 2005). The 

second, late clutch contains smaller and less eggs. Because of climate change, it is expected to 

occur more often (Kaefer, Boelter, & Cechin, 2007). This will probably result in an increase of 

the population size in the coming years when no management controls are taken. It is thus 

important to consider temperature, age, and period (to discover the number of cases where two 

egg clutches are laid) when estimating the females’ fecundity of the population bullfrogs in the 

study area. The fecundity should be estimated over a 1-year interval. More data is needed on 

the population of bullfrogs in Scheps to estimate accurate fecundity rates.  

Sex ratio 

The sex ratio in the MPM considers only the sex ratio at birth (Caswell, 2001). We will assume 

that the sex ratio is 1:1 for both the wild population and the triploid bullfrogs. This parameter 

is automatically set to 1:1 in the recommended package (see chapter 4.2.1). 

Other parameters to include 

The previous listed parameters combined, make a simple MPM. There are many other 

parameters that can be included to make the model more complex, but also more accurate. 
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Parameters, that affect the population demographics significantly, are valuable to add in the 

model (Caswell, 2001). Suggested parameters to add are the initial population vector, male 

competitiveness, proportion fast track/slow track and other control measures. There is no data 

available for these parameters (table 2). 

An important factor that affects the effectivity of the sterile triploid method is the initial 

population vector. The population vector describes the relative numbers of individuals in each 

stage. This is especially useful for determining what life stages have to be captured to make the 

population decline enough before implementing the sterile triploid method. Funnel traps can be 

placed in a specific angle for catching more tadpoles or focussing more on adults. Different 

control methods can also be used to focus on a certain life stage. The initial population size of 

the targeted population should also be calculated in order to be able to calculate actual numbers 

of triploid bullfrogs that should be released. 

Male competitiveness is a parameter that is mostly considered when comparing two different 

populations. Though, sometimes competitiveness can occur within a population, called 

intraspecific competition. It is unclear whether the male competitiveness (intraspecific 

competition) between diploid (wild) and triploid bullfrogs is equal. It is suspected that the 

competitiveness of triploid males is higher since only the strongest and biggest males will be 

released to assure that they will survive and compete with the wild males (Descamps & De 

Vocht, 2017). Thus, it is of importance to look into this parameter. Factors that describe 

competitiveness are growth, mass at metamorphosis, date of metamorphosis and survival 

(Griffiths, 1991). The competitiveness can be translated in the model to a greater decline in 

fecundity when triploid bullfrogs seem to be the most competitive. 

As explained earlier, it is suspected that most tadpoles in the population of interest transform 

in only one year after hatching (fast track). In the model explained in chapter 4.3, only fast track 

was included. To achieve the most accurate data out of the model, it is best to estimate the ratio 

fast/slow track in Flanders, since it is possible that there are still some tadpoles transforming 

slow track. 

The effects of other control measures on this population were not included in the test model. 

There is no sufficient data available that indicate how much the demographics of a population 

are affected by conducting a control measure. It is also uncertain which control measures are 

currently conducted at what times since no data has been kept of those 



32 

 

Table 2: Overview of all parameters that are essential to be included in the 
matrix population model. The survival rates of tadpole and metamorph are 
calculated and transformed out of the data from Govindarajulu et al. (2005). 
All values are anually. 

 

4.3 Proposed analysis of the MPM 

R seemed to be the most sufficient and user-friendly program for this case, using package 

‘popdemo’. Popdemo provides tools for creating MPM’s with deterministic and stochastic 

model implementations (Stott et al. 2012). 

Parameters Life stage Value Reference 

Survival rate (S) embryo 0.92 Biek et al. 2002 

 hatchling 0.402 Govindarajulu et al. (2004-2005) 

 tadpole 0.577 Cecil & Just (1979), Werner (1994) 

 metamorph 0.358 Govindarajulu et al. (2004-2005) 

 juvenile 0.13 Govindarajulu et al. (2004-2005) 

+ probability of staying 
in life stage (P) 

adult 0.32 Govindarajulu et al. (2004-2005) 

Transition probability 
(G) 

embryo to hatchling 0.369 Govindarajulu et al. (2004-2005) 

 hatchling to tadpole 0.232 Govindarajulu et al. (2004-2005) 

  tadpole to metamorph 0.207 Govindarajulu et al. (2004-2005) 

 metamorph to juvenile 0.047 Govindarajulu et al. (2004-2005) 

 juvenile to adult 0.042 Govindarajulu et al. (2004-2005) 

Fecundity (F) juvenile (female) 2082 Govindarajulu et al. (2004-2005) 

  adult (female) ?   

Sex ratio   0.5 Durham & Bennett (1963) 

Population vector embryo ?  

 hatchling ?  

 tadpole ?  

 Metamorph ?  

 juvenile ?  

 adult ?  

Male competitiveness Diploid juveniles/adults ?  

 Triploid juveniles/adults ?  

Proportion fast track tadpoles 67.5% Govindarajulu et al. (2004-2005) 

Proportion slow track tadpoles 32.5% Govindarajulu et al. (2004-2005) 
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 Asymptotic dynamics 

In management of invasive species, it is useful to know if and how fast the population size is 

increasing or declining. The asymptotic dynamics of a population can describe the growth rate 

in a chosen time span. For the bullfrog, it is advised to maintain a time span of 15 years since 

this represents a bullfrogs’ life span (Stoutamire, 1931; Lougheed & Taylor, 2010). The 

asymptotic population growth rate (λ = lambda) can be estimated using the ‘project’ and ‘eigs’ 

function of the package ‘popdemo’ in R (Stott et al., 2012). When λ < 1, it means that the 

population declines. If λ > 1, it means that the population grows (Caswell, 2001). In the test 

model, the initial lambda was 0.713596, which indicates an overall declining population. Based 

on the dynamics of a wild, invasive Canadian population of bullfrogs, the population is expected 

to increase in the first year, whereafter the decline of the population will initiate (figure 12). 

When implementing the sterile triploid method in this population, it would result in a less higher 

increase of the population size in the first year and a faster decrease after the first year. 

 

Figure 12: Deterministic projections with decrease in fecundity (initial 
population, fecundity -25%, fecundity -50%, fecundity -75%, using a random 
initial population vector, over a time span of 15 years. Based on a population 
of bullfrogs in Canada (Govindarajulu et al., 2005) 

Another value of interest within asymptotic dynamics is the reproductive value. This is the 

contribution that each stage makes to stable growth (through survival, growth, and 

reproduction). By discovering the life stages with high reproductive values, management 

actions can be focussed on this stage so that management becomes more efficient (CRAN, 
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2018). In this model, a random population vector was used. Thus for this model, the 

reproductive values would not state anything since it is random. 

 Perturbation analysis 

For managing invasive species, it is essential to know how population dynamics on short and 

long term may be changed to achieve the goal of eradication. Perturbation analyses show how 

changes to vital rates such as survival, fecundity, or growth affect population dynamics. By 

changing a matrix element by some magnitude of perturbation (δ), and calculating a population 

dynamic (depending on the desired outcome; e.g. asymptotic growth),  important information 

can be reveived (CRAN, 2018). Effects of control measures on population growth rate can be 

obtained by conducting a sensitivity and/or elasticity analysis of the stable growth rate (Caswell, 

2001; Govindarajulu et al., 2005). Sensitivity and elasticity analysis describe and visualise the 

linear relationships between matrix entries and population dynamics, while transfer function 

analysis is intended for nonlinear perturbation analysis (CRAN, 2018).  

To determine the effectivity of STM, it is essential to perturb the fecundity rates to mimic the 

introduction of triploid bullfrogs to see what effects this would have on the population structure 

and growth. This result can be translated to the required number of triploid bullfrogs that have 

to be released in order to make the population decline.  

The first attempts of the transfer function analysis revealed that the population would decline a 

bit when only conducting STM (figure 13). Other control measures were not implemented in 

this model yet since no accurate information regarding these measures is available. These would 

most likely make a big difference on these results since the goal is to first make the population 

decline as much as possible using other control measures like capture, drainage of pools, 

shooting of adults, … These control measures affect the survival rates of bullfrogs and can thus 

be implemented in the model by perturbating the survival rates of the life stages that are 

affected. The transfer function analysis indicated that reducing the fecundity by 1000, the 

lambda would reduce to averagely 0.65, which is a reduction of averagely 0.06 (figure 8).  
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Figure 13: Transfer function analysis, perturbating the fecundity, with 
sensitivity analysis (red, dashed line). 'p' represents the reduction in fecundity 
as the reduction of surviving offspring per female per year (Rstudio Team, 
2020), package = popdemo). 

 More advanced analysis 

The model that was tested in this thesis was a deterministic model. In deterministic models, the 

output of the model is completely determined by the parameter’s values and the initial 

conditions. Another type of model is the stochastic model, which possesses some inherent 

randomness. The same set of parameter values and initial conditions will lead to an ensemble 

of different outputs (Caswell, 2001). Stochasticity occurs in all populations, but such models 

are more complicated. Though, they should be considered to gain the most accurate population 

model. 

Asymptotic (perturbation) analyses are sufficient for primitive models where there are no other 

variables affecting the population growth. In reality, this is (almost) never the case. Asymptotic 

analyses ignore transient dynamics. But, populations are often subject to environmental 

disturbances, and thus not in a stable state (Stott, Hodgson, & Townley, 2012). The package 

‘popdemo’ includes functions to calculate three key pairs of indices that measure transient 

dynamics which are explained in the CRAN sheet (CRAN, 2018). These analyses could also 

contribute to a more accurate description of the population dynamics. 
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5. Conclusions and recommendations 

Catch-depletion seems to be the most accurate method for estimating the population size of 

larger populations, which is the case in the Valley of the Grote Nete, and  when conducted 

accurately (Maceina et al., 1993). eDNA is a great method for detecting an even slightly 

infected ponds, which is very crucial for managing the bullfrog since only a few individuals are 

needed to begin a new invasion (Halfmaerten, 2015; Kamoroff et al., 2020; Lin et al., 2019). I 

recommend to look further into the use of eDNA since it is suspected that, for small populations, 

eDNA analysis could be sufficient. To estimate the population bullfrogs in Scheps, it is 

recommended to use the catch-depletion method or other methods that were not compared in 

this thesis (e.g. capture-mark-recapture) (Henderson, 2002).  

The main parameters to be included in the matrix population model are the transition 

probabilities (calculated from the survival rates), the fecundity and the sex ratio (which is 

automatically set to 1:1 in the model). By perturbing the fecundity, the effects of introducing 

triploid bullfrogs on the population dynamics can be estimated. So far, it shows that a very large 

number of bullfrogs would have to be released in order to reach the desired results. But, some 

parameters of importance were missing in the test model such as the initial population size and 

vector, the male competitiveness, the ratio fast track/slow track and the effect of other control 

measures. Moreover, the data in the test model came from a population of bullfrogs in Canada, 

which might have completely different population dynamics. Also, it is advised to look into the 

use of stochastic models and transient dynamics since this gives a more realistic image of the 

population dynamics. 

For the next step in Life 3n-bullfrog, it is important to make accurate estimations for the 

populations in Scheps in order to understand the population dynamics which allows us to 

accurately estimate the number of triploids that need to be released. This far, the little data that 

has been collected has not been collected very accurately which makes the results very 

questionable.  
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Abstract 

The American bullfrog, an invasive species present all around the world, causes many problems 

in ecosystems. They are very hard to eradicate because of their complex developmental stages, 

their abundance, high fertility, and the far distances they can cover. Many eradication methods 

showed to be non-effective, especially in larger and open populations. This Master thesis study 

is part of LIFE 3n-bullfrog. LIFE 3n-bullfrog’s main purpose is eradicating or controlling 

isolated American bullfrog populations using a new method namely the sterile triploid method 

(STM). By releasing triploid (sterile) bullfrogs in a wild population, females that mate with the 

triploid males will produce an infertile egg clutch, which eventually results in a decline of the 

population. In order to evaluate the effectiveness of the STM in the population of interest, a 

population model has to be build. This would also reveal how many triploids have to be released 

to get the desired results. The eventual outcome of this Master project is a method for modelling 

the population of American bullfrogs in Scheps, a small nature reserve in Balen, Flanders. 

Another outcome of this thesis is the evaluation of two methods for estimating the population 

size, catch-depletion and eDNA. The catch-per-unit-of-effort (CPUE) was also estimated for 

catch-depletion, since this method also acts as a control measure and is of major importance in 

the management plan of the American bullfrog. 

Catch-depletion shows to be non-effective for estimating the population size of bullfrogs in this 

project. The method was not conducted accurately which made the results biased. When catch-

depletion would be conducted following some assumptions, the results would most likely be 

representative. eDNA concentration analysis is not very effective for population size 

estimation, especially in larger populations, but is effective for detecting (slightly) infected 

ponds, which is also of major importance in the management of the bullfrog. 

The best model to use in this case is a deterministic matrix population model (MPM). Model 

analysis were done in R, using the package popdemo. Parameters that are essential to include 

are transition probability and probability of staying in a life stage (calculated from the survival 

rates), fecundity and sex ratio. To determine how STM would affect the population, the 

fecundity is lowered by a certain perturbation rate. Using dynamics from another population, 

the results were not very promising, showing only a slight decrease in the lambda. Including 

the population dynamics of the target population, the effects of other control measures, the 

competitiveness of males, the ratio fast/slow track and the initial population size vector, would 

increase the accuracy and most likely the effects of STM on the population structure and 
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growth. It would also be best to treat the model as a stochastic model and to treat the dynamics 

as transient instead of asymptotic, which is more likely in wild populations.  


