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Abstract 

This thesis aims to examine and interpret the importance of weather variables as predictors for 

demand in the Norwegian alpine skiing industry. A specific skiing facility has provided a unique 

data set, containing their daily sales data from the winter seasons of 2014/2015 to 2019/2020. The 

sales data is used in combination with simulated weather forecast data to develop linear regression 

forecast models. The predictive performance of the models is compared statistically to analyse the 

importance of weather variables for predictive accuracy. The main findings show that the 

importance of temperature, snow depth and precipitation for predictive purposes is low. Seasonal 

variables, such as day of the week and public holidays, appears to be of greater importance as 

predictors of demand. The authors find no statistically significant improvement in the predictive 

ability of models with weather variables compared to models without. 
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1 Introduction 

Demand in the alpine skiing industry exhibits strong variations, with big seasonal fluctuations 

(Malasevska, 2017). Alpine skiing facilities usually face increased demand during weekends and 

demand peaks at holidays, while activity typically is low in the early and late season. In addition, 

weather can be an important predictor of demand. Bad weather naturally makes skiing less 

enjoyable, leading customers to postpone the visit or seek other activities. Good weather, on the 

other hand, can attract more customers to the slopes than otherwise. Ideal weather conditions for 

visitors are generally characterized by a fine balance of little precipitation, but still with sufficient 

snow depth, and sun with clear skies, yet not with temperatures that will either melt the snow or 

be too cold for people to stay out in. A thorough understanding of the variables that influence 

demand for alpine skiing lift passes is crucial for facilities operating in the industry.  

This thesis aims to get a better understanding of weather as a predictor for demand in the alpine 

skiing industry. The focus will be on the importance of weather variables for predictive accuracy. 

Producing accurate forecasts is hard, requiring statistical models with estimated parameters 

(Diebold, 2017, p. 14).  

Our research will contribute to the iPaaSki project, in which the main objective is to create value 

in the alpine skiing industry by developing and implementing new and innovative pricing schemes 

(iPaaSki, n.d.). The aim of this thesis is not concerned with dynamic pricing per se, but with 

developing models that can be used as an operational planning tool by the facilities or by 

academics. The contribution is thus both practical and theoretical, providing models of practical 

use along with a deeper understanding of the role of weather for predictive accuracy in the alpine 

skiing industry.  
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1.1 The Norwegian downhill skiing market and weather climate 

Norway can offer over two hundred alpine skiing facilities, 

in which the majority are small and medium-sized with 

merely one or two ski lifts (Norske alpinanlegg og 

fjelldestinasjoner, n.d.). The spatial distribution of all the 

facilities in Norway, gathered from (Ski Info, 2021), are 

displayed in the map in Figure 1. Over half of the facilities 

are located in Eastern Norway, where all of the facilities in 

the iPaaSki project are also located.  

According to statistics, there have been registered some 

decreased popularity in skiing activities in the last decade 

(Dalen & Gram, 2020; Tuv, 2019). While the reason could 

be related to a decline in natural snow in the last seasons, it 

could also be due to changes in demographic elements or 

perhaps increased competition with international facilities. 

The adult customer group is seen as one of the most important customer groups, and an ageing 

population could therefore be of relevant significance for future developments in the market 

(Vanat, 2020). There have furthermore been found that skiing is most popular amongst those with 

higher education (Dalen & Gram, 2020). This can further be linked to the cabin market, as people 

investing in secondary property usually have a higher income, possibly due to higher education. 

Along with a growing cabin market, one can also expect an increase in the demand for alpine 

skiing activities, seeing that the cabin owners often buy them to gain access to alpine facilities.  

From an industry report of the alpine industry in Norway of the winter season of 2018/19, the 

season ended with a 3% decrease from the previous season, before experiencing an increase in the 

early season of 2019/20 (Alpinanleggenes Landsforening, n.d.). In other words, it seems like some 

fluctuations from season to season in the industry are normal. There have however been some 

challenges in terms of less natural snow, varying weather, and heatwaves in certain locations, yet 

with upswings in demand during the holidays, especially around Easter (Alpinanleggenes 

Landsforening, n.d.). 

Figure 1: Distribution of skiing facilities by region 
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In recent reports, the average temperature in Norway points to an increasing tendency, and the 

Inland region was pointed out to be one of the warmest areas in the country with a deviation of 7-

8°C above normal in the winter season of 2019/20 (Grinde et al., 2020). There have also been signs 

of a significant increase in precipitation in general, but the Inland area on the other hand, 

experienced a decrease, having the lowest amount of precipitation nationwide during the same 

season. Increased temperature and less precipitation could lead to challenges with less natural 

snow. Seeing that the majority of the alpine skiing facilities are small and medium-sized, a lack of 

natural snow could have a significant impact on the industry. Even if the facilities have access to 

the needed resources, snow production is a complex process needing distinct circumstances to be 

fulfilled (Kulturdepartementet, 2011). The consequences of low snow depth for the resourceful 

facilities could therefore be just as bad as any other facility as long as the needed circumstances 

are crippled. If there is a need for snow production in the first place, chances are the climate does 

not grant the desired conditions for making snow of high quality.  

1.2 Research question 

The importance of seasonal variables, such as holidays and day of the week, on demand for alpine 

skiing, is well-documented in the literature. Additionally, the characteristics of consumers and the 

individual skiing facilities influence demand as well. These characteristics can range from real 

income, level of skiing proficiency, number of slopes, and accessibility. The importance of weather 

variables is, however, more debated. There are numerous studies concerning the effect of weather 

on demand for alpine skiing, but they are spread in terms of geography, time units used, 

aggregation levels, and measurements of the skier demand, making it hard to compare and draw 

concrete conclusions (Falk & Vieru, 2017). Whereas some studies find weather to be statistically 

significant for demand, others claim that the effects are small, and outperformed by other 

predictors (Malasevska et al., 2017).  

This thesis aims to provide a better understanding of the importance of weather as a predictor of 

demand. To achieve this goal, the thesis will examine the following research question: 

How important is weather as a predictor for the demand for ski lift passes in the alpine skiing 

industry? 
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The research question will be addressed by analysing historical sales data from an alpine skiing 

facility, in combination with weather forecast data. Machine learning will be utilized to develop 

predictive models, in which some models include both seasonal and weather variables, while 

others only contain seasonal variables. These are compared using the Diebold-Mariano test to 

determine if there is any statistically significant difference in the predictive accuracy of models 

with and without weather variables to analyse the importance of weather variables as a predictor 

of demand.  

We hypothesize that adding weather forecast data to a predictive model will enhance its predictive 

performance. Customers plan their behaviour, especially recreational activities such as alpine 

skiing, an activity that most people do not have in their immediate environment. Seeing as bad 

weather typically decreases demand, weather forecast could lead to more accurate predictions by 

controlling for the effect of weather. On the other hand, the weather could prove to only be an 

important predictor when the weather is extreme, meaning that weather within the normal range is 

of little importance for predictive accuracy. It could also be possible that the importance of weather 

is so small compared to other factors such as seasonal variables that they do not yield more accurate 

predictions.  

1.3 The alpine skiing facility 

One of the alpine skiing facilities in the iPaaSki project provided us with raw data and is located 

in the Inland region. The facility will remain anonymous and will hereby be mostly referred to as 

the facility. This facility gave access to data with a time horizon of almost 6 full seasons. Some of 

the sources used to gather information about the facility will reveal the location and name and will 

therefore not be disclosed. The main sources are however their website and information they have 

provided directly.  

The facility distinguishes between a high- and a low season, with prices adjusted accordingly, 

being lower in the low season compared with the high season. This is a type of pricing 

differentiation intended to draw more visitors during the low season, not only because lower prices 

will increase demand, but also because some ski-lifts are closed due to lack of snow and reduced 

usage. The visitors, therefore, receive less value in the low season than in the high season, which 

should be reflected in the price. The high season is set between December 26th and the last day of 

Easter, which varies from late March till late April, while the low season includes the remaining 
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periods, being before December 26th and after Easter. Seeing that the season usually starts in mid-

November and ends soon after Easter, the low season is very short compared to the high season. 

In the early season, the facility is only open at weekends, and on days with bad weather, they 

sometimes decide to keep closed. With fluctuations in weather, visitors can check the conditions 

through a web camera on the facility’s website, with added information concerning temperature, 

wind, sun, precipitation, etc.  

The alpine facility is of larger size and has stated that they are well equipped with resources to 

cover snow production. They also cooperate with another skiing facility nearby, offering more 

challenging slopes, and ski lift passes bought on either of these facilities can thus be used at both 

locations. By cooperating, they can provide a broader service which could affect the demand 

positively. The nearby facility has suffered from severe losses in revenue, resulting in having to 

close one of the ski-lifts a couple of years back. It was here pointed to a lack of natural snow and 

snow production machines of their own, which indicate that even though the two facilities share 

ski lift passes, they do not share resources.  

Along with the facilities, other complementary services are offered in the nearby area. This 

includes many different winter activities, such as skiing school, snowmobile, snow rafting, ice 

fishing, dog sledging, and winter expedition. In addition, there is a climbing park, a shooting 

simulator, and one could also attend festivals, go on mountain trips, bobsleigh, and much more, 

but these latter activities are mainly available in the summer when the skiing facilities are closed. 

The alpine facility itself has not made any efforts of attracting visitors other than through ordinary 

marketing, but the complementary activities could affect demand, nonetheless.  

1.4 Delimitation 

There are numerous alpine skiing facilities, both domestic and international, so there had to be set 

a limit to what research objectives to include in this study. A natural focus was alpine skiing 

facilities in Norway. The assumption is, however, that demand for alpine ski lift passes is 

influenced by the same types of variables across countries, but there could very well be national 

differences, especially with regards to the weather. Further delimitation was made based on 

availability, as we ended up using the raw data of only one facility in the IPaaSki project. Limiting 

the number of facilities to one, allowed us to generalize our results across time instead of across 

facilities.  
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Because the demand for alpine skiing fluctuates throughout the season, we narrowed our focus 

further by type of pass and type of customer group. The day passes were used exclusively, leaving 

out other lift passes such as seasonal passes for a longer period or just a few hours. We found that 

day passes were most popular and therefore believed they would do a better job of capturing the 

fluctuations in demand than other types of passes. Within the day pass category, there was also an 

abundant number of different customer groups, in which many overlapped one another or was not 

consistent over the different seasons. The customer group of adults seemed to be the most 

consistent in the dataset and historically an important customer group, and the research was 

therefore further limited to this customer group. 
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2 Theoretical framework 

This thesis aims to provide a better understanding of predictors of demand for ski lift passes in 

Norway. It is driven by the theoretical foundation that already exists in the literature and will 

therefore be given an introduction to the theoretical framework the thesis is based on. To begin 

with, a brief chapter on the earlier findings of demand for alpine skiing activities will be provided 

to help situate the reader in the context of alpine skiing demand. An introduction to demand and 

supply theory will then follow before the theoretical framework is concluded with some theory of 

machine learning.  

2.1 Earlier findings of demand for alpine skiing activities 

When it comes to the effect weather has on demand in the alpine skiing industry, there are some 

differing conclusions. Several additional factors are mentioned to be of importance when 

forecasting the demand for alpine skiing, and there lies a challenge in understanding tourist’s 

perceptions and reactions to anticipate potential shifts in the demand (Gössling et al., 2012).  

Results from research covered by Shih et al. (2009) suggest that weather variables such as 

temperature, snow depth, and wind chill have a statistically significant impact on sales of downhill 

ski lift passes. The authors did, however, find that day of the week and holidays have the greatest 

impact on the demand in the United Stated. Weather furthermore tends to have less of an impact 

on the demand for skiing when observed over a longer period, such as over a whole winter season 

(Falk & Vieru, 2017). It will therefore be relevant to consider the data frequencies being used 

(Gómez Martín, 2005). A study from Romania uses the same method as Shih et al. (2009), being 

multiple linear regression, only with yearly data frequency rather than that of daily. It concluded 

with temperature and tourism having a negative relationship, although variables such as day of the 

week and holiday were not accounted for in this research (Surugiu et al., 2010). Falk (2013) found 

that winter tourism demand is indeed significantly related to various weather conditions, however 

with an emphasis on the relationships being of minor significance. This could indicate that other 

variables might be of greater importance than the weather, also in the research of Surugiu et al. 

(2010), although not being reported due to them missing from the analysis. 

Other than weather variables, relative prices and real income are significant determinants of the 

number of skier visitors in the long run. The change of relative prices has the largest impact on 
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winter tourism demand, followed by real income and lastly snow depth (Falk, 2015). It is also 

argued that the demand for alpine skiing is dependent on factors such as the physical characteristics 

of the skiing facility, individual’s skiing ability, cost of skiing, leisure time, skiing budget as well 

as weather conditions (Malasevska et al., 2017). Related to cost and budgets, Holmgren and 

McCracken (2014) found that in Utah, when all skiers had access to several skiing facilities with 

similar snow density and weather, the majority chose from the facilities closest to the airport. 

Availability and transportation costs was likely a significant factor in this case. However, Falk 

(2013) found that the effect of travel costs was bigger for foreign tourists than for domestic.  

Many factors that contribute to the increase of demand are not possible to control, but by being 

attentive to them, numerous measures can be taken to make advantage of it. Holmgren & 

McCracken (2014) encourage facilities to aid in the increase of demand by differentiating through 

expanding, making improvements such as faster chairlifts, snow parks, snowmaking machines and 

increased lodging opportunities.  

2.2 Demand and supply 

2.2.1 The basics of supply and demand  

In microeconomic theory, a market is comprised of consumers and producers. The producers 

produce and offer a commodity or a service, and the consumers consume the commodity or service. 

The demand and supply in a market can be illustrated by the demand and supply curves, as shown 

in Error! Reference source not found. below, in which quantity marks the x-axis and price marks 

the y-axis. The market is said to be in equilibrium when the demand for a commodity or service 

equals the supply of that commodity or service (Pindyck & Rubinfeld, 2018, p. 25). This can be 

found where the two curves intersect, and the corresponding quantity and price is called the 

equilibrium, or market-clearing, quantity, and price.  
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The demand curve represents the relationship between 

the quantity of a good that consumers are willing to 

buy and the price of the good (Pindyck & Rubinfeld, 

2018, p. 23). The demand curve has a negative slope, 

indicating a negative relationship between price and 

quantity, when the price drops, the consumed quantity 

increases. The supply curve, on the other hand, has a 

positive slope, meaning that the relationship between 

price and quantity is positive. As the market price 

increases, the producers are willing to sell more units.  

Price is an important mediating variable in any market, and it represents the contradictory desires 

of consumers and producers. Consumers want a low price to consume big quantities of a good, 

while producers want the price to be high to produce big quantities. Both sides actively use 

whatever power they inhabit to influence the price in the desired direction. Customers can, for 

instance, shift to substitute goods if they are unsatisfied with the price/quality ratio of a commodity, 

while many producers engage in price wars and offer discounts to attract customers and gain 

market shares.   

The relationship between price and consumption quantity is well-established in the literature, but 

various other variables influence supply and demand, both at the market level and at the local level. 

At the market level, big macroeconomic factors, such as economic growth and unemployment 

rates, heavily influences both supply and demand (Holden, 2016, p. 88). The supply side is also 

influenced by regulations set in place by governments, costs, and technology, to name a few. The 

demand side can be influenced by income levels, price of substitutions, and weather. The list of 

influencing factors is of course much longer, and it usually varies to some extent between markets. 

Supply and demand are also influenced by local factors, such as local regulations and availability, 

and factors that are specific for individual suppliers or consumers. Demand for alpine ski lift passes 

at a specific facility would in light of this, most likely, increase if the facility increased the number 

of slopes or the number of complimentary activities.  

Markets are not necessarily always in equilibrium, and there are many potential reasons why. 

External shocks to a specific industry or an entire economy can, for instance, shift the demand or 

Figure 2: Market equilibrium (Pindyck & Rubinfeld, 2018) 
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the supply curve. The direction and the size of the shift depend on whether the shock is positive or 

negative. Over time the market mechanism, also called the invisible hand, will move the market 

towards equilibrium, at least in a completely free and unregulated market (Smith, 2008). This is a 

slow process and explains why big shocks on the economy, such as the Covid-19 crisis or the 

financial crisis of 2008, have long-lasting effects on GDP, unemployment, and currency. An 

understanding of these principles is key to understanding how markets function and how they may 

recover from external shocks.   

2.2.2 Individual versus market demand  

There is a critical distinction to be made between the individual demand curve and the market 

demand curve. The individual demand curve is the demand function of one consumer and will 

vary from person to person. At the individual level, consumers can be modelled as if being 

ultimately interested in maximizing their utility. This utility can stem from numerous sources, 

ranging from leisure activities such as alpine skiing, reading, or going to a concert, to the 

consumption of more physical products, such as eating food or buying new clothes. The utility 

individuals gain from different products or activities is highly variable, depending on their 

individual preferences (Pindyck & Rubinfeld, 2018, p. 79). Some may favour skiing over reading 

a book, while others would much rather spend resources on going to a concert. Regardless of their 

disposition towards different sources of utility, the goal is always to maximize the utility. 

Consumers are, however, restricted by budget and time constraints, which means that they have to 

prioritize the consumption of goods or activities they believe will bring the most utility (Falk & 

Vieru, 2017). The market demand curve, on the other hand, is the aggregated demand of all 

individuals, thus representing the total quality demanded by all consumers.  

We also need to draw the line between the market demand function and a price response function 

(PRF). While the first represents the entire market’s response to changes in price, the latter 

describes how demand changes for a single producer as the single producer charges different prices 

(Haugom, 2015, p. 54). The market demand function represents changes in demand at the market 

level, while the PRF represents changes in demand at the individual producer’s level. This is an 

important distinction because two companies competing in the same market can face different 

price-response functions. The difference in PRFs can stem from several factors, including how 
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effective any marketing campaigns are, how the customer perceives the quality the different 

companies deliver, and location (Malasevska, 2017). 

2.3 Machine learning  

To be able to make accurate predictions, several factors of significance need to be considered. Not 

to mention the complexity of the data itself, we are met with great amounts of information that is 

not necessarily structured. With the help of machine learning, it could enable the uncovering as 

well as interpretation of valuable underlying patterns that otherwise would be difficult to unveil 

with our bare minds. Edwards (2018) puts it in short, explaining that machine learning is a tool for 

turning information into knowledge. In addition to assisting in revealing the relevant results, it can 

also uncover the underlying patterns, providing a deeper understanding of the problem by working 

its way through a learning process to enhance its performance. 

Depending on the desired outcome, machine learning can be applied through different forms of 

learning. While supervised machine learning uses both established inputs and outputs to predict 

something new, unsupervised learning has no output data, leaving the algorithm with no guidelines 

(James et al., 2013, p. 26). With unsupervised learning, the problem is typically less defined than 

in supervised learning, which can expose relevant patterns that would otherwise have remained 

undetected. In some cases, a combination of these learning methods could address the issue better, 

with a small part of labelled data being merged with a large unlabelled dataset to enforce semi-

supervised learning (Edwards, 2018). This could be useful when a certain bias is desired, but still 

leaving the possibility for new discoveries open. A more complex type of machine learning uses 

rewards and punishments through reinforced learning to generate desired behaviours. Although 

most problems fall into the supervised and unsupervised learning categories, semi-supervised as 

well as reinforced learning have been able to produce some remarkable results. Within the domain 

of supervised learning, several classical statistical learning methods operate, such as linear and 

logistic regression, GAM, boosting, and support vector machines. With unsupervised learning, on 

the other hand, having no output data to supervise the analysis, other statistical learning methods 

are needed, such as clustering for instance (James et al., 2013, p. 27). 

2.3.1 The no free lunch theorem  

There are many different algorithms to choose from when approaching a problem, and seldom one 

superior algorithm. The theorem of no free lunch is highly acclaimed in machine learning, which 
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states that no one single algorithm is universally the best-performing algorithm for all problems 

(James et al., 2013, p. 29). The idea behind this theorem is that all machine learning algorithms 

are based on a priori assumptions, and the performance of a machine learning algorithm is highly 

dependent on how well these assumptions align with reality (Mavuduru, 2020). Choosing an 

algorithm also means choosing a set of assumptions regarding the problem situation. If the 

assumptions are well aligned, the model performance will be good, but if they are misaligned, the 

model will not perform well. A model can thus perform well on a problem in which the 

assumptions hold up, but there is no guarantee the model will perform well under other 

circumstances, as the a priori assumptions may not work. The price paid for lunch is thus the 

limiting assumptions accompanying an algorithm, which simplifies reality and fail in certain 

situations. The choice of the better model is dependent on the research problem and the size and 

structure of the data at hand, and the best performing algorithm is often revealed through plain old 

trial and error (Seif, 2021).  

2.3.2 The bias-variance trade-off  

The goal of prediction models is to gain an estimation that provides the best possible forecast of 

the unseen test set, in which the training set is only used to discover the patterns that help establish 

a method for this purpose. For the error in the test to be as low as possible, a statistical learning 

method is needed to achieve both low variance and low bias at the same time (James et al., 2013, 

p. 34). Low variance does however come at the expense of high bias, and vice versa. The goal is 

therefore to find a good balance between the two. 

Bias refers to errors that will follow when working with real-life problems. Seeing that not all 

information can be accounted for in complicated issues, simple models typically cause a 

misrepresentation in terms of bias, as a consequence of simplifying the relationships. Variance can 

be explained as the variability of values predicted by a model across different possible training 

sets (James et al., 2013). When the model’s complexity is high, it can lead to high variance by 

having an over-focus on every part of the training set. Logistic and linear regression are typical 

examples of simpler models that tend to have more bias, while more complex models such as 

neural networks tend to overfit, thus resulting in high variance. Too much variance or bias can 

cause the predictions to fit the data set too well or too poorly, which is referred to as overfitting 

and underfitting. Underfitted models suffer from high bias, while overfitted models usually lead 
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to high variance. The best models for a given problem are therefore to be placed somewhere in the 

middle of the two extremes of bias and variance (Mavuduru, 2020). This balance is what we refer 

to as the bias-variance trade-off. 

Models affected by high bias do not fit the 

training data well, leading to a particular high 

error on test data. When applying the new 

knowledge gathered from the dataset, the 

training data in the machine learning process 

needs to be as generalized as possible to 

avoid unusual data points being overly 

accounted for while also making sure 

significant patterns are not being ignored 

(Edwards, 2018). Whereas high variance 

over-focuses on the data points by including 

outliers and data not relevant to the pattern due to failure of generalizing the data, high bias can 

miss important underlying patterns by generalizing the data too much. By having a certain degree 

of both bias and variance, they can collectively make a model that follows the trends better and 

thus gains validation that is more realistic when applied to new data. By including more data and/or 

regularization, it can help stabilize high variance, while possible ways to combat high bias include 

increasing the model’s complexity, adding more features, or training the model longer (Amidi & 

Amidi, 2018). An increase of the model complexity does reduce the bias at the expense of 

increasing the variance and vice versa. However, with the bias-variance trade-off in mind, the 

disadvantages of each occurrence are made as low as possible to produce the best model 

complexity and thus the lowest total error. 

2.3.3 Time series 

Time series forecasting is an example of machine learning in which the data is used to track events 

or measures that are to be observed and aggregated over time (Lai, 2020). To forecast future values 

of the time series, the dynamic relationships in the past or present data should be representative of 

the future. However, seeing that structural change patterns can be of either gradual or abrupt 

character, this is not always the case (Diebold, 2017). Trend, seasonal and cyclic patterns are 

Figure 3: Underfitting and overfitting (Amidi & Amidi, 2018) 



Theoretical framework 

 

Candidate 103 & 105  Page 14 of 86 

mentioned to be different types of time series patterns (Hyndman and Athanasopoulus, 2018). 

When there is discovered either a long-term increase or decrease in the data, linear or not, it is 

referred to as a trend. If the pattern from the data appears to be affected by seasonal factors, like 

the day of the week or time of the year, it indicates a seasonal pattern. When no indication of any 

fixed frequencies exists, but the time series data still display a pattern, it goes under the term cyclic 

pattern (Hyndman & Athanasopoulus, 2018). One type of time series pattern does not necessarily 

exclude another, but when it comes to choosing a forecasting method, it is important to be aware 

of which pattern one is working with to find a method that is capable of apprehending the 

underlying patterns and thereafter more likely generate a reliable result.  

When evaluating forecast accuracy, it is common to separate the data into two parts, having one 

larger part (often 70%-80%) for training data and a smaller part (often 20%-30%) for testing data. 

The size of the two parts does however depend on the length of the sample and the desired 

forecasting scope. The model is made based on the training data, in which the goal is to estimate 

parameters of a forecasting method before using it on the test data to assess how well it performs 

on new, though similar data (Hyndman & Athanasopoulus, 2018). In some situations, the available 

data may be limited, rendering the data size too small to make a reliable forecasting model at the 

given point in time. Time series cross-validation is a way to use current data to predict future data, 

one step at a time. Figure 4 visualize this principle, in which the blue observations are the training 

set and the red form the test set. However, when the training set is small, the earliest observations 

are not considered test sets due to unreliability. After forecasting for the later data points, the 

accuracy is checked (when the training set is large enough), before the same forecasted data points 

are added into the next training dataset. This can be seen as cross-validation on a rolling basis, in 

which the forecasted data is being used to forecast further data points, thus rolling forward in time 

(Hyndman & Athanasopoulus, 2018).  

 

Figure 4: Time series cross-validation (Hyndman & Athanasopoulus, 2018) 
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When monitoring current data to be used in time series, it is more probable to detect relevant 

patterns effectively when the period in the time series is longer, thus being more difficult in short 

time series (Kirshners & Borisov, 2012). When the time series is shorter, it can result in arbitrary 

factors or outliers becoming seemingly significant and further make the result lack credibility. To 

secure credible results from time series, it is essential to ensure the integrity of the data being 

studied (Kirshners & Borisov, 2012). For instance, temperature from day to day usually does not 

differ very much, meaning the temperature on January 2nd can be highly correlated to that on 

January 1st while comparing temperature of a date in June will not likely be as correlated with a 

date in January.  

2.3.4 Fourier series 

Fourier series can be used when modelling seasonality, especially for seasons that inhibit a long 

seasonal period (Hyndman & Athanasopoulus, 2018). Najera (2021) explains that “the Fourier 

Series is simply a long, intimidating function that breaks down any periodic function into a simple 

series of sine and cosine waves”.  This series of sine and cosine waves converts a signal from the 

time domain to the frequency domain and this converted signal can be used to model seasonality. 

Other methods, such as ARIMA, are better suited for data with shorter seasonal periods, for 

example hours in a day, or days in a month (Hyndman, n.d.). The seasonality of our data stretches 

over a considerably longer period, with daily observations over a period of six months. With time 

series data, such as the one we are using in our research, there will be a considerable within-year 

seasonal cycle, and Fourier terms are well-suited for modelling these.  

When using a Fourier series, one must determine how many Fourier terms to use. An increase in 

the number of terms leads to a better fit to the data, as it allows 

for greater flexibility within a season. It naturally follows that 

too high a number of Fourier terms can lead to overfitting the 

data, while too few terms can lead to underfitting. The 

inherent trade-off between variance and bias also applies 

when setting the number of Fourier terms, which needs to be 

considered when used for modelling. Allowing a great 

number of Fourier terms will lead to low bias at the expense 
Figure 5: Fourier terms (Bower, n.d) 
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of high variance, and vice versa. As always, finding a good balance between the two is key, since 

both overfitting and underfitting causes problems.  

2.3.5 Regression analysis  

Regression is as mentioned a type of supervised learning with a numeric output that is useful when 

predicting numerous independent variables, such as temperature for a given day, probability of an 

event, and much more (Edwards, 2018). There are many different ways to use regression, 

depending on the goal and/or the data, and some approaches relevant to this research will be further 

addressed. 

2.3.5.1 Linear regression  

One of the most basic approaches is simple linear regression concerns a single predictor variable 

X being used as a base to predict a quantitative response on Y (James et al., 2013, p. 61). This 

approach assumes that X and Y can be expressed by a relatively linear relationship. The linear 

relationship can be written mathematically, as shown below, in which b0 and b1 are the coefficients 

that represent the intercept and slope terms, respectively. 

Y  b0 + b1X 

The coefficients and the p-value that the regression analysis provides, will help in interpreting 

whether the relationships are statistically significant as well as the nature of the relationship(s). 

While the coefficients describe the mathematical relationship between the dependent- and the 

independent variable, the p-value for these coefficients reveals if these relationships are indeed 

statistically significant at a given significance level (Frost, 2017).  

Before testing relationships using linear regression, there will be a null hypothesis (H0) claiming 

that the independent variables do not correlate with the dependent variable. To determine whether 

this is true or not, the p-value of each independent variable is used to test H0. The p-value has to 

be less than or equal to the significance level to claim a relationship between independent variables 

and the dependent variable and thus reject H0 with a high degree of certainty. The significance 

level can vary depending on how much evidence one requires before rejecting H0. The lower the 

significance level, the more evidence is required from the data. A significance level of 0.05 is 

typically used, which means that there is a 5% risk of rejecting H0, thus concluding that a 

correlation exists when it does not (Frost, 2017). This does on the other hand mean that we can 
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with 95% certainty claim that there is a correlation, which is fairly good odds. If the p-value is 

greater than the significance level, there is not enough evidence in the sample to conclude that 

there is a correlation. However, this does not mean H0 is true, but merely that it cannot be rejected. 

H0 can never be proven, only disproven. When dealing with several independent variables, a 

common practice is to remove variables that are not statistically significant to keep them from 

reducing the model’s precision (Frost, 2017). Hyndman (2011) does however discredit this, 

claiming that statistical tests are not made to select variables but to test hypotheses. In forecasting, 

it is possible for an insignificant coefficient associated with a variable to be useful, as it is also 

possible for a significant variable to be better omitted. 

Linear regression models use the ordinary least squares (OLS) approach to calculate the coefficient 

estimates from the data sample (Oleszak, 2019). The goal is to estimate the parameters in a way 

that minimizes the sum of squared residuals. Linear regression models are a relatively inflexible 

approach, as it only generates linear functions. They usually have higher bias than variance, which 

makes them prone to underfitting the data (James et al., 2013, p. 35). The main source of error 

from linear regression models is therefore not its sensitivity to small variations in the training data 

but stem from the prior assumptions in the model being misaligned with reality (Mavuduru, 2020). 

2.3.5.2 Ridge regression 

Regularization is an extension of the linear model framework, and a technique to combat 

overfitting a model. Specifically, linear regression operates by selecting coefficients for every 

independent variable that seeks to minimize a loss function, and since large coefficients can cause 

overfitting, regularization is used to modify the loss function by penalizing the large coefficients 

(James et al., 2013, p. 215). Ridge regression is a type of regularization, often referred to as L2 

regularization, and it uses the hyperparameter lambda () as a way to tune the penalty (Machine 

Learning with R, n.d.). The value of  is chosen by using cross-validation, aiming to minimize the 

sum of square errors on the validation sets. A  of 0 indicates that the penalty term has no effect, 

and that ridge regression will produce the same results as OLS. As  increases, the penalty term 

becomes more effective, shrinking the coefficients closer to zero. The shrinkage penalty of the 

larger coefficients is  times the sum of squares of the coefficients (Machine Learning with R, 

n.d.).  
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Originally, ridge regression was developed to combat data when independent variables are 

collinear, thus making ridge regression a tool to combat multicollinearity in linear regressions. For 

predictive purposes, multicollinearity is not a problem, but the Ridge estimator presents a 

shrinkage estimator which can make it useful in forecasting after all (Elliott & Timmermann, 2016, 

p. 72). Ridge regression is therefore optimized for predictions, as the shrinkage of coefficient 

estimates towards zero combats overfitting and makes the model work better on new data 

compared to unregularized models (Gupta, 2017). 

Even though the OLS method finds the coefficients that seemingly fit the data best, it does not 

consider if any variable is more or less important than others, thus being unbiased (Qshick, 2019). 

Ridge regression’s advantage over least squares is rooted in the bias-variance trade-off. As λ 

increases, the flexibility of the ridge regression fit decreases, leading to decreased variance along 

with increased bias (James et al., 2013, p. 217). From what we know about the bias-variance trade-

off, having no bias does not produce the lowest total error, and ridge regression provide some 

added bias on the important variables to modify the model for the better.  

2.3.6 Loss function  

The goal with forecasting is naturally to make as accurate predictions as possible. Predictions will, 

however, never be completely identical to the actual outcome, and will therefore always have some 

level of error associated with them. Depending on the situation, certain errors can be far more 

costly than others, and the loss function tells us how costly or painful certain errors are by adding 

penalties accordingly (Diebold, 2017). An error in the field of medicine, for example, can literally 

make the difference between life and death. Elliott & Timmermann, (2016, p. 13) defines the loss 

function (L) as a description of how costly it will be to implement an imperfect forecast (f) based 

on the outcome (Y), possibly with other observed data as well (Z). Because one wants to avoid 

making errors that result in higher costs, one might end up favouring a less accurate model as long 

as it has an emphasis on avoiding more costly errors. 

The two main types of loss functions for regression analysis are quadratic and absolute loss. While 

quadratic loss measures the average of squared errors, absolute loss measures the average of 

absolute errors (Parmar, 2018). The quadratic loss thus penalizes larger errors more than absolute 

loss and is thus more sensitive to outliers.  
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In the case of predicting the number of visitors in alpine skiing facilities, overpredicting visitors 

could result in investing more than they otherwise would in the production of snow, extra staff in 

cafeterias or shops, and perhaps even extension or renovation of property and slopes when looking 

at the long run. Underpredicting, on the other hand, can lead to poorer customer experiences if 

customers are forces to wait in line at lifts and cafeterias because of understaffing. Norwegian 

alpine skiing facilities are far from utilizing their full capacity, but underprediction can still be 

painful given that resources such as staffing are needed for daily operations (Malasevska et al., 

2017). If the facility is to use dynamic pricing schemes, prediction error could have great impacts 

on profits, as the price is set according to predicted demand.  
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3 Method 

We have chosen to apply a quantitative approach to our research problem. Quantitative approaches 

are concerned with phenomena that can be measured and quantified and are frequently used when 

the goal is to map the prevalence of phenomena or to examine the relationship between different 

objects or factors (Johannessen et al., 2020, p. 23). A clear drawback of quantitative approaches is 

its failure to capture information that is unquantifiable, but still important for the phenomena in 

question, but it has the advantage of collecting data from a large number of units and generalizing 

the results from sample to population (Oppen et al., 2020, p. 31). Given that we are interested in 

weather as a predictor for demand, we need to establish the relationship between demand and 

factors that can influence it. A quantitative approach was thus a natural choice. 

Data from two different sources, the facility and the Norwegian Meteorological Institute, will be 

used to develop regression models. Some include both seasonal and weather variables, while others 

only contain seasonal variables. By comparing them we can gain a better understanding of the 

importance of weather variables for the predictive performance of a model. Our initial hypothesis 

is that weather data will improve model performance by contributing to a better understanding of 

the underlying factors that influence demand for alpine skiing lift passes. The models will be 

developed by using the validation-set approach, which means that we are making use of supervised 

machine learning algorithms for model development.  

Research conducted by Makridakis & Hibon (2000) concluded with the most accurate forecasts 

not necessarily being produced by more statistically complex methods, but often rather by simpler 

ones, such as linear regression. The results do however differ from the length of the forecast 

horizon, but the rule-based forecasting (RBF) method, which includes linear regression, was time 

and again exemplified as a well-performing method compared to those of higher complexity in 

various scenarios. Similar studies, researching the importance of weather, has also utilized 

regression models, making the same approach a natural choice for our research.  
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3.1 Data Sample 

When applying a quantitative approach to a research problem it is customary to make some 

evaluation of the sample and the sample selection process. There is a distinction to be made 

between a population and a sample. A population is the entire group of people or objects that a 

specific research question applies to. It is, however, hardly even possible to collect data from the 

entire population, so samples are used to make inferences about the population (Oppen et al., 2020, 

p. 68). A sample is a subset of the population from which we collect data and is used to make 

estimations of the data generating process in the population. The sample has to be representative 

to generalize the findings to the rest of the population (Johannessen et al., 2020, p. 58) 

We have made a clear delimitation in our thesis, choosing to only use data from one alpine skiing 

facility from the Inland region in Norway. If we considered all alpine skiing facilities in the Inland 

region, or all facilities in Norway for that matter, as our population, we would have problems with 

representativeness, given that our sample selection process was one of convenience and not one of 

probability. This would in turn make it harder to generalize the results. However, using time series 

data brings about some subtleties regarding the distinction between population and sample. Given 

that our models are to predict demand at a specific location, the repeated observations from this 

location are the population, not other alpine skiing facilities. Our sample is thus the historical 

observations we have available from the population. We know that there is some data generating 

process that generates the observations at the specific facility, but this process is unknown to us. 

To foresee what the process will generate next we need to learn more about the data generating 

process.  

Given that we are interested in one skiing facility, and that we observe that their daily sales data 

over a longer period, there are no sample selection problems. The generalization is over time, not 

across skiing facilities, so we are less concerned with the representativeness of the skiing facility 

for the purposes of generalization to other facilities. We do, however, hypothesize that our findings 

may apply to similar skiing facilities in the Inland region of Norway, but any generalization to 

other facilities or regions needs to consider the representativeness of the facility we collected data 

from. Generalizing the results to other facilities that have different characteristics may lead to poor 

results. It is not automatically given that a small facility has the same data-generating process as 

our facility, or that the demand at a facility located in other parts of Norway is influenced by the 
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same factor as a facility in the Inland region. Demand may, for instance, be more influenced by 

weather conditions in the other parts of the country, where the weather fluctuates more than in the 

Inland region, but customers may also be less sensitive to price if there is a greater distance 

between different facilities, limiting the available options severely. These are all considerations to 

be made if the results are to be generalized to other facilities than the facility we study, but we 

believe it could be an appropriate foundation. 

3.2 Data collection 

The dataset is comprised of data from two different sources. The first source is the alpine skiing 

facility, which gave us access to historical sales data, and the second source is the Norwegian 

Meteorological Institute (MET), which offers historical weather data for free from their webpage 

www.seklima.met.no. Data from these sources were combined into one dataset, containing the 

foundation of variables used to develop models.  

Both the data from the facility and the data from MET can be described as time series data, as it is 

a sequence of numerical data points in successive order. Using time series data does bring about 

some subtleties regarding the methods applied. We are, for instance, less concerned with the 

representativeness of the data, but we still need to make some assessment of the data we use, and 

the data sources themselves, to ensure valid and reliable results. A discussion of the data from the 

two different sources, and a discussion of their validity, reliability, and privacy concerns follows 

below.  

3.2.1 Data from the alpine skiing facilities 

From the alpine skiing facility, we received historical sales data. The data is retrieved directly from 

their internal systems, and primarily contains information on historical sales of alpine ski lift 

passes. The raw data was comprised of daily sales from November 2014 to March 2020, thus 

covering almost 6 full seasons. The raw data contained 15 variables. A full list of these is shown 

in Table 1, along with a short description of the various variables.  
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Table 1: Variable descriptions of the sales data 

 

The data contained one row for each type of pass sold to each different customer group on each 

day. All day passes sold to adults on one specific day are shown on one row, while all day passes 

sold to children on the same day are shown on the row below. The total number of 

observations/lines for each day thus varied, depending on how many types of passes they sold, and 

to how many customer groups they sold the passes to. On the 3rd of April 2018, for instance, there 

were a total of 28 observations, while 10th of April 2018 there were only 8 observations. The same 

Variable Description  

Date Date of sale.  

Register Which cash register the passes were sold at. No filtering available, meaning 

that we received aggregated sales across all cash registers.  

Pool No filtering available, all observations marked with All Pools.  

Ticket type Type of pass sold. Contained 54 different types of passes. The most common 

ones were day pass, season pass, and single pass.  

Customer group Customer group. 13 different types. Differentiate between adults, senior 

citizens, children, and youth. Own group for companies. 

Schedule  The time of day the pass is valid. Day, evening, X-hours.  

Sales (1) The number of sold passes. 

Sales (2) Revenue from the passes.  

Annulled (1) The number of passes annulled. 

Annulled (2) Amount of revenue annulled. 

Refunded (1) The number of passes paid back. Contained no variation. All observations 

marked with 0. 

Refunded (2) Costs of passes paid back. Contained no variation. All observations marked 

with 0. 

Total (1) The total number of passes sold in each observation. Sales (1) minus 

annulled (1). 

Total (2) The total daily revenue for each observation. Sales (2) minus annulled (2).  

Total (3) Percentage of revenue to the total daily revenue. Total (2) divided by every 

total (2) observation with the shared date. 
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day of the week, one week apart, and a considerable difference in the number of observations. 

Some level of difference is to be expected, especially between different days of the week and 

between certain weeks. More customers are to be expected during the weekend, as more people 

have time off work to pursue recreational activities. We also expect higher demand for ski lift 

passes on public holidays, such as Christmas and Easter. When more people travel to the facilities 

to ski, the demand for ski lift passes increases, and we would expect higher variation in types of 

passes sold and groups of customers, given that there are more visitors at the facility. 

The data contains historical sales of alpine skiing lift passes, but it does not necessarily reflect 

actual visits to the alpine skiing facilities. Some types of passes are flexible and allow for visits to 

the facility on days other than the one when the pass was bought. Season passes, for instance, are 

usually bough early in the season, but grants access to the facility throughout the season, while 

punch cards grant access to the ski lifts a certain number of times without specifying the day of 

consumption. Thus, we cannot determine when the customers actually visited the facility when 

buying these types of flexible passes. For day passes the data reflects actual visits in a better way, 

given that most people use the pass the same day they buy it. The raw data contains information 

on annulled or refunded passes, showing both the number of passes sold, the number of passes 

annulled, and finally, the total number of actual passes sold. There is, however, a possibility that 

some customers bought the ski lift passes but were unable to use them and unable to get them 

refunded, but this would only represent a small source of error, as most customers would get their 

pass refunded immediately if they were unable to use it.  

There are several sources for price and demand data, ranging from market data to surveys, 

experiments and expert judgements (Haugom, 2015, p. 68). The different sources of data have 

their strengths and weaknesses, and these need to be addressed properly, as they can influence the 

results. Market data, such as the sales data received from the facility, is often used in these types 

of demand models, as the data is readily available and cheap to obtain (Haugom, 2015, p. 68). It 

also has the advantage of reflecting actual buying behaviour. If the data had been gathered by 

surveys instead, the data would not reflect actual buying behaviour, which would represent a 

problem with the data. Saying that someone is going to buy a certain number of goods at a given 

price does not mean that that person is going to do so. The data from the facility do reflect the 

historical buying behaviour of customers, but that does not necessarily guarantee that they reflect 
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future buying behaviour. Market data is a good source of data when the market is stable, but a 

change in the market could, theoretically, render historical data useless (Haugom, 2015, p. 68). 

The market for alpine skiing has not undergone any drastic change over the years we have data 

for, even though there are always continuous changes to any market with regards to supply and 

demand. Covid-19 can, for instance, have great impacts on the industry, both in the short and long 

run, which could render our models less relevant. In addition to only reflecting historical buying 

behaviour, market data can also be of limited use if there only have been small price changes 

(Haugom, 2015, p. 68). Small price variations may give limited information on how consumers 

behave with regards to changes in price. This may be especially true for recreational activities, as 

consumers are free to maximize the utility in a more liberal way than they are with necessary goods 

like fuel and food. If the data only exhibits small variations in price, the data may be a poor basis 

to assess future behaviour to big price changes.  

Gaining access to sales data directly from the facility grants data with both good validity and good 

reliability. The total number of passes sold is a good measurement of demand, and the data is 

generated automatically by daily operations. The fact that all sold, annulled, and total passes are 

given shows that the system handles annulled sales properly, either because of misregistration or 

refunded passes. The only reliability issue with the data is that the facility sometimes registers 

sales the following day if there has been low activity at the facility. Some sales are therefore 

registered at the wrong date. This is, however, only the case with a few days with low activity, and 

the number of passes affected is therefore too small to cause any major problems in the analysis. 

There are no concerns with the privacy of the data used, as the data is aggregated and can by no 

means be traced back to individual customers.  

3.2.2 Weather data  

The literature is full of references to the importance of weather variables on outdoor recreational 

activities, with some contradictory results. To test if including weather variables in a model leads 

to better predictions, we needed to obtain weather variables, as these were not given in the data 

from the facility. A distinction is to be made between actual weather data and weather forecast 

data. The first is measured in real-time and reflects the weather conditions observable at a given 

time, while the latter reflects a forecast of weather conditions at a specified time in advance. There 
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are discrepancies between predicted and observed weather, and this discrepancy grows with the 

length of the forecast.  

Both forecast and actual weather data can be useful to determine the demand, but only forecast 

data can be used in a predictive model. The reason is twofold. Firstly, the idea is that if a facility 

wants to determine how many customers to expect a certain number of days ahead, they must make 

use of weather forecasts to determine the impact of weather. When forecasting the number of 

customers visiting during the upcoming weekend, there is no actual weather data available to the 

facilities, only forecast data. Since the facility must use forecast data, so does any predictive model. 

Secondly, the weather forecast is central to the customers’ decision to go skiing. The customers 

plan, and value their leisure time. According to microeconomic theory, they will make choices that 

maximize their utility, and weather conditions can increase or decrease the perceived utility of 

spending the day in the slopes. Bad weather can make it less enjoyable to go skiing, which reduces 

the perceived utility for the consumer (Shih et al., 2009). Reduced utility brought about by poor 

weather conditions can thus lead to potential customers choosing other recreational activities than 

alpine skiing, which will reduce demand for lift passes. Some customers will of course 

spontaneously decide to go skiing, so actual weather is of some importance. It cannot, however, 

be used in a prediction model, as actual weather information is not available in advance. 

Forecast data proved impossible to obtain within the framework of this thesis. Instead, we turned 

our focus to MET’s free service, www.seklima.met.no, where historical weather data can be easily 

extracted.  Data were available at different aggregation levels, but daily data was the lowest time 

aggregated level in common for temperature, precipitation, and snow depth. The daily temperature 

is measured as the arithmetic mean of hourly temperatures, precipitation is the total daily amount, 

and snow depth is measured at a given time each day. Data can be obtained for selected regions 

and selected periods, meaning that we were able to collect data on the specific area of the Inland 

region where the facility is located, and simultaneously filter on the desired period. The historical 

weather data was further used to simulate weather forecast data.  

The data collected directly from the SeKlima service have good reliability and validity, as the data 

is collected automatically in real-time from a trustworthy source. The only drawback with using 

the SeKlima service is the limited variables available. The service is being rolled out this spring, 

so there were a limited number of available variables. The list of potential weather elements on 

http://www.seklima.met.no/
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the site is long, but most of them did not contain any data. We assume that the service will become 

better over time and that they continuously work on providing more data.  

The simulated forecast data is of bigger concern and represents a source of error in the models. 

The problem is that the forecast data is simulated and not historical forecasts. Any error in the 

simulation will thus lead to biased and incorrect predictions. There are always errors when 

simulating data, and this is especially true given that MET’s forecasts vary in accuracy depending 

on weather type and season. 

3.3 Data preparation and wrangling  

Raw data is seldom ready to be analysed and modelled without any form of preparation. A central 

part of developing a model is therefore to ensure that the data is of good quality and in a format 

that is applicable for modelling (Hair et al., 2018). A model based on poor data will always give 

poor results. This is well known amongst those working with machine learning and modelling, and 

has led to the phrase garbage in, garbage out - if the data put into the algorithm is garbage, then 

the algorithm will give garbage in return (Rose & Fischer, 2011). There are several steps involved 

in a data preparation process, including cleaning, structuring, and enriching the data. Hair et al 

(2018) also stress the need to examine and explore the relationship among variables before 

applying any algorithms.  

3.3.1 Creating new variables  

Both the data from the facility and the data from MET were structured according to individual 

calendar dates but contained a limited number of variables. There are numerous variables 

discussed as possible predictors for demand in the literature, including seasonal variables, 

customer-related variables, and facility-related variables. The scope of this thesis did not allow for 

the collection of data on all possible predictors, as it would require the collection of sensitive data. 

Seasonal variables were, however, natural to include, as they account for a fair amount of the 

fluctuation in demand throughout the season, and they were computable based on the data already 

at hand. Other variables were also created, and some original variables were transformed. A full 

list of these can be found in Table 2, align with a short description. Some of the variables require 

a more detailed description. 
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Table 2: New variables added to the dataset 

 

Variable Description  

Price Added price information within each season. 

The logarithm of 

total passes 

To prevent any forecast of negative demand, the dependent variable of total 

passes was transformed into its logarithm. 

Relative date Date variable arranging each date in relation to January 1st within each 

season. Reflects the linear trend throughout each season. 

Fourier term Fourier terms were added to model seasonality. 

High season Dummy variable in which the low season is 0 and the high season is 1. 

Closed Dummy variable indicating whether the facility was open or closed to 

control for days with no sold passes. 

Weekdays Categorized in numbers from Sunday as 1 to Saturday as 7. 

Christmas vacation Dummy variable accounting for the days in the Christmas vacation.  

Winter vacation Dummy variable accounting for the days in the Winter vacation.  

Easter vacation Dummy variable accounting for the days in the Easter vacation.  

Christmas day Dummy variable accounting for Christmas day. 

2nd Christmas day Dummy variable accounting for 2nd Christmas day. 

New Year’s Day Dummy variable accounting for New Year’s Day. 

Palm Sunday Dummy variable accounting for Palm Sunday. 

Maundy Thursday Dummy variable accounting for Maundy Thursday. 

Good Friday  Dummy variable accounting for Good Friday. 

1st day of Easter Dummy variable accounting for 1st day of Easter. 

2nd day of Easter Dummy variable accounting for 2nd day of Easter. 

May 1st  Dummy variable accounting for May 1st. 

Cold  Observations are marked as cold if the temperature is -10 C. There were 

76 cases of cold days. 

Ice cold  Observations are marked as cold if the temperature is -15 C or below. 

There were 12 cases of ice-cold days. 

Rainfall  To distinguish between snowfall and rainfall, precipitation above 2.5mm 

with temperatures above 2C should be registered as rain. 
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3.3.1.1 Price 

For this study, having a variable with the price for the ski lift passes is central when forecasting 

demand, as the price is one of the variables customers could be greatly affected by (Falk, 2015; 

Holmgren & McCracken, 2014). There was, however, no variable in the data from the facility that 

contained price information directly, and it was therefore obtained through the facility’s website. 

Seeing that the prices found on the website only were available within the current season, the prices 

of the previous seasons were calculated by using the consumer price index (CPI), which later were 

verified by the facility itself. There is some level of error related to the price variable. The facility 

sometimes offers free passes to accompanying employees, while others have gotten passes for 20% 

or 50% off. Discounted prices can lead to higher demand, as the service becomes cheaper. We 

were unable to control for the fact that some customers receive discounted prices because the data 

from the facility did not contain price information on individual sales, which could be a source of 

error.   

3.3.1.2 Holiday and vacation 

Holidays and vacations mark days when most people have time off work and school to pursue 

recreational activities. Dummy variables for each holiday and vacations were added to the data to 

control for the impact of these days on demand. Holidays only include public holidays, thus leaving 

out Easter Eve, Christmas Eve and New Year’s Eve, as they are not public holidays, but rather 

anniversaries. Vacations, on the other hand, include these individual holidays along with and other 

crammed days and weekend related to certain holidays. The Winter vacation is two full weeks 

instead of one, as the week of the vacation depends on what part of the country one lives in.  

There are correlations between holidays and vacations, as many public holidays are part of a 

vacation. Christmas day and the 2nd day of Christmas are for example both public holidays and 

part of the Christmas vacation. This may lead to some misleading coefficient estimates for the two 

variables in the models, as the models can struggle to distinguish the effect of one from the effect 

of the other. The high correlation between the two is, however, not a problem for predictive 

purposes.  

3.3.2 Simulating weather forecast data  

The weather data was used to create ARIMA models for temperature, precipitation, and snow 

depth, predicting one day ahead. The models were cross validated using rolling windows and 



Method 

 

Candidate 103 & 105  Page 30 of 86 

evaluated on mean absolute error (MAE). ARIMA stands for autoregressive integrated moving 

average and is used to describe the autocorrelations in the data (Hyndman & Athanasopoulus, 

2018). 

The performance of the ARIMA forecasting 

models could be improved. Quarterly 

verification reports published by MET show that 

their predictions are more accurate than the 

ARIMA models (Homleid, n.d.). This is not 

surprising, as weather forecasting is a complicated field of science, and MET make use of a wide 

array of variables in their predictions. The ARIMA models solely base their predictions on data 

from previous days, which is a big oversimplification. Considering this, the performance is not 

bad. 

More accurate predictions than the ARIMA predictions were obtained by simulating forecast data. 

The actual weather data from MET was polluted with the same level of error as MET’s forecasts, 

obtained from their verification reports. This way, the data reflects the accuracy of MET’s 

forecasts, and the simulated forecast data could be used as regressors in the demand forecast 

models. Simulating forecast data means that the weather variables used in the model are measured 

at some other time than the dependent and seasonal variables. This allows for predictions, not just 

merely in sample adaptation. The accuracy of the forecast is dependent on a lot of factors and vary 

across weather types and seasons (Homleid, n.d.). We have used the mean of the standard deviation 

of error and MAE throughout the year. They are 1.7 and 1.5 for temperature, and 2.5 and 1.5 for 

precipitation, respectively. Performance measurements were not available for snow depth, so 

historical data was used instead. The variations in snow depth are, however, small, so using 

historical data instead of the simulated forecast is not a big problem. Using the mean of the 

performance metrics given in the quarterly reports does not account for the differences in accuracy 

caused by weather types and seasonal variations, which represent another source of error for the 

weather variables.   

Weather Variable MAE  

Temperature 1.88 

Precipitation 2.58 

Snow depth  2.58 

Table 3: ARIMA models MAE  
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3.3.3 Missing observations and discrepancies in the data 

There were several instances of entire observations missing from the sales data. Missing data can 

reduce the statistical power of a study, and can also lead to biased estimates, which ultimately lead 

to an invalid conclusion (Kang, 2013).  

The main sources of the missing observations were caused by either the facility being closed on 

the day in question or by delays and errors in the registration system of the facility. The facility is 

closed during periods with low activity and is additionally obliged to close down ski lifts if the 

wind is too strong (from 18 meters pr second). However, this usually only affects the ski lifts with 

the highest altitude, meaning the facility still can accommodate visitors on these days. Delays in 

the registration system of the facility sometimes occur on days when the activity is sparse, and the 

number of passes sold is reported on the following day instead. However, seeing that the facility 

tries to filter out the days with few visitors by keeping closed, the number of passes with postponed 

registration is limited, making this particular error small for our purpose. 

Based on the information available, it is not possible to distinguish the two sources of missing 

observations precisely from another, but seeing that both sources indicate very low demand, 

introducing any missing observation into the dataset with 0 sold passes could help the models to 

better capture the periods with lower demand and thus gain more accurate results. Since all missing 

observations were of days with zero or a low number of sold passes, the missing observations are 

not random, which induce bias in the forecasting model (Hyndman & Athanasopoulus, 2018). 

Seeing that delays in registration only happens on a few occasions, all missing observations were 

therefore registered as the facility being closed. This was further used in the creation of a new 

dummy variable to indicate whether the facility was open or closed on any given day throughout 

the season.  

There were also a few instances in the data we received from the facility containing observations 

with a negative number of passes sold. This is the result of the facility refunding more passes than 

they sold that day. To avoid days with negative demand in the analysis we replaced all days with 

a negative number of sold passes as having 0 sold passes, although not being closed. Additionally, 

there were also some discrepancies found in the data between total passes and total revenue. 

Dividing total revenue by the total number of passes sold did not add up to the price set by the 
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facility. This can be explained by the facility providing various discounts and free passes to 

employees.  

3.4 Data visualization  

Data visualization is a great way to gain a transparent view of a situation. It was therefore natural 

to display the sales data through dashboard visualizations using Power BI to help uncover trends 

and insights that are hidden in the data. This could concern effects on demand by day of the week 

or holidays for instance. It would also be interesting to see how the demand has changed over the 

seasons at this particular facility. This overview will hopefully guide us to the discovery of some 

interesting information that will account for better interpretation of the data before conducting the 

machine learning techniques. Beforehand, we naturally had some assumptions of trends 

concerning the activity across weekdays and holidays which will be addressed further under the 

relevant sections.  

 

Figure 6: Dashboard of the sales data 

3.4.1 Types of passes 

The sales data contained about 50 different types of passes, in which many were overlapping or 

only including data from a very limited period. It was, therefore, important to investigate if there 
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were any consistent types of passes across all the seasons and if any distinct passes should be 

removed for the data to become more reliable in the analyses. The dashboard in Figure 6 shows 

that of all the passes sold, the Day Pass was by far the most sold, followed by the passes of 2 Hours 

and Single Trip. In fact, all the five most sold pass types are valid up to one day, indicating that 

most customers buy the pass the same day they consume it. All of the mentioned passes proved to 

be sold actively through each season. Seeing that the day passes account for most of the tickets 

sold on a daily basis, it will likely be able to represent the overall pattern without noise from 

irregular types of passes. 

3.4.2 Number of passes sold 

The number of daily passes sold varies from 0 to 406. To assess what a reasonable error rate is 

when it comes to predicting the demand, the distribution of the number of passes sold each day are 

of interest. Figure 7 display the distribution in categories from 0-25, 26-50, 51-75, 76-100 and 

100+ sales per day. Most days have a total number of sales between 0 and 25 passes, consisting of 

about 640 days, from a total of 985 days. The number of days with less than 25 passes sold, 

therefore, make up about 65% of the total number of days, whilst the four remaining consists of 

about 50-150 days each, adding to the remaining 45% of the days. Knowing that the mode of 

passes sold each day lies in the category 0 and 25, indicate that the range of acceptable errors are 

fairly low when it comes to evaluating the models on mean absolute error.  

 

Figure 7: Count of total daily passes sold by category 

3.4.3 Customer groups 

The total number of customer groups is much lower than that of types of passes, with 13 categories. 

Several categories do, however, ultimately address the same customer group, but have been 

separated due to different spelling. There has not been provided any information regarding the 
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differences of these overlapping categories, but most of them have very few observations, with 

only one providing the more representative selection to its belonging customer group. The bar 

chart of Total passes by customer group shows a clear prevalence in the Adult customer group, 

accounting for about 40% of all the passes, followed by Youth. The Adult customer group appear 

to be a natural segmentation for our analysis, filtering out both overlapping and infrequent 

categories.  

3.4.4 Weekdays 

One of the assumptions we had beforehand was a higher demand during the weekends than on the 

weekdays. By looking at the dashboard in Figure 6, this assumption was reinforced. In the area 

chart Total passes by weekday, a clear trend of more visitors during the weekend compared to the 

weekdays is detected, peaking on Saturday. There appears to be an escalation starting at the lowest 

point, being Wednesday, gradually building up till Saturday, before it de-escalates from Saturday 

up till Wednesday again. This could be affected by the facility keeping closed during the mid-

week in the early season. 

3.4.5 Public holidays and vacation 

Another interesting point to look at is whether public holidays and vacations affect the number of 

visitors, which we assume it would. The average sold passes in different vacations and public 

holidays shown in the visualizations from Figure 6 are categorized into numbers for simplicity in 

Table 4 and Table 5.  

Table 4: Average number of passes sold daily during different vacations 

Vacation Regular days Christmas vacation Winter vacation Easter vacation 

Average 
passes 

7.46 9.56 14.15 19.85 

Table 5: Average number of passes sold on Public holidays 

Holiday Regular 
days 

Christmas 
day 

2nd 
Christmas 
day 

New 
Year’s 
Day 

Palm 
Sunday 

Maundy 
Thursday 

Good 
Friday 

1st 
day of 
Easter 

2nd day 
of 
Easter 

May 
1st 

Average 
passes 

9.71 6.16 8.47 11.55 12.27 24,61 32,67 14,55 5.52 4.05 
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According to the average number of passes sold during the different vacations shown in Table 4, 

there are sold about seven passes on average on a regular day, which amounts to barely 15% of 

the total average of daily sale. All the days marked as vacation represent higher average sales than 

that of regular days, but the highest average daily sales are clearly on vacation number three, being 

the Easter vacation (39%). Easter vacation is one of the few vacations that include several 

consecutive public holidays. The fact that most people get time off due to the public holidays it 

includes, is a probable explanation as to why this vacation dominates in terms of increased sales. 

For many people, school vacations often consist of several regular workdays, meaning that not 

everybody has the luxury of getting time off during all of these vacations, especially adults with 

full-time jobs. The specific public holidays that the vacation often revolve around, however, could 

produce different results.  

When looking into the average number of passes sold on the different public holidays shown in 

Table 5, Good Friday has the highest percentage of daily passes sold, followed by Maundy 

Thursday and 1st day of Easter. All of these days are public holidays related to Easter which is not 

surprising. The public holiday with the least influence on daily sale is May 1st. This date, however, 

only occur in two of the seasons, seeing that the season usually ends before this date. These 

visualizations are based on the entire dataset, without any filtering, which can affect the overall 

results. The variety of seasonal passes, for instance, only provides us with information about when 

they were bought, not when they were used, which can disturb the results and create some 

discrepancies. 

3.4.6 Demand across seasons 

By viewing the bar chart of total passes and total revenue by season in Figure 6, it does not show 

any significant changes in activity across the seasons, other than a reduction of about 14% in passes 

sold from season 4 to 5. Season 6 stands out with much lower activity compared to the other 

seasons, but there are missing a couple of months’ worth of data here, including the Easter holiday 

which typically has a significant impact on the activity. It is therefore not possible to make an 

accurate conclusion of this particular season based on this visualization. The line in the bar chart 

represents total revenue by season, but we do not have full faith in its reliability. The numbers in 

the chart are, however, summed together by seasons, meaning the discrepancies on a day-to-day 

basis might not matter. With this taken into account, we notice that there has been some differing 
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in relative changes in revenue compared to that of number of passes sold. Based on historical 

prices, there has been a gradual increase from season to season, so we would expect higher revenue 

even if the number of visitors stays the same.  

The number of passes sold does not necessarily reflect the number of visits, seeing that several 

passes are seasonal and thus only registered when bought and not when used. This could indicate 

that the revenue was decreased due to possibly being more sale of the cheaper passes as the price 

had risen from last season, and visitors did perhaps downgrade their usual choice of pass to save 

some money. There is also added a slicer of seasons in the bottom right in Figure 6, to make it 

possible to check the statistics for each visualization regarding the specific seasons. By viewing 

each season individually, the trends were very consistent, and no considerable differences in the 

overview were found compared to the overall data.  

3.4.7 Weather elements  

The actual weather data we collected from the SeKlima service was central to the weather forecast 

data we produced. The distribution of the historical data is shown below, with temperature being 

depicted at the top, precipitation in the middle and snow depth at the bottom.  

 

Figure 8: Weather elements distribution – Temperature, precipitation and snow depth  
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It is clear that all three weather variables have seasonal variations. This dependency is easiest to 

observe for temperature and snow depth, which move in opposite directions as the seasons pass. 

The temperatures are low during the winter, and high during the summer, while the snow depth is 

high during the winter and zero during the summer. The first observation of our weather variables 

is November 15th, 2014, meaning that the numbers on the x-axis represent the number of 

consecutive days after the first observation. The temperature normally varies between +15 C and 

-15 C, depending on the season. The distribution of snow depth shows that the third and fifth 

season (season 2016/2017 and 2018/2019) had less snow than the three other seasons. Snow depth 

is measured at the nearest weather measurement location to the skiing facility, which means that 

the snow at the facility’s slopes may deviate due to the facilities ability to produce snow using 

snow cannons. Precipitation during the observed period also show sign of seasonality, but these 

do not always coincide with the pattern observed in temperature and snow depth.   

3.4.8 Filtering the data 

The inspection of the dataset showed numerous pass types and many customer groups. Including 

all of these in our analysis may yield poor results, as many of the pass types and customer groups 

are either overlapping or non-consistent over seasons. The pass types and customer groups which 

are non-consistent cannot be used for predictive purposes. We thus decided to further narrow the 

data used for model development to one pass type and one customer group. The obvious choice is 

the group that constitutes the biggest percentage of the total, which is daily passes and adult 

customers. Day passes have the added advantage of reflecting daily variations in demand, which 

seasonal passes or passes for multiple days fail to do. Our research is concerned with how weather 

affects the demand for alpine ski lift passes, and the weather is measured daily. Having a pass type 

that has the same aggregation level as the weather data is necessary to determine how daily 

variations in weather affects demand.  
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Figure 9: Dashboard of the sales data filtered on adult day passes  

 

By narrowing the data down to adult day passes, the number of observations ends on 828 days in 

total. Seeing that the dataset includes observations over 923 distinct days in total, it means that this 

selection accounts for about 90% of all the included days. After filtering on the day pass with an 

emphasis on the customer group adult, it presents the same patterns as it did when including all of 

the data, as seen in Figure 9. This includes similar trends of activity across seasons, increased sales 

on different holidays and public holidays as well as the popularity of the different weekdays. This 

implies that if narrowing the dataset down to adult day passes, still provides a representative 

selection. In Figure 9, the key influencer indicates that when weekday is Saturday, there is an 

average of almost 50 more passes sold compared to all other weekdays, and this constitutes about 

17% of all the average daily passes sold. The influence of holidays has also significantly shifted 

to an average of almost 73 more passes sold daily during Winter vacation and Easter vacation. 

Seeing that Winter vacation does not consist of any public holidays, this is somewhat surprising, 

as most adults probably do not have time off work and other obligations during this period. The 

adult day pass has been consistent through all of the seasons, and it is, therefore, possible that some 

misrepresentations in the dashboard from Figure 6, such as outliers and/or small sample sizes 

within the different pass types and customer groups has been filtered out. By narrowing down to 
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the more frequent pass types, it could provide us with a better picture of the actual day-to-day 

activity with less noise and discrepancies. We do however emphasize that this is an overall 

discussion of apparent information concerning the data from only one alpine facility, and we draw 

no tangible conclusions from these dashboards alone.  

3.4.9 Updated dataset 

Most of the variables from the initial sales data were found to be abundant for the purpose of this 

research. Before moving forward with the analysis, the dataset was therefore updated by adding 

the new variables and merging the remainder of the sales data with the weather data, as shown in 

Table 6.  

Table 6: Updated dataset 

Variable Description  

Date Date of sale. 

Total passes The number of passes sold. 

Price Price information. Differentiates in low- and high season. 

The logarithm of 

total passes 

To prevent any forecast of negative demand, the dependent variable of total 

passes was transformed into its logarithm. 

Relative date Date variable arranging each date in relation to January 1st within each 

season. Reflects the linear trend throughout each season. 

Fourier term Fourier terms were added to model seasonality. 

High season Dummy variable with the low season marked as 0 and high season as 1. 

Closed Dummy variable indicating whether the facility was open or closed to 

control for days with no sold passes. 

Weekdays Categorized in numbers from Sunday as 1 to Saturday as 7. 

Christmas vacation Dummy variable accounting for the days in the Christmas vacation. 

Winter vacation Dummy variable accounting for the days in the Winter vacation. 

Easter vacation Dummy variable accounting for the days in the Easter vacation.  

Christmas day Dummy variable accounting for Christmas day. 

2nd Christmas day Dummy variable accounting for 2nd Christmas day. 

New Year’s Day Dummy variable accounting for New Year’s Day. 

Palm Sunday Dummy variable accounting for Palm Sunday. 
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Maundy Thursday Dummy variable accounting for Maundy Thursday. 

Good Friday  Dummy variable accounting for Good Friday. 

1st day of Easter Dummy variable accounting for 1st day of Easter. 

2nd day of Easter Dummy variable accounting for 2nd day of Easter. 

May 1st  Dummy variable accounting for May 1st. 

Cold Observations are marked as cold if the temperature is -10 C.  

Ice-cold Observations are marked as cold if the temperature is -15 C.  

Rainfall  Observations marked with rainfall. 

Temperature Measured daily temperature in Celsius degrees.  

Precipitation Measured in millilitres.  

Snow depth Measured snow depth in centimetres.  
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4 Model presentation and analysis 

In this section, the different demand forecast models and their results will be presented. The models 

will be presented and evaluated based on different criteria, such as adjusted R2 and mean absolute 

error (MAE). There was developed several models, which varied in terms of explanatory power 

and forecast accuracy. The models presented are a thus a selection of the models that was further 

developed. The presentation consists of simplified regression results, but the full regressions 

outputs can be found in Appendix A to Appendix F. Also see Appendix G for the models’ R-script. 

The models presented are all multiple linear regression models. Linear regression models use the 

OLS approach to calculate the coefficient estimates that best fit the data, but it does not necessarily 

calculate the coefficient estimates that produces the lowest error (Qshick, 2019). The regression 

models were therefore also trained using ridge regression as an estimator, which adds some bias 

and shrinks the regression coefficients towards zero (James et al., 2013, p. 215). Six models are 

presented, and seasonal variables form the basis of all of them. Weather is added as a predictor in 

two of the models, enabling us to make comparisons between the models with only seasonal 

variables and the equivalent models with both seasonal and weather variables. Regression models 

are a commonly used forecasting technique, and historical sales data is well-suited for regression 

analysis (Chambers et al., 1971). Furthermore, linear regression models score high on 

interpretability, which is a great advantage for research problems resulting in models being used 

by people who are not trained in statistics (James et al., 2013, p. 25). 

4.1 Creating the models 

There were several steps in common for all the models developed. The first key step was to divide 

the dataset into two parts: a training set and a validation set. This is known as the validation set 

approach when the training set is used to fit the model, and the fitted model is used to predict the 

responses for the validation set (James et al., 2013, p. 176). The validation set is then used to 

estimate the test error rate, an indicator of how good the model performs. For many machine 

learning applications, in which the assumption of independence is upheld, the split is usually done 

randomly. However, given that our data is time series data, the observations are not independent. 

The split was therefore made non-random. The data was split according to seasons, using the first 
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five seasons as a training set and the last season as a test set. In other words, the first five seasons 

were used to train the models, and the sixth and final season was used to test the model.  

All models presented below use the logarithm of passes sold, also referred to as demand, as the 

dependent variable. Models with passes sold as the dependent variable were also trained, but led 

to many cases of negative predictions, especially for weekdays in the low season. The logarithm 

of total passes was therefore used to prevent negative point predictions, which leads to some 

subtleties regarding the interpretation of the coefficient estimates. The independent variables effect 

on demand cannot be interpreted directly. If the estimated coefficient of a variable is β it does not 

mean that a marginal increase in that variable will lead to an increase in demand equal to β. Rather, 

it means that a marginal change in the variable is associated with a 100β% change in demand 

(Stock & Watson, 2019). The exception is the variable price, which is an endogenous variable. 

Demand affect price and price affects demand, meaning that we cannot interpret the effect of price 

in the same way as the other variables.  

The coefficient estimates inform us whether the relationship between the independent and 

dependent variables is positive or negative. For the dummy variables, the coefficient estimates are 

informative for comparisons, as greater coefficient estimates translate to a greater effect on 

demand. If the Christmas vacation coefficient estimate is smaller than the one of Easter vacation, 

it implies that Easter vacation has a greater impact on demand than Christmas vacation.  

The regression output indicates what variables are statistically significant at different significance 

levels. Determining the appropriate significance level is a bigger problem in forecasting than in 

other research settings. Statistical significance is, however, less important in forecasting models 

(Armstrong, 2007). In fact, some leading researchers in forecasting argue that p-values and 

statistical significance have been offered too much attention and that more emphasis should be 

given to the predictive ability of a model (Kostenko & Hyndman, n.d.). Including variables that 

are not statistically significant in a model poses no problem per se, as statistical tests were designed 

to test hypotheses, not to select variables (Hyndman, 2011). Two highly correlated variables can 

give good predictions but may get insignificant coefficient estimates because it is hard to 

distinguish their contribution to the model. Our presentation will therefore be less concerned with 

statistical significance per se, and more concerned with point estimates and their economic 

significance.  
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4.2 Evaluating model performance  

The models need to be evaluated on some criteria. For in-sample fit, adjusted R2 is a good 

evaluation metric. The evaluation of adjusted R2 is entirely problem-specific and varies between 

different fields of science, but high numbers are generally desirable. Low adjusted R2 does not 

automatically imply that a model is poor (Moksony, 1999). Low adjusted R2 usually implies both 

a high mean squared error (MSE) and MAE for any fixed level of variance of Y, but some 

phenomena have high levels of irreducible error, which prohibits high adjusted R2.  

The goal of forecasting is to produce accurate predictions, in which evaluating a model based on 

how well it predicts out of sample is the preferred approach. Comparing the out-of-sample forecast 

errors – the one-step-ahead forecast errors – of different models gives information on the predictive 

ability of those models. Note, however, that there is a general tendency for out of sample forecast 

accuracies to be disappointing compared to within-sample fit (Chatfield, 2005).  

The models presented in this thesis are evaluated on MAE, one of the most common accuracy 

measures for scale-dependent errors (Hyndman & Athanasopoulus, 2018). The ridge regression 

models have also been tuned to minimize MAE. In forecasting, an error can be described as the 

difference between an observed value and its forecast. An error does not necessarily translate to a 

mistake, but partly to the unpredictable part of the observation. There will, of course, be some 

level of mistakes present in the predictions, but there will also be some level of irreducible error 

(James et al., 2013, p. 18). 

Deciding what type of loss function to use is best left to those it affects, which in this case is the 

alpine facility. They know best if overpredicting or underpredicting causes them the most pain, as 

they have in-depth knowledge of their finance and operations. The facility did not inform us of 

what error caused them the most pain, resulting in us using MAE as a loss function. MAE, also 

called absolute loss, is a symmetric loss function, meaning that loss is increasing at each side of 

the origin and that the loss increase at a constant rate with the size of the error (Diebold, 2017, p. 

37). Under absolute loss, an error will be equally painful in both directions, meaning that under- 

or overpredicting by 1 visitor is just as bad. With absolute loss, the optimal point prediction is the 

conditional median of y (Diebold, 2017, p. 38). 
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4.3 Model presentation  

4.3.1 Model 1 – Linear regression with seasonal variables – OLS   

Table 7: Model 1 – OLS regression with seasonal variables 

The first model is a multiple linear 

regression model, using OLS to estimate 

the coefficients. Model 1 estimates 

demand as a function of relative date, day 

of the week, all public holiday and vacation 

dummies, high season, season, closed and 

price. The results of the regression 

analysis are shown in Table 7. 

As is evident from the regression output, 

the independent variables are key 

contributors to demand for alpine ski lift 

passes. The explanatory power of the 

model, measured by adjusted R2, is 0.639. 

This is a decent number and means that 

64% of the variation in demand can be 

explained by the independent variables. 

The explanatory power could, of course, 

be higher, but some phenomena are 

characterized by a low signal to noise ratio, 

and for these phenomena, one cannot expect the adjusted R2 to be close to 1.  The signal-to-noise 

ratio is what proportion of the data is determined by the process of interest versus nuisance 

variation (Vandekerckhove et al., 2015).  

Adjusted R2 is a measure of in-sample fit and does not address how well the model performs on 

new data. This can be evaluated by MAE, which in this model is 22.67. This number is reported 

in the number of passes sold, meaning that the parameter has been transformed back to its original 

 
1 The asterisks indicate the significance codes for each variable: 0 = `***´, 0.001 = `**´, 0.01 = `*´, 0.05 = `.´, 0.1 = `´  

Model 1 

 

Adjusted R2 0.639 

MAE 22.67 

  

Coefficients: Estimate 

Intercept  22.54   **1 

Relative date  0.004   *** 

Monday (2) -1.303   *** 

Tuesday (3) -1.051   *** 

Wednesday (4) -1.123   *** 

Thursday (5) -1.021   *** 

Friday (6) -0.216 

Saturday (7)  1.176   *** 

Christmas day (1)  0.837   . 

2nd Christmas day (2) -0.076    

New Year’s Day (3) -0.850   . 

Palm Sunday (4)  1.200   * 

Maundy Thursday (5)  0.764    

Good Friday (6)  0.364 

1st day of Easter (7) -1.111   * 

2nd day of Easter (8) -0.876   . 

May 1st (9)  0.113   

Christmas vacation (1)  1.077   *** 

Winter vacation (2)  1.587   *** 

Easter vacation (3)  2.293   *** 

High season  4.303   *** 

Season  0.634   * 

Closed -0.686   *** 

Price  -0.066   ** 
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form through exponentiation. An MAE of 22.67 implies that, on average, the forecast’s distance 

from the true value will be 22.67. The MAE measure is calculated from the test set, meaning that 

the accuracy can deviate less or more for future observations, especially if the pandemic will have 

any significant impacts on the industry. 

For comparison, consider the MAE of a naïve forecast. A naïve forecast is an estimating technique 

that uses actual values for previous periods to forecast a future period. Using the long-term 

historical average of passes sold as a prediction for the entire sixth season is thus a naïve forecast. 

The historical average of passes sold in the training set is 36.2. Using this as a prediction for all 

observations in the test set gives an MAE of 35.3. Model 1 has an MAE of 22.67, which is 

considerably lower than the MAE of the naïve forecast. This shows that the model has established 

some important causal relationships between the dependent and independent variables, which has 

led to better prediction accuracy compared to a naïve forecast. 

Relative date has a positive coefficient, which implies that there is a positive linear trend regarding 

total passes over each season. Relative date does not model seasonality, only a linear trend. Day 

of the week is undoubtedly important, both statistically and economically. When Sunday serves as 

a reference point, Monday to Friday have lower demand, while Saturday has higher demand. This 

translates to increased demand during the weekend, which is of economic significance for the 

facility when they plan their operations.  

All vacations have a positive impact on demand. This is not surprising, as people get time off work. 

Easter vacation has the greatest impact of the three, with a coefficient estimate that is twice as big 

as Christmas.  This is supported by looking at the dataset and calculating the average number of 

passes sold during the different vacations. The average of all observations that are not part of any 

vacation is 22 passes sold. The same number for the Christmas-, Winter-, and Easter vacations are 

39, 87 and 140 passes, respectively. The increase in passes sold is more than twice as big for Easter 

vacation as for Christmas vacation, but the average numbers are calculated from the entire data 

sample, not just the test sample. The calculation of average sales during the different vacations 

supports the model’s claim that Easter vacation has the greatest positive effect on demand, and 

that the effect is of great economic significance.  

Holidays have a mixed impact on demand, with some having positive coefficients, while others 

negative. Negative coefficient estimates for some holidays are not surprising. Christmas day and 



Model presentation and analysis 

 

Candidate 103 & 105  Page 46 of 86 

2nd Christmas day are perhaps days most people spend at family dinners instead of on the slopes, 

and New Year’s Day is perhaps spent on the couch. More surprising is the negative coefficient 

estimates of the 1st and 2nd day of Easter, as Easter vacation usually brings about greater activity 

for the alpine facilities. The Easter vacation dummy shows a great positive impact on demand. 

Negative coefficient estimates for the 1st and 2nd day of Easter is, therefore, an odd finding. As the 

coefficient size for Easter (2.293) is greater than that of both the 1st day of Easter (-1.111) and the 

2nd day of Easter (-0.876), the net effects of these holidays are still positive. 

The variables price and closed are both statistically significant, with a negative impact on demand, 

while the high season has a positive impact on demand. There are high levels of correlation (0.78) 

between price and high season, as the facility price differentiates between high- and low season. 

Multicollinearity is, however, not as important when forecasting (Elliott & Timmermann, 2016). 

Closed refers to days when the facility is closed and naturally shows that total passes sold decrease 

on these days. Season has a positive coefficient, indicating that demand increases each passing 

season. 

To better understand how the coefficient estimates are to be interpreted, consider the following 

example. What happens when Palm Sunday dawns on us? Assume we are to compare a Palm 

Sunday to any other Sunday in the high season. Both days are set in the same high season, so the 

price is the same, meaning that neither the variables of season, price nor high season change. The 

model uses Sunday as a reference point, so we do not need to control for day of the week either. 

For simplicity, we ignore the changes in relative date as well, as we only are interested in the effect 

of Palm Sunday in isolation. There are two variables affected by Palm Sunday, the first being the 

Palm Sunday dummy, and the latter being the Easter vacation dummy. The coefficient estimates 

are 1.20 (Palm Sunday) and 2.29 (Easter vacation). Any changes in these variables will be from 0 

to 1 as they are both dummy variables, and the change will lead to a 100%*1.20 + 100%*2.29 = 

349% change in Y. If the day in question had not been Palm Sunday, but just a regular Sunday and 

the number of passes sold had been 35, the same number would have been 35*349% = 122 passes 

if it had been a Palm Sunday, ceteris paribus. 
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4.3.2 Model 2 – Linear regression with seasonal variables – Ridge  

Table 8: Model 2 – Ridge regression with seasonal variables 

The second model has the same independent 

variables as in Model 1 but uses ridge 

regularization to estimate the coefficients. The 

only difference between the two models is the 

estimation method, so their point estimates can 

be compared directly. Ridge regression does not 

produce any t- or p-values, so no judgement 

about statistical significance can be drawn for 

Model 2. 

MAE is 21.15, which is slightly lower than the 

MAE of Model 1. This could mean that 

estimating with ridge leads to more accurate 

predictions, or it could simply be a result of luck. 

It is apparent from the coefficient estimates that 

they have been shrunk towards zero compared to 

the corresponding estimates in Model 1.  

Coefficient estimates for all days of the week, 

closed, and all holiday and vacation dummies are 

similar, both in size and in direction of the 

relationship. This indicates that these coefficients only have undergone low levels of shrinkage, 

and their effect on demand can be interpreted the same way as in Model 1. The bigger differences 

are found for high season, price and season. High season has been shrunk manyfold, from 4.3 in 

Model 1 to 0.77 in Model 2, while price and season have changed coefficient signs. The high 

correlation between the two may explain why their coefficient estimates are so variable between 

the models, as they can have a hard time distinguishing the effect of season from that of price.  

Highly variable point estimates with possibly changing signs are typical for highly correlated 

variables as ridge regression is doing its job of fighting the effects of multicollinearity. The point 

estimates of such correlated variables are often more sensible when estimated by ridge than by 

Model 2 

 

MAE 21.15  

  

  

Coefficients: Estimate 

Intercept  0.897 

Relative date  0.004 

Monday (2) -1.136 

Tuesday (3) -0.884 

Wednesday (4) -0.965 

Thursday (5) -0.872 

Friday (6) -1.01 

Saturday (7)  1.247 

Christmas day (1)  0.819 

2nd Christmas day (2) -0.036 

New Year’s Day (3) -0.761 

Palm Sunday (4)  1.263 

Maundy Thursday (5)  0.895 

Good Friday (6)  0.544 

1st day of Easter (7) -0,778 

2nd day of Easter (8) -0.713 

May 1st (9)  0.108 

Christmas vacation (1)  1.009 

Winter vacation (2)  1.522 

Easter vacation (3)  2.093 

High season  0.766 

Season -0.144 

Closed -0.725 

Price   0.004 
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OLS. In this particular case, the point estimates appear more sensible in the first model, as ridge 

regression has given price a positive coefficient estimate, which contradicts the negative 

relationship between price and demand which is thoroughly documented in the literature. The 

coefficient size is, however, small, indicating that a price increase only leads to a minimal, nearly 

non-existent, increase in demand.    

Following up on the example from Model 1 with Palm Sunday, its effect on demand has decreased. 

The coefficient estimates of Palm Sunday and Easter vacation are 1.26 and 2.09, respectively, 

leading to a combined change in Y of 100%*1.26 + 100%*2.09 = 335%. This translates to an 

increase in the number of sold passes from 35 to 117, which is smaller than the increase of Model 

1. The difference in predicted passes sold is only 5, which is quite small. This is because the 

coefficient sizes for the relevant variables only have been shrunk a little. For variables with bigger 

changes in coefficient estimates, such as high season, the effect on demand would be considerably 

smaller in Model 2 than in Model 1. The reason is that OLS estimation does not consider which 

independent variables are more important, leading to unbiased coefficients that produce the lowest 

Residual Sum of Squares (Qshick, 2019). Ridge regression, on the other hand, accepts that some 

variables are more important, and thus treats each predictor differently. Therefore, some variables 

are more penalized than others, resulting in different coefficient sizes than with OLS. The small 

size reduction of Palm Sunday and Easter vacation indicates that these variables are important 

predictors for demand.  

4.3.3 Model 3 – Linear regression with Fourier terms for seasonality - OLS 

Model 3 is another linear regression model, but the linear trend over one season represented by 

relative date has been replaced with Fourier terms to model seasonality. It has been replaced 

instead of kept because of the exact multicollinearity between relative date and Fourier that we 

would otherwise get. Weather variables are not included in this model.  

The regression output is quite long, as the Fourier series is comprised of 16 pairs of Fourier terms, 

totalling 32 Fourier variables. The output presented excludes the first 15 pairs of Fourier variables, 

because the output would be too long if included. In this model, 16 pairs of Fourier terms are 

optimal for MAE. Reducing or increasing the number of pairs have a positive impact on the in-

sample fit, but simultaneously increase the out-of-sample MAE.  
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Table 9: Model 3 – OLS regression with Fourier terms for seasonality 

Replacing relative date with Fourier has led 

to better in-sample fit, as adjusted R2 has 

increased from 63.9 to 69.7. Given that the 

model is comprised of 16 pairs of Fourier 

terms, this is perhaps not surprising. 

Relative date has replaced 32 Fourier 

variables, making the model more flexible. 

MAE is 21.86, and has decreased compared 

to Model 1, but increased compared to 

Model 2. This difference is, once again, 

small. 

The coefficient sizes have changed 

compared to those of Model 1. Table 9 

excludes the first 15 pairs of Fourier terms, 

but the coefficient estimates for Fourier 

terms are big compared to the remaining 

variables. Most variables have coefficient 

estimates between -2 and 2, but the Fourier 

variables have estimates of a much grander 

scale, with Fourier16cos having one of -1950.  Modelling with Fourier has a great impact on the 

coefficient estimates of the model. There are no changes to the direction of the relationship 

between dependent and independent variables. We see the same effects linked to day of the week 

as in the previous models, with lower demand on weekdays compared to the weekend. 

In a model with Fourier terms, the effect of Palm Sunday is even greater than that of both previous 

models. With coefficient estimates of 1.38 and 2.550, the combined effect of Palm Sunday on 

demand is 393%, resulting in 137 sold passes. This is a higher prediction than both previous models  

4.3.4 Model 4 – Linear regression with Fourier terms for seasonality – Ridge  

Model 4 has the same independent variables as Model 3 but uses ridge regularization instead of 

OLS to estimate the coefficients.  

Model 3 

 

Adjusted R2 0.697 

MAE 21.86 

  

Coefficients: Estimate 

Intercept  978000000 

Fourier16sin  220 

Fourier16cos -1950 

Monday (2) -1.310  *** 

Tuesday (3) -1.090  *** 

Wednesday (4) -1.160  *** 

Thursday (5) -1.040  *** 

Friday (6) -0.221  . 

Saturday (7)  1.200  *** 

Christmas day (1)  0.216 

2nd Christmas day (2) -0.068 

New Year’s Day (3) -1.260  ** 

Palm Sunday (4)  1.380  ** 

Maundy Thursday (5)  0.858  .  

Good Friday (6)  0.464     

1st day of Easter (7) -1.540  ** 

2nd day of Easter (8) -1.270  * 

May 1st (9)  0.438 

Christmas vacation (1)  0.586  * 

Winter vacation (2)  0.115  

Easter vacation (3)  2.550  *** 

High season  2.350  . 

Season  0.434  . 

Closed -0.666  *** 

Price  -0.046  * 



Model presentation and analysis 

 

Candidate 103 & 105  Page 50 of 86 

The model’s MAE is 20.26, which is lower than all the previously presented models. This could 

be due to better predictions, or simply because of luck. The difference is, however, small.  

Table 10: Model 4 – Ridge regression with Fourier terms for seasonality 

The coefficient size of the Fourier terms has 

been greatly reduced in absolute terms, 

compared to those of Model 3. Fourier16cos 

have been reduced in size from 1950 to 0.112, 

by applying ridge regularization. Ridge 

regression has produced coefficient estimates 

in the same range as those found in Model 1 

and Model 2, thus greatly reducing the big 

coefficient estimates introduced by modelling 

seasonality with Fourier. The remaining 

coefficient estimates are similar to the 

estimates of Model 3, with small differences in 

individual point estimates. There are no 

differences in direction of the relationships 

either, except for the variables price and 

season. The coefficient estimates can therefore 

be interpreted in the same way, with increased 

demand during weekends and vacations.  

It is interesting to compare the different 

coefficient estimates to each other. Looking at the different vacation dummies, Easter vacation is 

the one with the biggest coefficient estimate, and therefore with the greatest impact on demand. 

Its coefficient estimate is almost four times as big as that of Christmas vacation and six and a half 

times as big as Winter vacation.  This suggests that Easter vacation has a four times bigger effect 

on demand than Christmas vacation, and six and a half times bigger than Winter vacation, all other 

things being equal. Note that this does not control for the effects of any individual holiday within 

each vacation. Some holidays, such as the 2nd Christmas Day and 1st day of Easter have negative 

coefficients, even though the vacation they belong to has a positive effect on demand.  

Model 4 

 
  

MAE 20.26 

  

Coefficients: Estimate 

Intercept 2.356 

Fourier16sin -0.106 

Fourier16cos 0.112 

Monday (2) -1.140 

Tuesday (3) -0.923 

Wednesday (4) -0.990 

Thursday (5) -0.892 

Friday (6) -0.121 

Saturday (7) 1.254 

Christmas day (1) 0.340 

2nd Christmas day (2) -0.085 

New Year’s Day (3) -0.822 

Palm Sunday (4) 1.256 

Maundy Thursday (5) 0.944 

Good Friday (6) 0.621 

1st day of Easter (7) -0.974 

2nd day of Easter (8) -0.865 

May 1st (9) 0.816 

Christmas vacation (1) 0.559 

Winter vacation (2) 0.320 

Easter vacation (3) 2.134 

High season 0.371 

Season -0.088 

Closed -0.678 

Price  0.000 
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4.3.5 Model 5 – Linear regression with seasonal variables and weather variables - OLS  

Table 11: Model 5 – OLS regression with seasonal variables and weather variables 

The next model builds on the models with 

Fourier terms for seasonality but adds 

weather variables as well. The reason for 

developing the Fourier models further 

instead of the relative date models is not 

based solely on predictive performance. 

There were only small differences between 

their performance, with Fourier terms 

performing slightly better. This could be due 

to superiority or simply due to luck. We 

know that both variables imply a linear trend 

over each season, as there is exact 

collinearity between the two, but Fourier 

offers rich patterns through seasonal 

variation as well. The reason for adding 

weather variables to the Fourier models is 

the seasonal variation it offers, which 

relative date fails to provide.  

It is natural to compare Model 5 with Model 

3, as the only difference between the two is 

the weather variables. The adjusted R2 of 

Model 5 is almost equal to that of Model 3, with a 0.002 increase. MAE, on the other hand, has 

decreased from 21.86 in Model 3 to 21.72 in Model 5. The minimal changes in adjusted R2 and 

MAE are remarkably low considering that three extra variables have been added, especially 

considering that these are documented in the literature as important predictors for demand.  

Out of the added weather variables, only temperature has a statistically significant effect on 

demand. The relationship is positive, indicating that increased temperatures lead to increased 

demand. The coefficient of temperature is 0.023, meaning that an increase of temperature by 1 C 

Model 5 

 

Adjusted R2 0.699 

MAE 21.72 

  

Coefficients: Estimate 

Intercept 1490000000 

Fourier16sin  604 

Fourier16cos -2040 

Monday (2) -1.300  *** 

Tuesday (3) -1.090  *** 

Wednesday (4) -1.150  *** 

Thursday (5) -1.060  *** 

Friday (6) -0.229  . 

Saturday (7)  1.190  *** 

Christmas day (1)  0.232 

2nd Christmas day (2) -0.023 

New Year’s Day (3) -1.290  ** 

Palm Sunday (4)  1.350  ** 

Maundy Thursday (5)  0.874  . 

Good Friday (6)  0.481    

1st day of Easter (7) -1.520  ** 

2nd day of Easter (8) -1.290  ** 

May 1st (9)  0.416 

Christmas vacation (1)  0.587  * 

Winter vacation (2)  0.186    

Easter vacation (3)  2.580  *** 

High season  2.730  *** 

Season  0.517  . 

Closed -0.683  *** 

Price  -0.054  * 

Temperature  0.023  ** 

Precipitation -0.009 

Snow depth   0.001 
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will, on average, lead to a 2.3% increase in the number of sold passes. Both precipitation and snow 

depth are without any statistical significance. Snow depth has a positive effect, meaning that 

increased levels of snow lead to increased demand. Precipitation, on the other hand, has a negative 

effect, meaning demand decrease as precipitation increase. Statistical insignificance by itself 

presents no big problems for predictive purposes.  

4.3.6 Model 6 – Linear regression with seasonal variables and weather variables – Ridge  

Model 6 consists of the same variables as Model 5, but the coefficient sizes are estimated with 

ridge regularization instead of OLS. The change in estimation approach has thus led to a reduction 

in MAE from 21.72 to 20.53. An MAE of 20.53 is the second lowest of all presented models. It is, 

however, not lower than that of Model 4, which has the same variables as Model 6, except for the 

weather variables. When applying ridge regularization, it thus appears that adding weather 

variables makes for poorer predictions and that demand is best predicted by seasonal variables 

alone. This contradicts the findings with OLS estimation, in which the weather variables lead to a 

slight increase in predictive accuracy. However, the differences in MAE are small, and could very 

well be the result of luck.  

There are some interesting changes in the coefficient estimates compared to those of Model 5. 

Applying ridge regression has, once again, had a great impact on the size of the Fourier variables. 

These have been shrunk manyfold compared to those of Model 5. The remaining variables have 

changed less, but many have smaller coefficient sizes. 
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Table 12: Model 6 – Ridge regression with seasonal variables and weather variables 

The most interesting coefficient estimates of 

Model 6 are those of the weather variables. 

While most of the other variables have shrunken 

coefficient estimates, both precipitation and 

snow depth have bigger coefficient sizes as a 

result of ridge regularization. Their relationships 

maintain the same direction, but both variables’ 

coefficient estimates have increased in size. 

Precipitation has increased in terms of absolute 

numbers, from -0.009 to -0.013, while snow 

depth has increased from 0.001 to 0.003. The 

increase is small in terms of numbers, but as the 

coefficient sizes were small to begin with, the 

change is big in relative terms. This suggests that 

ridge regression attributes greater importance to 

snow depth and precipitation than OLS 

regression does. Temperature, on the other hand, 

has a decreased coefficient estimate. An increase 

in expected temperature of 1 C will now lead to 

a 1.8% increase in demand, compared to a 2.3% 

increase from Model 5.  

4.4 Model comparison  

Table 13 shows how well the different models perform in terms of MAE. There are only small 

differences between the models, indicating that they perform almost equally well on new data. 

Some of our unreported models, on the other hand, performed considerably worse, with adjusted 

R2 between 0.3 and 0.4, having MAE over 38. Of the reported models, the best performing model 

has an MAE of 20.26, while the worst performing model has an MAE of 22.67.  

 

 

Model 6 

 

MAE 20.53 

  

Coefficients: Estimate 

Intercept  2.189 

Fourier16sin -0.095 

Fourier16cos  0.105 

Monday (2) -1.138 

Tuesday (3) -0.918 

Wednesday (4) -0.984 

Thursday (5) -0.898 

Friday (6) -0.126 

Saturday (7)  1.252 

Christmas day (1)  0.373 

2nd Christmas day (2) -0.070 

New Year’s Day (3) -0.843 

Palm Sunday (4)  1.225 

Maundy Thursday (5)  0.975 

Good Friday (6)  0.628 

1st day of Easter (7) -0.940 

2nd day of Easter (8) -0.857 

May 1st (9)  0.796 

Christmas vacation (1)  0.588 

Winter vacation (2)  0.342 

Easter vacation (3)  2.136 

High season  0.405 

Season -0.090 

Closed -0.696 

Price   0.001 

Temperature  0.018 

Precipitation -0.013 

Snow depth  0.003 
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Model 1, Model 3, and Model 5 are linear 

regression models with OLS estimator, while 

Model 2, Model 4, and Model 6 are linear 

regression models with ridge regularization. 

The ridge regression models perform better 

than their OLS counterparts, for all three 

combinations of independent variables. The results also indicate that the models including relative 

date instead of Fourier performed worse, having higher MAE for both estimation methods 

compared to the models including Fourier terms. The effect of adding weather remains unclear, 

as the models with weather variables included gave a somewhat better forecast when using OLS, 

but worse when using ridge regularization, compared to the models without weather variables.  

The apparent approach when selecting the best forecasting model is to choose the model with the 

smallest error measurement (Zaiontz, n.d.), which in this case would be Model 4. It is, however, 

unclear if this model performs better because of it being superior, or if it is due to luck. We must 

estimate the likelihood of the outcome being a result of chance or superiority. This can be achieved 

by applying the Diebold-Mariano test, which tests the null hypothesis (H0), claiming there to be 

no difference in expected predictive loss from two forecasts (Diebold & Mariano, 1995). If the 

hypothesis is rejected, we can conclude that the two models do not have an equal expected 

predictive loss in the population. Failing to reject H0, on the other hand, does not mean that the 

two models have an equal expected predictive loss, but that there is simply not enough evidence 

in the data to claim otherwise (Diebold & Mariano, 1995).  

Valid inference regarding the predictive performance of two models requires the models of interest 

to be selected before their performance is observed (Hansen, 2010). Simply choosing to compare 

the best and worst-performing model will generally lead to invalid inference regarding statistical 

significance. The inference from such a procedure will be too liberal. Thus, if we reject H0, this 

may be due to either the test having a larger than nominal size or the effect being real. However, 

if we fail to reject H0
 even in the presence of a positive size distortion, we have stronger support 

of H0, than we would under correct size. The two models should therefore be chosen before their 

performance is observed, not because of it. To determine if adding weather variables to a model 

leads to better predictions, one model with weather variables and one without will be compared 

 MAE 

Model 1 22.67 

Model 2 21.15 

Model 3 21.86 

Model 4 20.26  

Model 5 21.72 

Model 6 20.53  

Table 13: MAE comparison  
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using the Diebold-Mariano test with a significance level of .05. If the p-value is lower than the 

significance level, H0
 is rejected, and we conclude that the two models have an unequal expected 

predictive loss in the population.  

Both Model 4 and Model 6 use ridge regularization, performing better than their OLS counterparts. 

The only difference between Model 4 and Model 6 is the added weather variables in Model 6. The 

difference in MAE between the two is small, in slight favour of Model 4. They are not chosen 

because of their observed performance, but rather because they are counterparts, allowing us to 

examine the importance of weather variables. They will therefore be compared using the Diebold-

Mariano test to estimate the likelihood of the outcome being a result of chance or superiority. 

The p-value obtained from the Diebold-Mariano test is 0.627. Seeing that the p-value is greater 

than the significance level, it indicates that there is not enough evidence in the data to reject H0
, 

claiming an equal expected predictive loss. There could very well be a difference in the 

performance of the two models, but there is simply not enough evidence in the data to make such 

a claim. The difference in the predictive performance of the two models is statistically 

insignificant. The principle of parsimony states that simpler models should be preferred over 

complex ones, all other things being equal (Vandekerckhove et al., 2015). Under the principle of 

parsimony, Model 4 is preferable over Model 6, given that the added complexity of Model 6 in 

terms of additional variables does not produce more accurate predictions.  

4.4.1 Model analysis  

Figure 10 display the in-sample fit on Model 4. The black line presents the actual number of sold 

passes in the training set, while the blue line illustrates the forecasted number of sold passes. They 

coincide a lot, suggesting that the in-sample fit is quite good. The red line shows the forecast errors 

and portrays the difference between actual values and forecasted values. The forecast errors are 

evenly distributed around zero, suggesting that the forecasts miss the actual values in both 

directions. The largest errors are found at the peaks and valleys of the red line.     
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Figure 10: In-sample fit of Model 4 

More interesting than the in-sample fit is the out-of-sample forecast errors, showing how well the 

model predicts new data. Figure 11 can be interpreted in the same way as Figure 10 but the 

predictions and forecast errors are only shown for the test set, being season six. The blue line 

follows the black line closely, but there are still forecast errors to be found.  

 

Figure 11: Out-of-sample fit of Model 4 

To see if there were any patterns to the larger forecast errors, the observations with prediction 

errors above 45 in absolute numbers were inspected further. This is an arbitrary number but is 
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chosen because it is roughly twice as large as the MAE of the presented models. We thus categorize 

errors twice the size MAE as being large. Out of the 126 observations in the test set, only 16 had 

forecasts errors greater than 45. Three of these stood out, with forecast errors of 246, -299 and 126. 

This suggests that the model predicts well on most days, but that it also makes a few considerably 

big errors.  

The 16 observations with the largest errors were unevenly distributed throughout the days of the 

week, which suggests that the model struggles to predict demand accurately on certain days of the 

week. Seven of the observations fell on Saturday, and three on Sunday, telling us that there are 

made greater errors during the weekends compared to the weekdays. This is not surprising, as 

weekends typically lead to big increases in demand, and bigger errors are to be expected when 

demand is peaking. This is natural and not necessarily a flaw of the model. Predicting 5 when 10 

is correct gives the same absolute error as predicting 250 when 255 is correct, even though the 

latter has a substantially lower relative error than the first.   

Table 14: Large errors distributed by day of the week 

Monday  Tuesday  Wednesday  Thursday  Friday  Saturday  Sunday  

1 2 0 2 1 7 3 

   

The data is only comprised of observation up to March 13th, 2020. The span of observations in the 

test sample makes it hard to make any judgements on how well the model predicts the number of 

passes sold for the different months of the year. March is cut short in the test sample, and there are 

no test data for April and May. Furthermore, November is also short on observations, as the season 

starts mid-November. The 16 most erroneous predictions are therefore distributed unevenly among 

months, with peaks in January, February, and March. That does not necessarily mean that the 

model is flawed in any direction. It could be the result of an uneven number of observations for 

the different months, although the peak in February may be linked to Winter vacation.  

Table 15: Large errors distributed by month 

 

November December January February  March April May 

1 1 3 8 3 0 0 
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In the test sample, there are 13 days categorized under Christmas vacation and 14 under Winter 

vacation. The prediction errors are large on one of the Christmas vacation days and seven of the 

14 Winter vacation days. The large errors during the Winter vacation were evenly distributed 

throughout the two weeks, suggesting no pattern concerning which part of the country has the 

vacation. The model thus appears to make greater errors on some of the days that are out of the 

ordinary, as half of the large errors occur on days that are part of a vacation. The increased error 

on these days is expected, as they bring about peaks in demand. Note that the test sample excludes 

the 2020 Easter vacation. Easter vacation is the most important holiday for the industry, with 

peaks in demand as people enjoy time off work. The coefficient estimates for Easter vacation were 

the greatest of all vacation dummies, indicating a significant economic effect on the number of 

visitors. The models´ performance on Easter vacation is unknown. None of the observations with 

large errors occurs on public holidays.  

The test set does not contain a full sixth season, seeing that observations after March 13th were not 

included in the sales data. This could influence the predictive performance of the models. If Easter 

vacation typically leads to high peaks in demand, and the model is good at capturing the effect of 

Easter vacation, not having the vacation in the test set may lead to poorer accuracy than if it was 

included. Given the evidence that the model performs badly on some vacations, the predictive 

performance of the model may have been worse if the test sample contained a full season. The 

argument only holds true if the 2019/2020 season was to be considered a normal season, which it 

cannot. The lock-down enforced by the government in March led to closed doors for the remainder 

of the season, making it a highly irregular end of the season. Not having data after March 13th is 

perhaps good, as the forced shut-down would have led to abnormal demand for the remainder of 

the season, which the models would have no way to foresee based on historical data.   

Weather variables were not a part of Model 4 but inspecting the weather on the observations with 

the largest forecast error showed some interesting patterns. There were high levels of precipitation 

(above 5mm) in the simulated weather forecast on five of the 16 days, suggesting that precipitation 

could be a potential source of larger out-of-sample forecast errors. Snow depth showed no pattern, 

and none of the days was categorized as cold (temperature below -10 C) or ice-cold (temperature 

below -15C), suggesting that cold temperatures are not a big source of forecast error. It could be 

coincidental that so many of the observations with large forecast errors had high levels of 
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precipitation, as the models including weather variables did not produce any more statistically 

significant predictions.  

The importance of weather as a predictor could be affected by the size of the test sample, but it is 

hard to determine the direction of impact. If the weather during the period missing from the test 

set is of great importance for demand, it could make weather less important in the models 

compared to in reality. Contrary, if the weather during the period missing is of little importance, it 

may not influence the importance of weather as a predictor at all. The statistically insignificant 

weather variables may partly be the result of a short test sample but could also reflect reality well.   

The analysis suggests that Model 4 makes the biggest out-of-sample forecast errors on Saturday, 

Sunday, Winter vacation and for high levels of precipitation. Comparing the forecasted demand to 

the actual number of passes sold show that the model makes errors in both directions, both 

overpredicting and underpredicting the number of sold passes. The errors show a clear pattern with 

sold passes, meaning that it makes larger errors on days with many visitors compared to days with 

few visitors. Even though 65% of the observations in the data set has between 0 and 25 sold passes, 

only one of the 16 days with large errors fall in this category. Low-activity days are thus 

underrepresented in this case, supporting the claim that days with high demand brings about the 

greatest errors.  

Three days stood out with exceptionally large forecast errors. Two of them were on a Saturday 

and a Sunday during the Winter vacation, which may explain why the model had a hard time 

predicting the number of passes sold. Two of the conditions associated with large errors were 

present for these observations, being both part of a weekend and part of a vacation. Furthermore, 

the two days in question are found in the weekend separating the two different weeks of the Winter 

vacation, presenting an overlap for all parts of the country. The third observation was an ordinary 

Sunday in January, in no association with neither a vacation nor any form of extreme weather. The 

model predicted just 11 sold passes, while the actual number was 258, making the forecast error 

247. The remaining Sundays in January in the test set had three, seven, and 10 passes sold, so a 

prediction of 11 does not seem too extreme. The large forecast error for this day is more likely the 

result of a day with abnormal demand caused by a variable our model does not control for, such 

as activities at the facility or a big marketing campaign.   
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5 Discussion 

5.1 Weather variables 

The Diebold-Mariano test showed no statistically significant prediction accuracy improvement for 

the ridge regression model with weather variables compared to the model without weather 

variables. This does not automatically mean that weather variables are poor predictors of demand. 

There are several possible explanations as to why H0
 cannot be rejected. 

The first reason is that there simply is not enough evidence in the data to reject H0. The weather 

could, very well, be an important predictor of demand, but our data may not be sufficient to prove 

it. This is a likely explanation, given that the models are based on simulated forecast data, not 

actual forecasts developed by the Norwegian Meteorological Institute (MET). The simulation may 

give rise to many problems, which can conceal the true effect of weather as a predictor. Any error 

in simulating forecast data can lead to biased data and unreliable results. The biggest source of 

error in the forecast simulation is that it is based on the mean of accuracy across season and weather 

type, thus neglecting to account for the within-season fluctuations in accuracy. Our forecast data 

does not reflect that some weather types are easier to accurately predict, nor that accuracy varies 

between different parts of the country and months of the year. We used the mean of accuracy 

across the season, which may have produced simulations with high levels of error.  

Another possible reason is that there may be issues with the types of weather variables included in 

the models. We used temperature, precipitation, and snow depth as predictors, but there could be 

other important variables, with some suggestions in the literature for important predictors being 

wind and cloudiness (Falk, 2013; Shih et al., 2009). Our selection of weather variables was limited 

but seeing that the variables are well-documented in the literature as significant predictors, we felt 

confident about these variables none the less. If other factors such as cloudiness and wind chill are 

important for demand, our models could possibly have performed better if they were included. 

However, considering the performance of the weather variables included, we do not believe that 

adding more weather variables would have greatly influenced our results.  

Additionally, the models with weather variables use them as continuous numeric variables and try 

to establish a linear relationship between the variables and demand. It can be hypothesized that 

weather has a non-linear effect on demand. If weather within the normal range has little effect on 
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demand, but extreme weather has a big effect, the relationship is perhaps not best described as a 

linear one. It can be easy to understand that skiing is less attractive if the temperatures are blazing 

cold, or if there are high levels of precipitation. Allowing for non-linear relationships may thus 

improve the importance of weather as a predictor. This has, however, been explored without much 

success. Models using nonlinear functions of the weather variables were also developed for this 

particular case, but they did not yield any superior forecasts and have thus not been reported. This 

is contrary to the findings of Malasevska et al (2017), who used data from facilities in the same 

region as our facility and found a non-linear relationship between wind chill temperature and the 

number of visitors. If the temperature were below -9.5°C, a temperature increase had a positive 

effect on the demand, while if the temperature were above -9.5°C, a higher temperature led to 

lower demand. Given their results, the cold and ice-cold dummies should have a negative impact 

on demand. We did indeed find a negative effect of cold, although not for ice-cold, but neither of 

the variables were statistically significant. Introducing them to a model led to lower accuracy, 

suggesting that they did not improve the predictive performance of the model. The importance of 

weather for predictive purposes can vary across locations, especially if weather only impacts 

demand at extreme conditions. Locations with high variations in temperature, snow depth and 

precipitation may thus find predictions based on weather forecasts to be more accurate compared 

to locations with low variations.  

Yet another possible reason is that weather is of little importance as a predictor. This is in support 

of some earlier findings, in which weather variables are found to be statistically significant, 

although having a small total effect on demand (Falk, 2015; Shih et al., 2009). If snow depth indeed 

does have little impact on the demand at the facility, it could possibly be verified by them having 

sufficient resources to produce their own snow. Generally, the industry is dependent on sufficient 

levels of snow to keep the slopes open, but larger facilities have equipment available to produce 

their own snow when the conditions allow it. It can therefore be hypothesized that snow depth is 

more important for smaller facilities that have not invested in resources for snow production. The 

production of snow is, however, an intricate matter, requiring specific conditions to gain the 

desired snow quality. Even with the right conditions in place, the common person would not be 

able to recognize it, possibly inducing a psychological aspect with visitors not necessarily being 

aware of the possibilities of snow production or associate it with poor snow quality.  
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If the larger facilities were to experience lower demand along with decreased natural snow depth, 

other factors contributing to the melting of snow could be at fault. Snow melts not only by higher 

temperatures but also by rain. The temperature does not need to increase much before the 

precipitation comes down as rain rather than snow. When the snow melts due to a significant 

downpour, lower demand is expected under this circumstance alone, but it could possibly lead to 

only the variable of snow depth being captured as a significant contributor due to collinearity. 

Precipitation, such as rain, does have a more unreliable pattern as the downfall can vary 

significantly in a matter of hours, while snow depth typically will change more gradually. 

Precipitation could therefore induce a larger standard error which then again makes it less likely 

to become statistically significant when having collinearity to a more stable variable such as snow 

depth.  

Weather can also cause spatial substitution, meaning the visitors substitute the activity either by 

choosing a different ski facility or substitute to another activity entirely (Malasevska and Haugom, 

2019). An increase in temperature could very likely have a positive effect on other recreational 

activities, such as fishing, hiking or going to amusement parks. This could have direct effects on 

demand, but since they are not represented in the data, it could cause complementary variables 

such as snow depth and temperature to falsely present themselves as the founding determinant for 

the changes in the dependent variable. According to Tuv (2019), there is, however, no evidence of 

an increase in other activities connected to the decreased skiing activity. 

5.2 Seasonal variables and price  

Our visualizations and analysis of the data point to some significant patterns concerning seasonal 

variables, such as weekdays and holidays in particular. The facility discloses that when they choose 

to close the entire facility for whole days, it is mainly due to seasonal variables. This provides an 

argument for seasonal variables being of higher importance when it comes to predicting demand, 

compared to the weather, at least when using our particular models and data. 

Of the three vacations, Easter vacation is by far being presented as the most important predictor 

both from empirical research and in our models. In comparison to Easter vacation, both the 

Christmas- and the Winter vacation is of less economic significance, with Christmas vacation 

being a touch more important than Winter vacation. Christmas vacation does not include many 

subsequent public holidays, and with the few that does, usually follows other family traditions. 
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There are, however, many who choose to take time off in the entire period between Christmas Eve 

and New Year’s Eve. During Winter vacation, it is mostly school pupils that have the privilege of 

a vacation as there are no public holidays attached to it. On Easter vacation, on the other hand, 

most people have time off for five consecutive holidays, which makes it more desirable to travel. 

The skiing industry chooses to end the high season just past Easter vacation, depending on how 

late into spring it falls. This indicates how important this particular holiday is for the demand, as 

the facility are willing to extend the season as far as to the beginning of May, well into spring. 

Despite temperatures increasing in the spring, the revenue gathered from the Easter vacation has 

such a massive influence on the total result, that other possible challenges are somewhat 

overlooked in terms of normal practices. This includes investing more resources in snow 

production than otherwise for instance. When looking at the effect of the different public holidays, 

there are some peculiarities. This can perhaps be explained by the presence of the highly correlated 

vacation dummies, causing the model to fail in distinguishing the effect of vacation from the public 

holidays, resulting in some odd coefficient estimates. 

Besides the public holidays and the different vacations, there has been presented a clear pattern in 

terms of day of the week, which was as expected. Already from the first visualizations, this was 

indicated, but the models verified it further with Saturday being the biggest positive contributor of 

demand, followed by Sunday and Friday. The decision to keep the facility closed during mid-week 

in the early season makes sense when looking at these results, as there is a lower demand on the 

weekdays compared with the weekends. There is also less demand on Friday compared to that of 

Sunday, but this is of minimal effect in contrast to the other weekdays. On any regular weekends, 

the visitors usually use Friday to travel, meaning a late arrival and a desire to settle in after 

travelling likely causes the demand to be a bit lower than on Saturday and Sunday. The importance 

of the seasonal variables day of the week as well as vacation furthermore coincide with the findings 

of Shih et al. (2009). 

The price of the adult day passes is only differentiated between high- and low season, not leaving 

too much of a foundation for analysis. There has furthermore been minimal variation in price from 

season to season, leading to a small impact on demand. This is one of the main problems with 

using historical data to predict the future, as more variation in price could have generated very 

different results, thus providing a different perspective on the effect it has on demand. If there were 
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to be implemented price changes in the lines of dynamic pricing or so, the data would be of poor 

basis to assess the future behaviour to these kinds of changes. Future studies of price-response 

functions could model the effect of a wider range of price levels. 

5.3 The Covid-19 pandemic 

When the Covid-19 pandemic arrived, basically every industry was affected, being it good or bad. 

The alpine industry depended on governmental support packages, as they had to limit their services 

significantly due to the restrictions set by the authorities. Seeing that the horizon of the data we 

have at hand ends in March 2020, right at the beginning of the pandemic, it impairs our ability to 

make assessments concerning its effect on the future demand based on the available raw data. The 

pandemic could however impose a great upcoming impact on the industry. Despite the domestic 

demand likely increasing from the closed borders and thus lessen the competition from facilities 

abroad, it would not nearly be possible to capitalize it. In the short run, the consequences will be 

in the lines of closed lifts and restrictions in the number of visitors allowed, but it may also result 

in lasting repercussion, such as facilities having to shut down ski lifts to reduce costs, or even 

forcing smaller facilities to shut down entirely.  

The pandemic can also lead to long-lasting changes in business structures and work flexibility. 

Combined with increased activity in the cabin market, this may lead to people spending more time 

at their cabins, not only during the weekends and vacations. This could furthermore result in a 

change of demand during the different days of the week, and also lead to higher sales of seasonal 

passes at the expense of day passes, thus impacting the structure of the demand. The aftermath of 

the pandemic is yet to be known, but significant changes in supply and demand could possibly 

render our forecast model(s) less accurate. 
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6 Summary, limitations, and further research 

6.1 Summary 

This thesis aims to provide a better understanding of the importance of weather as a predictor of 

demand. Time series data from one alpine skiing facility in the Inland region of Norway is used to 

develop forecast regression models, predicting demand one day forward. By conducting a 

statistical comparison of models with and without weather variables, we find that temperature, 

precipitation, and snow depth does not prove to be of much importance for predictive accuracy. 

This is rather interesting, seeing that it contradicts the weighted emphasis on weather in many 

earlier studies as well as our initial hypothesis. In fact, it seems as if seasonal variables, such as 

day of the week and holidays, provides more or equally accurate predictions alone, even though 

the difference in predictive accuracy is statistically insignificant with the data at hand. While the 

weather still might be of greater importance under different circumstances, such as more extreme 

weather conditions, there appear to be other variables that could possibly be of greater importance 

for predictive accuracy. Seeing that seasonal factors are more stable and predictable than weather, 

this could actually be an uplifting result, as the complicated issue of weather may not need to 

consume as many resources as one might have initially thought.  

6.2 Implications  

Earlier research on demand in the alpine skiing industry has examined weather as a predictor for 

demand. These studies show varying results, but they are, however, spread in terms of geography, 

aggregation level, weather variables analysed, and methods applied. Our research adds to the pool 

of knowledge by examining how temperature, precipitation and snow depth contribute to the 

demand for adult day passes at an alpine skiing facility in the Inland region of Norway.  

 

Precipitation has a negative effect on demand, while the effects of temperature and snow depth are 

positive. This is no revolutionary finding, but somewhat more surprising is the fact that we find 

no statistically significant improvement in the predictive accuracy of a forecast model by adding 

weather variables. This suggests that, although certain weather variables may be important for 

demand forecasting at other aggregation levels, their contribution to forecasting at a single facility 

is limited. As most of the earlier research is focused on the demand outside the Nordic countries 

(with the first formal study looking into Norwegian skiing facilities being in 2017), this research 
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can offer a theoretical perspective of how weather affects the demand in an area that is not as 

greatly represented in the literature. Seeing that there are many contradicting findings on the 

subject, the results of this thesis furthermore support some of these views, meaning that it could 

be possible to relate more to other studies despite them being based on different geographies and 

aggregations. 

 

There is also a practical value in the regression models developed, as they can be used by alpine 

skiing facilities for varied purposes. A less complex model, only containing seasonal variables, 

could be more applicable for the facility to use on their own, as it does not require the linkage to 

weather forecast data. The models could be used for both short-term and long-term decision-

making. In the short run, on days or periods with low predicted demand, the facility could introduce 

measures to increase demand, such as campaigns or family activities. Additionally, the models can 

be used to regulate staffing and complementary products and services. On days with high demand 

extra staffing should be put in place to prevent long queues, and sufficient levels of food and 

beverages should be ordered for the cafés to ensure that they can serve their customers. In the long 

run, the regression models can be used for planning and management activities, and they can also 

be used as a basis for implementing dynamic pricing. 

6.3 Limitations 

There are some limitations in our approach to the research question. The limitations have been 

somewhat addressed throughout this paper, but in summarization, they are mainly linked to the 

weather forecast data. Simulating forecast data through the use of accuracy measures obtained 

from MET instead of forecast data represent a source of error in the models. The result could 

possibly be a misrepresentation of weather as a predictor for demand. Further research using 

forecast data obtained from a reliable source could improve the understanding of weather’s 

influence on demand in a forecasting setting.  

6.4 Further research  

Seeing that our approach included simulated weather forecast data, it could be of interest to 

conduct a similar study based on actual forecast data collected from MET. Using historical forecast 

data could resolve the problems encountered in this thesis as a result of simulated forecast data 
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and provide a better understanding of the importance of weather as a predictor for demand in the 

alpine skiing industry.  

Furthermore, the scope and size of the Covid-19’s impact on the industry are yet to be known. A 

further investigation into the short- and long-term effects of the pandemic could be interesting, 

especially since any major changes to the supply and/or demand side of the market could influence 

the performance and the relevance of the regression models developed in this thesis.  

Lastly, it could be interesting to add additional customer groups and types of passes to a forecast 

analysis, to get a better understanding of the demand for ski lift passes. It could be possible that 

both the seasonal and weather variables have a greater impact on different pass types, such as the 

two- or three-hour passes. Our models are delimited to adult day passes, but there could be 

differences in demand between customer groups and different passes that our analysis did not 

examine. If the facility is to use our models, they could add the remaining daily passes and 

customer groups to get a model that possibly better captures the total demand for their product and 

services. Or even better, if they are able to detect when the passes of longer duration are being 

used, the entire demand can be captured in full. 



References 

 

Candidate 103 & 105  Page 68 of 86 

References  

Alpinanleggenes Landsforening. (n.d.). Bransjerapport Alpinbransjen i Norge 2018/19. 

https://indd.adobe.com/view/cc2b0cf0-73a2-4ccc-bd99-b7bd3b9ffe8f 

Amidi, A., & Amidi, S. (2018, September 9). Machine Learning Tips and Tricks Cheatsheet. Stanford 

University. https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-

and-tricks 

Armstrong, J. S. (2007). Significance tests harm progress in forecasting. International Journal of 

Forecasting, 23(2), 321–327. https://doi.org/10.1016/j.ijforecast.2007.03.004 

Bower, T. (n.d.). Fourier Series. Retrieved March 1, 2021, from http://faculty.salina.k-

state.edu/tim/mVision/freq-domain/fourier.html 

Chambers, J. C., Mullick, S. K., & Smith, D. D. (1971, July 1). How to Choose the Right Forecasting 

Technique. Harvard Business Review. https://hbr.org/1971/07/how-to-choose-the-right-

forecasting-technique 

Chatfield, C. (2005). Time-series forecasting. Significance, 2(3), 131–133. https://doi.org/10.1111/j.1740-

9713.2005.00117.x 

Dalen, H. B., & Gram, K. H. (2020, October 28). Skigåing har blitt mindre populært. Statistics Norway. 

https://www.ssb.no/kultur-og-fritid/artikler-og-publikasjoner/skigaing-har-blitt-mindre-

populaert 

Diebold, F. X. (2017). Forecasting. Department of Economics, University of Philadelphia. 

https://www.sas.upenn.edu/~fdiebold/Teaching221/Forecasting.pdf 

Diebold, F. X., & Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business and Economic 

Statistics, 13(3), 253–263. 

Edwards, G. (2018, November 18). Machine Learning | An Introduction. Towards Data Science. 

https://towardsdatascience.com/machine-learning-an-introduction-23b84d51e6d0 



References 

 

Candidate 103 & 105  Page 69 of 86 

Elliott, G., & Timmermann, A. (2016). Economic forecasting. Princeton University Press. 

Falk, M. (2013). Impact of Long-Term Weather on Domestic and Foreign Winter Tourism Demand: Long-

Term Weather and Winter Tourism. International Journal of Tourism Research, 15(1), 1–17. 

https://doi.org/10.1002/jtr.865 

Falk, M. (2015). The Demand for Winter Sports: Empirical Evidence for the Largest French Ski-Lift 

Operator. Tourism Economics, 21(3), 561–580. https://doi.org/10.5367/te.2013.0366 

Falk, M., & Vieru, M. (2017). Demand for downhill skiing in subarctic climates. Scandinavian Journal of 

Hospitality and Tourism, 17(4), 388–405. https://doi.org/10.1080/15022250.2016.1238780 

Frost, J. (2017, April 12). How to Interpret P-values and Coefficients in Regression Analysis. Statistics By 

Jim. http://statisticsbyjim.com/regression/interpret-coefficients-p-values-regression/ 

Gómez Martín, M. a B. (2005). Weather, climate and tourism a geographical perspective. Annals of 

Tourism Research, 32(3), 571–591. https://doi.org/10.1016/j.annals.2004.08.004 

Gössling, S., Scott, D., Hall, C. M., Ceron, J.-P., & Dubois, G. (2012). Consumer behaviour and demand 

response of tourists to climate change. Annals of Tourism Research, 39(1), 36–58. 

https://doi.org/10.1016/j.annals.2011.11.002 

Grinde, L., Mamen, J., Tunheim, K., & Tveito, O. E. (2020). Været i Norge. Klimatologisk månedsoversikt. 

Februar 2020 og vintersesongen 2019/20. Meterologisk Institutt, 2, 38. 

Gupta, P. (2017, November 16). Regularization in Machine Learning. Medium. 

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a 

Hair, J. F., Black, W., Anderson, R., & Babin, B. (2018). Multivariate Data Analysis (8th ed.). Cengage 

Learning EMEA. 

Hansen, P. R. (2010). A Winner’s Curse for Econometric Models: On the Joint Distribution of In-Sample Fit 

and Out-of-Sample Fit and its Implications for Model Selection. 39. 

Haugom, E. (2015). INN3027/1 Pricing and Revenue. 106. 



References 

 

Candidate 103 & 105  Page 70 of 86 

Holden, S. (2016). Makroøkonomi. Cappelen Damm akademisk. 

Holmgren, M. A., & McCracken, V. A. (2014). What Affects Demand for “The Greatest Snow On Earth?” 

Journal of Hospitality Marketing & Management, 23(1), 1–20. 

https://doi.org/10.1080/19368623.2012.746212 

Homleid, M. (n.d.). Verification of Operational Weather Prediction Models December 2019 to February 

2020. 83. 

Hyndman, R. J. (n.d.). Fourier terms for modelling seasonality. Retrieved February 24, 2021, from 

https://pkg.robjhyndman.com/forecast/reference/fourier.html 

Hyndman, R. J. (2011, March 14). Statistical tests for variable selection. 

https://robjhyndman.com/hyndsight/tests2/ 

Hyndman, R. J., & Athanasopoulus, G. (2018). Forecasting: Principles and Practice (2nd ed) [E-reader 

version]. OTexts. https://Otexts.com/fpp2/ 

iPaaSki. (n.d.). Objective and Work Packages. IPaaSki. Retrieved March 21, 2021, from 

https://www.ipaaski.com/about/ 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (Vol. 103). 

Springer New York. https://doi.org/10.1007/978-1-4614-7138-7 

Johannessen, A., Christoffersen, L., & Tufte, P. A. (2020). Forskningsmetode for økonomisk-

administrative fag (4. utgave.). Abstrakt forlag. 

https://www.nb.no/search?q=oaiid:"oai:nb.bibsys.no:999920086378402202"&mediatype=bøke

r 

Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of Anesthesiology, 

64(5), 402–406. https://doi.org/10.4097/kjae.2013.64.5.402 



References 

 

Candidate 103 & 105  Page 71 of 86 

Kirshners, A., & Borisov, A. (2012). A Comparative Analysis of Short Time Series Processing Methods. 

Information Technology and Management Science, 15(1). https://doi.org/10.2478/v10313-012-

0009-4 

Kostenko, A. V., & Hyndman, R. J. (n.d.). Forecasting without significance tests? 5. 

Kulturdepartementet. (2011). Veileder Alpinanlegg. 

Lai, K. (2020, February 27). Time Series Analysis and Weather Forecast in Python. Medium. 

https://medium.com/@llmkhoa511/time-series-analysis-and-weather-forecast-in-python-

e80b664c7f71 

Machine Learning with R. (n.d.). Ridge and Lasso Regression Models. Machine Learning with R. 

http://wavedatalab.github.io/machinelearningwithr/post4.html 

Makridakis, S., & Hibon, M. (2000). The M3-Competition: Results, conclusions and implications. 

International Journal of Forecasting, 16(4), 451–476. https://doi.org/10.1016/S0169-

2070(00)00057-1 

Malasevska, I. (2017). Innovative pricing approaches in the alpine skiing industry [Doctoral thesis]. Inland 

Norway University of Applied Sciences. 

Malasevska, I., & Haugom, E. (2019). Alpine skiing demand patterns. Scandinavian Journal of Hospitality 

and Tourism, 19(4–5), 390–403. https://doi.org/10.1080/15022250.2018.1539924 

Malasevska, I., Haugom, E., & Lien, G. (2017). Modelling and forecasting alpine skier visits. Tourism 

Economics : The Business and Finance of Tourism and Recreation, 23(3), 669–679. 

https://doi.org/10.5367/te.2015.0524 

Mavuduru, A. (2020, November 12). What “no free lunch” really means in machine learning. Medium. 

https://towardsdatascience.com/what-no-free-lunch-really-means-in-machine-learning-

85493215625d 



References 

 

Candidate 103 & 105  Page 72 of 86 

Moksony, F. (1999). Small is beautiful. The use and interpretation of R2 in social research. Szociológiai 

Szemle. 

https://www.academia.edu/3880005/Small_is_beautiful_The_use_and_interpretation_of_R2_i

n_social_research 

Norske alpinanlegg og fjelldestinasjoner. (n.d.). Norske alpinanlegg og fjelldestinasjoner. Alpin Og Fjell. 

Retrieved March 25, 2021, from https://alpinogfjell.no/om-oss 

Oleszak, M. (2019, November 12). Regularization: Ridge, Lasso and Elastic Net. DataCamp Community. 

https://www.datacamp.com/community/tutorials/tutorial-ridge-lasso-elastic-net 

Oppen, M., Mørk, B. E., & Haus, E. (2020). Kvantitative og kvalitative metoder i merkantile fag: En 

introduksjon (1. utgave.). Cappelen Damm akademisk. 

Parmar, R. (2018, September 2). Common Loss functions in machine learning. Medium. 

https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23 

Pindyck, R. S., & Rubinfeld, D. L. (2018). Microeconomics (9th ed.; Global ed.). Pearson Education. 

Qshick. (2019, January 3). Ridge Regression for Better Usage. https://towardsdatascience.com/ridge-

regression-for-better-usage-2f19b3a202db 

Rose, L. T., & Fischer, K. W. (2011). Garbage In, Garbage Out: Having Useful Data Is Everything. 

Measurement: Interdisciplinary Research & Perspective, 9(4), 222–226. 

https://doi.org/10.1080/15366367.2011.632338 

Seif, G. (2021, January 25). Selecting the best Machine Learning algorithm for your regression problem. 

Medium. https://towardsdatascience.com/selecting-the-best-machine-learning-algorithm-for-

your-regression-problem-20c330bad4ef 

Shih, C., Nicholls, S., & Holecek, D. F. (2009). Impact of Weather on Downhill Ski Lift Ticket Sales. Journal 

of Travel Research, 47(3), 359–372. https://doi.org/10.1177/0047287508321207 



References 

 

Candidate 103 & 105  Page 73 of 86 

Ski Info. (2021). Skisteder Norge: Oversikt over skianlegg med beliggenhet og høyde over havet. Skiinfo. 

/norge/statistikk.html 

Smith, A. (2008). An inquiry into the nature and causes of the wealth of nations (A selected ed.). 

Univertsity Press. 

Stock, J. H., & Watson, M. W. (2019). Introduction to Econometrics (4th ed.). Pearson Education Limited. 

https://www.adlibris.com/no/bok/introduction-to-econometrics-update-global-edition-

9781292071312 

Surugiu, C., Dincă, A.-I., & Micu, D. (2010). Tourism Destinations Vulnerable to Climate Changes: An 

Econometric Approach on Predeal Resort. 62(1), 111–120. 

Tuv, N. (2019, April 16). Vi går mindre på ski enn før. Statistics Norway. https://www.ssb.no/kultur-og-

fritid/artikler-og-publikasjoner/vi-gar-mindre-pa-ski-enn-for 

Vanat, L. (2020). Ski resorts. https://vanat.ch/international-report-on-snow-mountain-tourism-copy-1 

Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015). Model Comparison and the Principle of 

Parsimony. The Oxford Handbook of Computational and Mathematical Psychology. 

https://doi.org/10.1093/oxfordhb/9780199957996.013.14 

Zaiontz, C. (n.d.). Diebold-Mariano Test. Retrieved March 23, 2021, from https://www.real-

statistics.com/time-series-analysis/forecasting-accuracy/diebold-mariano-test/ 

 



References 

 

Candidate 103 & 105  Page 74 of 86 

Appendices 

Appendix A – Model 1 regression output 
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Appendix B – Model 2 regression output 
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Appendix C – Model 3 regression output 
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Appendix D – Model 4 regression output 
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Appendix E – Model 5 regression output 

 
 

 



References 

 

Candidate 103 & 105  Page 79 of 86 

Appendix F – Model 6 regression output 
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Appendix G – R script  

#---------- Functions  

 

# Check whether a package is installed 

is_installed=function(pckg){ nzchar(system.file(package=pckg)) }  

 

fcst_eval=function(actual,predicted){ 

  e=predicted-actual; y=actual 

  MAE=mean(abs(e)) 

  MAEy=mean(abs(y)) 

  MSE=mean(e^2) 

  MSEy=mean(y^2) 

  return(list(MAE=MAE,MAEy=MAEy,MSE=MSE,MSEy=MSEy)) 

} 

 

#---------- Load packages 

for(package in c("forecast","glmnet","mgcv","car","relaimpo")){ 

  print(paste0("Loading package: ",package)) 

  if(!is_installed(package)) install.packages(package) 

  library(package=package,character.only=TRUE) 

  print(paste0("Loading package: ",package)) 

} 

 

#---------- Laste data 

X=read.csv(file=file.choose(), header=T)       #import the data file 

n=nrow(X) 

 

#---------- Total.passes to its logarithm 

attach(X) 

y=Total.passes  

y[y<1]=1 # treat all days with 1 or fewer visitors as having 1 visitor 

logy=log(y) 

X=cbind(X,logy); rm(y,logy) 

 

#---------- Weather forecast data simulation   

set.seed(1) 

X$noise = rnorm(n=length(Temperature),mean=mean(Temperature),sd=1.7) 

X$Simulated.Temperature = X$Temperature + X$noise 

 

set.seed(1) 

X$noise2 = rnorm(n=length(Temperature),mean=mean(Precipitation),sd=2.5) 

X$Simulated.Precipitation = X$Precipitation + X$noise2 

 

#---------- Relative date within a season 

date=as.Date(Dag,format="%m/%d/%Y") 

rel.date=NA # relative date 

for(s in unique(Season)){ 

  rel.date[Season==s] = difftime( time1=date[Season==s], 

time2=as.Date(paste0("01/01/",s+2014),format="%m/%d/%Y"), units="days" ) 

} 

X=cbind(X,date,rel.date); rm(date, rel.date) 

 

#---------- Temperature categorized 

cold  =rep(0,n); cold  [(Temperature<=-10) & (Temperature>-15)]=1 

icecold=rep(0,n); icecold[Temperature<=-15]=1                      

X=cbind(X,cold,icecold); rm(cold,icecold) 
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detach(X); attach(X) 

sum(cold) 

sum(icecold) 

 

plot(Temperature,type="l") 

abline(h=seq(from=-30,to=30,by=5),col="grey"); abline(h=-

10,lty="dashed",lwd=2,col="lightblue"); abline(h=-

15,lty="dashed",lwd=2,col="blue") 

abline(v=which(cold  ==1),col="lightblue") 

abline(v=which(icecold==1),col="blue") 

 

#---------- Rain 

if(FALSE){ 

  rain=as.numeric((Temperature>2) & (Precipitation>2.5)) # +2 degrees and 2.5 

mm precipitation 

  sum(rain) 

} 

 

#---------- Fourier 

# Create Fourier terms (instead of daily dummies) to account for the within-

Year seasonal cycle 

# how many pairs of Fourier terms: more --> high variance, low bias; fewer --

> low variance, high bias 

K=80  

K=40 

K=20 

K=16 

K=10 

K=5 

Fourier=matrix(NA,nrow=n,ncol=2*K);  

colnames(Fourier)[(1:K)*2  ]=paste0(1:K,"cos") 

colnames(Fourier)[(1:K)*2-1]=paste0(1:K,"sin") 

for(k in 1:K){ 

  sin1=sin(2*pi*k*rel.date/365.25) 

  cos1=cos(2*pi*k*rel.date/365.25) 

  #plot(sin1,type="l",col="red"); lines(cos1,col="blue") 

  Fourier[,k*2-1]=sin1 

  Fourier[,k*2  ]=cos1 

} 

 

#---------- Linear regression: in sample 

train=which(Season< 6) 

test =which(Season==6)  

 

y=Total.passes   # model Total.passes directly 

y=logy            # model logarithm of y 

 

m1=lm(y~rel.date+as.factor(Day)+as.factor(Holiday)+as.factor(Vacation)+High.s

eason+Price+Closed+Season,subset=train); summary(m1)  #Model 1 

m1=lm(y~Fourier+as.factor(Day)+as.factor(Holiday)+as.factor(Vacation)+High.se

ason+Price+Closed+Season,subset=train); summary(m1)   #Model 3 

m1=lm(y~Fourier+as.factor(Day)+as.factor(Holiday)+as.factor(Vacation)+High.se

ason+Price+Closed+Season+Simulated.Temperature+Simulated.Precipitation+Snow,s

ubset=train); summary(m1) #Model5 
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#Plot in-sample fit 

ylim1=range(m1$resid,m1$fitted,m1$resid+m1$fitted) 

#plot(m1$resid+m1$fitted,ylim=ylim1,type="l"); lines(m1$resid,col="red"); 

lines(m1$fitted,col="blue") 

lwd1=1 

par(mfrow=c(2,1),mar=c(2,2,0.5,0.5)) 

at=c(34,200,379,557,736,911) 

labels=as.character(c(2015:2020)) 

plot(m1$resid+m1$fitted,ylim=ylim1,type="l", xaxt="n"); 

lines(m1$fitted,col="blue"); abline(h=seq(from=-200,to=500,by=50),col="grey") 

axis(side=1, at=at,labels=labels) 

#  abline(v=which(Ferie==1),col="lightgreen") 

#  abline(v=which(Helligdag==1),col="lightgreen") 

lines(m1$resid+m1$fitted,lwd=lwd1); lines(m1$fitted,lwd=lwd1,col="blue") 

plot(m1$resid,ylim=ylim1,type="l", xaxt="n",col="red"); abline(h=seq(from=-

200,to=500,by=50),col="grey") 

axis(side=1, at=at,labels=labels) 

# abline(v=which(Ferie==1),col="lightgreen") 

# abline(v=which(Helligdag==1),col="lightgreen") 

lines(m1$resid,lwd=lwd1,col="red") 

par(mfrow=c(2,1)) 

 

#---------- Time-series out of sample / cross-validetion with expanding 

windows 

train=which(Season< 6) 

test =which(Season==6) 

 

y=Total.passes # model Total.passes directly 

y=logy          # model logarithm of Total.passes 

 

e=y_hat=lower=upper=rep(NA,n) # prediction errors (forecast errors), point 

predictions, lower end of 90% prediction interval, upper end of 90% 

prediction interval 

for(t in which(Season==6)){ 

 

#m1=lm(y~rel.date+as.factor(Day)+as.factor(Holiday)+as.factor(Vacation)+High.

season+Price+Closed+Season,data=X,subset=c(1:(t-1)))  #model 1 

  

m1=lm(y~Fourier+as.factor(Day)+as.factor(Holiday)+as.factor(Vacation)+High.se

ason+Price+Closed+Season, data=X, subset=c(1:(t-1)))  #model 3   

  

#m1=lm(y~Fourier+as.factor(Day)+as.factor(Holiday)+as.factor(Vacation)+High.s

eason+Price+Closed+Season+Simulated.Temperature+Simulated.Precipitation+Snow, 

data=X, subset=c(1:(t-1))) #model 5   

  f1=predict(m1,newdata=X,interval="prediction",level=0.9)[t,] 

  y_hat[t]=f1["fit"] 

  lower[t]=f1["lwr"] 

  upper[t]=f1["upr"] 

} 

 

fcst_eval(actual=y[test]            ,predicted=    y_hat[test] ) 

fcst_eval(actual=Total.passes[test],predicted=exp(y_hat[test])) 

 

err=Total.passes[test]-exp(f1) 

round(err,2) 

 

#Plot out-of-sample fit 
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e=y-y_hat 

ylim1=range(y,y_hat,e,na.rm=TRUE) 

par(mfrow=c(2,1),mar=c(2,2,0.5,0.5)) 

lwd1=1 

plot(y,ylim=ylim1,type="l"); lines(y_hat,col="blue"); abline(h=seq(from=-

200,to=500,by=50),col="grey") 

#abline(v=which(Vacation==1),col="lightgreen") 

#abline(v=which(Holyday==1),col="lightgreen") 

lines(y,lwd=lwd1);  

lines(y_hat,lwd=lwd1,col="blue") 

plot(e,ylim=ylim1,type="l",col="red"); abline(h=seq(from=-

200,to=500,by=50),col="grey") 

#abline(v=which(Vacation==1),col="lightgreen") 

#abline(v=which(Holyday==1),col="lightgreen") 

lines(e,lwd=lwd1,col="red") 

par(mfrow=c(2,1)) 

 

coef(m1) 

 

#---------- Ridge regresjon: out of sample 

train=which(Season< 6) 

test =which(Season==6) 

 

y=Total.passes # model Total.passes directly 

y=logy          # model logarithm of Total.passes 

 

alpha1=0 # ridge 

# Cross-validate optimal regularization intensity using an automatically-

generated grid of values for regularization intensity, with MAE as 

performance metric 

 

#Model 2 

Xmat=cbind(rel.date,model.matrix(~as.factor(Day))[,-

1],model.matrix(~as.factor(Holiday))[,-

1],model.matrix(~as.factor(Vacation))[,-1],High.season,Price,Closed,Season) 

#Model 4  

Xmat=cbind(Fourier,model.matrix(~as.factor(Day))[,-1], 

model.matrix(~as.factor(Holiday))[,-1],model.matrix(~as.factor(Vacation))[,-

1],High.season,Price,Closed,Season) 

#Model 6  

Xmat=cbind(Fourier,model.matrix(~as.factor(Day))[,-1], 

model.matrix(~as.factor(Holiday))[,-1],model.matrix(~as.factor(Vacation))[,-

1],High.season,Price,Closed,Season,Simulated.Temperature,Simulated.Precipitat

ion,Snow) 

 

m1=glmnet(x=Xmat[train,],y=y[train],alpha=alpha1)  

 

plot(m1) 

cvfit=cv.glmnet(x=Xmat[train,],y=y[train],alpha=alpha1,type.measure="mae",nfo

lds=66)  

cvfit 

plot(cvfit)                                                                                                           

# Plots MAE against regularization intensities 

mincvloss=min(cvfit$cvm)                                                                                              

# Minimal (w.r.t. regularization intensity) LOOCV loss 

mincvloss 

y_hat=predict(m1,s=cvfit$lambda.min,newx=Xmat[test,])    
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#Evaluate model performance 

fcst_eval(actual=y[test]            ,predicted=    y_hat ) 

fcst_eval(actual=Total.passes[test],predicted=exp(y_hat)) 

 

coef1=coef(cvfit, s="lambda.min") 

round(coef1,3) 

 

err=Total.passes[test]-exp(y_hat) 

round(err,2) 

 

#Plot out-of-sample fit 

e=Total.passes[test]-exp(y_hat) 

ylim1=range(Total.passes[test],exp(y_hat),e,na.rm=TRUE) 

par(mfrow=c(2,1),mar=c(2,2,0.5,0.5)) 

lwd1=1 

at=c(23,54,85,114) 

labels=as.character(c("December", "January", "February", "March")) 

plot(Total.passes[test],ylim=ylim1,type="l", xaxt="n"); 

lines(exp(y_hat),col="blue"); abline(h=seq(from=-

200,to=500,by=50),col="grey") 

axis(side=1, at=at,labels=labels) 

#abline(v=which(Vacation==1),col="lightgreen") 

#abline(v=which(Holiday==1),col="lightgreen") 

lines(Total.passes[test],lwd=lwd1);  

lines(exp(y_hat),lwd=lwd1,col="blue") 

plot(e,ylim=ylim1,type="l",col="red", xaxt="n"); abline(h=seq(from=-

200,to=500,by=50),col="grey") 

axis(side=1, at=at,labels=labels) 

#abline(v=which(Vacation==1),col="lightgreen") 

#abline(v=which(Holyday==1),col="lightgreen") 

lines(e,lwd=lwd1,col="red") 

par(mfrow=c(2,1)) 

 

#DIEBOLD MARIANO TEST 

model4_err=err                                                           

model6_err=err 

 

test_loss_model4  =abs(model4_err) # test loss of model 4 

test_loss_model6  =abs(model6_err) # test loss of model 6 

dm.test(e1=test_loss_model4, e2=test_loss_model6, 

alternative="two.sided",h=1,power=1) 

 

#================ Näive forecast 

avr=mean(Total.passes[train]) 

avr 

 

fcst_eval(actual=Total.passes[test],predicted=avr) 

 

#=============== Extra calculations for model presentation  

noholiday =which(Vacation==0) 

christmas =which(Vacation==1) 

winter    =which(Vacation==2) 

easter    =which(Vacation==3) 

 

avr=mean(Total.passes[noholiday]) 

avr 
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avr=mean(Total.passes[christmas]) 

avr 

avr=mean(Total.passes[winter]) 

avr 

avr=mean(Total.passes[easter]) 

avr 

 

#============================== Weather forecast 

W=read.csv(file=file.choose(), header=T)       #import the data file 

n=nrow(W) 

 

par(mfrow=c(3,1),mar=c(0.1,2,0.1,0.5)) 

plot(W$Temperatur,type="l") 

plot(W$Nedboer   ,type="l") 

plot(W$Snodybde  ,type="l") 

par(mfrow=c(1,1),mar=c(2,2,0.5,0.5)) 

 

#library(forecast) 

x=W$Temperatur 

x=W$Nedboer 

x=W$Snodybde 

 

# Choose one of the two following lines 

m=auto.arima(x)         # demonstration of ARIMA (using automated model 

selection) 

m=ets(x)                # demonstration of exponential smoothing (using 

automated model selection) 

print(summary(m)) 

forecast(m,h=10) 

plot(forecast(m,h=10)) 

 

# Setting up time series cross validation (rolling windows) 

w=round(n*0.7) # window size 

m=n-w          # how many windows within the sample 

f=rep(NA,n)    # "out of sample" forecasts 

 

# EITHER... 

# Forecast with exponential smoothing (using automated model selection) 

for(i in 1:m){ # Runs for 5 seconds or so 

  model=ets(x[i:(i+w-1)]) 

  f[w+i]=as.numeric(forecast(model,h=1)$mean) # change h=1 to h=7 for 7 days 

ahead;  

  # some more changes would be needed to make ends meet 

} 

 

# ...OR 

# Forecast with ARIMA (using automated model selection) 

print(Sys.time()); for(i in 1:m){ # Runs for 10 minutes or so !!! 

  if(i%%10==0) print(paste0(Sys.time()," i = ",i," of m = ",m)) 

  model=auto.arima(x[i:(i+w-1)]) 

  f[w+i]=as.numeric(forecast(model,h=1)$mean) # change h=1 to h=7 for 7 days 

ahead;  

  # some more changes would be needed to make ends meet 

}; print(Sys.time()) 

 

# Obtain errors, evaluate forecast accuracy / estimated expected loss 

test=c((w+1):(n-1)) # index of out of sample data 



References 

 

Candidate 103 & 105  Page 86 of 86 

e=x-f               # "out of sample" forecast errors 

ylim1=range(x,f,e,na.rm=TRUE) 

par(mfrow=c(2,1),mar=c(2,2,0.5,0.5)) 

plot(x[test],ylim=ylim1,type="l"); lines(f[test],col="blue"); 

abline(h=seq(from=-200,to=500,by=50),col="grey") 

lines(x[test]);  

lines(f[test],col="blue") 

plot(e[test],ylim=ylim1,type="l",col="red"); abline(h=seq(from=-

200,to=500,by=50),col="grey") 

lines(e[test],col="red") 

par(mfrow=c(2,1)) 

acf(e[test])  #         autocorrelation ( ACF) plot: is there any signal 

remaining in the errors? 

pacf(e[test]) # partial autocorrelation (PACF) plot: is there any signal 

remaining in the errors? 

 

fcst_eval(actual=x[test],predicted=f[test]) 

 

summary(X) 

#============================== 
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