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In this thesis, I explore characteristics of 3- to 5-year-olds’ grounding of mathe- 
matical thinking in sensory-motor experiences. The study reports from design- 
based interventions conducted outdoors in two kindergartens in Norway. The 
study contributes to the field of educational research on early structure-based 
bodily learning of mathematics, and it develops understanding of how embodied 
designs can facilitate such experiences. 

With children unable to master verbal counting as a target group, the first focus 
study examined their production of small sets through speech and bodily inter-
action in a circle with 50 dots. The second focus study examined the children’s 
abilities to re-enact symmetrically structured bodily experiences with numbers 
to support additive reasoning, while the third focus study explored coherence 
in speech and bodily modelling of counting-based addition. 

In light of theory of Embodied Cognition, the results showed patterns of the 
children’s bodily production of small sets that also exceeded their measured 
concept level (cf. standardised tests), and the findings showed how sensory- 
motor action might concur with counting-based addition and support reason-
ing about additive compositions. Unexpected findings were the integration of 
composite and expressive body movements (e.g., rotation, rhythm, force, and 
tempo) in the physical grounding of mathematical thinking. 

The results should encourage the design of outdoor activities that involve 
movement and rhythm in the early learning of mathematics. The study shows 
that embodied designs should be considered a suitable approach for realising 
some of the mathematical targeting goals of the Norwegian Framework Plan 
for Kindergartens. 
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Abstract 

The main objective of my dissertation is to develop knowledge about young children’s 

grounding of mathematical thinking in sensory-motor experiences while a sub-goal is to 

increase the understanding of how outdoor embodied designs can facilitate such experiences. 

Two embodied training programmes engaging 27 children aged 3 to 5 years were conducted as 

a collaboration between four kindergarten teachers in two kindergartens and two researchers. 

These interventions led to three focal studies, where the empirical material consists of video 

footage of the children in individual post-tests. The data are analysed through the framework 

of Embodied Cognition, involving detailed attention to each child’s cohering of task behaviour 

with the mathematical targeting domain addressed in the respective focal study, followed by a 

cross-case comparison and a multi-case analysis across and within the identified patterns of 

grounding of mathematical thinking in bodily action. Three different aspects were focused on: 

Characteristic features of subset-knowers’ (i.e., children unable to use counting for exact 

numbering) abilities in establishing congruence between the idea of cardinality and verbalised 

body-spatial mapping of small sets (focal study 1); children’s re-enactment of canonical 

structured experiences of numerosity in reasoning about additive compositions (focal study 2) 

and children’s congruency in the physical grounding of counting based addition (focal study 3). 

The results showed recurring and deviating patterns of subset-knowers’ grounding of the idea 

of cardinality in bodily production of small sets that also exceeded their knower-level, and the 

findings showed how sensory-motor action might concur with counting-based addition and 

support reasoning about additive compositions. Unexpected findings comprise the inclusion of 

expressive body movements (e.g., rotation, rhythm, force, and tempo) in the situating of 

mathematical thinking. The dissertation study contributes to the field of educational research 

on early structured-based bodily learning of mathematics as it revealed characteristics of young 

children’s situating, off-loading and cohering of mathematical thinking in full-body interaction. 

In light of the embodied perspective, this should encourage the design of activities outdoors 

that involve movement and rhythm in the early learning of mathematics. In conclusion, this 

dissertation underlines the role that bodily movement and physical interaction with spatial 

structures can play in young children’s mathematical thinking.   
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Sammendrag 

Hovedmålet med avhandling min er å utvikle kunnskap om små barns forankring av matematisk 

tenkning i sensoriske-motoriske erfaringer, mens et delmål er å øke forståelsen for hvordan 

utendørs design kan støtte slike erfaringer. To intervensjoner som engasjerte 27 barn i alderen 

3 til 5 år ble gjennomført som et samarbeid mellom 4 barnehagelærere i to barnehager og to 

forskere. Intervensjonene la grunnlaget for tre fokusstudier der det empiriske materialet består 

av video av barna i individuelle etter-tester. Teorien kroppslig situert kognisjon (Embodied 

Cognition) er brukt i analysen der en detaljert vurdering av koherens mellom oppgave adferd 

og det matematiske målområdet i det respektive delstudiet dannet grunnlag for sammenlikning 

og en fler-kasus dybdeanalyse av karakteristikker innenfor og på tvers av identifiserte mønstre 

for kroppslig situering av matematisk tenking. Tre forskjellige aspekter ble fokusert på: 

Karteristiske trekk ved delmengde-kjenneres (dvs. barn som ikke viser ferdigheter i bruk av 

telling for å produsere små mengder) evner til å behandle små mengder som helheter gjennom 

tale og kroppslig interaksjon i en stor sirkel med 50 merker (fokus studie 1); barnas evner til å 

gjenskape symmetrisk strukturerte kroppslige erfaringer med tallmengder for å støtte additive 

resonnement, og barnas evner til kroppslig modellering av tellebasert addisjon (fokus studie 3). 

Resultatene viste karakteristiske og divergerende trekk ved delmengde-kjenneres kroppslig 

situering av kardinaltallbegrepet som også omfattet produksjon av små mengder over målt 

begrepsnivå, og videre hvordan sensoriske-motoriske erfaringer kan støtte telle-basert addisjon 

og resonnement rundt del-helhet relasjoner. Avhandlingen gir et bidrag til forskningsområdet 

knyttet til tidlig strukturbasert kroppslig læring i matematikk, og spesielt gjennom funn som 

viser karakteristikker i barns situering, avlastning og koherens av matematisk tenkning i 

bevegelse og motorisk interaksjon. Uventede funn var inkludering av estetiske, rytmiske og 

sammensatte bevegelsesmønstre i den kroppsbaserte matematiske tenkningen. I lys av det 

kroppslige situerte perspektivet bør resultatene oppmuntre til design av utendørs aktiviteter som 

involverer bevegelse og rytme i den tidlige læringen av matematikk. For å konkludere 

understreker avhandlingen rollen som kroppslig bevegelse og fysisk interaksjon med romlige 

strukturer kan utgjøre i små barns matematiske tenkning. 
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1. Introduction: Setting the scene and outline of the dissertation 

We walk. We walk. We hop. We hop. 

We skip. We skip. We stop. We stop. 

We jump. We jump. We bounce. We bounce. 

We sit because we are done! 

[Lyrics from children’s exercise song, author unknown] 

Full-body movement can situate inferences of numerical relations into a lived reality (Lakoff 

& Núñez, 2000). Cooper (1984) illustrates this by the case of physical movement in space:  

“Consider number development as learning about the space of number. In this space, one must 

learn where things are and how to get from one place to another. For purposes of the analogy 

the locations are specific numerosities and the actions to get from one place to another are 

additions and subtractions. How do you get from two to five? You must start in a particular 

direction (increasing numerosity) and go past certain landmarks (three and four) until you arrive 

at five (having gone a certain distance). Points in this space capture the cardinal characteristics 

of number: direction and landmarks, their ordinal properties; and distance, their interval 

properties. The developmental component in the analogy is that children learn about space of 

numbers by traveling in it. It is through experiences of moving in this space that children learn 

its ordinal structure, which is the primary content of early number development.” (Cooper 1984, 

p. 158)  

The two scenarios above suggest that mathematical ideas and thinking (e.g., ordinality, 

cardinality, counting, addition and subtraction) can be rooted in automated bodily behaviour, 

also called Embodied Cognition (EC). To address this potential of combining motor and 

cognitive processes, my qualitative dissertation study examines young children’s grounding of 

mathematical thinking in sensory-motor experiences1 from the perspective of EC. Framed by 

two Embodied Training Programmes (ETP 1 and ETP 2), three focal studies provide an in-

depth exploration of kindergarteners’ grounding of the concepts of cardinality and counting-

based addition in full-body experiences and in the re-enactment of physical experiences in 

additive reasoning. A sub-goal is to develop knowledge about how outdoor embodied designs 

can support young children’s mapping of mathematical ideas onto space.  

I applied for a PhD position to conduct this research on early learning in mathematics for two 

reasons. First, after working in academia for twenty years, my experiences in creating, testing 

and evaluating outdoor body-based learning designs for students in early childhood education, 

                                                           
1 The notion of sensory-motor experiences refers to action that requires coordination of movement and 
perception from the senses.  
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my involvement in research groups on outdoors learning and a pilot of an embodied design in 

kindergarten had provided me with a conviction of the benefits of using a bodily approach to 

modelling mathematical thinking. However, through international conferences, visiting Early 

Childhood Education and Care (ECEC) institutions and reading student evaluation of practice 

in kindergarten, my impression was that although much research and practice provided high 

quality, whole body approaches in outdoor designs to promote mathematical thinking was not 

properly addressed.  Second, while working with students in early childhood education and 

care, I found it hard to find relevant and useful research and literature on a bodily approach to 

early learning in mathematics. The idea for this PhD emerged as a blending of these two 

reasons.  

After I had started my PhD project, I contacted several leaders in different ECEC institutions 

in a municipality in eastern Norway. However, based on the argument that the KTs were too 

busy for a deeper engagement in the project, it was a struggle to recruit volunteers. After several 

setbacks and based on the assumption that the participating KTs should only be partially 

involved in planning, design and evaluation, I finally made an agreement with two ECEC 

institutions. This agreement made it possible to start my dissertation study.  

The dissertation includes seven chapters. Here, in the first chapter, the context of my 

dissertation study is given. Chapter 2 introduces the research domain of number-space 

mappings in early years; it provides the rationale behind choosing to investigate the body’s role 

in young children’s mathematical thinking and using EC as a theoretical framework. It further 

provides arguments for choosing the outdoor as a pedagogical space for the interventions, it 

introduces DBR as an approach for conducting research, and it presents basic assumptions and 

research questions posed. Chapter 3 provides a review of literature related to the embodied 

numerical cognition and the mathematical target areas of the three focal studies. Chapter 4 

provides a brief historical overview that foreground EC, it outlines main principles of EC, and 

it presents the principles for the design of the embodied training programmes. Chapter 5 

presents the research methodology. This includes the choice of Design Based Research (DBR) 

and case study methodology, an outline of research design, descriptions of the embodied 

training programmes, information about the participating kindergartens and children, data 

collection methods, analytical techniques, reflections of the quality of the study and ethical 

considerations. Chapter 6 presents summaries of the articles. Chapter 7 discusses the findings 

from the focal studies in relation to the embodied framework and contemporary research on 

early learning of mathematics, provides reflections on the dissertation study’s contributions, 
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outlines proposals for further research and implications for practice, and presents concluding 

remarks and a summary. 
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2.   Background, rationale and aims of the dissertation 

 

2.1  Introduction to research on number-space associations in early years 
 

Growing evidence indicates that academic achievement rests on early development of 

mathematical proficiency (e.g., Duncan et al., 2007; McClelland et al., 2006; Sasanguie et al., 

2012). Although this recognition has led to an increased focus on high-quality mathematical 

learning, many early mathematical interventions focus on skill-based training at the cost of rich 

and playful experiences and, consequently, do not adequately match children’s capacity to learn 

(Lewis Presser et al., 2015; van Oers, 2010). Furthermore, the international large-scale 

comparative PISA (Programme for International Student Assessment) study, whose scores and 

rankings have become a global gold standard of educational quality for national policy (Sjøberg, 

2018), decided via their Baby PISA programme to include the measurement of 5-year-olds’ 

skills in numeracy (Auld & Morris, 2019; Garvis et al., 2019). As opposed to viewing 

kindergarten as an academic boot camp, a growing body of research suggests a close connection 

between cognitive and physical development (for a review, see Valkenborghs et al., 2019). 

Hence, to complement existing knowledge about how social, motivational and cultural cues 

affect meaningful learning in early educational environments, fundamental epistemological 

issues concerning the connection between mathematical thinking and physical experiences 

must be addressed (Núñez et al., 1999).  

This draws attention to the notion of number-space mappings (also denoted as number-space 

associations and spatial-numerical associations), which refers to the relation between mental 

magnitudes and its physical representation in space (Gallistel, 2011). Research shows that the 

cultivation of number-space associations begins before formal schooling (for a review, see 

McCrink & Opfer, 2014). The importance of early cultivation of number-space associations is 

underlined by empirical studies involving numerical abilities and verbal number skills (Chan & 

Wong, 2016; Cornu et al., 2018), exact production of small sets (Ansari et al., 2003), number 

sense (Bobis, 2008), addition and subtraction (Pinhas & Fischer, 2008), numerical reasoning 

and problem-solving (Abdullah et al., 2012). However, research on number-space associations 

has typically investigated children’s numerical abilities based on visual stimulus (e.g., Arcavi, 

2003; Gebuis & Reynvoet, 2012; Jansen et al., 2014). Support for a multimodal approach (i.e., 

visual, kinaesthetic, haptic-tactile, aural, verbal) comes from research suggesting that number-
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space associations are multifaceted, rich and flexible structures rooted in sensory and bodily 

experiences in the world (for a review, see Winter et al., 2015).  

 

2.2  The turn towards ideas of embodiment in educational research in mathematics 
 

Phenomenology, Vygotskian and semiotic-cultural, post-humanistic and ecological 

frameworks are examples of theoretical perspectives that contribute to insight into the body’s 

role in learning mathematics. A phenomenological epistemology highlights haptic experiences, 

an ecological approach emphasises visual perception in embodied environmental interaction, 

while post-humanistic and semiotic-cultural perspectives underline, respectively, intra-action 

between body and environment (matter), and the relation between culture, body, tools and sign, 

as foundational for the emergence of meaning in mathematical activity (Barad, 2003; Presmeg 

et al., 2016; Radford et al., 2017; Roth, 2009, 2012; Streeck et al., 2011). Hence, these 

theoretical lenses account for various significant aspects that physical experiences can play in 

realising mathematical achievements, however each with its own limitations and strengths in 

terms of how the association between bodily action and cognitive processes (e.g., mathematical 

thinking) is explained. A prominent perspective that theorises both cognitive and interactionist 

aspects of the bodies role in mathematical thinking is EC (Stevens, 2012). This framework 

includes a diverse set of theories that model how mental constructs (e.g., concepts and 

categories) and processes (e.g., reasoning and judgement) are shaped by and grounded in 

sensory-motor processes (i.e., the motor and perceptual system) situated in specific 

environmental interaction (Borghi & Pecher, 2011).2 Support of the embodied perspective 

comes from research in numerical cognition (Crollen & Noël, 2015; Jordan & Brannon, 2006; 

Moeller et al., 2012) and conceptual knowledge (Gallese & Lakoff, 2005), which show that 

sensory-motor processes are inextricably linked to thinking. The turn towards ideas of 

embodiment has received a growing interest in educational research that seeks to understand 

the body’s role in achieving pedagogical goals and in particular in the learning of mathematics 

(e.g., Domahs et al., 2010; Goldin-Meadow et al., 2009; Pande, 2020; Shapiro & Stolz, 2019). 

Also, educational research has shown that whole body movements improve the retention of 

learned content by providing multimodal cues to represent and retrieve knowledge (Gallagher 

                                                           
2 In this context, the term embodiment refers to the physical structure of the body (i.e., the biological 

body) and the experimental structure (Adenzato & Garbarini, 2012).  
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& Lindgren, 2015; Malinverni et al., 2014). This suggests that the adoption of the embodied 

perspective in educational settings is particularly important for young children who tend to 

support their mathematical thinking in concrete representations, bodily experiences and 

simulated action. Consequently, this requires a re-examination of mathematical thinking in 

order to design and evaluate learning environments that are consistent with the nature and 

function of humans conceptual systems and children’s sensory-motor interaction with the world 

(Núñez et al., 1999). This line of reasoning concurs with the Norwegian Framework Plan for 

Kindergartens, which emphasises that the design of the physical environment in kindergartens 

should promote meaningful interaction and the use of the body and all senses in learning 

processes that build on prior motivation, knowledge and skills (Norwegian Ministry of 

Education and Research, 2017). However, where should embodied designs for young children 

in kindergarten be situated?  

 

2.3  The outdoors as a pedaogical space in mathematics: The Norwegian context 
 

The study by Moser and Martinsen (2010) might indicate possible locations of embodied 

designs, as it shows that most Norwegian kindergartens possess large outdoor areas, and that 

children spend more than two-thirds of their time outdoors in the summer and about one-third 

of their time outdoors during winter. The importance of using the outdoors as a pedagogical 

space is underlined by the Norwegian Framework Plan for Kindergartens, which emphasises 

that children should explore and discover mathematics in everyday life (Norwegian Ministry of 

Education and Research, 2017). However, the large-scale study by Reikerås et al. (2012) shows 

that only half of the Norwegian kindergarteners’ between 30 and 33 months express number 

words in play, daily life activities and interplay with adults. A follow-up study of the same 

population shows that 4 ½ year-olds have a slower rate of development in the numerical area 

compared to the results found in similar research in other countries (Reikerås, 2016). Based on 

this, Reikerås (2016) asks whether the results mirror cultural differences suggesting that the use 

of mathematics may be less emphasised in communication and social interaction in Norwegian 

childcare contexts compared with other countries. Another influencing factor is the common 

conception that time outdoors should be assigned to children’s free play without adult 

interference (Moser & Martinsen, 2010). However, mathematical acquisition of skills and 

concept has been described as guided reinvention (Freudenthal, 1986), and there is broad 

consensus that children need tutoring and help to develop their concepts and learn to pay 
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attention to, elaborate on and mathematise aspects of everyday situations (Fuchs et al., 2007; 

Kirschner et al., 2006; Tudge et al., 2008). Based on the observations above, (Norwegian) 

children need guidance to use, discern and embody mathematical concepts in outdoor action 

and play, and they need designs that allow them to ground mathematical thinking in meaningful 

ways. This turns the attention to the conduct of educational research that includes bodily 

interaction in designed outdoor environments.  

 

2.4  Design-based research from an EC perspective 
 

In the landscape of educational studies, Design-Based Research (DBR) appears to be gaining 

increasing appeal as this perspective supports learning, creates usable and practical knowledge, 

and moreover, evolves theories of learning and instruction in complex settings and rich 

ecological environments (Prediger et al., 2015). Furthermore, the EC perspective concurs with 

the main objective of DBR, which is to generate empirically based theories by studying both 

the learning process and the supporting means and resources (DiSessa & Cobb, 2004). Based 

on this, principles from EC and DBR were used in the design of the two ETPs3 included in this 

dissertation. Three focal studies were connected to the implementation of these programmes. 

The mathematical targeting areas examined in the focal studies are considered important to 

foster in the early years, and include exact numbering of small sets, counting-based addition 

and reasoning about additive compositions (e.g., De Smedt et al., 2009; Hannula et al., 2007; 

Nunes et al., 2012; Nunes et al., 2007; Torbeyns et al., 2015). A review of literature related to 

these mathematical domains follows later in the dissertation (Chapter 3). Next, I will present 

central assumptions that my dissertation study is based on.  

 

2.5 The studies assumptions: Towards the aims of the dissertation study 
 

As emphasised above, a growing body of evidence suggests that early cultivation of spatial 

connections to abstract concepts of numbers (cf. number-space mappings; McCrink & Opfer, 

                                                           
3 In this dissertation, I chose to lean on Dackermann et al. (2017)  notion of Embodied training programme (ETP) as “trainings 

that allow for an embodied experience of a specific basic numerical concept […] and that the bodily movement should 
specifically match the content that is trained”. (p. 546). This rather instrumental definition serves only as a guideline for the 
design of the activities, and according to interpretation does not exclude the inclusion of cultural, personal and social factors 
considered salient for children’s mathematical learning. See details in the outline of design principles (cf. section 4.3) and in 
the presentation of the activities (cf. section 5.2.1). In the text, I will sometimes use the notion of embodied design 
(Abrahamson & Lindgren, 2014) instead of ETP.  
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2014) is crucial to children’s mathematical development. In the field of early mathematical 

education, there is also a recognition of the body’s role in grounding of mathematical thinking 

in spatial extensions and locations. Yet, the direction of influence between full-body activation 

and mathematical thinking and its relevance to real-life activities, is still unclear (Shaki & 

Fischer, 2014). In particular, little is known about how children’s whole-body movement and 

spatial interaction might concur with the logic and rules of mathematics, and this is especially 

the case at a more detailed level. This dissertation seeks to address these gaps, studying young 

children’s grounding of mathematical thinking in sensory-motor experiences1, using principles 

from the EC framework. The choice of an EC approach to qualitative analysis supports the 

identification of new ways for children to use cultural tools and ground thinking in action 

(Abrahamson et al., 2011), such as how they appropriate the embedded potential (affordances) 

that a physical modelling of mathematical thinking can bring during their action.  

EC posits that thinking is not limited by the brain, but that the body-beyond the brain and 

external tools distribute, regulate and constrain internal mental processes. Consequently, EC 

models cognition as a product of the dynamic and bidirectional flow of information between 

neural and non-neural processes (Fuster, 2009). Accordingly, the study of young children’s 

mathematical thinking from an embodied stance implies that the “the mind alone is not a 

meaningful unit of analysis” (Wilson, 2002, p. 626), and for this dissertation study, I need a 

broader unit of analyses that takes cognition, talk, interaction and artefacts into account. Based 

on this, I see grounding of mathematical thinking as number-space mappings mediated in 

modality-specific systems (e.g., kinaesthetic, tactile, auditory, visual-spatial; Barsalou, 

Simmons, et al., 2003). Consequently, the EC framework allows me to consider the coherence 

of mathematical thinking with talk and embodied interaction. Based on this, I conceptualise 

learning as a verbal and embodied process elaborated in multimodal interaction and concurrent 

use of multiple resources and tools (see Goodwin, 2000; Hutchins, 2006).  

Furthermore, the relation between simultaneity and connection is closely associated with 

congruence in mathematical thinking as it allows me to study number-space mappings as both 

distinct phenomena (e.g., discrete motor units such as finger gestures or body parts in 

connection to dots) and relational phenomena (e.g., additive reasoning). Related to this, the use 

of gestures, body parts, physical movement and manipulation with tools to reduce cognitive 

demands, also known as cognitive offloading (for an overview, see Risko & Gilbert, 2016), 

deeper characterises how the interaction between the learner and the environment concurs with 

the rules of mathematical thinking. Efficiency in terms of time pressure from real-time 
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demands, situational and contextual factors associated with physical movement is also a 

dimension that elaborates on how distinct number-space mappings are connected to relational 

thinking (Wilson, 2002; see also Caviola et al., 2017). An additional aspect concerns how 

previous sensory-motor experiences are re-enacted, simulated and modelled in current 

mathematical thinking (Hostetter & Alibali, 2019; Skoura et al., 2009). Based on these 

characteristics, and in light of the partial, situated, bidirectional and multimodal nature of 

number-space mappings (Wilson, 2002), it is important to note that congruence in mathematical 

thinking can be established in different constellations. This reflects the explorative dimension 

of the dissertation study, while the deductive dimension is based upon the logic and laws of the 

mathematical targeting domains addressed in the focal studies.  

It is mostly the young children’s grounding of thinking in embodied interaction that has been 

studied in the focal studies. However, few studies in early mathematics have clearly described 

how the designs have been enacted in practice including the guidance structures that facilitate 

embodied learning, the theoretical assumptions that the designs are based upon. This is 

especially the case for non-digital designs situated outdoors. To address this gap, a sub-goal of 

my dissertation study is to develop knowledge of how embodied designs can facilitate young 

children’s grounding of mathematical thinking.   

 

2.6 Aims and framing question 
 

The main objective of my qualitative dissertation study is to deepen the understanding of 

children’s grounding of mathematical thinking in embodied interaction. The framing question 

is:   

What characterises young children’s grounding of mathematical thinking in sensory-

motor experiences? 

Focusing on the body’s role in number-space mappings, ideas from the EC framework are used 

to develop knowledge of characteristics of young learners grounding of mathematical thinking 

in sensory-motor experiences. In this way, my study aims to contribute to educational research 

on early learning of mathematics, and in particular, the line of research that focuses on how 

whole bodily movement influences mathematical thinking. In order to delve into the framing 

question, I ask the following sub-questions:   
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(i) What characterises coherence in children’s grounding of mathematical thinking in 

sensory-motor experiences and simulated action?  

(ii) What characterises the partial, situated, bidirectional, distinct and relational nature of 

children’s number-space mappings?  

(iii) What characterises children’s re-enactment and off-loading of number-space 

associations into gestures, body parts, bodily movement, spatial affordances and use of 

tools?  

(iv) What characterises efficiency in children’s bodily grounding of mathematical thinking? 

These sub-questions address complementary aspects of the framing question (cf. section 2.5; 

see also section 4.2), and they are used as themes to structure the discussion in Chapter 7.  

The three focal studies included in my dissertation study are reported in separate articles 

(referred to as Article 1, 2 and 3), and are framed within the context of two outdoor embodied 

training programmes (referred to as ETP 1 and 2) engaging 3-to-5-year-olds’ in verbalised full-

body interaction. Articles 1 and 2 were based on ETP 1 and its focus on exact production of 

small sets as mathematical content domain (cf. the idea of cardinality of numbers), while Article 

3 was based on ETP 2 targeting counting-based addition as the subject area. The results are 

analysed from an interpretative stance offering possible explanations. Focal study 1 explored 

congruency in 3- and 4-year-olds’ grounding of the idea of cardinality in physical movement 

across a 50-dotted circle. Focal study 2 explored the children’s abilities to support coherence in 

additive parts-whole reasoning in the re-enactment of the canonical (symmetric) structured 

embodied number-space mappings from ETP 1. Focal study 3 examined young children’s 

ability to ground counting-based addition during physical interaction with a 100-dotted circle.  

There are several arguments for claiming coherence across the focal studies. Firstly, the three 

mathematical targeting domains examined are building blocks of young children’s learning 

trajectory in arithmetic (cf. Clements & Sarama, 2009; Van den Heuvel-Panhuizen, 2008). In 

particular, the concept of cardinality (focal study 1) plays a fundamental role in parts-whole 

reasoning (focal study 2) and counting based addition (focal study 3), where the two latter 

domains reflect different layers of the concept of addition. ETP 1’s framing of both focal study 

1 and 2 underscores this connection. Secondly, the focal studies reflect various aspects of young 

children’s grounding of mathematical thinking in embodied interaction (cf. the framing 

question), including simulated action and the use of full- and upper-body movement to extend 

mathematical thinking onto space. Thirdly, EC is used as the main theoretical framework across 

the studies, however addressing different principles of this multifaceted framework. Finally, in 
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order to synthesise the results of the three focal studies, the findings are discussed in relation to 

central assumptions of the EC-framework and contemporary research on early learning of 

mathematics (see Chapter 7). Combined, the different observations suggest that the three focal 

studies make a coherent set of investigations addressing complementary aspects of the framing 

question.  

The dissertation’s sub-goal is to develop knowledge about how outdoor embodied designs can 

facilitate young children’s grounding of mathematical thinking, and there are two main reasons 

for claiming coherence to the framing question. First, the dissertation study is framed within 

two ETPs that concerns instruction, design, tools and learning, where the framing question 

address the learning aspect through the focal studies. Second, the outline of design principles 

(see section 4.3), the practical conduct of the programmes, rich descriptions of the activities, 

their relation to the design principles and issues related to re-design (see section 5.2), aim to 

support the transferability and credibility of my findings. However, since the empirical material 

in this study is mainly collected to illuminate the framing question, the epistemic processes 

examined in the focal studies might only indirectly point back on how the ETPs work in 

practice. Hence, I can only provide theoretically grounded accounts for the practical foundation 

(cf. the set of activities included in the embodied designs) upon which the examination of the 

children’s mathematical thinking is based. Despite this limitation, I will discuss practical 

implications that the inclusion of a body-based approach to mathematical learning outdoors 

might entail for ECEC institutions. Hence, the aims of the DBR part of my study are to support 

the dissertation’s scientific rigour, to derive implications of my findings to the field of practice 

and to generate questions for further research.  

In summary, my goals with this dissertation study are to deepen the understanding of young 

children’s grounding of mathematical thinking in sensory-motor experiences and to develop 

knowledge about the facilitation of such experiences in outdoor embodied designs, and thus 

contribute to the line of education research with an orientation towards mathematics in early 

childhood, including implications for such pedagogical practice. Principles from the EC 

framework are used to expand the knowledge regarding the grounding of mathematical thinking 

in embodied interaction. The empirical material of this thesis consists mainly of video 

recordings of individual tests post the respective interventions.  
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3.  Review of the literature  

The aim of this chapter is to position my dissertation study in the existing research literature, 

and the chapter consists of two parts. The first part reviews the literature on educational research 

connected to young children’s grounding of mathematical thinking (section 3.1), while the 

second part (subsections 3.2-3.4) provides supplementary surveys of the literature related to the 

mathematical targeting areas addressed in the three articles included in my dissertation study. 

The literature review is also used to inform the selection of the design principles (section 4.3).  

The review is the product of an ongoing and iterative search process where I used different 

sources and strategies. First, I made a systematic search using various combinations of terms 

such as mathematics, learning, early years, numbers, number-space associations/mappings, 

cardinality, small sets, addition, parts-whole and reasoning. Then, I combined these keywords 

with embodied, grounding, whole-body, movement, gestures and design-based research. The 

search involved different databases and search indexes for publishers such as Google Scholar, 

ScienceDirect, ERIC, JSTOR, Sage and Taylor & Francis. To complement this search strategy, 

I also used forward and backward snowball search (Wohlin, 2014).  

 

3.1 Number-space mappings in educational settings 
 

The cognitive and interactionist perspectives are two main stances of EC that I use to structure 

my review of research on number-space mappings in educational settings (Stevens, 2012). 

Although I position my dissertation study under the line of research that accounts for bodily 

and environmental affordances in number-space mappings, labelled Embodied Numerical 

Cognition (cf. subsection 3.1.2), I argue that the cognitive perspective presented in subsection 

3.1.1 provides complementary insight into young children’s body-based grounding of 

mathematical thinking and into the design and facilitation of such experiences.  

 

3.1.1 The cognitive perspective of EC in educational research in mathematics 
 

From an EC perspective on educational research, it is important to create designs that build on 

insight of the brain’s architecture (Gallistel, 2011). Based on this, I ask how the current field of 
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knowledge on neurocognitive research on number-space mappings in educational settings can 

inform the choice of DPs and the design of the ETPs in this dissertation study.  

 

In the literature, there is consensus that cognition is grounded on at least four domain-specific 

core knowledge systems for representing objects, actions, number and space; each mechanism 

deeply rooted in human evolution (Feigenson et al., 2004; Spelke & Kinzler, 2007). Two of 

these foundational systems sub-serve human ability to perceive, manipulate and calculate 

discrete quantities (Piazza, 2010). These are: (i) The Object Tracking System (OTS) for rapid 

and precise numerical judgement of sets with one to four objects without ordinal enumeration, 

and (ii) the Approximate Number System (ANS) for rapid approximated internal analogue 

representations of numerical magnitudes (cf. the Mental Number Line; Dehaene, 2011). While 

the OTS is thought to underlie subitising for rapid non-verbal enumeration of small sets, the 

ANS is used for rapid estimation of larger sets (and possibly smaller), for comparison of non-

symbolic quantities and for basic approximate arithmetic on these non-verbal mental 

magnitudes. The OTS and ANS are considered by many neurocognitive researchers to be main 

components of the notion of number sense. During early development, knowledge associated 

with the OTS and ANS gradually merges with verbal and symbolic representations (e.g., verbal 

number words, Arabic numerals) to form more coherent cognitive systems for numerical 

processing (Nieder & Dehaene, 2009; Torbeyns et al., 2015).  

Common measures for assessing numerical magnitude understanding in terms of the ANS are 

non-symbolic (e.g., clouds of dots) and symbolic (i.e., Arabic numerals) versions of magnitude 

comparison and number line estimation tasks (Andrews & Sayers, 2015). Several studies using 

these measures show that early numerical magnitude understanding predicts both general 

mathematical performance and particular advances in subdomains such as fractions, arithmetic 

and algebra (e.g., Bailey et al., 2014; Reeve et al., 2012; for meta-analyses, see Schneider et al., 

2017; Schneider et al., 2018).  

Evidence to support the spatial nature of numerical knowledge comes from research 

documenting systematic spatial biases in numerical cognition, the most influencing source 

referred to as the Spatial-Numerical Association of Response Codes (SNARC) effect (Dehaene 

et al., 1993). The SNARC effect is closely linked to the ANS and the construct Mental Number 

Line (MNL), which models that numbers are represented spatially along a horizontal mental 

number line ranging from small numbers to the left and larger to the right (Dehaene, 2011). The 

SNARC effect shows that the response time of numbers follows the orientation of the MNL. 
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This means that the response time for small numbers is faster on the left side of space, and 

similarly, the response time is faster if the larger numbers are situated on the right side of space 

(for a meta-analysis, see Wood et al., 2008).  

The ANS, in light of its sequential and analogue nature (cf. the MNL) is considered to support 

understanding of numerical rank, which is the basis for the ability to count. Research suggests 

that the use of the MNL is biased by cultural influences (e.g., reading direction for both words 

and numbers; for a review, see Göbel et al., 2011). Research also demonstrates that individuals 

in Western cultures tend to produce smaller random numbers if their body is turned to the left, 

and larger random numbers if their body is oriented to the right (Shaki & Fischer, 2014).  

Educational design studies that either model structural or linear (ordinal) aspects of numbers 

are identified as two main approaches for enhancing mental number representations in the early 

years (Obersteiner et al., 2013). Support for the fostering of sequential-based knowledge of 

numerosities comes from studies in multi-digit addition (e.g., Ellemor-Collins & Wright, 2007) 

and game-based interventions aimed at reflecting the horizontal and linear nature of the MNL 

(e.g., Dackermann et al., 2017). For example, Ramani and Siegler (2011) found that 3- and 5-

year-olds’ improved numerical and arithmetic skills from playing a linear number board game, 

but the same authors found no improvements when the board game was circular (Siegler & 

Ramani, 2009). Obersteiner et al. (2013) compared the stimulation of exact and approximate 

enumeration for first-graders when using an exact (organised dot patterns to enhance the OTS) 

or approximate (random dot patterns and analogue representations to enhance the ANS) version 

of the same computer game, and their results showed improved abilities in the targeting 

domains but no crossover effects. In a related study, Wilson et al. (2009) tested the effects on 

kindergarteners using a computer game designed to foster number sense, and the results showed 

improvements in numerical comparison of digits and words (i.e., tasks traditionally used to 

assess number sense). However, the study showed no improvements on non-symbolic measures 

of number sense. 

Conflicting evidence for a biased cultivation of linear aspects of numbers in educational settings 

comes from the Aulet and Lourenco (2018) study of spatial-numerical associations and math 

proficiency in 5- to 7-year-olds, which showed that children with a stronger left-to-right-

oriented mental number line were less able in cross-modal arithmetic. Furthermore, the 

inclusion of educational designs based on patterned non-linear configurations is consistent with 

evidence suggesting that number-space mappings occur in three dimensions, including 

associations between numbers and near/far- and up/down (vertical) spaces (Winter et al., 2015). 
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Furthermore, most studies on number-space mappings address the MNL by the means of 

response times (cf. the SNARC effect; Rugani et al., 2017) and therefore do not adequately 

account for how numerical knowledge is experienced in real-life embodied interaction (see also 

criticism raised by Torbeyns et al., 2015).  

Based on these observations and arguments, three relevant issues related to my dissertation 

emerged. Firstly, neurocognitive-based research on number-space mappings provides general 

support for the embodied perspective in terms of the bidirectional influence between conceptual 

and sensory-motor processes. Secondly, the review signifies the importance of early cultivating 

of spatial features of number knowledge (including the ANS and OTS). Finally, although 

compelling neurocognitive evidence shows that magnitude understanding predicts later abilities 

in mathematics, the transfer effect to educational activities is still unclear and debatable 

(Butterworth, 2018). In particular, most of the reviewed studies measure the response time (cf. 

the SNARC-effect) and/or model the linear structure of the MNL (moving objects to the left 

and right) in game or computer-based settings (e.g., Räsänen et al., 2009; Whyte & Bull, 2008). 

Therefore, these lines of investigations do not adequately integrate more culturally unbiased 

behaviour such as physical movement and navigation in space4. Furthermore, the findings from 

interventions designed to foster early magnitude understanding are mixed and inconclusive 

(Torbeyns et al., 2015). Consequently, there is a need for a better understanding of how 

educational designs can facilitate structured number-space associations in three dimensions in 

culturally realistic contexts that builds on children’s motor skills in non-linear real-life 

situations (cf. Winter et al., 2015). To outline the window of opportunities of early body-based 

learning in mathematics, the next section provides a review of literature labelled under the 

notion of Embodied Numerical Cognition.  

 

3.1.2 The interactionist perspective of EC: Embodied Numerical Cognition 
 

Embodied Numerical Cognition is considered a prime category of EC (Bahnmueller et al., 

2014), and this field of research focuses on the role of the body in number-space mappings 

(Dackermann et al., 2017; Moeller et al., 2012). In the research literature on Embodied 

Numerical Cognition, two complementary lines of research can be identified. One with focus 

                                                           
4 Consistent with this line of reasoning is the suggestion that navigation in the three-dimensional space is, along 

with the OTS and ANS, considered a core inborn non-symbolic capacity of cognition (Spelke & Lee, 2012). See 

Article 1 for further details.  
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on the effect of part-body or upper body movement on cognition and learning of number-space 

associations (e.g., Alibali & Nathan, 2012), and one with focus on full-body movement in the 

emergence and retrieval of number-space mappings. Gestures and finger counting are main 

categories under the first of these lines of embodied numerosity (e.g., Cook, 2011; Domahs et 

al., 2010), and support comes from a growing body of evidence showing that conceptual 

congruent gestures involving actions that match abstract mathematical ideas and relations 

promote performance (e.g., Segal et al., 2014). Furthermore, studies show that gestures might 

ease the cognitive load, provide new ideas about math, ground mathematical thought in action 

and bring implicit mathematical knowledge to learning (Beilock & Goldin-Meadow, 2010; 

Broaders et al., 2007; Cook et al., 2012; Goldin-Meadow et al., 2009).  Moreover, preschool 

children find the use of number gestures easier than number words (Nicoladis et al., 2010). 

Hand movements have also been found to support young children in counting and solving 

numerical and arithmetic problems (Fischer & Brugger, 2011; Moeller et al., 2012).  

The study by Cook et al. (2008) showed that 3rd and 4th graders who used gestures matching an 

addition procedure improved performance significantly better than the group that was guided 

to give verbal explanations. Interestingly, the results also showed a long-term effect in terms of 

students under the gesture condition retained more knowledge than those under the speech 

condition. Based on the assumption that gestural congruency in arithmetic and estimation rests 

on discrete and continuous actions, respectively, Segal (2011) compared 6- and 7-year-olds’ 

performance under four conditions that reflected either congruent or incongruent simulation of 

arithmetic and numerical estimation. Consistent with the hypothesis, the results showed that 

tapping gestures outperformed sliding gestures in terms of arithmetic performance, and vice 

versa for numerical estimation. Furthermore, the longitudinal study by Jordan et al. (2008) 

showed that the use of finger gestures to solve addition and subtraction problems provides a 

powerful scaffolding structure in early mathematics, but that these benefits fade across age most 

likely due to its inefficiency to solve more complex arithmetic. In a related study, Newman 

(2016) found that the absence of a proper scaffolding structure in the use of fingers in early 

addition has a negative impact on later arithmetic performance. In sum, these variations over 

developmental stages shed light on both the complexity and significance of early cultivation of 

embodied numerosity.  

The second line of research suggests a multimodal account of the notion of embodied 

numerosity that includes full-body spatial interaction as an integral part of the learning task 

(Moeller et al., 2012). This stance finds general support in studies showing that the integration 
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of bodily activity into learning tasks can improve children’s cognition, learning and academic 

achievements (for reviews and meta-studies, see Donnelly et al., 2016; Erickson et al., 2015; 

Vazou et al., 2019). Moreover, digital interfaces and technologies allow multimodal 

experiences through motion devices and virtual reality (Tran et al., 2017), and the integration 

of kinaesthetic, tactile and haptic experiences for early learning of numbers has recently been 

exploited in multi-touch technology (Baccaglini-Frank & Maracci, 2015).  

Based on their review study, Donnelly et al. (2016) concluded that although the impact of 

physical activity on children’s cognitive function is promising, there was limited evidence of 

the effects of bodily movement on learning. However sparse, some research from mathematical 

education reports a more pronounced training effect for young children when spatial numerical 

tasks were integrated with compatible bodily movement (e.g., Moeller et al., 2012). For 

example, Krause et al. (2019) showed sensorimotor grounding (i.e., motor force) of magnitude 

concept for 2.5- to 3-year-old’s when they were engaged in a digital experimental task pressing 

a button to move objects upwards. Five additional reviewed studies are related to my 

dissertation study.  

Firstly, the study by Beck et al. (2016) showed a better intervention effect for 7-year-olds’ 

mathematical performance when whole body movement was integrated into the learning 

activity compared with the two control conditions involving sedentary fine motor skills and 

non-motor enriched training, respectively. However, this was not the case for low math 

performers, who only showed better performance in gross motor training compared to fine 

motor training.  

Secondly, Fischer et al. (2011) found that 5-to-6-year-olds’ who had received individual 

training in full-body movement on a digital dance mat to respond to a magnitude comparison 

task (step to the left/right for smaller/larger number) performed better on number line estimation 

compared to the group who received non-spatial numerical training. In addition, the embodied 

training showed a transfer effect in terms of improved flexibility in verbal counting.  

Thirdly, based on the assumption of a strong relation between number line estimation and 

arithmetic abilities, Dackermann et al. (2016) designed an embodied training programme aimed 

at fostering 6- to-7-year-olds’ understanding of the equidistant spacing of adjacent numbers. 

The one-to-one training involved walking with equally spaced steps on a large number line 

taped to the floor. A Kinect sensor device recorded the children’s segmentation and provided 

video feedback about their steps. When presented with the number 3, children under the 
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embodied condition were supposed to start at the beginning of the line and walk to the end with 

three equal steps (i.e., the step of one foot indicated one segment). In contrast, children under 

the control condition were to segment a line on a PC using an electronic pen to draw dashes. 

The results showed a more pronounced effect after the embodied training compared to the 

control condition, and the transfer effect to number line estimation and arithmetic performance 

was also observed to a certain extent.  

Fourthly, Ruiter et al. (2015) investigated whether task-related full-body movements facilitated 

7-year-olds’ learning of two-digit numbers. Under two movement conditions, children were 

guided in representing numbers by making and simultaneously articulating different sized steps 

according to the value of the numerosity, making big steps for representing 10’s, medium steps 

for 5’s and small steps for 1’s (e.g., two big steps, one medium step and three small steps 

constructed the number 28). In one of the movement conditions, they were instructed to observe 

their number-steps in a mirror. The results showed significantly higher test performance for the 

two movement conditions compared to the two non-movement conditions, and that the 

performance under the movement conditions was independent of mirror-based self-observation.  

In the final reviewed study,  Link et al. (2013) found a more profound intervention effect for 

first-graders’ proficiency in basic numerical representations when they were engaged in full-

bodily training walking the number line compared to the control condition with the same task 

structure without movement. It is important to note that the design aimed to reflect the 

continuous nature of the number line providing physical experiences of number magnitude as 

a walked distance from the starting point to a target number. Furthermore, the full-body 

responses were traced by a Microsoft Kinect device, which required the training to be conducted 

in a one-to-one classroom setting. This points to a limitation of several of these whole-body 

interventions, that the programmes are not easily transferred to real educational settings (Tran 

et al., 2017).  

There is also evidence confirming the advantage of implementing whole body movements in 

the learning of other content areas. For example, Shoval (2011) found that 2nd and 3rd graders 

who were guided in cooperative body movement to express angles in geometric shapes 

performed better than the control group who received conventional teaching. However, as 

underlined by the reviewed literature, few studies have investigated whether and how the 

qualitative aspects of physical exercise may impact short and long-term cognitive performance 

(Pesce, 2012). In particular, there is a need for a better understanding of how full-body 

interaction in designed learning environments that go beyond assigning the moving body a 



20 
 

purely instrumental role can facilitate early learning of mathematics (Malinverni et al., 2014; 

Ruiter et al., 2015; Shaki & Fischer, 2012). 

To summarise: The review shows that an emergent line of investigations in mathematical 

educational research has been reflected in ideas of embodiment, that cognition is constrained 

and bound to the body and its actual or possible interaction with the environment (Anderson, 

2003; Shapiro, 2011). Though promising, much remains unknown about how the physical body 

and its intrinsic dynamics might contribute to and explain mathematical learning (Pexman, 

2019).  However, two pertinent issues related to my dissertation study emerged from the review. 

Firstly, many of the reviewed interventions modelled the linear structure of the MNL (Mental 

Number Line), which stands in contrast to how young children experience numbers during 

physical interaction in the world. Secondly, the focus on digital technology in one-to-one 

settings in the classroom limits the transferability to practice. Put together, this suggests that 

alternative learning areas suitable for joint non-digital activities and physical movement for 

simulating non-linear representations of numbers should be included in the emerging line of 

educational research involving whole-body movement.  

 

3.2 Children’s understanding of cardinality of numbers and how it can be measured 
 

This section reviews literature related to the mathematical target domain in focal study 1 

(presented in Article 1), which is the concept of cardinality of numbers. First, in subsection 

3.2.1, I review research emphasising on language skills in children’s understanding of 

cardinality, and in subsection 3.2.2, I outline the measures used in this dissertation study to 

assess children’s understanding of cardinality. Then, in subsection 3.2.3, I survey the literature 

on a multimodal approach to children’s exact production of small sets. In subsection 3.2.4, I 

review the literature on structured approaches to the idea of cardinality, with a focus on research 

related to the notion of subitizing. In the final part (subsection 3.2.5), I summarise the review 

and I relate the survey to my dissertation study.  

 

3.2.1  Early development of cardinality of numbers: A focus on the verbal modality 
 

Cardinal knowledge of numbers involves understanding quantity as a property of sets (i.e., the 

wholeness of items). Findings in education research suggest that the individual’s concept of 



21 
 

cardinality in terms of fluency in exact enumeration of sets is a necessary foundation for the 

development of powerful arithmetic skills (Björklund, Marton, et al., 2021), and it constitutes 

a predictive factor for later mathematical achievements (Aunio & Niemivirta, 2010; Fischer et 

al., 2008). Furthermore, the ability to map between different non-symbolic quantities (e.g., 

arrays of dots, sets of objects) and spoken number words is foundational for understanding the 

symbolic number system (Purpura et al., 2013).  

 

An understanding of the idea of cardinality as a linguistic principle is based on the integration 

of several sub-components (cf. the counting principles of Gelman & Gallistel, 1978), each of 

which takes considerable time and effort to master. A typical learning trajectory begins with 

early attempts at counting before 2 years of age and gradually learning the cardinal meaning of 

one, two and three through subitising (see subsection 3.2.4), until finally realising the relation 

between counting and cardinality at roughly 46 months (Le Corre & Carey, 2007; Levine et al., 

2010). But the view that understanding of cardinality is measured as a linguistic principle 

through the question “How-many?” and thus rests on the ability to recite the number-word list 

and couple the last number-word to the quantity of the set, is debatable.  For example, several 

studies show that, regardless of whether the child initiates the counting from the number word 

one or three, it immediately repeats the last articulated number word after being asked how 

many objects (e.g., Bermejo et al., 2004). This is described by Fuson (1988) as the last-word 

rule, a mechanically learned response of the last number-word stated in a counting sequence. 

In a related study, Mix et al. (2012) investigated whether different conditions with specific input 

helped 3 ½-year-olds to grasp the idea of the cardinal word principle. Among the training 

approaches (i.e., comparison condition, counting condition, naming condition, alternating 

condition) and the control condition, the only method that made significant improvement was 

to label a set’s cardinality and then immediately count it (i.e., the comparison condition). The 

authors concluded that their results have direct educational applications, especially for children 

with immature numeracy skills, as the label + count training demonstrated a significant 

improvement of this core aspect of the idea of exact numbers (Mix et al., 2012). Partly 

conflicting evidence to the results of Mix et al. (2012) comes from Paliwal and Baroody’s 

(2018) intervention study on 3- to 5-year-olds, which showed that both the count-first and label-

first groups outperformed the counting-only group on the CP task at a delayed post-test, with 

the count-first condition outperforming the two other conditions. In another related study, 

Bermejo et al. (2004) compared a learning programme centring on cognitive conflicts with a 

control condition for 4- to 6-year-olds who were purposely selected according to the criteria 
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reflected in mechanically responding to any cardinal question by repeating the last-word stated. 

The results showed that the children in the experimental group reached full understanding of 

cardinality, which means that they were able to provide accurate cardinality responses (cf. the 

highest level in Bermejo, 1996 six-staged model of cardinal understanding). In another study, 

Levine et al. (2010) found that parents’ use of number words in communication with their 

toddlers (aged between 14 and 30 months) predicted their knowledge of the cardinal meanings 

of numbers words at preschool ages (46 months). Related to this, Li and Baroody (2014) 

reported that young children’s spontaneous attention to exact quantity on a non-verbal matching 

task correlates with their verbal quantification skills. In another related study, Rodríguez et al. 

(2018) investigated the impact of iconic representations of quantity and spoken number words 

on the performance of 3- and 4-year-olds’ when building collections of 1-6 items. The findings 

show that iconic representations supported the children to produce concrete sets with cardinal 

values that exceeded their capacities to use number words in similar mapping tasks. In a related 

study, Lira et al. (2017) investigated pre-schoolers abilities in mapping among different 

symbolic (digits and number words) and non-symbolic representations of exact quantity, and 

they found that mapping between written digits and non-symbolic exact quantities emerges later 

than the other mapping.    

 

3.2.2  Knower-level theory and the Give-N task  

 

A developmental model that reflects children’s concepts of numbers is the knower-level theory 

(Lee & Sarnecka, 2010; Sarnecka & Carey, 2006). According to this theory, children who are 

unable to assign any semantic expression to the referential set are referred to as pre-number-

knowers. Over time, they progress in number-knower level as they learn to map new number 

words onto the exact cardinal meaning, first one (C1-knower), then two (C2-knower), then three 

(C3-knower) and then four (C4-knower), before they infer how they can use counting to produce 

any requested set and become Cardinal Principle knower (CP-knower). Accordingly, the 

learning of the first four number words are learned gradually, one at a time, while the use of the 

cardinal principle to assign the meaning of all number words higher than four are learned at 

once, by induction (Carey, 2004). Therefore, the transition from being a subset-knower (i.e., 

C1- to C4-knower) to becoming a CP-knower marks a significant leap in the development of 

young children’s concepts of positive integers.  
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The Give-N task is a recognised procedure for assessing children’s knower-level (Schaeffer et 

al., 1974; Wynn, 1990, 1992), and is as follows: Contextualised with a toy figure (e.g., a puppy) 

and a collection of items, the child is asked to produce a certain number of objects (e.g., “Can 

you give the puppy two apples?”). Based on behaviour data for stable production of exact 

numbered sets on similar number-word mappings onto concrete representations, the cardinal-

knower-level is categorised as either subset-knower or CP-knower. The Give-N procedure 

applies the titration method, which means that if the respondent does not know a number (they 

are asked in ascending order 1, 2, 3 etc.), then no larger number is asked. This means that a 

child whose behavioural data suggests C2-knower level will not be given the opportunity to 

give four items after failing in the production on the C3-level. The knower-level theory makes 

a series of additional assumptions of children’s behaviour on the Give-N task. For example, it 

assumes that children will avoid producing any set size of known cardinal meaning (Wynn, 

1990, 1992). This means that the children’s guesses of unknown number words are lower bound 

by their cardinal knower level (Lee & Sarnecka, 2010). Combined with the strong predictions 

about the sequential progress of knower-level, this suggests that the Give-N data are diagnostic 

when it comes to assessing children’s development of number concepts. 

 

 

3.2.3  The notion of equinumerosity and research on cross-modal mapping of numbers  

 

The term equinumerosity (exact equality), which originates from Piaget’s (1952) conservation-

of-quantity task, reflects the idea that two sets have the same cardinal value, and consequently 

follows the principle of one-to-one correspondence (cf. Gelman & Gallistel, 1978). Based on 

questions such as “Are there the same number of bricks and pencils?”,  Piaget (1952) found that 

children develop this ability at age 5 or 6. In their study of 51 children (mean age 3 years 4 

months; CP-knowers, n = 22), Sarnecka and Wright (2013) tested whether this proficiency 

develops at earlier ages, at least for numbers five and six, given that the question is asked with 

particular numbers such as “There are five bricks. Are there five pencils, or six?” The results 

show that CP-knowers, and not subset-knowers, possess the idea of equinumerosity. Based on 

this, Sarnecka and Wright (2013) argue that equinumerosity together with the understanding of 

cardinality and the successor rule (i.e., adding one item to a set increases the cardinal number 

by one) should be included in an operational definition of number knowledge, or what they 

refer to as the idea of exact numbers. The authors conclude that children at an early age must 

understand all these three aspects of the idea of exact numbers, at least up to 10.  
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The notion of equinumerosity reflects that understanding of cardinality extends beyond verbal 

skills, which turns the attention to the literature of cross-modal mappings of numbers where the 

following three reviewed studies are relevant to my dissertation study. First, the case study by 

Sedaghatjou and Campbell (2017) used an embodied phenomenological framework for an in-

depth analysis of how multimodal feedback in the form of touch, vision and auditory via a 

touchscreen device on an iPad using the app TouchCounts fostered a 4-year-old’s understanding 

of cardinality. The authors emphasise that the multimodal approach helped the child to 

experience the relation between simultaneous and sequential ways of representing cardinality 

(Sedaghatjou & Campbell, 2017). Second, Gordon et al. (2019) explored 343 pre-schoolers’ 

(Mage = 4.07 years) use of gestures under the Give-N-task. The results show that children’s 

spontaneous use of gestures increased as a function of trial difficulty, suggesting that children 

map their ideas of cardinality onto gestures (i.e., kinaesthetic and visual modality) to scaffold 

cognitively difficult tasks. In the final reviewed study, Posid and Cordes (2019) compared 3- to 

6-year-old CP-knowers’ performance on a numerical matching task (with different difficulty 

levels) when the numerical information was presented either as unimodal (visual only), cross-

modal (comparing audio with visual), or bimodal (simultaneously audio and visual) input. The 

results showed that even the 3- and 4- year olds performed above chance across all three modal 

conditions. Although this supports the view that young children are able to compare visual and 

auditory numerical information, the study also revealed a cross-modal disadvantage when the 

numerical comparisons were easy.  

 

 

3.2.4  Structured approaches to early learning of numbers: A focus on subitizing 
 

According to Baroody (1987), the essential part of (mathematical) knowledge is structure, 

which is elements of information systemically connected and organised to form a meaningful 

whole. A structured-based approach (e.g., dice or patterned arrays) to facilitate exact numbering 

of small sets is modelled in different theoretical strands, including phenomenology, ecological 

theories, embodied cognition and neuroscience. For example, a dominant line within 

neurocognitive-based research on number-space mappings assumes that number magnitudes 

are represented along a left-to-right-oriented MNL (for reviews, see Newcombe et al., 2015 

and; Pixner et al., 2017; see subsection 3.1.1). In contrast, variation theory is a 

phenomenological inspired learning theory that assumes that patterns of variance and 
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invariance (i.e., differentiation) are fundamental to generalisation and learning (Marton, 2015). 

A design principle of variation theory is thus to enable the learner to discern multiple patterns 

of variation of a targeting concept rather than accumulating similar properties. This means to 

help the child to experience cardinality as a property across spatial configurations, where 

simultaneous representations of structured finger gestures are identified as a particularly 

powerful way to discern the cardinal meaning of numbers (Björklund, Ekdahl, et al., 2021). EC 

explains conceptual formation as a process of abstracting ontological, orientational and 

structural similarities across embodied experiences (Anderson, 2003; Lakoff & Johnson, 1980). 

An epistemological implication of EC is thus to facilitate multiple structured embodied 

experiences that (ontologically) concur with the idea cardinality of numbers (see elaborations 

in sections 3.1.2 and 4.2). Gibson’s (1977, 1979) ecological approach to visual perception 

emphasises the appropriation of affordances provided by the environment (which basically is a 

dynamic and moving structure; Braund, 2008). For example, a spatially structured set provides 

multiple opportunities for direct perception, exploration, manipulation and interaction. 

However, since only a small portion of the inherent affordances are consistent with a particular 

learning object (e.g., the idea of cardinality), Gibson (1977, 1979) stresses the importance of a 

structural analysis of the design (environment) as a basis for guidance towards appropriation of 

the targeting affordances. General support to the ecological perspective to visual perception of 

numbers comes from research suggesting a close connection between children’s numerical 

development and visuospatial abilities (e.g., Gunderson et al., 2012; LeFevre et al., 2013; Patro 

et al., 2014), and studies highlighting the impact of structure and pattern in early understanding 

of mathematics (e.g., Lüken, 2012; Mulligan & Mitchelmore, 2013).  

Several studies have examined the role of pattern recognition and structure in the area of 

numbers (e.g., McGuire et al., 2012; Mulligan & Vergnaud, 2006; van Nes & van Eerde, 2010; 

Wolters et al., 1987). The Jansen et al. (2014) study of 4-to 5-year-olds’ abilities in exact 

enumeration of small numbers across three configurations of elements (random, line or dice) 

shows that the dice presentation in the counting range made pattern recognition significantly 

easier compared with the two other conditions. However, the configuration manipulation did 

not affect performance in the subitising range. Schöner and Benz (2017) found that an 

intervention programme based on a structural approach to numbers helped 5- and 6-year-olds 

to replace the use of a counting-all-strategy with pattern recognition to determine the cardinality 

of sets.  
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The brief overview suggests that there is a growing body of research that contributes to our 

understanding of structure-based representations in early learning of numbers. Next, I will focus 

on the line of structured-based inquires connected to the notion of subitising, which per 

definition is cardinal. The concept of subitising is rooted in ecological theories of (direct) visual 

perception (see above), but has recently been developed to include multimodal sensory 

information (cf. the EC perspective). 

Subitising refers to the immediate insight of the cardinal value of a small set of objects that 

might include a verbal response (Sarama & Clements, 2009). The term subitise is derived from 

the Latin adjective subitus (meaning sudden) and the Latin verb subitare (meaning to arrive 

suddenly; Kaufman et al., 1949). In contrast to the Latin meaning proposition that the sensory 

input can be perceived in different modalities, most research has focused on visual perception 

(Katzin et al., 2019). Data shows that the visual-based subitising limit is age-related, and 

evidence suggests an upper limit of 3 or 4 for young children and 4 for adults (Anobile et al., 

2019), and that the subitising range extends from 3 to 4 around 3 ½ year of age (Starkey & 

Cooper, 1995) with a higher range for canonical patterns (Katzin et al., 2019).  

Although there is some evidence suggesting that early subitising ability is independent of later 

development of numerical abilities (e.g., Anobile et al., 2019), a wide range of evidence 

suggests that children able to enumerate small sets without counting perform better in math. 

For example, in their large scale study, Yun et al. (2011) found that 5- to 8-year-olds’ subitising 

range correlated strongly with their mathematical abilities. This is consistent with studies 

showing that young children’s subitising range correlates with their counting skills 

(Kroesbergen et al., 2009) and number system knowledge and calculation skills (Penner-Wilger 

et al., 2007). Desoete and Grégoire (2006) found that low subitising abilities in kindergarten 

correlated with low math skills in first grade. In their investigation of 7 to 17-year-olds’ 

accuracy and speed of subitising and visual counting, Fischer et al. (2008) found supporting 

evidence that deficits in subitising predicts difficulties in acquiring basic arithmetic skills. In 

another related study, Jung et al. (2013) found that pre-schoolers who had received classroom 

training on spatial features of numerical relationships (i.e., subitising, parts-whole, and more-

and-less-relations) scored significantly higher on numbering abilities and conceptual 

understanding than the control group.  

Tucker and Johnson (2018) used a multi-touch technology to explore pre-schoolers’ 

development of embodied subitising. Informed by the notion of conceptually congruent 

gestures, the investigators operationalised embodied subitising as all-at-once gestures in the 
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form of using multiple fingers to mark the entire set simultaneously without explicit use of 

counting, thereby distinguishing between sequential and simultaneous finger representations of 

sets. The results of the training with iPads revealed evidence of a close interrelationship 

between subitising, estimation and (de)composition, indicating that conceptually congruent 

gestures, and in particular all-at-once responses, are relevant in the early cultivation of number 

sense.  

A study by Riggs et al. (2006) provides evidence suggesting that subitising also occurs in tactile 

perception. The findings suggested a subitising range of 3 when the students used pressure on 

the fingertips on both hands as discrete tactile stimuli. There is also limited evidence on 

auditory-based subitising. To avoid the use of counting strategies, experimental trails present 

the auditory stimuli in the form of distinct tones in a fast sequence. Within this line of research, 

the subitising range varies from 2, 3, or 6 for trained musicians, which shows that the findings 

are unclear (Katzin et al., 2019). In a related study, Anobile et al. (2019) tested if subitising 

generalises over modalities and stimulus formats for children and adults. The stimuli were 

presented in the form of simultaneous exposure to visual stimuli (dots), sequential exposure to 

visual stimuli (flashes) and auditory pitch. The results showed a subitising limit of one item 

higher for adults than for children across all the stimuli format conditions, and that that the 

subitising limit for spatial arrays did not correlate for neither of the temporal formats, and that 

subitising of sequences of sounds and flashes correlated strongly.  

 

3.2.5  Summary 
 

In this section, I review the literature from four interrelated perspectives associated with 

children’s abilities to map exact numbered sets across verbal, visuo-spatial and bodily 

modalities in an environment requiring (direct) visual perception and physical appropriation of 

unstructured and structured arrays of dots (cf. focal study 1). First, in subsection 3.2.1, I survey 

the literature highlighting the verbal modality in children’s learning about cardinality, while 

subsection 3.2.2 provides an outline of the measures used in this dissertation study to assess 

children’s capacities to produce small sets. Subsection 3.2.3 then reviews research on children’s 

abilities to map ideas of cardinality across modalities (cf. the research question in focal study 

1), while subsection 3.2.4 reviews the literature on structure-based approaches to early learning 

of numbers (cf. the arrays used in ETP 1 and focal study 1), with a focus on inquiries related to 

subitising. To sum up: Combined with the survey in Article 1 and the review on body-based 
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approaches to number-space associations in subsection 3.1.2, this section provides a 

comprehensive overview of the field of knowledge associated with children’s abilities in 

grounding the idea of cardinality in multimodal interaction (cf. focal study 1).  

 

3.3 Children’s abilities in reasoning about part-whole relations of numbers 
 

This section reviews literature related to children’s reasoning about additive compositions, 

which is the targeting domain in focal study 2 of this dissertation (presented in Article 2).   

From the 1970s, cognitive researchers began to question Piaget’s views of young children’s 

competence in logical and quantitative reasoning as foundational for further mathematical 

development (Piaget et al., 1952), and researchers focusing on Piagetian skills were replaced 

by other aspects of mathematical proficiency.  More recently, a growing body of scholars view 

quantitative reasoning abilities along with counting and arithmetic skills, subitised-based 

enumeration and numerical magnitude understanding as core building blocks of early 

mathematical proficiencies (e.g., Nunes et al., 2012; Torbeyns et al., 2015). This renewed 

interest is rooted in the idea that the ability to represent, decompose and compose quantities in 

multiple and flexible ways, to compare numbers and see numerical relations, is fundamental for 

later development of  sophisticated arithmetic strategies (Björklund, Marton, et al., 2021; Jung, 

2011) and for fluency in mathematical problem-solving (Fosnot & Dolk, 2001).  

According to Piaget (1952), the aptitude to reason in parts- and wholes, with the exception of 

intuitive numbers (1-5), does not emerge before age 6. Recent studies, however, show that pre-

schoolers develop more sophisticated mathematical concepts, strategies and skills in abstract 

reasoning than previously posited  (e.g.,  Clarke et al., 2006; Mulligan & Mitchelmore, 2009). 

This line of research on early reasoning abilities is influenced by models of numerical cognition 

that posit a close relationship between the spatial and the numerical domains, and see the 

existence of spatially organised representations or numerical magnitudes as the core of number 

meaning (Hyde & Spelke, 2011). Spatial numerical reasoning concerns largely the performance 

of logical inferences about entities located in space, and these units form a spatial structure 

(Varzi, 2007). This suggests that the cultivation of number sense and numerosity in form of 

subitised based visual perception of spatial structures and patterns is fundamental for perceiving 

parts-whole structures of numbers and for early algebraic reasoning (Mulligan & Mitchelmore, 

2013). General support for structure-based approaches in educational settings comes from 
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studies showing that young children are more accurate in solving equation problems in pictures 

and concrete objects than in numerical contexts (e.g., Gilmore & Bryant, 2006; Sherman & 

Bisanz, 2009). More specific support comes from the study by Cheng and Mix (2014), which 

shows that 6- to 8-year-olds who had received spatial training improved significantly better on 

missing addend problems (e.g., 3 + _ = 7) than children under the control condition. In a related 

study, Broaders et al. (2007) found that children in elementary school who were instructed to 

gesture while solving equivalence problems (e.g., 3+4=2+3+_) performed better on equivalence 

problems in the post-testing compared to children under the non-gesture condition. Moreover, 

the study by Hunting (2003) provides supporting evidence that 3- and 4-year-olds are able to 

visualise the missing addend in parts-whole reasoning involving small numbers of items.  

FASETT5 is a Swedish design project on early learning in mathematics that is based on a 

structural approach to numbers. FASETT builds on principles from variation theory (see 

subsection 3.2.4), which is a phenomenological inspired theoretical framework of learning (cf. 

Kullberg et al., 2017). The following studies connected to this project have relevance to my 

dissertation study. First, Kullberg et al. (2020) 8-month intervention engaging 5-year-olds’ in 

the use of fingers to structure parts-whole relations of numbers in the number range 1-10 

reported a significantly higher learning outcome for participators compared to the control group 

in terms of abilities to recognise and use parts-whole relations in new arithmetic tasks. A follow-

up test 1 year later showed that the effect was consistent (Kullberg et al., 2020).  However, the 

delayed post assessment also showed that the 6- and 7-year-olds were unable to apply their 

knowledge of parts-whole relations to a larger number range, but rather relied on the “double 

counting” strategy (cf. Fuson, 1988) when bridging through 10 (Björklund, 2021). Finally, 

Björklund et al.’s (2018) analysis of 4-to-5-year-olds’ use of finger strategies in solving simple 

subtraction tasks (e.g., “If you have 10 candies and eat six of them, how many are left?”) 

identified critical ways of using fingers, from powerful to less effective ways. The less powerful 

involved procedure-oriented use of the fingers to keep track of counted objects, while strategy 

effectivity was reflected in more conceptual-oriented approaches in terms of using the fingers 

to present parts-whole structures of numbers.  

Despite a renewed interest in children’s quantitative reasoning abilities (e.g., Björklund, 

Marton, et al., 2021), this central mathematical competence is far less studied than other main 

areas of children’s mathematical development. The limited data available shows that 

                                                           
5 The ability to discern the first ten numbers as a necessary foundation for arithmetic skills. In Swedish: 

Förmågan Att Sinnligt Erfara de Tio första Talen (FASETT) som nödvändig grund för aritmetiska färdigheter. 
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proficiency in quantitative reasoning is not easily learned. Therefore, there is a need for more 

research on young children’s reasoning abilities, and especially studies that examine how 

reasoning interplays with counting and magnitude understanding (Torbeyns et al., 2015) and 

how cross-modal representations of numerical relations and structures can support coherence 

in reasoning about real-life and interdisciplinary problems (cf. Mulligan, 2010). 

 

3.4 Children’s abilities in counting-based addition  
 

This section reviews literature related to the counting-on strategy, which is the mathematical 

targeting area of focal study 3 of this dissertation study (presented in Article 3).   

Research shows that children use a wide range of strategies in addition (for reviews, see Fuson, 

1992; Verschaffel et al., 2007). Shrager and Siegler's (1998) model on strategy choices of young 

children suggests at least eight different ways of solving addition problems. The transition from 

counting to mental-based representations is important for developing fluency in arithmetic 

(Gersten et al., 2005), and mastery of counting based addition seems to be an intermediate 

proficiency required for later acquisition of retrieval and decomposition strategies (Clements & 

Sarama, 2013). To solve simple addition word problems (e.g., “four plus two”), most young 

children integrate knowledge of numbers, abilities in counting and an implicit understanding of 

addition into informal addition strategies (Levine et al., 1992). In the early stages of strategy 

development, the most commonly used addition strategy involves finger counting, while verbal 

counting strategies are used less frequently (Siegler & Shrager, 1984). A conceptual shift occurs 

when children refine informal counting-all-strategies (e.g., to count both addends in 3+2) into 

counting-on from the smallest or largest addend, termed as the max- and min strategy, 

respectively (Groen & Parkman, 1972). The min strategy involves stating the value of the 

largest addend, and then count on the number of times equal to the smallest integer (e.g., “four, 

five, six” in 4+2). Similarly, the max strategy (which often involves counting on from the first; 

Butterworth, 1999) involves stating the smaller integer and successively counting on the larger 

one. Another major leap in understanding occurs when children begin to retrieve basic 

arithmetic facts from long-term memory in the form of direct retrieval or decomposition. Direct 

retrieval involves an immediate response to an addition problem, such as saying “six” when 

asked to solve 4+2. Decomposition strategies involve partitioning the addition into a retrievable 

sum; for example, 4+2 can be solved by retrieving the sum of 3+2 and then adding 1 to this 

partial sum.  
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A normal developmental pattern means that rigid addition strategies (e.g., counting-all-strategy) 

involving finger counting are supplemented and sometimes replaced with more efficient and 

flexible use of mental-based retrieval and decomposition strategies (Ostad, 1997; Siegler, 

1998).  However, contrary to this widespread consensus during 30 years of research, Thevenot 

et al. (2016) found that 10-year-olds’ did not retrieve number facts when they solved single-

digit addition problems, but rather used fast counting strategies. Based on this, the authors 

argued that the key change in development of mental addition solving is a shift from slow to 

more efficient, automated counting procedures (Thevenot et al., 2016).   

In an experimental study that taught 5- to 6- year-olds to use a decomposition strategy to solve 

addition problems, Cheng (2012) found that the children’s ability to adopt efficient non-

counting strategies was related to knowledge of parts-whole relationships of the numbers 1-10. 

The author concluded that appropriate instructional intervention might support children’s 

potential for early acquisition of effective addition strategies. In a related study, Bjorklund and 

Rosenblum (2001) examined developmental and contextual effects regarding children’s 

multiple and variable use of simple addition strategies while playing a board game using one 

or two dice to calculate moves. The results showed flexibility in the number and types of 

strategies used across ages; that children in kindergarten more frequently used the counting-all-

strategy than pre-schoolers and first-graders, who tended to vary their solutions with more 

sophisticated strategies (e.g., the min strategy and fact retrieval). However, the children were 

unable to transform their knowledge to solve similar oral math problems. Chan et al. (2014) 

found that young children’s counting strategies reflect how much they understand the place-

value structure of numbers, suggesting that early intervention of counting-on strategies might 

have an impact on later arithmetic abilities.  In a case study reporting on 6-year-olds’ ways of 

representing understanding of addition, Bakar (2017) found that the participants across 

representational modes (i.e., concrete material, drawings, gestures) treated the two groups to be 

added as distinct sets and used the counting-all-strategy to determine the cardinality. The 

intervention study by Ellemor-Collins and Wright (2009) for low-attaining 3rd- and 4th- graders 

in addition and subtraction provides case-based evidence that a structured approach to numbers 

in the range 1 to 20 can result in a significant leap in arithmetical abilities which does not 

involve counting by ones. This results concurs with the design study by Salmah and Putri 

(2015), which indicates that ten-structured block activities can support first graders’ 

development of strategies in addition.  
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In the research literature focusing on finger-based representations to learn basic numerical and 

arithmetic principles, two opposing views can be identified (Moeller et al., 2011). The first line 

of evidence has been reported from educational research, advocating a move from finger 

counting to concrete structured representations, making the foundation for the development of 

mental-based arithmetic (Moeller et al., 2011). For example, Geary et al. (2004) found that 

cumbersome finger-counting strategies were related to poor conceptual knowledge of numbers. 

This line of research is backed up by evidence showing that rigid finger-based strategies are 

related to learning disabilities in arithmetic (e.g., Ostad, 1998; Ostad & Sorensen, 2007).  

Research in neuroscience has provided evidence for a conflicting view, suggesting that finger-

counting strategies play a crucial role in the development of fluency in arithmetic (Berteletti & 

Booth, 2016; Butterworth et al., 2011). The basic argument for this stance is that the use of 

finger representations provides multi-sensory input and thereby facilitates encoding of cardinal 

and ordinal aspects of numbers (Moeller et al., 2011). Support for this claim comes from 

neurocognitive data showing that finger gnosis (i.e., the ability to differentiate one’s own 

fingers without using the visual sense) is associated with children’s arithmetic skills (e.g., Noël, 

2005; Penner-Wilger et al., 2007). Also, several scholars highlight the benefit of using finger 

patterns to promote children’s structural awareness and pattern recognition of parts-whole and 

cardinal-ordinal relations of numbers, rather than using fingers to count single units (e.g., 

Baroody, 2016; Neuman, 2013). Empirical support for this view comes from the study by 

Björklund, Ekdahl, et al. (2021), which shows that 4- to 7-year-olds’ use of finger gestures for 

simultaneous representations of small numbers might support perception of sets as structured 

wholes rather than strings of single units, thereby facilitating arithmetic thinking. Hence, this 

suggests that there are quality differences in the use of finger gestures to promote mathematical 

thinking, where the powerful ways are characterised by simultaneous experiences of cardinal 

and ordinal properties of numbers as a basis for fluency in arithmetic.  

 

3.5  Summary of the literature review  
 

The following two issues related to my dissertation study emerged from the literature review in 

this chapter. First, the review of number-space mappings from the cognitive and interactionist 

stance of EC shows that there is a large body of research that provides general support for the 

moving and active body in early learning of mathematics (section 3.1). However, due to a bias 

towards modelling the MNL in educational interventions, I question the transfer effect to 
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practice in ECEC institutions. Second, the review of the literature on children’s understanding 

of cardinality and abilities in parts-whole reasoning and addition (sections 3.2 - 3.4) provides 

an overview of the current field of knowledge of how different modalities and representations 

of numbers and relations might influence children’s mathematical abilities (cf. the studies 

assumptions and research questions asked in sections 2.5 and 2.6). Notably, across these 

mathematical areas, there is an emergent body of research that views structural relationships of 

numbers as foundational for the development of mathematical abilities. In conclusion, the 

review provides many reasons to conduct intervention studies with young children that include 

structure-based embodied experiences of cardinality, ordinality, and parts-whole and additive 

relations of numbers (cf. sections 4.3 and 5.2). 
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4.  Theoretical framework  

This chapter starts with a brief historical overview that foregrounds EC followed by an outline 

of main features of the EC framework. It concludes with a presentation of the design principles 

that form the basis of the two embodied training programmes.  

 

4.1  Introduction to embodied cognition 
 

Classical philosophy and traditional cognitive science (i.e., Cartesian cognitive science, cf. 

Rowlands, 2010) have tended to marginalise the role that the body-beyond the brain, action and 

environment play in thinking, reasoning and cognitive development, assuming that sensory-

motor processes only function as peripheral input and output devices (Wilson, 2002). Early 

critiques of the mind-body separation include Kant who argued that mind is a manifestation of 

the body (Kant & Guyer, 1998). Later, phenomenology contested the idea of a disembodied 

rationality that separates thinking from sensing and acting, arguing that there is no such thing 

in how we perceive, experience and act in the world that supports such a dualism (Husserl, 

1970). Notably, Merleau-Ponty (2005) assigned the body a mediating role between internal and 

external experiences when he explored the relationship between embodied action and meaning, 

claiming that our body “keeps the visible spectacle constantly alive, it breathes life into it and 

sustains it inwardly, and with it forms a system.” (Merleau-Ponty, 2005, p. 235). This shift, 

which Clark (1998) refers to as putting the brain, body, and world together again, shows that 

embodiment is a theme addressed in philosophy during the last century.  

Influenced by the ideas of phenomenology, several cognitive scientists tried to deal with the 

troublesome disembodied nature of cognition (e.g., Churchland, 1989; Wertsch & Wertsch, 

1993). However, logical limitations in dualistic views of mind-body and cognition-action were 

first and foremost made apparent by the symbol grounding problem, where Harnad (1990) 

rhetorically asks how the meaning of symbols seen as internal mental representations can be 

grounded in anything but other abstract symbols whose existence are independent of time and 

space. Based on this line of thinking, higher-order cognitive representations must be rooted in 

non-mental, physical and embodied representations (Barsalou, 1999). In addition, traditional 

cognitivism failed to explain the emergence of abstract representations and how and where 

these abstract ideas are implemented in the cognitive system (Barsalou, 2008; Gallese & Lakoff, 

2005). Consequently, to deal with the symbol grounding problem and to provide adequate 
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explanations of epistemological issues concerning representation, retrieval and concept 

formation, cognitive models must incorporate how mental ideas relate to embodied experiences 

and physical properties.  

 

4.2 Main features of embodied cognition 
 

In this section, I will first present the main features of EC and then focus on the principles 

relevant to the extraction of the design principles (section 4.3) and for the discussion (Chapter 

7)6. For a comprehensive overview of the EC framework and its implication for educational 

science, I recommend “The Routledge Handbook of Embodied Cognition” (Shapiro, 2014), the 

special issue “Embodied cognition and Education” (introduced by Agostini & Francesconi, 

2020), and the article “Embodied cognition and its significance for education” (Shapiro & Stolz, 

2019). 

The modern version of EC is informed by recent research in cognitive science, ecological 

psychology, animal science, neuroscience, linguistics and different domains in learning 

sciences and educational research (Agostini & Francesconi, 2020; Barsalou, 2008; Wilson, 

2002). Moreover, different theories of EC vary in terms of the boundary set for mental processes 

and according to what claim the body-cognition relation addresses (Wilson & Foglia, 2017). 

Accordingly, no unified proposal exists for EC as some researchers suggest two (Stevens, 2012; 

Wilson & Golonka, 2013), others three (Shapiro, 2011) or even six (Wilson, 2002) different 

views of EC. Wilson and Golonka (2013) argue for a two-part view of EC, one stance that 

focuses on how mental states and processes can be influenced by the body, and another that 

focuses on the brain-body-environment relationship in cognition. This is consistent with 

Stevens’ (2012) notions embodiment as conceptualist and embodiment as interactionist as two 

main strands of EC. This suggests that the diverse families of EC recognise a range of 

perceptual, cognitive, and motor processes that are grounded in the capacity of the physical 

body (Fugate et al., 2018). However, while recognising rich variations, most EC frameworks 

agree on two main features: 1) Cognition is inextricably linked to sensory-motor processes and 

bodily interactions with the environment, and 2) such embodied interactions are mentally 

represented in a non-abstracted manner (e.g., Barsalou, 2008; Borghi & Pecher, 2011; Shapiro, 

                                                           
6 The outline of EC builds on and must be seen in connection with the presentation in section 2.2 (“The 

turn towards ideas of embodiment in educational research”) and section 2.5 (“The studies assumptions: 

Towards the aims of the dissertation study”). 
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2011). Additional principles of the EC framework that are only partially true are the claims that 

cognition is situated, for action and subject to time pressure, and that human reduce the 

cognitive workload by off-loading cognitive processes onto bodily and environmental resources 

(Wilson, 2002). Accordingly, these claims are best weighted in terms of their applicability in 

practice-oriented research.  

From an EC perspective, the formation of abstract concepts rests on the perceptual and sensory-

motor system (e.g., auditory, visual, kinaesthetic, and haptic-tactile) that captures embodied 

interaction and serves the needs of a body interacting with a real situation. Accordingly, on-line 

aspects of cognition are affected by real-time demands, spatial constraints and contextual 

affordances and is therefore fundamental for situated performance and learning (Nathan, 2008).  

Later, independent of the tangible stimulus, thinking about an action through the process of re-

enactment (i.e., mental simulation and visualisation) will induce the same multimodal sensation 

that occurred during the actual embodied experience (Barsalou, 2008). Such off-line cognitive 

processes range from pure mental simulations involving sensorimotor representations to the use 

of external resources to support mental representations and manipulations of things that are 

distant in time or space. Accordingly, a core feature of cognition involves the ability to re-enact 

and model situated sensory-motor experiences in off-line mode (Nathan, 2008). Such mental 

simulations often occur unconsciously in an automatic manner, and can be partial, incomplete, 

and convey misunderstandings (Barsalou, 2003; Wilson, 2002).  

EC posits that conceptual knowledge is rooted in many simulations, specific to particular 

instances or embodied experiences with the stimulus. For example, sets can be understood as 

containers, numbers as objects in a container and arithmetic can be understood as making 

groups/object collection and moving along a path (Lakoff & Núñez, 2000). Consequently, no 

specific or individual simulation might give a complete representation of a targeting concept 

(Radford, 2013). Based on this line of reasoning, mathematical thinking is grounded in multiple 

overlapping and mutually constitutive simulations (Barsalou, 2003, 2008). Also, EC entails a 

perception-action cycle involving the succession of motor adaptation to changes in external 

(e.g., attachable objects, body posture) and internal (e.g., mental connections) environment 

(Fuster, 2009). This continuous and bidirectional influence between conceptual and external 

(beyond-the brain) activation generates feedback for regulating further actions. The embodied 

approach can therefore be fruitful in connecting mathematical thinking in physical interaction 

with the world (Barsalou, 2008; Wilson, 2002).  
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To conclude, EC constitutes a theoretical framework for educational science and practice 

(Agostini & Francesconi, 2020), and its multidisciplinary nature can provide some thought-

provoking recommendations that can enhance educational practise in a way that supports 

quality and efficiency in children’s learning (Shapiro & Stolz, 2019). Based on this, the next 

section presents the DPs of the ETPs included in this dissertation study.  

 

4.3  Design principles of the embodied training programmes 
 

This section outlines key concepts and issues concerning design principles in educational 

settings, and it provides a brief survey of the literature as a basis for the following presentation 

of the principles that guided the design, implementation, evaluation and modification of the 

activities included in the embodied training programmes of my research project.  

 

4.3.1  Key concepts and literature review on embodied design principles  

 

A pedagogical model is informed by theory of learning and instruction, and it accounts for the 

interdependent relation between learning, facilitation/guidance, subject matter and context. A 

basic assumption for educational design aimed at optimising thinking and learning is to look at 

fundamental research in cognitive science that provides an accurate description of the nature 

and function of cognition (Ionescu & Vasc, 2014). From an embodied perspective, this means 

to apply theory of EC in the design of learning environments that foster grounded thinking and 

learning that encompass tacit and cultural ways of perceiving and acting (Abrahamson, 2013; 

Abrahamson & Lindgren, 2014). In DBR, design principles play a key role in establishing the 

relationship between an implementation of a design and the theoretical conjectures informing 

the pedagogical model (Sandoval, 2014).  

Through my review of literature using different combinations of the keywords mathematics, 

outdoors, embodied design, design-based research and design principles, two relevant 

observations connected to my dissertation study emerged.   

First, most of the surveyed literature on embodied design principles was situated in digital 

contexts in indoor settings (e.g., Abrahamson & Bakker, 2016; Dackermann et al., 2017; 

Johnson-Glenberg, 2018). For example, DeSutter and Stieff (2017) suggest three design 
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principles developed to incorporate movement for the learning of mathematics in digital 

environments. These are: 

“Design principle #1: Embodied learning environments should include scaffolds that explicitly 

map spatial entities and their relationships to the hands or the body… 

Design principle #2: Embodied learning environments should leverage motoric actions to 

simulate high-fidelity spatial operations that would otherwise be imagined…  

Design principle #3: Embodied learning environments should link innovative tools, such as 

visualizations or other simulations, to embodied actions through interface elements and input 

devices” (DeSutter & Stieff, 2017, pp. 12-13) 

Moreover, Johnson-Glenberg’s (2018) taxonomy for embodied designs using VR technology 

includes the following guiding principles; (1) Sensory-motor engagement; (2) Congruency of 

the gesture; and (3) Immersion/Presence. In Skulmowski and Rey’s (2018) review of 

taxonomies in embodied research in education, the authors argue that Johnson-Glenberg’s 

(2018) three suggested factors are not optimal descriptive dimensions for embodied learning 

studies (e.g., that the category perception of immersion lacks an empirical foundation). 

Skulmowski and Rey’s (2018) alternative and more general proposal consists of a 2x2 grid 

involving the main dimensions (1) bodily engagement (i.e., low or high degree of bodily 

activity) and (2) task integration (i.e., whether the bodily activity coheres with a learning 

objective in a meaningful way or not). The first of these principles is consistent with what 

DeSutter and Stieff (2017) refer to as learning environments that allow bodily mapping of 

spatial entities and relations, while the second principle is comparable with what Johnson-

Glenberg (2018) refers to as congruency of the gesture principle.  Based on Skulmowski and 

Rey’s (2018) taxonomy, I position the DBR part of my dissertation study in the quadrant 

involving high degree of bodily engagement and high degree of task integration.  

Second, the survey of the literature on design principles in outdoors settings showed that many 

of the proposed design principles were of a general pedagogical character and consequently not 

directly relevant for my research focus on epistemic processes in body-based learning 

environments. For example, in the review study by Mansfield et al. (2020), several of the ten 

identified principles of effective youth development in outdoor environments, with the 

exception of utilising adults in guidance and mentoring and to develop skills through authentic 

experiences, were considered to be only partly or indirectly related to my research project. 

These principles include the benefits of a positive social context, and allowing the children to 

work for an extended period and within a continuum of activities. Other salient principles, 
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however considered outside the scope of my research, include opportunities to develop 

autonomy, the use of unfamiliar environments and opportunities for reflection. This points to 

limitations that any selection of design principles will put focus on certain epistemic 

commitments and therefore indirectly hide other salient features affecting young children’s 

learning. However, having established that some of the reviewed principles can be adapted to 

non-digital outdoor contexts using whole-body movement, the next subsection outlines the 

design principles used in my dissertation study.  

 

4.3.2  Design principles guiding the (re-)design of my embodied training programmes 

 

I extracted the DPs used in my research project from four interrelated perspectives and sources. 

These were: (1) The studies assumptions and aims (sections 2.5 and 2.6); (2) The EC framework 

(section 4.2); (3) Recent findings in educational research (cf. the literature review in sections 

3.1-3.4); and (4) Embodied design studies in education (subsection 4.3.1). Thus, in order to 

make a coherent foundation for designing activities that takes into account learning, design and 

instruction, the development of the ETPs and the testing procedures (cf. the focal studies) 

included in this dissertation study were informed by the following DPs (DP 1 – DP 4):  

1. Congruence in number-space mappings through embodied interaction. DP 1 builds on 

educational research that highlights the role of structure-based approaches to young 

children’s understanding of mathematics (e.g., Venkat et al., 2019) and especially the line 

of research that focuses on spatial thinking of numbers, parts-whole relations and arithmetic 

through embodied interaction (cf. the literature review in Chapter 3). To support (high 

degree of) congruence with the mathematical targeting domains, the designs should foster 

highest possible overlap in feature codes by presenting the stimuli in a spatially organised 

perceptual format that allows for full-body spatial interaction and manipulation with tools 

(DeSutter & Stieff, 2017; Fischer et al., 2011). Hence, DP 1 highlights that the bodily action 

should correctly simulate (structure-based) mathematical thinking (cf. the principle of task 

integration of Skulmowski & Rey, 2018).  

2. Meaningful grounding of mathematical thinking in the three-dimensional space. DP 2 

reflects the governing principle of embodied design in terms of situating mathematical 

thinking in authentic ways of perceiving and acting (Abrahamson & Lindgren, 2014). This 

means that the design should foster meaningful experiences by rooting the mathematical 

thinking in cultural, motoric and ecologically rich behaviour (Johnson-Glenberg, 2018), 
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thus cultivating the phenomenological dimension of meaning through the idea that 

cognition is for action (Wilson, 2002). Accordingly, DP 2 reflects the assumption of EC 

that many everyday experiences (e.g., body postures, gait, object construction/collection) 

and play behaviour can provide both subjective and objective layers of meaning to 

mathematical thinking (Lakoff & Núñez, 2000; Radford, 2010, 2013). In that way, DP 2 is 

partly overlapping and complementary to DP 1’s emphasis on the objective dimension of 

meaning in mathematical thinking (cf. the congruence principle). Also, DP 2 includes the 

assumption that (meaningful) number-space mappings (including the OTS and ANS) occur 

in three dimensions (i.e., not linear modelling according to the MNL; Winter et al., 2015).   

3. Multimodal experiences. DP 3 builds on the fundamental assumption of EC that sensory-

motor experiences in the form of multimodal simulation matching a targeting domain might 

enrich encoding and thereby facilitate the re-enactment of these ideas in the form of mental 

simulations and visualisations (Barsalou, 2008; Carbonneau et al., 2013; Wilson, 2002; cf. 

section 4.2). Furthermore, it was conjectured that the interplay between the bodily and 

verbal modality played a key role in making non-verbal number-space associations explicit 

as the “grounding aspect of the body acts as a scaffold for articulating thoughts that 

otherwise would be difficult to communicate” (Foglia & Wilson, 2013, p. 4).  

4. Guidance and learning through imitation. Previously, I have argued that children need 

guidance to pay attention, discern and appropriate exact numerosities and mathematical 

relations in their outdoor environment (cf. section 2.3). Support for DP 4 comes from the 

review study by Mansfield et al. (2020), which showed that a key characteristic of effective 

youth development in outdoor environments is the use of adults to guide and mentor. Also, 

mirror neurons that activate in the same way when we carry out an action with our body or 

observe the same action performed by others suggests that imitation of motor behaviour and 

bodily states is fundamental for learning (Rizzolatti & Craighero, 2004). Consequently, DP 

4 emphasises that the designs should foster learning through guidance, observation, 

mirroring and imitation.  

DP 1 reflects my objective of designing ETPs that foster spatial structured bodily experiences 

that concur with thinking about cardinality and counting-based addition as subject matters (in 

ETP 1 and 2, respectively; cf. the aims stated in section 2.6). As complementary epistemological 

principles in my suggested pedagogical model, DP 2 and 3 reflect that engagement within the 

design should involve meaningful use of motor, cognitive and cultural resources in the form of 

multimodal experiences matching the content area and thus enrich learning and retrieval.  
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Finally, DP 4 emphasises facilitation, guidance and imitation as supporting elements for the 

processes mentioned above. This suggests that the DPs are assumed to be mutually connected, 

reinforcing and partly overlapping, and that they together make a coherent foundation for (re-

)designing activities promoting children’s grounding of mathematical thinking. However, the 

principles are limited in the sense that they do not sufficiently take into account the value of 

including reflection or social, motivational and other general pedagogical principles in the 

design of the activities (cf. Mansfield et al., 2020).  
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5.  Research design and methods 

 

In this chapter, I will reflect upon methodological issues of my dissertation. First, the choice of 

a qualitative research strategy is elaborated, including the design-based research and case study 

approach. It then outlines methodological issues related to the design of the embodied training 

programmes, and it presents information of participants, samples and data collection. 

Thereafter, the approaches to achieve generalisation, techniques for analysing data, the process 

of data reduction and coding are elaborated in detail. The final part presents reflections on the 

quality of the study including issues about trustworthiness, ecological validity and ethics.  

 

5.1  Methodological choices and research design 
 

The research questions were the starting point for selecting the research methodology of the 

dissertation, as the research methods were to provide data to answer the questions asked 

(Maxwell, 2008). Basic aspects of qualitative studies include the in-depth focus of small groups 

of participants and the use of soft, flexible and subjective data in order to investigate the 

participants’ behaviour, meanings and reasoning around specific subjects (Silverman, 2010). In 

this regard, a qualitative approach was selected because it made it possible to study in detail 

characteristics of young children’s grounding of mathematical thinking in sensory-motor 

experiences (cf. the framing question of the dissertation). Furthermore, there is consensus 

among prominent researchers in the methodological field that the synthesis of several methods 

can compensate for individual limitations and benefit from their respective strengths  (Guba, 

1981; Yin, 2009). Based on this, my dissertation study adapted principles from Design Based 

Research (DBR) and case study methodology to answer the research questions.   

The most important argument for DBR stems from an ambition to strengthen the link between 

practice and research (Van den Akker et al., 2006). In this regard, the dissertation study aim to 

develop ETPs that can be integrated into the daily practice of ECEC institutions (cf. the sub-

goal of the dissertation). Also, in line with the main objective of DBR, the dissertation aims to 

refine principles of EC by producing and studying empirical data on learning processes, use of 

tools, guidance and facilitation (DiSessa & Cobb, 2004). The learning part is addressed in the 

three focal studies and in the discussion chapter of this dissertation, while complementary 
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reflections concerning the role played by the ETPs in producing epistemic achievements are a 

central aspect of the current methodological chapter. 

In this dissertation study, I use the EC framework to develop the DPs (section 4.3), the research 

questions (section 2.6) and analytical tools (subsection 5.4.1), and for interpretations of the 

empirical data from the focal studies to achieve analytical generalisation (see sections 5.3 and 

5.4). The focus on analytical generalisation is consistent with Yin (2009), who argues that the 

goal of a case study is not to achieve statistical generalisation, but rather to confirm, expand 

and generalise theories. The focal studies reported in the three articles (see Chapter 6) apply a 

multi-case study approach with the aim of gaining an in-depth understanding of early grounding 

of mathematical thinking in sensory-motor experiences. This is consistent with the basic idea 

of multi-case studies, which is to use any appropriate method to examine one or several cases 

in detail in order to gain a holistic understanding of the case(s) (Silverman, 2013; Yin, 2009). 

In this way, the multi-case approach allows me to study similarities and diversities across 

children’s bodily grounding of mathematical thinking, which in turn enhances contrasting 

results and reinforces similar results (Yin, 2009). Compared to single-case studies, the diverse 

empirical material from the multi-case studies and the use of the logic of replication and 

comparison allow me to conduct a broader exploration of the investigated phenomena, which 

in turn is fundamental to the robustness of theory development (Eisenhardt & Graebner, 2007; 

Firestone, 1993). Consequently, evidence from multi-case studies is considered strong and 

reliable (Baxter & Jack, 2008).  

Figure 1 below provides an outline of the research design of my dissertation study.   
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Figure 1: Overview of research design 

In 2017, preparations for the research project were made by recruiting participating 

kindergarteners and reviewing the literature on EC and early childhood learning in mathematics 

for the extraction of the DPs presented in section 4.3. The development and refinement of ETP 

1 and 2 was based on these DPs, while ETP 1 also was informed by a pilot study (Appendix 1). 

Both ETP 1 and 2 involve a set of joint activities and a fixed task. Through the interventions 

and based on video analyses of sessions, logged reflections and informal dialogue with KTs, 

small modifications of the joint tasks were made in a cyclical analytical process with testing, 

evaluation and refinement, while the fixed task was repeated at all sessions. The post-test 

procedure in focal study 1 (Kindergarten 1) was piloted in Kindergarten 2, and vice versa for 

focal study 2, while Kindergarten 1 served a pilot function throughout ETP 2 and for the 

development of the post-test procedure for focal study 3 (Kindergarten 2). The empirical 

material collected for the focal studies consists mainly of video of individual post-tests. The 

research design is elaborated later in this methodological chapter. 

 

5.2 Foundation of interventions and (re-)design 
 

This section focuses on the design part of my dissertation study. First, I will present the 

activities included in the two ETPs followed by examples of how I applied the DPs in the 
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development of these activities. I will then outline issues related to the cyclical relation between 

testing and re-design, and I will conclude the section with a presentation of the practical 

implementation of the programmes, which includes an outline of the KTs’ and the researchers’ 

roles and responsibilities.   

5.2.1 Activities included in the two embodied training programmes 

 
Figure 2: Arrays used in the joint 

activities in ETP 1 

 
Figure 3: Arrays used in the fixed 

task in ETP 1 

 

Figure 4: The construction activity  

 

Each session of the ETPs included a joint part (approximately 20 minutes; cf. Figure 2) and a 

construction activity (approximately 40 minutes) where the children should use their bodies to 

simulate a mathematical targeting domain (see Figure 3) to get a piece to play with (see Figure 

4). In line with this structure, Table 1 presents a list of the activities in the two ETPs referred to 

in this dissertation, while an elaborated outline of the activities follows below.  

Table 1: Overview of activities used in ETP 1 and ETP 2 

 ETP 1 ETP 2 

Joint activities Animal farm 

Seek and embody numbers 

Rhythmic tagging 

Tag a number 

Counting-on x more 

Hit the home-base 

Rhythmic tagging 

Fixed task Imitate animal Min task 

 

 
Figure 5: Long jump for enacting 

Cock-a-doodle-doo-one 

 
Figure 6: Making twists in 

embodying Monkey-three  

 
Figure 7: Cock-a-doodle-doo-one 

on a stump 
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Activities used in Embodied Training Programme 1 (ETP 1) 

Animal farm (joint activity) 

The children were assigned a square array outside a semicircle (see Figure 2) with the researcher 

at the centre and KTs in support nearby. The context of the story was a farm with various 

animals, including a rooster (Cock-a-doodle-doo-one), a kangaroo (Kangaroo-two), a monkey 

(Monkey-three) and a frog (Frog-four)7. The researcher started the story:  

It is early in the morning, the sun is rising (pointing at the horizon) and everyone living on the 

farm is sleeping, except one animal. Who is that? … Yes, the rooster. What does the rooster do? 

…Yes, the rooster stands on one leg and crows “cook-a-doodle-doo-one” (the researcher 

balances on one leg while tagging a dot). Therefore, to wake up the animals and people on the 

farm, we must all be crowing roosters. Ready, steady, go: Cock-a-doodle-doo-one. (Everyone 

shouts “Cock-a-doodle-doo-one” balancing on one leg that marks a dot). Did all the animals 

wake up? No (shaking the head). We have to jump longer and higher and we have to crow even 

louder, much louder. Are you ready? One, two, three... (See Figure 5) [The physical mapping 

continues].  

After several attempts, even the great-grandmother with bad hearing was awakened. Similarly, 

the children reflected upon the behaviour of kangaroos, monkeys and frogs, and they used limbs 

(i.e., feet and hands) in simulations of the animal’s behaviour in physical couplings of 2-to-4-

dotted arrays. In particular, the Kangaroo-two mapping involved both feet in the coupling of 

two dots, the Monkey-three gestalt enacted the number three by using the legs and one hand 

(the other hand scratching the head) in the coupling of a three-dotted array (see Figure 6), while 

the Frog-four mapping embodied a square array with both legs and hands. Based on the 

animals’ desire to have fun, the children were encouraged to be creative, make long jumps, 

twists and rotations before entering into the arrays, while making exaggerated articulations.  

Seek and embody numbers (joint activity) 

The children worked in pairs in the playground, looking for detachable and attachable objects 

on the ground (e.g., pinecones, stones, leaves, sticks, stumps and cobblestones). Based on 

observed arrays, they were encouraged to use animal metaphors as verbal references to explore 

creative ways of embodying these spatial structures (see Figure 7).   

                                                           
7 Translated from the Norwegian words “kykeliky-en”, “kenguru-to”, “apekatt-tre” and “froske-fire”. 
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Figure 8: Dancing to the Gummy 

Bear song 

 
Figure 9: Free-dance to the 

Gummy Bear song (from ETP 2) 

 
Figure 10: Eeny, meeny, miny, 

moe, one, …, four (from ETP 2) 

 

 

Rhythmic tagging (joint activity used in both programmes) 

The children were guided in the aerobic movement pattern involving “Right leg forward, left 

leg forward, right leg backward, left leg backward” to sequentially tag dots in the square array 

(see Appendix 1 for details). The cyclical movement pattern was accompanied by music (e.g., 

the Gummy Bear Song; see Figure 8, which also involved a free dance part; see Figure 9) and 

rhymes (e.g., Eeny, meeny, miny, moe; see Figure 10) streamed from YouTube. The aerobic 

movement pattern was also used in combination with verbal counting up or down (e.g., “One, 

two… eight” or “Four, three, two, one”) or repeatedly counting (e.g., “One, two, three, four 

[short pause in one-legged position], one, two, three, four …”). Variation in the auditory 

modality could be experienced via simulation of different animals (e.g., elephant with hard and 

loud tramps, mouse with softer ones).  

 

Imitate animal (Fixed task) 

To get an item to play within a construction activity, the children should in increasing order 

articulate the animal metaphors (i.e., “Cock-a-doodle-doo-one”, “kangaroo-two”, “monkey-

three” and “frog-four”) in parallel with the physical coupling to the corresponding array 

(canonical structure for 3 and 4; see Figure 3). After completion, the children could choose one 

item from boxes of toy figures, animals and construction components (see Figure 4).   

 
Figure 11: Everyone in tune, 

counting to ten 

 
Figure 12: The chase starts 

 
Figure 13: Counting-on from 

tagged number to get released 
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Activities used in Embodied Training Programme 2 (ETP 2) 

Tag a number (joint activity) 

Everyone in tune with verbal counting while moving on dots in the 100-dotted circle (see Figure 

11), the chase started at ten (see Figure 12). The children could run within a limited area, and 

tagged children could re-join the game after using the circle for counting-on to ten from the 

number they had been tagged with (Figure 13). 

Counting-on x more (joint activity) 

In turn, the children rolled a dice (e.g., 5) and decided how many they should count on (e.g., 

two more). Based on this and starting outside the 100-dotted circle, everyone was to use his or 

her feet for synchronised verbal and physical expression of the value of the dice (e.g., tramping 

on the ground while saying “Five”). Next, inside the circle, everyone was to, in tune, walk on 

dots and verbally count-on, while balancing on one leg when they reached two/three/four more. 

While standing on one leg in the final tagging, the children were encouraged to shake hands 

with peers and articulate the sum.   

 

   

Figure 14: A pea bag as external motivation for counting-on to ten 

 

Hit the home base (joint activity) 

Two children could work together using a dice and a pea bag (or tennis ball) as tools. In turn, 

the children were to roll the dice, enter into the 100-dotted circle and use their legs to tag dots 

for counting the outcome of the dice or for counting-on to ten. In the final tagging, they were 

to balance on one leg while throwing the pea bag (alternatively, rolling the tennis ball) to their 

peer or hitting the home base (a small circle) if they worked alone.  
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Figure 15: The Min task to get a piece for construction and play 

 

Min task (Fixed task) 

To pick an item to play with from containers of matchbox cars, toy figures and construction 

components, the children had to complete the following steps:  

1) Roll two dice (e.g., 3 and 5), compare the values and pick up the one with the smallest 

addend.  

2) Articulate and physically tag the largest addend as a whole (e.g., use the feet tagging the 

dice and say “five”).  

3) Enter the 100-dotted circle, and informed by the value of the hand-held dice, using their 

feet to tag dots and verbally count on the number of times equal to the smallest addend 

(e.g., “six, seven, eight”).  

4) In the final tagging, they were to keep balancing on one leg while articulating the sum 

(e.g., “eight”).  

Table 1 shows that the two ETPs include a limited number of activities. Instead of working with 

a large number of activities, the intention was to let the children familiarise themselves with the 

tasks as they gradually went deeper into the selected mathematical topic. Put together, 

involvement in the two ETOs was assumed to promote coherence in embodied interaction and 

mathematical thinking. Below, I will give examples of how I applied the DPs in the 

development of the activities in the ETPs.  

5.2.2  Applying the design principles to the two embodied training programmes 

 

Although the DPs in section 3.4 are presented as distinct dimensions, it is important to note that 

they are assumed to form a coherent foundation for designing activities that foster bodily 
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grounding of mathematical thinking. Below, I will give examples of how I integrated the four 

design principles (referred to as DP 1 to DP 4) into the activities.  

1. Congruence in number-space mappings through embodied interaction 

2. Meaningful grounding of mathematical thinking in the three-dimensional space 

3. Multimodal experiences 

4. Guidance and learning through imitation 

The structure-based approach to facilitate coherence in children’s embodied modelling of the 

targeting mathematical domains (cf. DP 1) was reflected in the design of the arrays. For 

example, the 1 to 4 dotted arrays in the Imitate animal activity in ETP 1 aimed to foster 

symmetric structured experiences where body parts touching the ground should cohere with the 

idea of cardinality. Another principle was that the children should experience some sort of 

subjective meaning in their bodily engagement (cf. DP 2). To address both these dimensions, 

each joint session involved a game and/or a song targeting specific mathematical content areas 

(see subsection 5.2.1). For example, the Rhythmic tagging activity involving the aerobic 

movement pattern in tune with music, aimed to enhance joy, shared experiences and awareness 

of one-to-one-correspondence between kinaesthetic, spatial, aural and verbal modalities, thus 

adding both personal, social and objective meaning dimensions to key subcomponents of what 

a multimodal approach to exact numbering and counting-based addition entails (DP 3). Another 

illustration comes from ETP 2, where the Hit the home base activity challenged the children in 

precision throwing while balancing as a part of their bodily engagement of core building blocks 

of counting-based addition (DP 1 - DP 3). A third illustration comes from the same programme, 

where the Tag a number activity wrapped multimodal experiences in counting-on from a given 

number in a game with strong cultural traditions in outdoor play for Norwegian children (DP 1 

- 3). In contrast, the Min task in ETP 2 was based on more external motivational factors as the 

children were obliged to work with the consolidation of counting-based addition to achieve 

components for their construction activity.  

DP 3 involves the fostering of multimodal experiences of the targeted mathematical content 

area. The Imitate animal activity in ETP 1 might illustrate this principle as it entails the physical 

coupling of one to four-dotted canonical patterned arrays while articulating a corresponding 

metaphor (cf. also DP 1). Another example comes from ETP 1, where the Seek and embody 

numbers activity aims to promote children’s curiosity and awareness of quantifiable properties 
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in their (three-dimensional) surroundings, using animal metaphors8 as verbal references for 

exact bodily numbering of small sets (DP 1 - DP 3). 

 

A shared feature of both programmes was the wrapping of the fixed tasks in a construction 

activity where the children could collaborate, play, and design whatever they wanted (cf. DP 

2). Help to perform the obliged task (i.e., the Imitate animal activity or the Min task) to get a 

piece for their play or construction was only provided if needed. Overall, the guidance structure 

across the intervention sessions was based on working with subskills as a basis for more 

complex multimodal integration at later stages, which also involved demanding bodily actions 

(e.g., body rotation before the tagging of arrays; cf. DP 2 and DP 3). Another guiding principle 

involved bodily and concrete modelling for KTs and researcher to provide direct and 

meaningful feedback on children’s performance and that the children should learn through 

observing the action of peers (DP 4). For example, in the joint Animal farm-activity in ETP 1, 

the process of mimicking the behaviour of animals living on a farm aimed to promote 

motivation, realism and meaning to the embodied action (DP 2), while also fostering learning 

through observation and copying other children’s behaviour (DP 4).  

 

To sum up: The ETPs show how the DPs might be the starting point for developing a battery 

of activities that promote young children’s embodied grounding of mathematical thinking. 

Since the degree to which a DP applies to an activity can vary, it is important to see each ETP 

as a whole that together are conjectured to promote meaning for the individual’s physical 

situating of mathematical thinking in outdoor contexts. Below, I will outline issues related to 

the evaluation, modification and re-design of the activities in the ETPs.  

 

5.2.3  Evaluation and re-design of the embodied training programmes 
 

DBR is characterised as a dynamic, evolving and iterative process of testing, evaluation and 

refinement (Schön, 1983), and this inductive, reflexive and emergent endeavour underlines the 

explorative dimension of my dissertation. However, the fixed tasks in the ETPs (i.e. the Imitate 

                                                           
8 The dissertation’s use of the notion of animal metaphor is based on CMT, which holds that metaphors are 

conceptual phenomena that help us to transfer meaning and carry inferential structures from a source domain 

to a target domain (see Article 1). For example, the Frog-four metaphor grounds the idea of cardinality in a 

particular body posture that shares some abstract similarities with amphibian behaviour (e.g., the cardinal value 

of limbs touching the ground). Gallagher and Lindgren (2015) refer to this as enactive metaphors.  
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animal-activity and the Min task in ETP 1 and 2, respectively) were the same throughout the 

intervention, while the joint activities followed the basic principle of DBR concerning 

evaluation and refinement across sessions. In general, any refinement was guided by the DPs 

(see section 4.3), and the motivation for change could emerge from various sources including 

feedback from children (e.g., bodily and verbal responses regarding pleasurable games and 

songs) and critical reflections from the collaborating KTs. However, based on the terms of 

agreement made with the participating kindergartens, resources to the KTs were only assigned 

for implementation and not for planning and evaluation. To address this challenge, I used a 

notebook to log discussions of the activities with the KTs at available periods during sessions. 

In addition to this unstructured approach, I used video recordings of the activities for assessment 

post sessions. Finally, the implementation of both training programmes in two kindergartens 

enabled me to transform experiences across sites as a basis for modification.  

A large part of my role as a researcher was to design joint activities that addressed subskills 

associated with the targeting mathematical domains in the respective programmes and to focus 

on areas identified as difficult for the children to master in previous sessions. For example, the 

Counting-on x more and Hit the home base activities in ETP 2 were designed during 

intervention to address core building blocks of counting-based addition. Furthermore, the 

inclusion of artefacts such as pea bags and tennis balls and motoric cooperative behaviour (e.g., 

shaking hands while balancing on one leg or throwing and catching pea bags) emerged from 

observations that pointed on a need to include additional layers of meaning to the activities (cf. 

DP 2). Such small and iterative modifications continued throughout the intervention period, and 

I will illustrate the refinement-cycle of the Tag a Number-activity in ETP 2 in detail. In the first 

two sessions, a joint activity involved the use of the counting-on strategy to find the total age 

of two children. Informed by their verbally expressed ages, the children were supposed to step 

into the 100-dotted circle and in tune count-on from the largest age the number of times equal 

to the smallest age in order to determine the sum. However, this activity was rejected as it 

became too abstract and the children lost engagement. Thus, in order to simplify and motivate, 

I wrapped the counting-on part in the game Tag. In the first issue of the Tag a Number activity, 

tagged children had to run to the 100-dotted circle, toss a dice, and then count-on to ten in order 

to continue the game. However, to enhance flow, the chaser tagged the children with a number 

1 to 6, which they used as a basis to count-on to ten.   
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Figure 16: Refinement cycles of array’s used in the ETPs and in the post-tasks 

Although I did not modify the fixed tasks during the interventions, the designs used in ETP 1 

and 2 build on refinement of arrays tested in a pilot study engaging children to use animal 

metaphors as references for physical mapping of small numbers 1 to 4 (Bjørnebye et al., 2017; 

see Appendix 1 for details). As illustrated by Figure 16, the arrays in the pilot study were 

extended to a 16-dotted circle (d = 2 m) in the post-task, which in turn was extended to include 

50 dots (d = 3 m) in the Navigation task in focal study 2 and 100 dots (d = 4 m) in ETP 2. The 

arguments for these changes were threefold. First, large multi-dotted arrays allow a structural 

and embodied approach to number-space mappings in three dimensions (cf. DP 1 and 2) that 

also foster multimodal experiences of cardinality, ordinality and arithmetic (cf. DP 3). Second, 

I recognised the value of developing designs that enhance shared experiences for learning 

through imitated action (cf. DP 4). Third, the large-scaled matrices allow the cultivation of 

mathematical thinking in game, rule, and play-based settings, thereby adding layers of meaning 

to the number-space associations (cf. DP 2). In addition, the large circles could also function as 

sites for assessment. For example, the 100-dotted circle in ETP 2 was used as starting point for 

several games that focused on aspects of the min strategy (e.g., the Tag a number activity), and 

it also demonstrated its usefulness in assessing children’s bodily grounding of counting-based 

addition (cf. the Min task in focal study 3).  

Figure 16 also shows that the symmetrical structured arrays used in the fixed task in ETP 1 (i.e., 

the Imitate animal-activity) builds on refinements of the designs in the pilot study, and the 

Pilot

16 dots 

d = 2 m

Navigation 
task

50 dots

d = 3 m

ETP 2

100 dots

d = 4 m

ETP 1

1-4 dotted 
canonical 
structured 

arrays

Pilot

1-4 dotted 
arrays

framed 
within a 
square
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rationale for this modification was twofold. First, educational research suggests that young 

children identify canonical (symmetric) patterns faster than asymmetric and linear 

configurations (e.g., Wender & Rothkegel, 2000). Second, supported by observations in the 

pilot study and guided by DP 2, I assumed that the use of limbs in the simultaneous tagging of 

symmetric arrays was more in line with the children’s prior experiences regarding body 

postures than physical adaption to non-symmetric configurations. Accordingly, the fixed tasks 

used in ETP 1 and 2 also followed the iterative process of re-design, however framed by a larger 

time interval.  

5.2.4  Implementation: Kindergarten teachers and researchers roles and responsibilities 
 

My role as the facilitator during interventions was supported by experiences from mentoring 

and coaching children in sports (e.g., football, handball), my position as a physical educator 

and math teacher in primary school and my work as a teacher educator in math, which also 

involved courses in outdoor embodied learning in various mathematical subjects. I also gained 

valuable experiences in guiding children in the pilot study (see Appendix 1).   

My role as a participant researcher in the project aligns with criticism raised against the illusion 

that external facilitators’ adaption of a passive and technical role reflects neutrality in the 

research process in participator inquiries (Denzin & Lincoln, 2008). Through my role as a 

research facilitator, I took active part in leading the joint sessions, in guiding and motivating 

the children and in collaborating with the KTs to support the implementation of the 

programmes. The participating KTs responsibility during the fixed sessions was, to their best 

abilities, to improve flow in activities and to support children’s motivation and well-being, and 

thus improve the conditions for children’s learning. When the KTs (or the researcher) felt that 

the original layout was too difficult for the child to handle (either the fixed or joint activities), 

the supervisor could provide one-to-one guidance, adaptation, re-modelling and simplify it 

according to the child’s performance level. For example, in the fixed task in ETP 2 (i.e., the 

Min task), simplification could be reflected in setting the dice to small numbers, while joint 

verbal counting, physical modelling (cf. DP 4) and a helping hand could scaffold the child to 

master the counting-based addition. 

5.3  Participants, samples, and data collection 
The two kindergartens (referred to as Kindergarten 1 and 2) in this dissertation were 

strategically chosen due to the conformity between their focus on outdoor pedagogy and my 

research goals of exploring epistemic processes related to embodied designs, but also for 
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reasons of convenience as volunteer participators (Appendix 3). Individual testing after 

interventions in these ECEC institutions provided the empirical data for the three focal studies.  

With the written consent of parents (see Appendix 4), 3- and 4-year olds (17 children in 

Kindergarten 1 and 10 children in Kindergarten 2) participated over a period of eight weeks in 

ETP 1. Seven month later, the same groups participated in the five-week long ETP 2, but 

implementation in Kindergarten 1 was only used for testing and refinement. Consequently, only 

data from Kindergarten 2 regarding ETP 2 is included in this dissertation (cf. focal study 3).  

Table 2 provides an overview of context, interventions and participants, selection criteria, 

knower-level-data and average level of participation in the interventions, types of test 

procedures used, and the amount of video material from the individual tests used in the focal 

studies (the three articles provide more detailed information).  

Table 2: Overview of the focal studies, context, tutors, and participants, selection criteria, testing 
procedures and data material 

 Focal study 1 Focal study 2 Focal study 3 

Context  Kindergarten 1 – asphalted 

area (atrium) 

Kindergarten 2 – 

asphalted area  

Kindergarten 2 – 

asphalted area 

Year and period  Autumn 2017. 8 weeks.  Autumn 2017. 8 weeks.  Spring 2018. 5 weeks.  

Intervention  ETP 1, 13 sessions ETP 1, 7 sessions ETP 2, 7 sessions 

Tutors 3 KTs and research-

facilitator (me) 

1 KT and research-

facilitator (me) 

1 KT and research-

facilitator (me) 

Participating children  17  10  10  

Selection criteria Age, ETP 1, knower-level Age, ETP 1 Age, ETP 2 

Sample selected for 

analysis 

8 (4 girls, 4 boys; mean 

age 4:3, range 3:11-4:9): 

Two C2- knowers, six C3-

knowers 

10 (4 girls and 6 boys; 

mean age 4:2, range 3:10-

4:8). Seven CP-knowers, 

three subset-knowers 

10 (4 girls and 6 boys; 

mean age 4:9, range 4:5-

5:3). Nine CP-knowers, 

one subset-knower 

Average participation 

for sample 

9 sessions; 7 h 

 

6 sessions; 6 h 6.4 sessions; 6 h 24 min 

Participating children 

selected for multi-case 

analyses 

6  8  7  

  

Individual testing 

procedures 

- Standardised9 and 

modified Give-N task 

- Navigation task 

- Standardised and 

modified Give-N task 

- Jumping task 

- Give-N task 

- Min task 

 

Time of video-recorded 

material from 

individual testing 

120 minutes 200 minutes 150 minutes  

                                                           
9 Due to autumn vacation, the standard Give-N test in focal study 1 was given two weeks after the 

modified Give-N test (see description of the Give-N procedure on p. 109 in Article 1 and in Chapter 

3.2.2). The purposes of the dual testing were to base the selection from ETP1 in K1 to include extreme 

cases (i.e., subset-knowers’), and to use the two sets of knower-level data for comparing performance 

of exact production of small sets in different settings.   
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In Table 2, it can be seen that the empirical data collected for the focal studies have a qualitative 

format in the form of video recordings of individual testing. The use of audio-visual materials 

in research has several advantages (Heath et al., 2010), and includes two main gains for my 

dissertation. Firstly, the video material enable me to analyse different influential and 

interrelated dimensions of design, instruction, talk and embodied action, and through the 

embodied theoretical lens direct my attention to the children’s number-space mappings in real 

time (Knoblauch et al., 2012). Secondly, since action possesses the dual feature of being both 

context sensitive and context renewing, it is difficult to capture in situ. Consequently, the video-

recorded material allows me to recapture the children’s speech, use of tools and body-spatial 

interaction in detail (cf. the framing question of the dissertation).   

Data collection of the ETPs include video of the sessions and unstructured log capturing self-

reflection and feedback from KTs. A general description of how this empirical material was 

used for evaluation and refinement of the joint activities is provided in subsection 5.2.3. 

However, only data from individual tests are included in the focal studies (i.e., 120 min, 200 

min and 150 min in focal study 1, 2 and 3, respectively; see Table 2). Although this is a 

methodological weakness considering the DBR-part of my thesis (see clarification of this 

limitation in section 2.6), this choice enables me to answer the research questions in the focal 

studies, but also reduce the data material to a manageable size. In retrospect, however, I 

acknowledge that a focal study aimed at the DBR-part of my dissertation study could have 

provided a more rigorous understanding of the role the ETPs played in supporting the young 

children’s grounding of mathematical thinking (see further reflections around the quality of the 

study in subsection 5.5.5). 

As Table 2 shows, the initial selection criteria for children in focal study 1 was, in addition to 

age and participation in ETP 1, based on their knower-level, and includes the biased sample of 

C2- and C3-knowers as assessed by the Give-N post-task, while focal study 2 and 3 include all 

children in the ETPs as samples. To identify prototypical cases as well as maximum variations 

of task behaviour in these samples (Flyvbjerg, 2006), each trail from every child was included 

in the initial analyses. Based on a cross-case comparison of this rich and broad empirical 

material, patterns of grounding mathematical thinking in embodied or simulated action emerged 

and were analysed using a multi-case methodology.  

In Table 2, it can be seen that most children were included in the multi-case analyses (i.e., 6 out 

of 8, 8 out of 10, and 7 out of 10 in focal study 1, 2 and 3, respectively). The selection criteria 

for the multi-case analyses were based on the goal of examining recurring patterns and 
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variations within each identified category of task behaviour, and thereby provide an in-depth 

exploration within the criteria set for being a member of the particular class10. As noted by 

Eisenhart (2009),   

“In striving for theoretical generalization, the selection of a group or site to study is made based 

on the likelihood that the case will reveal something new and different, and that once this new 

phenomenon is theorized, additional cases will expose differences or variations that test its 

generalizability. The criterion for selecting cases from which one will generalize is not random 

or representative sampling but the extent to which the cases selected are likely to establish, 

refine, or refute a theory […] the goal of theoretical generalization is to make existing theories 

more refined and incisive.” (Eisenhart, 2009, p. 60)   

This is consistent with Yin (2009), who argues that since case studies are generalisable to 

theoretical propositions and not to populations, the choice of cases in qualitative research should 

always be based on a specific theory that seeks to be tested (Yin, 2009). Before I will outline 

the analytical techniques used to achieve generalisation in my dissertation, I will present the 

testing procedures used in connection to the focal studies. 

 

5.3.1 Procedures of the post-tasks 
 

A researcher led all the testing, one child at a time. The post-testing procedures include the 

modified Give-N task, the Navigation task, the Jumping task and the Min task.  

The modified Give-N task (focal study 1 and 2) 

 

 

Figure 17: Array used in the modified Give-N task and the 

Navigation task 

 
 

Figure 18: “Kangaroo-two” using the legs to tag two dots 

The modified Give-N task used a circle (d = 3 m) with 50 arbitrarily distributed dots (see Figure 

17). Positioned outside the circle, the child was asked: “Can you jump a cock-a-doodle-doo-

one/kangaroo-two/monkey-three/frog-four?” (cf. Figure 18). If necessary, the child was guided 

                                                           
10 Detailed descriptions of the selection criteria for the multi-case analysis is provided in the respectively articles. 
See also subsection 5.4.1.  
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via a practice trail. The child was told to say what they jumped. In the case of an unclear or 

absent articulation, the researcher could ask “What did you jump?”. The questions were asked 

in random order, and the criterion for proficiency on a level of exact numbering was success in 

at least two out of three trials (Wynn, 1992). Accordingly, a child could be asked from a 

minimum of eight (all successes) to a maximum of twelve questions.  

The modified Give-N task builds on the standardised Give-N task and is an extension of the task 

used in the pilot study (Bjørnebye et al., 2017; Appendix 1), and it differs from the standardised 

version in several ways. First, the modified version allows full-body spatial interaction on the 

ground, while the standardised task allows the use of upper-body action in the manipulation of 

concrete items.  Second, in the standardised task, the child is both asked (e.g., “Can you give 

the puppy two items?”) and supposed to respond verbally by using number words (e.g., “Is that 

two items?”). In contrast, the modified Give-N task uses animal metaphors as verbal references 

of numerosities (e.g., “Can you jump a kangaroo-two?”), and only requires verbal confirmation 

if the articulation is unclear or absent. Third, in contrast to the standardised Give-N task’s 

requirement of producing a pile of items that are delivered to a puppy, the modified version is 

based on the use of body limbs in the coupling of spatial distributed dots on the ground to 

establish one-to-one correspondence in accordance with the requested cardinal value.  Fourth, 

unlike the modified version, the standardised Give-N task follows the titration method, which 

means that if a child is unable to respond on a number (they are asked in ascending order), then 

no higher number is asked (see details in subsection 3.2.2). Finally, the modified Give-N task 

is only tested within the subitising range one to four as opposed to the standardised version, 

which also asks for higher number for assessing abilities in using a counting procedure.  

 

The Navigation Task (focal study 1) 

 

The Navigation task used a circle with 50 arbitrarily distributed dots inside and four coloured 

lines outside (see Figure 17).  According to the criteria that each trail started (A) and ended (B) 

in a pair of coloured lines that intersected at the centre of the circle, there were four ways of 

using coloured cues to communicate the path of navigation (i.e., blue-orange, orange-blue, 

white-red and red-white). First, the researcher presented the task: “You are to jump from the 

red line to the white line (pointing), and you must tell (i.e., use animal metaphors as verbal 

references) what you jump”. After the completion of a trial, feedback was provided if the child 

skipped articulation (“remember to say what you jump”) or double-tagged (“do not use the same 
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dot twice”). During action, the experimenter could give hints to remind the child of the aim of 

the task (e.g. “You are to jump to the red line”), provide encouragement (e.g. “and then”) or 

address unclear articulation (e.g. “You said?”). Each child was asked to produce a minimum of 

two and a maximum of four trails.  

 

The Jumping Task (focal study 2) 

 

 
Figure 19: The level 1 task 2+y=3 

 
Figure 20: “If you jump a frog-

four here…”  

 
Figure 21: “…and then you jump 

something here before you jump 

out…” 

The Jumping task holds the syntactic form x + y= z and may be categorised as a Part-Part-

Whole-problem with an unknown part (Sarama & Clements, 2009). The researcher and the 

participant sat on opposite sides of a table. Two circles (d = 18 cm) formed the boundaries of 

the parts, and twenty items were available for modelling. The circle to the left of the child 

contained an array within subitising range 1 to 4 (symmetric patterns for 3 and 4). The tasks 

were categorised into two levels:  

Level 1: The whole (z) within subitising range (e.g., 2+y=3; see Figure 19).  

Level 2: The unknown part (y) within the subitising range, the whole (z) above.  

At least two tasks were given at each level, and succession to level 2 was contingent on solving 

the previous tasks. The task started with the interviewer putting x items in the circle to the left 

of the child. For example on the 4+y=7- task, the interviewer said “If you jump a frog-four here 

(pointing at a symmetric 4-dotted array; see Figure 20), and then you jump something here 

(pointing at the empty circle; see Figure 21) before you jump out (pointing). If you jumped 

seven in total, what did you jump here then (pointing at the empty circle)?” The interviewer 

could promote guesses, argumentation and contextualisation via open questions (e.g., What 

do/How did you think? Can you make a guess/check that out/show? What did you jump?). 

Closed questions (e.g., Can you count (all)/use items?) were restricted to the first level and only 
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given if the child was unable to respond to the open questions. The task was repeated if the 

child needed encouragement. 

 

The Min Task (focal study 3) 

 

 
Figure 22: Two dice 

and the 100-dotted 

circle 

 
Figure 23: Role two 

dice, pick up the 

largest one 

 
Figure 24: Tag the 

largest addend 

outside the big circle 

 
Figure 25: Counting-

on inside the circle 

 
Figure 26: Keeping 

balance while 

expressing the sum  

 

The Min task used two dice and a circle with 100 randomly distributed dots (d = 4 m; see Figure 

22). First, the researcher introduced the child to the Min task: “Do as we did in the game earlier”, 

which implicitly meant performing the following four steps:  

(1) Roll two dice, compare the values (e.g., 3 and 6; cf. Figure 23) and pick up the one with the 

smallest value.  

(2) Articulate and physically tag the largest addend as a whole (e.g., use the feet to tag the dice 

and say “six”; cf. Figure 24).  

(3) Enter the 100-dotted circle, and informed by the value of the handheld dice, use the feet to 

tag dots and verbally count-on the number of times equal to the smallest addend (e.g., 

“seven, eight, nine”; cf. Figure 25). 

(4) Keep the balance and articulate the sum in the final tagging (cf. Figure 26).  

The researcher then asked: “Can you roll the dice? Which dice should you pick up? What do 

you do with the other dice?” If necessary, the child was guided via a practice trial. To ensure 

variation in numbers to add, at least three tasks were given at levels 1 to 3: Level 1 – two dice 

1 to 4; Level 2 – two dice 1 to 6; and Level 3 – one dice 1 to 6, the other set to 3, 5 and 6, 

respectively. During task solution, the interviewer could ask: “What did you get?”, “What do 

you say/do?” and “How many did you get?”.  
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5.4 Data analyses and theory building 
 

In contrast to the recognised Gold Standard of quantitative research that emphasises on the use 

of large or random samples and controlled trials to achieve generalisation, the notion of 

generalisation in case studies is a debated issue as it requires extrapolation that can never be 

completely justified logically (Firestone, 1993; Gerring, 2007). However, generalisation is 

intertwined with humans’ cognitive abilities and is therefore a fundamental concept for human 

beings to interact with the world in a coherent way (Robinson & Norris, 2001; Ruddin, 2006). 

Without generalisation beyond the data, there is consequently no theory or insight and therefore 

no need to do research (Mintzberg, 2017). In this section, I will outline the analytic approaches 

and tools used to achieve generalisation in my research study.     

 

5.4.1 Generalisation in the focal studies 
 

The focal studies used principles from the EC framework for analytic generalisation of the 

empirical material consisting of video of 3-to-5-year-olds’ grounding of mathematical thinking 

in talk and embodied interaction. Basic principles for optimising analytic generalisations in 

multi-case studies include depth and relevance of the attributes associated with the classification 

(Kennedy, 1979). To address these aspects in the focal studies, I used the analytic techniques 

pattern matching, cross-case synthesis and explanation building (Yin, 2009).  

In the first step of the analysis, I combined pattern matching logic with a micro-analytic 

approach for an in-depth exploration of how the task behaviour cohered with relevant attributes 

of the mathematical targeting domains. Then I conducted a cross-case analysis to identify 

diversities, gaps and shared patterns. Based on this comparison, general patterns and 

discrepancies emerged, which I synthesised into categories of grounding mathematical thinking 

in talk and embodied interaction. Finally, supported by principles of multi-case methodology, 

I discussed the results from each identified category of task behaviour from the EC perspective, 

thus providing confirmatory or disconfirmatory evidence shaping the theory (Dooley, 2002). 

Preliminary results and ongoing analyses were also discussed with other researchers at 

conferences and in presentations for the field of practice (Bjørnebye, 2019)11.  

                                                           
11 CERME11 Conference in 2019, Utrecht, Nederland and POEM4 Conference in 2018, Kristiansand, Norway.   
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Table 3 provides an overview of theoretical models, main test procedures, data of analysed 

trials and correct responses, and categories that emerged from the analyses in the focal studies.    

Table 3: Overview of theoretical concepts and frameworks, main testing procedures, number of trials 
examined, frequency of correct responses and categories emerging from the analyses in the focal 
studies 

 Focal study 1 Focal study 2 Focal study 3 

Theoretical 

frameworks, shared 

and specific 

concepts12 

- Embodied cognition 

- CMT 

- Conceptual metaphoric 

mapping 

- Embodied cognition 

- Embodied numerical 

cognition  

- Number-space 

mappings 

- Embodied cognition 

- Embodied numerical 

cognition  

- Number-space 

mappings 

Main testing 

procedure 

Navigation task 

Modified Give-N task 

Jumping task 

 

Min task 

Targeting 

mathematical 

domain 

The idea of cardinality  

(exact production of small 

sets) 

Parts-whole reasoning Counting-based addition, 

the min strategy 

Number of trials 

examined  

22 tasks  

(106 body-spatial couplings) 

42 tasks (x+y=z; y 

unknown) 

106 additions 

Number of correct 

mappings/ 

reasoning/ 

strategies 

Coherence in verbalised body-

spatial couplings in 96 out of 

106 mappings of sets 1 to 4 

Valid reasoning in 37 out 

of 42 tasks  

 

Correct modelling of the 

min-strategy in 81 out of 

106 trials 

Findings: Names of 

categories of task 

solution identified  

1. Inconsistent cross-modal 

mapping of numerosities 

2. Walkers: Rigid cross-modal 

mapping of numerosities, 

problems in navigation and 

pattern recognition 

3. Jumpers: Fluent and 

coherent cross-modal 

mapping of numerosities, 

goal-directed navigation  

1. Inconsistent 

production of valid 

arguments  

2. Patterned counting to 

support coherence in 

reasoning  

3. Linear touch counting 

to support coherence in 

reasoning  

1. Preference in 

retrieving visual 

information from 

handheld dice 

2. Preference in visuo-

tactile representations 

(cf. touch counting) 

3. Preference in mental-

based representations 

(cf. handheld dice) 

4. Flexibility in 

representational modes 

5. Incongruence strategy 

modelling 

 

Table 3 shows that concepts from the EC framework were used as analytical tools to explore 

the children’s grounding of the idea of cardinality, parts-whole reasoning and counting-based 

addition, and that some were specific tools while others were shared across the focal studies.  

A principle from the EC framework guiding the development of the analytical tools used in the 

focal studies was the assumption that the grounding of mathematical thinking was modelled as 

number-space mappings mediated in modality-specific systems (e.g., kinaesthetic, tactile, 

auditory, visual-spatial; see the assumptions stated in section 2.5).  

                                                           
12 See the outline of the theoretical framework in sections 2.2 and 4.2.  



64 
 

 

Figure 27: “Six” - 

distinct number-space 

mappings in focal study 

3 

 

Figure 28: “Frog-four” - 

distinct number-space 

mappings in focal study 1 

 

Figure 29: Connected 

number-space mappings 

in focal study 1 

 
Figure 30: Connected 

number-space mappings 

in focal study 2 

 

Based on this and to facilitate the organisation of the empirical material, video of individuals’ 

task behaviour was segmented into modal units (e.g., spoken number words, finger gestures, 

body postures tagging units or wholes; see Figure 27) as the smallest coding element (Jacobs et 

al., 1999). In focal study 1, basic coding units were theorised as relational phenomena by the 

notion of conceptual metaphorical mapping13  (see Table 3). For example, the use of four limbs 

in verbalised (i.e., “frog-four”; see Figure 28) coupling of a 4-dotted array was modelled as a 

cross-modal mapping from the visuo-spatial domain to the kinaesthetic and verbal domains 

(i.e., the directional dimension). Similarly, focal study 2 and 3 used the notion of number-space 

mappings to model connections and directionality among coded elements (see Table 3). An 

example of number-space associations in focal study 2 includes mappings of the mental image 

of a frog-gestalt to the spoken word “frog-four” and to a four-fingered square all-at-once gesture 

in the empty circle (e.g., in guessing “frog-four” in the task 2+y=6).  

To further capture connections in mathematical thinking and its relation to tools and context, I 

assembled coded segments of distinct number-space mappings into drawn clips (cf. Ekdahl et 

al., 2016). These accumulated ways of representing several connected number-space mappings 

were in turn linked to rich descriptions from transcripts. For example, Figure 29 from focal 

study 1 illustrates a series of clips (i.e., closed curves represent distinct number-space mappings 

in the form of tagged sets).  Similarly, Figure 30 from focal study 2 illustrates a series of 

connected number-space mappings in the form of a touch counting sequence, which in turn 

matched the logic of the min strategy on the 4+y=8 task. Accordingly, the relation between 

simultaneity and connection was closely associated with congruence in embodied thinking 

                                                           
13 For consistency in the terminology, I will mainly use the notion of number-space mappings. 
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since it allowed me to study number-space mappings as both distinct (e.g., discrete motor units 

such as finger gestures) and relational (e.g., additive reasoning) phenomena.  

To give further substance to the analytical generalisations, I emphasised that the children’s task 

behaviour should be observed in several test experiences (i.e., 106 couplings of numbers in 

focal study 1, and 42 and 106 tasks in focal study 2 and 3, respectively; see Table 3). In Table 

3, it can be seen that the analyses of the focal studies identified three or four main categories of 

task behaviour, each in which reflects characteristic features of grounding mathematical 

thinking in spatial extensions and locations that go beyond the information provided by the 

frequency of correct responses as shown in Table 3. Below, I will outline technical aspects 

concerning the conduct of the coding.  

 

5.4.2 Qualitative data analysis 

Qualitative data analysis (i.e., to connect) rests on the distance created by separating the 

empirical materials into smaller segments for consideration, reflection and interpretation 

(Ellingson, 2011). Accordingly, the credibility of the qualitative data analysis in this 

dissertation study is reflected in how I managed multiple dimensions of tensions between the 

data and the codes to ensure reconstruction of evidence in terms of tracing back to the original 

material and related codes (Chenail, 2012). To maintain a chain of evidence, I created a database 

containing information of each participant. Guided by the framing question of my dissertation, 

the coding structure aimed to capture the bidirectional, multimodal, distinct and relational 

nature of number-space mappings, and its coherence to the targeted mathematical domains. In 

order to support the dissertation’s objective of in-depth exploration of children’s grounding of 

mathematical thinking in embodied action, I combined clips of number-space mappings and 

transcripts of verbal accounts of the child’s (and the interviewer’s) mathematical thinking to 

provide accurate, detailed and contextualised descriptions of the data. In addition, crutch words, 

sighs and non-verbal cues (e.g., pauses, overlaps, pitch, volume and fluency) can convey 

important aspects of mathematical thinking. Consequently, the trustworthiness of the 

interpretation of the transcription rests on the inclusion of crucial pauses and overlaps in the 

video recorded material (Silverman, 2014). To address this tension between data and codes and 

to provide a basis for examining fluency and connection of number-space mappings, the 

transcripts provided accurate information of pauses (e.g., “pauses in 12 seconds”; cf. focal study 
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2) or used brackets for indicating halts for thinking and reflection (e.g., “[Hesitates] Hmm 

[pauses]…”: cf. focal study 2).  

The code structure emerged as a blend of a priori categories and new categories derived from a 

grounding approach. The deductive dimension was mainly influenced by the EC framework 

and the research questions asked, where the assumptions made enabled logical inference of 

codes associated with coherence in the situating of mathematical thinking in sensory-motor 

experiences. In focal study 2, for example, it was assumed that coherence in thinking was 

mediated verbally and non-verbally in a way that matched the logic of additive reasoning, and 

that signatures of simulated action involved verbal use of animal metaphors (e.g., “frog-four”), 

and gestures and modelling matching the canonical structures of the training-based experiences 

from ETP 1. Based on these assumptions, verbal use of animal metaphors, all-at-once gestures, 

canonically structured counting and modelling were derived as a priori codes, as were the 

mathematical building blocks of additive reasoning (i.e., the more-and-less relation, the 

successor rule and the counting principles of Gelman and Gallistel, 1978).  

Inductive based codes came primarily from two types of sources. Firstly, observations during 

the intervention provided knowledge about the children’s expected behaviour in the post-tasks 

(i.e., Navigation task, Jumping task and Min task). This was particularly apparent in focal study 

3, where the fixed activity and the Min task were similar and the piloting of ETP 2 in 

Kindergarten 1 provided additional knowledge of expected codes. Secondly, new code 

categories also emerged during the analyses. This was especially evident in focal study 2 where 

the mathematical content (i.e., exact production of small sets vs. parts-whole reasoning) and the 

context (i.e., outdoor bodily experiences in ETP 1 vs. indoor testing) were different (e.g., linear 

counting emerged as a new category). Furthermore, the introduction of navigation and the 50-

dotted circle as novel elements in the Navigation task in focal study 1 produced new codes 

involving cognitive conflicts, failures in cross-modal mappings (e.g., miss-match in the one-to-

one mapping of limbs and dots) and the degree of fluency in the physical couplings (i.e., 

Walkers vs. Jumpers; see Table 3). However, in light of the complex, bidirectional and 

multimodal nature of number-space mappings, the code structures reflected only a small portion 

of possible ways of grounding mathematical thinking in embodied interaction.   
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5.5  Reflections of the quality of the research 
 

In this section, I will discuss issues related to the scientific rigour and quality of my research, 

including trustworthiness, reliability and ecological validity, and considerations around 

methodological choices.  

 

5.5.1 Trustworthiness 

A threat to credibility in qualitative research is confirmation bias (also referred to as 

anecdotalism), which means that the researcher tends to interpret data based on previous 

findings or to confirm stated hypotheses (Silverman, 2013). In this regard, there was data in the 

three empirical datasets of this dissertation that did not cohere with other findings (e.g., the 

linear counters in focal study 2). However, the explorative approach allowed me to include 

novel and unexpected findings. In addition, the use of modal units as the smallest coding 

segment enabled me to provide rich descriptions of distinct and connected number-space 

mappings reflecting the children’s embodied grounding of mathematical thinking. However, a 

different coding element may have provided other results. Furthermore, researchers with 

different beliefs, expectations and values than me (e.g., post-humanistic researchers; cf. 

reflections in subsection 5.6.3 below) may also be able to see and evaluate other things and to 

identify new patterns in the data material (Silverman, 2013). Based on these reflections, and to 

counteract confirmation bias and tunnel vision, I addressed several issues regarding 

transparency and credibility in the data selection.  

Firstly, to ensure that the coding was not based on extreme and deviant cases or anomalous 

situations, all children’s task behaviour of the samples were coded. To increase the validity in 

terms of selecting data in a transparent way, the inclusion criteria of the multi-case analyses 

were explained in detail (see Article 1, 2 and 3), and the selected cases and data provided 

illustrative examples and rich descriptions of two or more children from each of the identified 

patterns of task behaviour (see Table 2). Additional ways of counteracting confirmation bias 

include triangulation and respondent validation (Silverman, 2013).  

Different types of triangulation include data triangulation, theory triangulation, methodological 

triangulation and investigator triangulation (Patton, 2002). In this dissertation, theory 

triangulation was achieved mainly through the EC perspective, which draws on multiple 
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frameworks that share a set of foundational assumptions (e.g., CMT in focal study 1 and 

Embodied Numerical Cognition in focal study 2 and 3; see Table 3). In addition, the focal 

studies were informed by educational research and models (e.g., empirical research on 

subitising, addition, reasoning; see Table 3 and Chapter 3), contributing to the validity of my 

findings. Data triangulation was achieved with several sources of data (e.g., data from 

standardised and modified Give-N task, Navigation task, Jumping task and Min task), while 

methodological triangulation was reflected in the blending of principles from DBR and multi-

case research and in the use of different analytic approaches to make sound causal inferences 

and explanations (Cohen et al., 2011). Investor triangulation was achieved through the 

collaboration with my supervisor in the different phases of the research process. In terms of 

credibility, this collaboration was particularly valuable in comparing the coding and analysis of 

the data for common confirmation and understanding (Thurmond, 2001). In addition, I 

discussed my findings with critical colleagues in the scientific community, thereby challenging 

my interpretations. 

Response validation suggests that the researchers should make multiple efforts to refine 

tentative interpretations and results based on the subjects’ previous behavior (Silverman, 2013). 

I made several efforts to enhance this aspect of trustworthiness in my dissertation study. Firstly, 

the implementation of the ETPs prior to post-testing ensured children’s involvement in a shared 

base of exercises targeting specific mathematical domains. Accordingly, information from the 

children’s performances helped me to design testing procedures in accordance with their 

conjectured skills. Furthermore, respondent validation was integrated in the post-test 

procedures, so I could validate and refine responses across trials. For example, in focal study 2 

and 3, the children were engaged in several levels of tasks that reflected varying degrees of 

difficulty, so that strategy consolidation and refinement across tasks were explored. The 

interviewer could also ask open-ended or closed questions to encourage participants to refine, 

validate and make their thinking explicit.  

A final aspect of trustworthiness concerns my close involvement in the various phases of the 

research process (Barab & Squire, 2004), and the main issue in this regard was that I as a 

researcher-facilitator was part of the investigated world and featured as an important tool of 

research, implying a risk of misinterpretations and personal and non-objective perspectives 

(Giddens, 1979). Although some proponents of qualitative methods argue that the researcher’s 

insight and deep understanding of the context make them the best research tool, despite their 

biases (Onwuegbuzie & Leech, 2007), I used several strategies to counteract confirmation bias, 
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several of which I have outlined in detail above. Furthermore, the premise of the partnership 

was that the KTs would only play a supporting role in testing and guidance, as they were not 

trained in doing design-based research and were too busy for a deeper commitment that 

involved evaluation and re-design. Nevertheless, their support and knowledge of the children’s 

culture, behaviour and individual preferences made a significant contribution to the dissertation.  

 

5.5.2 Reliability  

Reliability in qualitative research refers to the stability and consistency of the findings, meaning 

that other investigators should be able to examine and replicate my project and come to similar 

conclusions (Altheide & Johnson, 1994). Accordingly, issues of reliability play a central role 

in all stages of a qualitative research process, and an important way to increase the consistency 

of the findings is to document the succession of design, data collection, coding, analysis and 

interpretation (Ali & Yusof, 2011).  

In this dissertation, several efforts were made to support reliability. Firstly, the reliability was 

increased by the independent analysis and coding by my supervisor and I before negotiating to 

reach intercoder agreement (Lincoln & Guba, 1985). Secondly, thick descriptions of the two 

ETPs are included in this dissertation (see subsection 5.2.1), which in sum reported on 

influences from context, instruction and training before the testing that provided the empirical 

material of the focal studies. In turn, this also contributes to the replication of the study and it 

conveys information to KTs in ECEC institutions about practical use of the ETPs. Thirdly, rigid 

procedural descriptions of the conduct of the post-tasks (i.e., The Navigation task, the Jumping 

task, and the Min task) can further enhance replication (see details in section 5.3.1 and in the 

Articles 1-3). Finally, detailed and contextualised data excerpts in the analyses, aimed to 

provide accurate descriptions of the participant’s talk and number-space mappings (cf. 

Silverman, 2013). However, when the children were engaged in the post-tasks and in the ETPs, 

there was a network of interrelations between variables that constantly changed character 

through complex feedback loops (Collins et al., 2004). Therefore, the notion of capturing all 

the influencing variables in my dissertation is hard to justify. However, when doing educational 

DBR, the impact of external and contextual factors are important for understanding the 

phenomena examined, and if the ETPs and the post-tasks are not robust enough to adapt to 

changing conditions, they may not work in real life ECEC contexts. This draws my attention to 

the practical usefulness of the results of my dissertation.  
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5.5.3 Ecological validity  

The ecological validity rests on the extent to which an inquiry is contextualised in the 

environment that the phenomenon occurs, and this aspect of credibility was supported by 

several factors in my dissertation.  

Firstly, the embodied designs were situated in frequently used outdoor areas (see Table 2; cf. 

also section 2.3). This concurs with Barab and Squire (2004), who suggest that in order to gain 

a more genuine and realistic understanding of learning and instruction, DBR must include 

naturally occurring contexts and testing scenes in addition to more favourable and constructed 

settings. In addition, the ETPs were framed within two ECEC institutions with several 

similarities, but also some differences. In this regard, I consider any differences as a strength to 

the embodied design’s adaptability, which supports the claim that contextual nuances are not 

decisive for the results as the focus is on young children’s grounding of mathematical thinking 

in motor behaviour shared by children around the world. Together with the detailed descriptions 

of the embodied activities (cf. section 5.2) and the results of the focal studies, the findings can 

contribute to a deeper understanding of early body-based mathematical thinking for other 

researchers and to KTs with different contextual settings.  

Secondly, concerning the tools, materials and task structures (cf. Sandoval, 2014), the main part 

of each session was integrated into an everyday construction activity, and the artefacts and 

material used (i.e., building bricks, toy-figures, and dice) are elements taken from children’s 

culture of play (cf. DP 2).  The guidance structure of the embodied designs also aimed to reflect 

normal practice, as the children could receive help and support from adults (i.e., KT and 

researcher) and peers, and they were allowed to regulate their own involvement to a certain 

extent (cf. the construction activity as part of the fixed tasks; see subsection 5.2.1).  

Thirdly, the composite movement-based elements of the activities build on and integrate 

children’s motor skills (e.g., gait, jumping, balancing), which form the basis for meaningful 

play in ecologically rich contexts (cf. DP 2). Furthermore, the physical imitation of animal 

behaviour in ETP 1 (cf. the fixed task) is part of children’s role-playing (cf. DP 4).  

Finally, both participating ECEC institutions integrated the embodied designs in daily practice 

after the end of the intervention. This is consistent with Brown (1992), who argues that the 

effectiveness of any DBR-based intervention rests on how applicable and transferrable the 

produced practical knowledge is to an average pedagogical practice. Put together, these 
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reflections and arguments support the likelihood that the results of this dissertation can be useful 

outside its own context.  

 

5.5.4 Reflections on methodological choices and limitations 
 

There are several advantages of using the same methodological and theoretical framework in 

the focal studies. Firstly, the replication provided me as a researcher in-depth knowledge of the 

underlying assumptions of the EC framework and case-based methodology. Secondly, it 

allowed me to develop skills in how I could integrate and adapt the specific methods to the 

research questions asked, which also required technical abilities to perform the analyses (cf. 

subsection 5.4.2). Thirdly, the qualitatively methodological approach provided the benefit of a 

flexible and in-depth approach for the examination of young children’s grounding of 

mathematical thinking in embodied interaction (Driscoll et al., 2007).  

However, compared to a broader methodological perspective of the studied phenomenon, the 

selected methodological approach may imply that salient aspects of the research questions 

asked may have remained unexploited. In addition, studies targeting instruction, facilitation or 

methodological considerations as phenomena of inquiry may have provided a more rigorous 

and trustworthy understanding of how and why the ETPs may support children’s learning of 

mathematics. Furthermore, greater practitioner involvement from KTs (e.g., a collaborative 

learning project) could have increased the relevance of the ETPs for practice (Plomp, 2013). 

Finally, methodological approaches with controlled training conditions (e.g., one-to-one 

training), and use of a control group, randomised crossover design (e.g., Dackermann et al., 

2016) and larger samples may have yielded more rigorous scientific results. 

Further weaknesses of the study concern the design of the activities, which may reflect a biased 

view of the participating children’s motivation and previous experiences. For example, in ETP 

1, I acknowledge that the choice of more culturally appropriate themes than animal behaviour 

may have provided other results (see further reflections in Article 2 and section 7.7). 

Furthermore, the body presents limitations in gesturing larger numbers than those being 

addressed in this dissertation study.  Finally, the wrapping of the post-tests (i.e., the Navigation 

task, the Jumping task and the Min task) in collaborative contexts and in explorative open-ended 

tasks may have provided more reliable results in terms of revealing how young children actually 

use their bodies to ground mathematical thinking onto spatial extensions and locations in 

ecological rich outdoor settings.   
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5.6  Ethical deliberations 
 

The dynamic nature of participatory research in educational settings entails the integration of 

ethical deliberations for good research practice in all phases of the study. To ensure that ethical 

values were followed thoroughly, I applied the guidelines for research ethics given by The 

National Committee for Research Ethics in the Social Sciences and the Humanities (NESH, 

2016). However, as noted by Bertrand Russell, “Ethics is in origin the art of recommending to 

others the sacrifices required for co-operation with oneself” (Russell, 1917, p. 108). 

Accordingly, ethical deliberations in research are not just a matter of following strict, 

predefined standards and regulations. Rather, the nature of ethical concerns in participatory 

research is complex as it involves observation, intervention and interaction with the research 

subjects; it is described as co-operative inquiry with rather than on people (Heron & Reason, 

2006). Based on this, this section comprises reflections on how I dealt with ethical issues that 

emerged in the various phases of my dissertation. 

 

5.6.1 Research ethics 
 

The Norwegian Centre for Research Data approved the project (Appendix 2), and the leaders 

of the two participating ECEC institutions, the KTs and the parents of the participating children 

gave informed consent (Appendix 3 and 4). Ethical issues were discussed with the KTs, who 

were also responsible for informing the parents and for recruiting participants. The letter of 

consent implemented several ethical principles, including issues of confidentiality, anonymity 

and integrity, storage and processing of data (Appendix 4).   

In collaboration with the KTs and guided by the principle of avoiding exposing the children to 

unpleasant situations related to failures or shortcomings, I tried to interpret and solve emerging 

ethical tensions in situ. For example, when spontaneously expressed corrections from other 

children occurred, I emphasised drawing attention to what the children had mastered, which 

was easy considering that the body most often conveyed some meaningful aspect of the 

targeting mathematical domain. Later, children could receive one-to-one guidance without 

interruption from peers. The issue of integrity also arose when the children became tired and 

reluctant to participate in outdoor sessions (sometimes under the joint activities in Kindergarten 

1). To address this, the KT (or the researcher) comforted and talked to the displeased children, 

who could choose to either re-join the group or rest until the next activity.  
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5.6.2  Confidentiality and anonymity 
 

Guided by ethical principles provided by NESH (2016), the processing of personal data was 

limited to gender, average age and age range of participants. Related to this, a main issue 

concerning the framing question of the dissertation was to provide rich and reliable descriptions 

of the participant’s contextualised sensory-motor experiences. However, this pursuit for 

accurate and in-depth accounts of situated body-spatial interaction made it harder to adhere to 

ethical aspects such as non-traceability and anonymity (Cohen et al., 2011). To safeguard the 

children’s integrity, picture filters were used to anonymise the children, but clips of sprayed 

arrays on the asphalt made it possible to trace back the location of the two kindergartens. 

However, the participating ECEC institutions refused to remove the arrays, arguing that they 

wanted to use them in their daily practice after intervention. Although this represents an ethical 

dilemma and weakness in this type of inquiry (Banegas & Villacañas de Castro, 2015), rich 

descriptions of the study and the use of the designs after the intervention were deemed more 

important than keeping the identity of the participating ECEC institutions unknown.  

 

5.6.3 On stigmatisation and voice 
 

Although a key principle of research is to avoid stigmatisation of vulnerable groups  (NESH, 

2016), this emerged as an issue in focal study 1 where the sampling criteria was based on 

knower-level-data, including only children with immature skills in verbal counting for exact 

numbering. However, contrary to stigmatisation, the focus was on highlighting subset-knowers’ 

actual abilities in bodily mapping of small sets as a group. This argument was backed up by the 

results, which showed that children whose performances were labelled weak by standardised 

measures (cf. the Give-N task), showed skills in other modalities for exact production of small 

sets. Accordingly, focal study 1 demonstrated that a conceptual layer of cardinality could entail 

new ways of moving and interacting, an important finding for children with preferences in non-

verbal approaches to mathematical sense-making. In addition, based on the large proportion of 

subset-knowers in Kindergarten 1 (cf. focal study 1), I decided to use the implementation of 

ETP 2 in Kindergarten 1 for piloting and testing and to focus on refining the joint activities, 

thereby allowing the children to experience mastery and meaning rather than becoming 

despondent due to possible failures and shortcomings.  
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Another ethical deliberation was dealing with children whose parents had not given consent 

(Strike, 2006). To meet this ongoing ethical dilemma and to reduce the risk of stigmatisation, 

the interventions in Kindergarten 2 used an area nearby (i.e., the end of a parking area 100 

meter from the institution) out of sight of non-participating children. Kindergarten 1 used an 

atrium that was not part of the outdoor playground. However, about half of the children had to 

pass the atrium when they walked to the playground, and sometimes they asked to participate. 

Therefore, a compromise was made to allow non-participating children to use the sprayed arrays 

for play outside intervention sessions.  

A major privilege when conducting and reporting research with children is the opportunity to 

give a voice to those with less power (Mockler, 2014). However, in practice, I experienced this 

as a challenging task since the most significant aspects of the children’s voice in my dissertation 

study was in the form of non-verbal representations. Also, from a post-humanistic perspective 

of early mathematical development, criticism might be raised of the study’s way of objectifying 

the children, claiming that the goal-directed embodied approach hindered the children’s feelings 

and meanings to come to fore. Several arguments underline, however, that the children’s voice 

through bodily action fostered mastery and meaning to their lived reality. Firstly, through the 

integration of motor resources not usually appreciated in early learning of mathematics, the 

intervention provided a steep learning trajectory for all children across competencies. Secondly, 

the design’s inclusion of music, rhythm, play, construction, collaboration and composite bodily 

movements are ecological elements that conflate with children’s daily practice (see subsection 

5.2.1).  Thirdly, and most importantly, I think, was the overall positive feedback from children 

(e.g., smiles, laughter, motor engagement and excitement). For example, when I arrived at the 

sessions, the usual scene was children shouting and gesturing as they ran towards me: “Math-

Morten is here, come on everyone! What are we going to do today?” Together with positive 

feedback from KTs, leaders of the ECEC institutions and parents, these aspects resulted in a 

prolonged partnership in the form of examining new embodied designs. However, due to the 

Covid-19 pandemic, the planned research programmes are temporarily postponed.   
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6.  Summaries of the articles 

 

This chapter provides brief summaries of the three articles included in this dissertation. The 

articles present the empirical findings that constitute my dissertation.  Combined, the findings 

reported in these articles comprise young children’s grounding of the ideas of cardinality and 

addition in embodied interaction, and the simulation of bodily experiences of numerosity in 

reasoning about parts-whole relations. A further discussion of the results follows in Chapter 7. 

The two first articles were co-authored. The author’s declaration in Appendix 5 provides 

detailed explanations of individual contributions to the articles.   

 

6.1 Article 1 (focal study 1) 
 

Bjørnebye, M., & Sigurjonsson, T. (2020). Young Children’s Cross-Domain Mapping of Numerosity in 
Path Navigation. In M. Carlsen, I. Erfjord, & P. S. Hundeland (Eds.), Mathematics Education in 
the Early Years: Results from the POEM4 Conference, 2018 (pp. 109-126). Cham: Springer 
International Publishing. 

 

There are three main arguments for designing embodied training programmes based on innate 

abilities of numerosities in the form of a structured approach to exact production of small sets 

for young children with partial concepts of cardinality. Firstly, the ability of exact enumeration 

is fundamental to later development of fluency in arithmetic. Secondly, the cultivation of 

number sense and culturally acquired knowledge of numbers is particularly important for 

children who are struggling to master exact numbering in standardised tests. Thirdly, research 

has shown that full-body movement provides multimodal cues to represent and retrieve 

numerical knowledge. Based on this, the multi-case study reported in Article 1 builds on eight 

3-to-4-year-old subset-knowers’ (C2- and C3-knowers) participation in ETP 1 conducted 

outdoors. The interventional activities involved the grounding of the idea of cardinality in 

physical couplings of 1-to-4-dotted canonical (symmetric) structured arrays on the asphalt using 

the animal metaphors cock-a-doodle-doo-one, kangaroo-two, monkey-three and frog-four as 

verbal references (e.g., saying “kangaroo-two” while simulating kangaroo behaviour using the 

legs to tag two dots).  

Individual post-testing in the Navigation task collected empirical data to analyse subset-

knowers’ abilities to transform and adapt the canonical structured embodied experiences to a 
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novel context of 50 randomly distributed dots, using the four animal metaphors from the 

intervention as verbal references for physical mapping of arrays of dots while moving and 

maintaining a course across the circle. The following research question was explored: “What 

inhibits and scaffolds C2- or C3-knowers’ mapping of spatial structured knowledge of 

numerosity across conceptual domains in a navigation task?”  

The notion of conceptual metaphorical mapping theorised the grounding of the idea of 

cardinality in sensory-motor experiences, focusing on similarities and differences in cross-

domain mapping of numerosities (e.g., mental magnitudes, and kinaesthetic, verbal, and body-

spatial modalities). Based on an interpretive stance adapting principles from multi-case 

methodology, the analyses showed that the subset-knowers possessed the ability to use animal 

metaphors as verbal references for bodily production of sequences of small sets (e.g., “monkey-

three, kangaroo-two, frog-four” denoted as 3+2+4) in a manner that exceeded their cardinal-

knower level as assessed by the standardised Give-N task. Furthermore, the analyses 

demonstrated quality differences in goal-directedness, abilities in visual pattern recognition and 

verbal retrieval of animal metaphors, which in turn seemed to influence the degree of fluency 

and abilities in adapting the body posture to different arrangements of dots. Three categories of 

task behaviour were identified: (1) Children who failed in some of the cross-modal mapping of 

numerosities; (2) Children showing problems in navigation and pattern recognition (Walkers); 

and (3) Children who showed coherence in cross-domain mapping of numerosities and goal-

directed navigation and appropriation of the spatial structured affordances (Jumpers).  

The production of small sets for children opting to walk seemed to be negatively influenced by 

a rigid idea of how the configuration of potential arrays should look like (e.g., 2-dotted arrays 

had to appear in parallel to their visual field, and 3- and 4-dotted arrays had to be regular 

shaped). This suggests that the learnt (cf. ETP 1) and the innate (cf. subitising and OTS) 

capacities for recognising small numbers worked as parallel processes.  In contrast, children 

opting to jump showed coherence in metaphor usage, body-spatial coupling and navigation, 

suggesting that the integration of learnt and inborn spatial mental models to process numbers 

supported a rapid production of sequences of small sets.  

The standardised Give-N task requires the child to produce a requested number of tangible 

objects (e.g., “Can you give the puppy three items?”; see section 3.2.2). In contrast, the 

Navigation task, by reversing the mapping order (i.e., “Can you tell us what you jump?”) in a 

context promoting autonomy (i.e., free choice of sets), authentic movement patterns and use of 

metaphors that convey spatial structured information of numbers, showed that subset-knowers’ 
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cardinal-knower-level behaviour can reflect complementary layers of meaning (both subjective 

and objective) to the idea of cardinality. To conclude, based on the EC framework, this study 

adds to the debate on how to use the body in early learning of mathematics as it reveals 

characteristic features, similarities and diversities in young children’s grounding of the idea of 

cardinality in physical interaction in arrays on the ground. The findings also contributes to the 

knower-level theory as it shows that subset-knowers’ concepts of cardinality in terms of 

wholeness of sets are more diverse than what data from the standardised Give-N task can 

indicate.  

 

6.2 Article 2 (focal study 2) 
 

Bjørnebye, M., & Sigurjonsson, T. (Submitted). Young children’s simulated action in additive reasoning 
 

The multi-case study reported in Article 2 provides an in-depth exploration of young children’s 

simulated action in a parts-whole task (named the Jumping task) from the perspective of EC. 

The motivation for conducting the research is threefold. Firstly, contemporary research 

emphasises the importance of early development of reasoning about numerical relations. 

Secondly, recent research that posits a close relationship with spatial and numerical domains 

shows that children develop skills in arithmetic reasoning at earlier stages than previously 

suggested. Thirdly, two lines of research of the embodied perspective focus on the role of full-

body and upper-body spatial interaction, respectively, in the creation of number-space 

association. Yet, little is known about how the blending of these forms of embodied 

numerosities in the form of simulated action might support additive reasoning.  

Informed by theory of embodied cognition, the study assumed that sensory-motor experiences 

in the form of multimodal simulation matching a targeting domain might enrich encoding and 

thereby facilitate the re-enactment in simulations of these ideas. The context of the Jumping 

task is based on ETP 1 engaging ten 3- and 4-year-olds in verbalised body-spatial mapping of 

1- to 4-dotted canonical (i.e., symmetric) patterned arrays on the ground (e.g., saying “monkey-

three” using both legs and one hand to tag three dots).  

Post-data showed that the ten participants mastered exact production of small sets 1 - 4 in the 

modified large-scale Give-N task in a 50-dotted circle (e.g., “Can you jump a monkey-three?”; 

see Figure 16), while results from the standardised Give-N task showed that seven children 

were cardinal principle knowers and three were subset-knowers.  
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Based on empirical material from individual post-testing with the Jumping task, the study 

reported in Article 2 examined the children’s ability to re-enact the spatially structured outdoor 

experiences of numbers in an indoor setting using finger gestures and manipulation with tools 

to simulate the full-body action while targeting additive reasoning as a new content domain. 

The specific research question was: “What characterises 3- and 4-year-olds’ talk, use of tools, 

gestures and simulated action in reasoning about parts-whole relations?” The aim of the study 

was to develop our understanding of promoting and inhibiting characteristics related to young 

children’s use of simulated action to bridge different forms of bodily knowledge of numbers in 

more complex arithmetic reasoning.  

The pattern matching and cross-case comparison identified three categories of task behaviour 

in the Jumping task: (1) Subset-knowers with partial and inconsistent abilities in reasoning; (2) 

CP-knowers that supported additive reasoning in the re-enactment of the canonical patterns 

from the interventional experiences in the form of patterned counting; and (3) CP-knowers 

opting for linear touch counting of the unknown part to support coherence in the parts-whole 

reasoning. The main characteristics of the first two groups comprise partial and comprehensive 

abilities to re-enact and integrate the canonical structured sensory-motor experiences in the 

additive reasoning, respectively. In contrast, children who opted for linear modelling reflected 

a high degree of independence from the interventional experiences. These diversities in strategy 

usage concur with the assumption of EC holding that individuals can ground abstract concepts 

in multiple and mutually constitutive simulations, and that these simulations can be partial and 

incomplete (see section 4.2 for details).   

Based on the EC framework, this study adds in several ways to the field of educational research 

focusing on early abilities in parts-whole reasoning. Firstly, the findings show characteristic 

and deviant features in how young children might re-enact full-body number-space mappings 

in simulated action in a way that supports congruence in additive reasoning in a realistic parts-

whole task. Secondly, it demonstrates patterns in young children’s off-loading of mathematical 

thinking onto spatial structures, gestures and tools. Finally, the study highlights the relation 

between spatial structured full- and upper-body movements in the early learning of 

mathematics.   
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6.3 Article 3 (focal study 3) 
 

Bjørnebye, M. (Under review). Full-body interaction in young children’s modelling of counting-based 
addition 

 

The transition from counting-all to counting-on strategies involves a conceptual leap in the early 

learning of addition. To address this change and motivated by the EC framework’s assumption 

that many everyday experiences are closely related to basic arithmetic, ten kindergarteners 

participated in a guided outdoor intervention (i.e., ETP 2) that involved grounding of counting-

based addition in talk and embodied interaction. Contextualised by a 100-dotted circle (d = 4 

m) using two dice, experiences with the min strategy involved picking up the smallest dice and 

physically tagging the largest dice as a whole outside the circle (e.g., in 2+4; say “four” while 

stamping next to the largest dice). Then, inside the circle with the handheld dice, the child 

should walk and tag dots the number of times equal to the smallest addend to produce the sum 

(e.g., “five, six”). Based on these interventional experiences (named the Min task), the research 

question guiding the multi-case inquiry reported in Article 3 was: “What characterises 4- and 

5-year-olds’ talk, use of tools and full-body-spatial interaction in the modelling of the min 

strategy in a 100-dotted circle?” With a focus on examining deviant and recurring patterns in 

how young children’s talk and physical spatial interaction can match thinking about addition, 

the research aimed to deepen the understanding of how outdoor embodied experiences can 

facilitate meaningful learning in early years.  

Individual post-testing with the Min task produced empirical data consisting of 106 tasks (e.g., 

3+2, 5+5, 6+3). The overall results showed that two participants had inconsistent proficiencies 

in strategy modelling, while eight children demonstrated task behaviour that matched the min 

strategy. The comparison showed that main differences in strategy modelling was reflected in 

the way the children off-loaded the additive thinking in the counting-on part of the min strategy 

(i.e., task behaviour inside the circle that reflected the ordinal part of the counting-based 

addition). The following four categories of task behaviour was identified: (1) Preference in 

retrieving visual information from handheld dice; (2) Preference in use of visuo-tactile 

representations of numbers (i.e., touch counting); (3) Preference in mental-based retrieval of 

numerical information from handheld dice; and (4) Varied use of the above forms of 

representational modes. A key feature for children using mental representations was a fluent 

integration with the verbal and bodily modalities, reflected in louder articulation and harder 

physical tagging of the largest addend and the sum, rhythmic mapping of the smallest addend 
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and bodily rotations in expressing the sum.  In contrast, characteristic task behaviour for 

children who perceived visual and tactile information from the handheld dice to guide the 

ordinal structure included stiff body-spatial couplings (i.e., gait) and a monotone speech. 

Despite differences in strategy usage, the general results suggest that sensory-motor experiences 

might support young children’s modelling of counting-based addition. For KTs, the identified 

characteristics associated with efficiency and congruence can be used as guiding cues for the 

fostering of fluency in children’s full-body modelling of counting-based addition.  

Based on the EC framework, this study contributes in several ways to educational research that 

focuses on the moving and acting body in early learning of arithmetic. Firstly, it demonstrates 

deviant and recurring patterns in young children’s grounding and off-loading of additive 

thinking in sensory-motor experiences, gestures, tools and spatial structured affordances. 

Secondly, the findings show how young children’s full-body movement and spatial interaction 

might match the logic and rules of counting-based addition. Finally, and equally important, the 

study reveals the potential for integrating expressive movement patterns (e.g., force, tempo, 

rhythm, rotations) into the early learning of addition.  
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7.  Synthesis of findings, discussion, contributions and summary 

The overarching aim of my thesis was to investigate characteristics of young children’s 

grounding of mathematical thinking in sensory-motor experiences, while a sub-goal was to 

develop knowledge about how embodied designs can facilitate such experiences. Supported by 

my theoretical perspective, I identified the following four interrelated and partly overlapping 

aspects of the framing question (cf. section 2.6): 

(i) Coherence in number-space mappings 

(ii) The partial, situated, bidirectional, distinct and relational nature of number-space 

mappings 

(iii) Number-space mappings in simulated action and off-loading of thinking 

(iv) Efficiency in number-space mappings 

Structured by these themes and through the lenses of EC, this chapter relates the case-based 

findings in the three focal studies to previous research. Based on this discussion, and as a 

conclusion of the research questions asked, I next propose the conjectures of progression paths 

that along with the ETPs and assessment tools in this research project might be used by KTs to 

identify, support and cultivate children’s embodied action into coherent mathematical thinking. 

This chapter also includes reflections on the dissertation study’s contributions, implications for 

practice, study limitations and suggestions for further research. 

 

7.1  Levels of coherence in young children’s number-space mappings 
 

What characterises coherence in children’s grounding of mathematical thinking in sensory-

motor experiences and simulated action?  

In order to address this issue, three focal studies revealed characteristics and deviant features in 

young children’s attempts to establish coherence in the mapping of mathematical thinking in 

full-body and upper body movement, spatial extensions, and manipulation of tools (cf. Patro et 

al., 2014), thereby adding to the physical grounding project of EC (see Anderson, 2003). The 

mathematical targeting domain’s cardinality, addition and parts-whole reasoning constitute 

building blocks in young children’s learning trajectory of arithmetic (Sarama & Clements, 

2009). Accordingly, the findings concur with previous studies showing that the different 
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features of numerical relations (e.g., subitising, addition, more-and-less and parts-whole 

relations) are connected and can be developed in conjunction (Jung, 2011).  

In focal study 1, the subset-knowers showed abilities to use animal metaphors as verbal 

references for exact body-spatial production of small sets in a manner that surpassed their 

cardinal-knower-level (cf. the Give-N task) while moving across a 50-dotted circle (Article 1). 

In focal study 2, several of the 3- to 4-year-olds’ demonstrated abilities to re-enact the canonical 

structured sensory-motor experiences from ETP 1 to support parts-whole reasoning of numbers 

(Article 2). In focal study 3, most of the 4- and 5-year-olds’ showed abilities in synchronising 

talk, manipulation with two dice and physical interaction in a 100-dotted circle in a manner that 

cohere with counting-based addition (Article 3). According to the suggested learning trajectory 

of Sarama and Clements (2009), 4- to 5-year-olds’ are (in average) able to solve missing addend 

problems (e.g., 3 + _ = 5) and 5- to 6-year-olds’ are (in average) able to master counting-on 

strategies. Although it is difficult to compare, this (slight) age-discrepancy combined with the 

relative high frequency of solution (cf. the 3- to 4-year olds’ reasoning abilities and the 4- and 

5-year olds’ modelling abilities in counting-based addition reported in Article 2 and 3, 

respectively; see Table 3) gives reason to ask if the bodily experiences lowered the threshold 

for establishing coherence with the targeted mathematical domains. General support for this 

line of reasoning comes from research highlighting embodied simulation, imitation and role-

playing (cf. DP 4) as fundamental to human learning (e.g., Ando et al., 2015; Barsalou, 

Niedenthal, et al., 2003; Donald, 2005; Gallese & Sinigaglia, 2011; Hurley & Chater, 2005). 

However, the in-depth analyses of the three sets of empirical data showed that the children’s 

task behaviour was not a matter of right or wrong, but rather placed on a continuous scale 

reflecting degree of concurrence with the targeting mathematical domains (cf. the taxonomy of 

embodiment in educational settings of Johnson-Glenberg et al., 2014). This is consistent with 

what Dowker (2005) refers to as a ‘zone of partial knowledge and understanding’, as she argues 

that the use of the ‘know’ and ‘not know’ dichotomy is insufficient to describe children’s 

arithmetic skills.  

As a main observation across the focal studies (cf. Articles 1-3), the embodied interaction 

matched at least partially the targeting content, but the relation to the verbal modality did not 

always cohere. For example, two children in focal study 3 were unable to match the embodied 

action with spoken words according to the logic and rules of addition, but their full-bodily 

movement trajectories and manipulation with tools modelled salient non-verbal parts of the min 

strategy (Article 3). In focal study 2, the subset-knowers showed abilities in re-enacting 



83 
 

spatially structured physical experiences in several stages of task exploration (e.g., all-at-once 

gestures in stating guesses and canonical structured modelling and testing), but they were 

unable to connect these signatures of simulated action to coherent verbal-driven parts-whole 

reasoning (Article 2). Further examples of action-speech mismatches come from focal study 1 

where most errors (i.e., 8 out of 10) were related to the verbal modality (e.g., the use of cock-

a-doodle-doo-one as verbal referent in the physical coupling of 3-dotted arrays; Article 1). In 

over ninety percent of the identified sets of one to four limbs that touched the asphalt, there was 

coherence across the verbal and body-spatial modalities, while only two of 106 observations 

showed discrepancies between bodily and spatial domains (i.e., units in the form of limbs 

touching the ground but not dots). This is consistent with the study by Gunderson et al. (2015), 

which showed that subset-knowers were more than twice as accurate when labelling sets of 2 

and 3 items with gestures than with number words, and especially if the values were above their 

knower level. Such discrepancy in verbal and spatial abilities in mathematics is what Dowker 

(2005) refers to as ‘cognitively uneven’ performance. Related to this, an extensive research 

literature shows that low-achieving children have deficits in their number sense (e.g., Geary et 

al., 2009; Landerl et al., 2004) and inabilities to use pattern recognition in enumeration 

(Mulligan et al., 2006). Furthermore, research also shows a strong connection between young 

children’s subitising skills and mathematical abilities (Desoete & Grégoire, 2006; Yun et al., 

2011). Hence, rather than dismissing subset-knowers as a group of immutable low performers, 

the results reported in Article 1 demonstrate how a bodily approach to subitising-based 

enumeration might support their abilities in exact production of small sets14. Accordingly, the 

results add to the research literature of mathematical interventions for children with immature 

mathematical proficiencies (e.g., Klein et al., 2008; Starkey et al., 2004).  

In summary, the findings reported in the focal studies show that children’s abilities to ground 

mathematical thinking in embodied interaction can vary from partial knowledge and 

understanding to a greater degree of congruence with the targeted mathematical domains. In 

the next section, I will discuss further characteristics that elaborate this zone of coherence of 

distinct and relational number-space mappings.   

 

                                                           
14 In Article 1, I also drew on the core knowledge systems of numbers (i.e., ANS, OTS; see subsection 

3.1.1) to argue for underlying factors that might explain the subset-knowers’ abilities in establishing 

cross-modal coherence in the production of small sets. 
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7.2  The partial, situated, bidirectional and relational nature of number-space 

mappings 
 

What characterises the partial, situated, bidirectional, distinct and relational nature of 

children’s number-space mappings?  

The two ETPs in my dissertation study were designed to foster physical experiences matching 

the idea of cardinality and counting-based addition, respectively. In light of this, the EC 

perspective holds that abstract concepts consist of several mutual supporting layers of number-

space associations that are grounded in sensory-motor experiences (Barsalou, Simmons, et al., 

2003; Barsalou & Wiemer-Hastings, 2005). This suggests that the programmes’ selection of a 

particular set of number-space mappings (cf. the joint and fixed tasks in subsection 5.2.1) only 

reflect certain aspects of the targeting mathematical concept, and consequently indirectly hide 

other salient layers of the idea (Barsalou, 2003). The partial nature of number-space mappings 

is underlined by focal study 1, which shows that the subset-knowers were unable to transform 

their assessed abilities in the Navigation task to the Give-N task. This discrepancy suggests that 

the subset-knowers’ abilities were situated and bounded to the use of enactive metaphors (e.g., 

a “frog-four”-body posture; Gallagher & Lindgren, 2015) to physically and verbally mediate 

the cardinal value of configurations of dots on the ground. Although the results reported in 

Article 1 suggest that the subset-knowers’ proficiency in equinumerosity may involve 

transformation between sets in different modalities (cf. subsection 3.2.3), the findings provide 

no support for other research suggesting that abilities in subitising-based enumeration can be 

an important mediator to object counting skills (e.g., Hannula et al., 2007). However, in light 

of the huge amount of enactive metaphors, this discrepancy points back to limitations of the 

Give-N task in terms of assessing proficiencies that go beyond the use of number words and 

concrete items in grounding the idea of cardinality in meaningful action (cf. the outline of 

knower-level theory in subsection 3.2.2). Likewise, the results reported in Article 3 show 

emerging abilities in the children’s full-bodily simulation of counting-based addition in the 

context of a 100-dotted circle, but no claims of strategy generalisation can be made (e.g., use 

of the min strategy in a board game). Overall, these observations underline the partial and 

situated nature of an embodied approach to concept formation, as any physical-based 

actualisation of a targeting concept can only affirm the general concept because it will always 

be a singular, and therefore cannot fully capture the general concept completely (see Radford, 

2013).  
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Despite these limitations, the mutually supportive number-space associations incorporated into 

the embodied experiences suggest that individual weaknesses in one mode of representation 

might be compensated for by strengths in others. For example in focal study 1, the physical 

“frog-four” coupling of a squared array allow the child to infer the cardinal value 4 via mutual 

supporting representational domains (i.e., mental imagery of a frog posture, the verbal term 

“frog-four”, visuo-spatial and body-spatial mapping of a four-dotted array). Support for this 

line of reasoning comes from the subset-knowers’ assessed abilities in the Navigation task (cf. 

Article 1) along with a growing body of research that emphasises the multimodal nature of 

subitising (see the review in subsection 3.2.4). However, the picture is not clear as research also 

shows that children in some instances are less able to solve mathematical tasks that require 

inferring and connecting information from multiple representations (Ainsworth et al., 2002; 

Duval, 2006). 

In order to further elucidate the complex multimodal interplay in children’s number-space 

mappings, I will lean on how EC models the information flow between mind and external 

(beyond-the-brain) processes, that it is cyclic and bidirectional in nature and that it continuously 

produces feedback for the regulation of further action (Fuster, 2009). The findings in Article 2 

highlight how congruence in additive reasoning, mediated by multimodal representations and 

driven by complex bidirectional feedback loops, might unfold through the coordination of 

distinct number-space mappings into relational thinking. This is consistent with the study by 

Pontecorvo and Sterponi (2002), which shows that 3- and 5-year-olds’ reasoning unfolds 

through multifaceted patterns of argumentation15.  

Another aspect of the dialectal relation between external and mental processes concerns the 

emergence of small and more powerful conflicting tension between newly perceived 

information and thinking, or what Piaget (2001) refers to as disequilibrium, also known as 

cognitive conflicts (Waxer & Morton, 2012).   

                                                           
15 In section 7.3, I will along with two additional features associated with the framing question (i.e., 

simulated action and off-loading of thinking) provide an elaboration of the bi-directional nature of parts-

whole reasoning reported in Article 2. 
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Figure 31: The emergence and solution of a cognitive conflict in the embodiment of “monkey-three” (ETP 1) 

In Article 1, it was argued that small conflicting tensions in the Navigation task could involve 

renaming the physical coupling during the mapping process (e.g., “monkey, kangaroo-two”, 

“monkey, frog-four” and “frog, cock-a-doodle-doo, monkey-three”) or tagging extensions to 

include more dots (e.g., saying “kangaroo, frog-four” while expanding a bipedal to a quadruple 

coupling). A more notable example discussed in Article 1 regarding how physical interaction 

might shape mathematical thinking involved C2-knower Liv’s16 solution of a cognitive conflict 

when articulating “frog-four” in the physical tagging of three dots (see also Figure 31). One 

hypothesis put forward was that the intermodal mismatch provided feedback to adjust the 

speech to match the action (i.e., “monkey-three”), thereby establishing congruence between the 

verbal and body-spatial domain17. This line of reasoning is supported by evidence that shows 

that the dialectical nature between cognition and newly perceived information might produce 

and solve conflicting tensions (Herawaty & Widada, 2017; Prusak & Hershkowitz, 2019). 

However, in contrast to other studies that emphasise reflection as a main way to promote the 

emergence and resolution of cognitive dissonance (Young & Shtulman, 2020),  the results in 

Article 1 show how perception from children’s own speech and sensory-motor engagement may 

support such epistemic processes (cf. Harmon‐Jones et al., 2009; Schwarz & Prusak, 2016).  

To summarise, the observations above highlight two additional features of the framing question. 

First, they demonstrate that an embodied approach to mathematical thinking is limited in terms 

of its situated nature allowing the child only to discern certain patterns and structures 

(generalities) associated with the targeting domains (cf. Mulligan & Mitchelmore, 2013; 

Radford, 2010). Second, they show how actions and interactions embody projections of the 

mind and vice versa (Lakoff & Johnson, 1999; Sriraman & Wu, 2020), thereby underlining the 

epistemic role the bidirectional relation of number-space mappings possesses in embodied 

situating of thinking.  

                                                           
16 The names used in this discussion are anonymised and the respective articles provide detailed information of 
the children mentioned.  
17 See Article 1 for discussion of alternative hypotheses. 
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7.3 Number-space mappings in simulated action and off-loading of thinking 
 

What characterises children’s re-enactment and off-loading of number-space associations into 

gestures, body parts, bodily movement, spatial affordances and use of tools?  

Two fundamental principles of the EC framework might further illuminate characteristic 

features of the situating of number-space associations in bodily action. The first assumption 

holds that humans off-load cognitive work onto the environment, the second posits that mental 

simulations and visualisations, or what Wilson (2002) refers to as off-line cognition, is body 

based (Barsalou, 2003, 2008). Support for the first of these principles comes from focal study 

3 (see Article 3), where I identified three categories of how 4- and 5-year-olds’ might off-load 

their additive thinking onto tools (i.e., dice), gestures (i.e., touch counting) and full-body-spatial 

interaction in the 100-dotted circle. In particular, it was shown that some relied on the 

bidirectional mapping between mental representation of the value of the handheld dice and full-

body action to support coherence with the min strategy, while others opted for touch counting 

or visual perception of one unit at a time to guide the body based addition forward.  

Refinement to both of these principles of EC comes from focal study 2 (see Article 2), where 

the results from the Jumping task show that the young children, across solution skills, off-loaded 

their additive reasoning on spatial structures (i.e., linear or canonical patterns), gestures, 

pointing-trajectories and tools. These findings are consistent with a growing body of 

educational research highlighting that additive thinking is not an abstract process, but rather 

largely an issue of reasoning about entities and spatial structures located in space (e.g., Cheng 

& Mix, 2014; Kullberg et al., 2020). In addition, the results reported in Article 2 suggest that 

most children (i.e., 8 out of 10) were able to transform and recreate the sensory-motor 

experiences from ETP 1 in several stages of task exploration, for example by mimicking the 

full-bodily experiences in structured finger patterns (i.e., all-at-once gestures, point-counting), 

in (de)contextualising and modelling to relieve the cognitive work. These findings are 

consistent with studies showing that gestures can ease the cognitive load when hand movement 

simulates the targeting area in a meaningful manner (Cook et al., 2012), and that gestures might 

ground mathematical thought in action (Beilock & Goldin-Meadow, 2010) and bring implicit 

mathematical knowledge to learning (Broaders et al., 2007). In order to underline that reason is 

not disembodied “but arises from the nature of our brains, bodies, and bodily experience” 
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(Lakoff & Johnson, 1999, p. 4), Article 2 provides several illustrative examples, some of which 

I will outline and discuss below.  

 

Figure 32: Canonical patterned 

point counting (4+y=7) – from 

focal study 2 

 

Figure 33: Extension from six to 

seven touches (3+y=7) – from 

focal study 2 

 

Figure 34: “I must remove this” 

(4+y=6) – from focal study 2 

 

First, on the 4+y=7 task18, without stating any guesses, Elli started directly on patterned point 

counting, first over the squared array verbally expressed as “One, two, three, four” and then 

over the empty circle “five, six, seven” to produce a triangular shape, followed by the quick 

response “monkey-three” (see Figure 32). Second, based on the guesses “monkey-three” on the 

3+y=7 task, Leo’s rationale for answering “frog-four” was grounded in an extension of the 

triangular patterned touch counting trajectory in the empty circle to make a quadrangle when 

he realised that six was one less than the requested sum of seven (Figure 33).  

The materialisation of this class of parts-whole reasoning suggests a close bidirectional 

interplay between mathematical thinking and simulated action in terms of continuous 

comparison of the current articulated number word, the requested sum, spatial mental models 

of body postures and the generated movement trajectory in the empty circle for mental off-

loading and driving the reasoning forward. This suggestion finds support in research showing 

that reasoning and problem solving rely on sensorimotor simulations (e.g., Alibali et al., 2014). 

A rival or possibly a complementary explanation is that inaudible counting may have preceded 

mental retrieval of the spatial structures of the body postures and the articulated gestural 

behaviour19. Supporting evidence for this proposal comes from Thevenot et al.’s (2016) study, 

which shows that 10-year-olds can use fast internal counting when solving single-digit addition 

problems. Data on children below 5 years of age, however, are sparse. On the other hand, 

                                                           
18 On the 4+y=7 task, the interviewer asks: “If you jump a frog-four here (pointing at the circle with a squared 
array of items) and then you jump something here (pointing at the empty circle) before you jump out, what did 
you jump here (pointing at the empty circle) if you jumped seven all together?”  
19 See Article 2 for discussion of alternative hypotheses.  
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deviant examples20 show that simulated action through an extensive off-loading of the 

reasoning for those opting patterned modelling also could hinder the fluency in problem 

solution. This suggests that the degree of mental off-loading for the ‘patterned counters’ spans 

a continuum, ranging from extensive to limited use of tools and gestures for scaffolding the 

additive reasoning.  

By contrast, two CP-knowers show via linear-based reasoning and problems in contextualising 

independence of the patterned embodied experiences from ETP 1 in solving the Jumping task 

(cf. Figure 34). A partial explanation is that the children’s linear way of thinking and 

representing numbers was too conceptually robust and functional for the emergence of an 

alternative way of modelling. Support for this line of reasoning comes from research showing 

that children are reluctant to replace internalised strategies (Gray et al., 2000; Ostad, 1998).  A 

complementary hypothesis addressed in Article 2 concerns that the choice of animal behaviour 

as a theme in ETP 1 reflected the children’s prior knowledge in a biased way. Consequently, 

since children are best at learning the names of objects and actions they are interested in (Yu, 

2014), the question of whether the selection of more familiar themes might have provided more 

meaningful number-space associations, especially for those opting for linear modelling, is yet 

to be explored. Despite these diversities, the findings align with research showing a strong link 

between visual-spatial abilities and mathematical reasoning (e.g., Hawes et al., 2017; Hegarty 

& Kozhevnikov, 1999), and it concurs with a growing body of educational research suggesting 

that knowledge of numbers structured as parts and wholes is foundational for arithmetic 

reasoning abilities (e.g., Hunting, 2003; see the review in section 3.3). Finally, the findings add 

to the literature on how gesturing might lighten the cognitive load in explaining math (e.g., 

Goldin-Meadow et al., 2001) and help young students in solving missing-addend problems 

(e.g., Goldin-Meadow et al., 2009; Novack et al., 2014).  

To summarise, the following three characteristics add to our understanding of young children’s 

grounding of mathematical thinking.  Firstly, the findings in this dissertation study show that 

children’s mathematical thinking can be off-loaded onto movement trajectories, body parts, 

gestures, spatial structured affordances and available tools in various ways, some more efficient 

than others. Secondly, the results show that the children’s argumentation are driven by complex 

feedback loops in which distinct number-space mappings change the condition for further 

                                                           
20 For example, on the 4+y=6 task, Noah used manipulatives and all-at-once gestures for modelling and 

a canonical patterned counting-all-strategy to explore each of the guesses frog-four, cock-a-doodle-doo-

one and kangaroo-two (see Article 2). 
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action, thereby making the foundation for relational mathematical thinking. Finally, the 

findings show that simulation of full-body experiences possesses the potential to influence both 

the content, the order and the coherence of the mathematical arguments made.   

 

7.4 Characteristics of efficiency in number-space mappings  
 

What characterises efficiency in children’s bodily grounding of mathematical thinking? 

Cognition is time pressured and Cognition is for action are two theoretical principles from 

Wilson’s (2002) classification of EC that I will use to discuss characteristic features of 

effectiveness in the bodily situating of mathematical cognition. I will argue that the basic 

criteria of efficiency was that it functioned under the pressure of situational and contextual 

factors such as real-time demands emerging from rapid bodily appropriation of spatial 

affordances, and that the cognitive work served rather than hindered the physical interaction as 

in the case of ineffective task solution. Additional features of inefficiency include time for 

observation and extensive offloading of the mathematical thinking.  

The results reported in Article 3 show that ineffective physical modelling of the min strategy 

was associated with rigid movement patterns (i.e., slow gait) and extensive use of gestures 

and/or tools in order to keep track of counted units, while efficiency was related to motor 

fluency, bodily coordination and mental representations of the addends. The link between 

strategy efficiency and mental retrieval and representations finds support in a huge body of 

research (e.g., Ostad, 1997; Threlfall, 2009). In addition, the findings reported in Article 3 show 

that attributes of efficiency could involve expressive body postures to represent the largest 

addend and the sum, while long jumps and rhythmic movement patterns could connect distinct 

number-space mappings into relational additive thinking.  

 

Figure 35: Motor fluency 

– from focal study 3 

 

Figure 36: Bodily 

rotation in tagging the 

sum – from focal study 3 

 

Figure 37: Time pressure 

from jumping – from 

focal study 1 

 

Figure 38: Bodily 

adaption – from ETP 1 
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In Article 3, I used Anna’s physical situating of the min strategy on the 6+3 task to exemplify 

this, where the largest addend and the ordinal structure (see Figure 35) were materialised in a 

rhythmic movement pattern “six, seven, eight” followed by a forceful bodily rotation in 

mapping the sum “nine” (see initial phase in Figure 36). Modulated speech synchronised with 

flow in locomotion suggests a high degree of engagement, which as demonstrated by Anna’s 

task behaviour can entail gross-motor rhythm and expressive movement patterns (e.g., force, 

tempo, fluency, twist). This provides support for claiming that the cognitive work associated 

with this class of additive modelling fostered rather than inhibited the physical fluency, thereby 

providing a subjective layer of meaning to the children’s mathematical thinking. This is 

consistent with EC’s view that conceptual knowledge is rooted in many simulations that 

continuously add subjective and objective (i.e., generalities) layers of meaning that come from 

the synthesis and coordination of movement and actions that project central aspects of the 

targeting concept (Lakoff & Núñez, 2000; Radford, 2010, 2013). In line with Radford (2015), 

this suggests that embodied rhythm might be an integrated part of mathematical thinking. In 

contrast, unitary visual or tactile interaction with the handheld dice to guide each step in the 

ordinal part of the min strategy suggests that the children used their cognitive and motor 

resources on the complex synchronisation of eye, dice, feet and spatial layout. This is consistent 

with research showing that the use of unitary counting strategies (e.g., Gray et al., 2000) and an 

increase in working memory load (e.g., Wang & Shah, 2014) usually decreases efficiency in 

math performance. In Article 3, I also argued that a monotonous speech in combination with 

limited opportunities to utilise existing motor skills, materialised in rigid movement patterns, 

may increase the child’s threshold for perceiving personal relevance and meaning of the action. 

In general, these lines of reasoning concur with studies that warn that cognitive demands and 

unnecessary cognitive load may be a risk for embodied learning (Ruiter et al., 2015; 

Skulmowski et al., 2016), suggesting that less embodied cues may in some epistemic instances 

may be preferable to an overload of multi-sensory input.   

The results reported in Article 1 show that children who jumped from one physical coupling to 

the next were able under the pressure of time (see Figure 37) to coordinate speech with rapid 

and flexible adaption of body postures to available configurations of dots (see Figure 38). In 

contrast, slow bodily situating of number-space associations was reflected in walking around 

in the circle searching for arrangements of dots that fit rigid ideas about the configuration of 

potential arrays. Article 1 provides several examples that illustrate temporal differences in 

grounding the idea of cardinality in body-spatial interaction in the 50-dotted circle. For 
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example, C3-knower Max (Walker) used 35 seconds in producing the series “monkey-three, 

frog-four and kangaroo-two” (notated as 3+4+2), while C2-knower Liv and C3-knower Amy 

(both Jumpers) used 18 and 12 seconds in the physical mapping of six (1+2+1+3+4+2) and 

five (1+2+3+4+4) sets, respectively21. The mathematical thinking for jumping children was 

associated with flexible motor adaption of the spatially distributed affordances, which in turn 

underlines the ultimate contribution that cognitive activity can play in situation-appropriate 

behaviour (Johnson-Glenberg et al., 2014). In contrast, the Walker’s problems in pattern 

recognition seemed to prevent them from benefiting from existing motor skills. Related to EC’s 

claim that Cognition is for action, these diametrical observations in spatial-temporal 

appropriation highlight challenges in designing bodily tasks that cultivate rather than prevent 

the use of motor skills in ecological meaningful ways to achieve pedagogical goals.   

The Caviola et al. (2017) survey study shows that time pressure generally works as a stressor 

causing anxiety and suboptimal performance, and consequently has a negative influence on 

strategy efficiency in arithmetical tasks.  This line of evidence stands in contrast to my findings 

(focal study 1 and 3), which show that time pressure was self-regulated (e.g., Walkers vs. 

Jumpers in focal study 1), it was connected to efficiency in math performance and partly to 

personal relevance through expressive movement patterns and use of motor skills. Based on 

these arguments, my study provides case-based evidence that the claims of EC that cognition 

is for action and exposed to time pressure from real-time action can shed light on characteristics 

of children’s grounding of mathematical thinking regarding efficiency and perception of 

personal meaning (Wilson, 2002).  

 

7.5  Synthesis of characteristics of children’s grounding of mathematical thinking 
 

The first part of this section provides a synthesis of the different aspects of the framing question 

discussed above (sections 7.1-7.4), and it concludes with a proposal for progression paths that 

can inform KTs about profiles of young children’s abilities to ground mathematical thinking in 

embodied interaction.  

                                                           
21 The ‘Jumpers’ and the ‘Walkers’ used respectively 4.1 seconds and 8.9 seconds in average for each 

tagged set of 1 to 4 dots (cf. Article 1).  
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The findings reported in the three articles included in my dissertation study show that young 

children’s grounding of mathematical thinking is a complex issue elaborated in the details of 

embodied action and concurrent use of multimodal resources (cf. Goodwin, 2000; Hutchins, 

2006). Promoting and inhibiting characteristics associated with congruency and fluency in 

distinct and relational number-space mappings in what is described as a ‘zone of partial 

knowledge and understanding’ (cf. Dowker, 2005) span from erroneous, via ineffective to 

effective ways of modelling mathematical thinking in embodied interaction. Incorrect task 

behaviour, or what Dowker (2005) refers to as ‘cognitively uneven’ performance, include 

action-speech mismatches and inabilities in connecting distinct number-space mappings to 

verbalised relational thinking. Supporting aspects include flow in movement, expressive body 

movement and postures, flexible bodily adaptation to spatial structured affordances, modulated 

speech, mental arithmetic and that the thinking worked under time pressure from real action. 

Signatures of ineffective task behaviour include monotonous speech, inflexible bodily adaption 

to spatial affordances, delayed body movements and impassive body postures, and that the 

thinking did not work under time pressure of ‘normal’ physical behaviour (e.g., gait), extensive 

off-loading of thinking, and rigid coordination of the multimodal correspondence between 

ordinal and cardinal properties of numbers. However, it is important to note that behavioural 

patterns labelled ineffective do not necessarily imply incongruence with the targeting 

mathematical domains. Rather, the range of constellations of number-space mappings can be 

viewed as an epistemological strength, as it allows the child to use preferred physical and 

mathematical abilities. Although this suggests that there does not exist a unique path to ground 

mathematical thinking in embodied action, the identified categories of task behaviour in the 

focal studies may point on the conjectures of progression paths toward an efficient, congruent 

and meaningful grounding of mathematical thinking. In focal study 1, stages in such a 

progression path may include non-verbal body-spatial production of small sets as a foundation 

for congruent cross-modal mapping of numerosity in a delayed mode (i.e., walking) followed 

by an efficient, flexible and rapid bodily adaption to the structured affordances (i.e., jumping) 

in the grounding of the idea of cardinality in time-pressured real action (cf. Article 1).  In focal 

study 3, a progression path may initially involve assembling distinct number-space mappings 

into relational thinking according to the rules of the min strategy, where touch-counting and 

visual retrieval of numerical information from the handheld dice to guide the ordinal structure 

of the min strategy can function as intermediaries for mental based strategies that may include 

the signatures of effective task behaviour expressed above (e.g., expressive body movement; 

cf. Article 3). To summarise: The characteristics associated with children’s embodied modelling 
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of mathematical thinking provide a theoretical contribution to the EC framework (e.g., the 

principles of EC stated by Wilson, 2002), and they add to the debate about how young children’s 

structured-based experiences of cardinal and ordinal properties of numbers can serve as basis 

for powerful arithmetic skills (e.g., Björklund, Ekdahl, et al., 2021). Below, I will make further 

reflections on the contributions from my dissertation study.  

 

7.6  Contributions from the dissertation study 
 

Today, there is agreement on the importance of early cultivation of mathematical knowledge 

for later academic achievement (e.g., Aunio & Niemivirta, 2010; Parsons & Bynner, 2005). To 

contribute to the ongoing debate about what high-quality mathematical interventions entail, this 

dissertation study has investigated young children’s bodily grounding of mathematical thinking 

in embodied designs situated outdoors in two Norwegian ECEC institutions. Previously, I used 

Skulmowski and Rey’s (2018) taxonomy on embodiment in education to position the DBR part 

of my dissertation study in the quadrant of their 2x2 grid model that involved high degree of 

bodily engagement and high degree of task integration (section 4.3.2). It is important to note 

that the authors base their notion of meaningful embodied learning on whether the bodily 

representation is deeply integrated into the learning task or whether it is an incidental aspect 

(Skulmowski & Rey, 2018). Based on this, I hold that the suggested progression paths (which 

are informed by the three focal studies) involving full-body action and objective and subjective 

dimensions of meaning (cf. DP 1 and 2, respectively) provide some quality characteristics that 

add to the literature about embodied interventions in non-digital contexts and principles guiding 

such research. In particular, the results on the integration of composite movement patterns and 

expressive body movements in mathematical thinking are of interest in terms of fostering the 

phenomenological dimension of meaning in young children’s mathematical engagement. 

Related to this, Whitacre et al. (2009) used the metaphor student-as-artist to distinguish 

expression from representation in mathematical embodied activity, thus emphasising the 

creative and personal dimension in mathematical learning. Applied to this dissertation study, 

the results demonstrate how the child-as-artist metaphor draws attention to expressive layers 

of modelling mathematical thinking (i.e., physical tempo, rhythm, force and flow, body-

postures, modulated speech and drama of animal behaviour). The child-as-artist metaphor also 

applies on the ETPs, which incorporated music and dance into the body-based learning 

activities (e.g., ‘Animal farm’ and ‘Rhythmic tagging’; see subsection 5.2.1). This suggests that 
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my dissertation study may contribute to a debate about the inclusion of expressive body 

movements in powerful ways of modelling mathematical thinking (cf. Whitacre et al., 2009). 

In the literature review of Embodied Numerical Cognition (subsection 3.1.2), I identified 

inquiries focusing on part-body- or upper body movement and full-body movement as two 

dominant lines of research that aimed to capture the role of the body in number-space mappings. 

The survey involving full-body movement also showed a bias towards interventions modelling 

the linear structure of the MNL in computer assisted one-to-one settings indoors (Tran et al., 

2017). Based on this, my research shows that the notion of number-space mappings is more 

diverse and multifaceted as it reveals that children can ground mathematical thinking in 

different multimodal constellations in non-digital outdoor settings while moving and acting in 

three dimensions (Article 1 and 3). It also shows how full-body and upper-body movement can 

be connected via simulated action in parts-whole reasoning (Article 2). Hence, rather than 

treating movement as a mere motivational element in achieving pedagogical goals, my research 

highlights the interacting body as an integrated part of mathematical thinking, thereby adding 

to our understanding of the notion number-space mappings (Cipora et al., 2018; Patro et al., 

2014) and to the literature focusing on the role of the moving body in mathematical learning 

(e.g., Beck et al., 2016; Fischer et al., 2011; Moeller et al., 2012). Notably, Wilson and Golonka 

(2013) view studies (such as my dissertation study) that focus on the concurrence of cognitive 

processes and physical resources as more valuable for embodied research than investigations 

testing hypotheses of how bodily influences can prime cognitive performance. My findings also 

add to the field of knowledge concerning young children’s structured-based learning of 

elementary arithmetic within the number range 1 - 12 (e.g., Cheng & Mix, 2014; Jansen et al., 

2014; Schöner & Benz, 2017). Under this line of research, Björklund, Marton, et al. (2021) 

identified modes of number representations, ordinality, cardinality and part-whole relation as 

critical aspects necessary to discern for children to develop powerful arithmetic skills. However, 

in contrast to studies that emphasise finger gestures as modal representation (e.g., Björklund et 

al., 2018; Kullberg et al., 2020), my dissertation study provides knowledge of how full-body-

spatial interaction might support young children’s thinking about cardinality, ordinality and 

parts-whole relations of numbers.  

In the research domain of early assessment in mathematics, there is consensus that young 

children’s mathematical abilities are not easily assessed as they are able to solve mathematical 

problems that they cannot talk about. Accordingly, mathematical tasks that have a strong 

literacy base might disadvantage children with other modal preferences (e.g., visual, auditory 



96 
 

and kinaesthetic; Clausen-May, 2005). From an EC perspective, a main issue for KTs in regard 

to formative assessment is therefore to capture signatures of how whole-body movements are 

related to targeting mathematical domains. This seems particularly important for children 

considered low performers according to traditionally assessment tasks in mathematics 

(Houssart, 2013). The theoretical foundation for the assessment tools used in this dissertation 

is anchored in the EC framework and the DPs (section 4.3), and I will argue that this battery of 

measures adds to the literature of early assessment (cf. Purpura & Lonigan, 2015). In particular, 

the modified Give-N task in focal study 1 (subsection 5.3.1) contributes to the knower-level 

theory (Lee & Sarnecka, 2010; Sarnecka & Carey, 2006) as it highlights a multimodal approach 

for measuring children’s idea of cardinality in outdoor settings. The EC approach is further 

highlighted by the Navigation task in focal study 1 (subsection 5.3.1), which in contrast to the 

standardised Give-N task builds on children’s imitation abilities, autonomy (i.e., free choice of 

sets) and skills in recognition and adapting body-postures to spatial structured affordances 

(instead of picking out bricks from a pile). In focal study 2, I developed a procedure for 

measuring children’s abilities in additive reasoning that might include simulations of first-hand 

experiences with numbers (cf. Jumping task), while the Min task in focal study 3 measured 

children’s abilities in whole-body modelling of counting based addition (subsection 5.3.1). 

Accordingly, these procedures might be used to assess children’s guided focus on mathematics 

(cf. Hannula et al., 2005). Hence, informed by the suggested progression paths (section 7.5), 

the formative character of these measures reflected in a close connection to the ETPs, supports 

the blending of children’s play- and movement-based learning with KTs observation and 

guidance. Such efforts of incorporating guidance and learning into (KT structured) play, 

routines and everyday activities are what Tate et al. (2005) refers to as embedded teaching. 

Based on these reflections, I hold that my research contributes to the debate about embedded 

teaching approaches in early childhood education (Pramling et al., 2019). However, as argued 

by Clements and Sarama (2011), there are huge differences in how children are provided with 

opportunities to pay explicit attention to mathematical concepts in their informal experiences. 

Therefore, well-educated KTs in an EC approach to early learning is required, which in turn 

rests on how professional development courses, kindergarten teaching and policy documents 

direct attention to the key findings of my dissertation study. Moreover, teachers in primary 

school can also benefit from insight from this study. However, a smooth transition from 

kindergarten to primary education requires continuation in pedagogy and curriculum (OECD, 

2017), which in this case should be reflected in the fostering of bodily experiences in game 

based contexts for modelling mathematical thinking. This aligns with the Norwegian 
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Knowledge Promotion Reform for compulsory education, and its emphasis on practice and play 

based learning activities for the youngest children (Norwegian Ministry of Education and 

Research, 2020). According to this curriculum, the pupil is expected after year 2 to be able to 

represent numbers in different ways and switch between different representations (cf. Article 

1), follow rules and step-by-step instructions during play and games and experiment with 

counting and choosing different starting points (cf. Article 3). Likewise, it is expected that the 

pupil after year 3 can explore equilibrium and balance in practical situations, and represent this 

in various ways, and after year 4 explore relationships between addition and subtraction 

and use this in mental arithmetic and problem solving (cf. Article 2). Together, these 

observations provide many reasons to use key findings from my research to cultivate the link 

between play, bodily experiences and mathematical thinking in primary school. However, I 

must note that the suggested learning path is a working hypothesis, which along with the test 

procedures and activities included in this research must undergo rigorous scientific examination 

to assess its usefulness across contextual conditions and groups of children in different ages (cf. 

Wikfeldt, 2016). This is consistent with the conclusion of the review study on SFON22 of Rathé 

et al. (2016), that more attention is needed to the design of guided learning activities and valid 

ways of assessing children’s mathematical proficiencies in play and daily activities. 

 

As argued by Björklund et al. (2020), the goal of developing deep knowledge of the emergence 

of young children’s mathematical knowledge places high demands on research methods. Based 

on this, I contend that the methods used in this dissertation study are relevant for educational 

research on young children in outdoor settings as detailed descriptions of interventional 

activities (cf. fixed and joint task) and rigorous descriptions of the procedures used for data 

collection support replication of the study (Yin, 2009). Moreover, the use of micro-analyses of 

video footage allowed me to develop a coding structure that accounted for the relation between 

simultaneous and connected number-space mappings (cf. Ekdahl et al., 2016), and the use of 

case-methodology (i.e., pattern matching, cross-case synthesis and explanation building 

through multi-case analyses; Yin, 2009) allowed me to identify and examine categories of 

grounding mathematical thinking in talk and embodied interaction. In this way, the 

methodological approach accounted for the complexity in children’s bodily grounding of 

thinking, but it also enabled me to consider shared features and patterns across individuals for 

                                                           
22 The notion of Spontaneous Focusing On Numerosity (SFON) refers to children’s spontaneous 

unguided (linguistic) capacity to pay attention on exact numerosities in their environment (Hannula, 

2005). 
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analytical generalisation of my findings using principles from the EC framework. Based on 

these reflections, I hold that my dissertation provides methodological insights into how a 

qualitatively research approach can develop our understanding of children’s grounding of 

mathematical thinking in embodied action (see additional arguments in section 5.5).  

 

7.7  Limitations, further research and implications for practice  
 

Although this dissertation study is only a start towards unravelling the relations between 

different forms of embodied experiences in the situating of number-space associations, it has 

raised some practical and theoretical questions that may inspire future research. For instance, 

the findings reported in Article 1 and 2 suggest that embodied actualisations of mathematical 

knowledge embedded in the activities in the ETPs might support the transformation of situated 

knowledge across contexts and content domain (cf. Fugate et al., 2018). The results also show 

how the DPs (see section 4.3) can be the starting point for developing a series of activities that 

together foster young children’s bodily grounding of specific mathematical targeting areas. 

However, the list of activities is not a prerequisite for working with the mathematical targeting 

domains addressed in the two programmes, as the findings underscore that any embodied 

grounding of mathematical thinking (a particular) only mediates partial aspects of the targeting 

mathematical concepts (Barsalou, 2008; Lakoff & Núñez, 2000; Radford, 2013). Therefore, 

KTs need to carefully consider what the children need in terms of activities, guidance, tools and 

personal, social and conceptual layers of meaning when situating mathematical thinking in full-

body interaction. This in turn points to the dynamic and temporary nature of the DPs, suggesting 

that future research should test, evaluate and refine the foundations for the design of embodied 

learning environments.  

An interesting finding in my research is the inclusion of expressive body movements (e.g., 

rhythm, force, tempo, fluency) in the children’s grounding of mathematical thinking. This result 

about children-as-artists in embodied mathematical learning (cf. Whitacre et al., 2009) is 

important for further discussions from both a pedagogical and embodied theoretical point of 

view. Although the review of educational body-based research in mathematics (cf. subsection 

3.1.2) shows no sign of including expressiveness as part of the investigated phenomena, it 

shows a bias towards interventions cultivating linear (side-ways) movements in modelling the 

MNL (e.g., Dackermann et al., 2016; Fischer et al., 2011; Link et al., 2013). Hence, the question 

if this boundary set for moving in space also entails limitations for the inclusion of the child-
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as-artist in early embodied learning of mathematics, is open for further research. A challenge 

for the EC framework is therefore to incorporate subjective dimensions into the modelling of 

mathematical thinking in terms of theorising how expression and representation might merge 

and support children’s epistemic processes. A practical implication (cf. the child-as-artist 

metaphor) is that KTs can direct the child’s attention to the mathematical content in play and 

everyday activities that have the potential to involve bodily rhythm and creativity. Related to 

this, research shows a strong correlation between young children’s motor life skills, play skills 

and mathematical abilities (Reikerås, 2020; Reikerås et al., 2017), suggesting that future 

research should investigate how interventions can support low achievers to develop 

competences across these areas. Moreover, Reikerås and Salomonsen (2019) found that only 

25% of the children who were assessed to be among the weakest 10% at toddler age, were in 

the group with the weakest mathematical abilities in preschool age. This suggests that the level 

of mathematical abilities for young children is unstable over time and that toddler age might be 

too early to predict later difficulties. Hence, the authors call for more research to investigate 

why the high proportion of toddlers performing at an acceptable level turn out as pre-schoolers 

with weak mathematical abilities. This points to the complexity of early assessment, but 

possibly also to weaknesses in the tools and approaches used for measurement. Therefore, I 

recommend that future research should develop procedures for how observation and 

measurement of children’s number-space mappings might be integrated in joint learning 

activities in outdoor embodied designs, and that the gross-motor imitation part of these activities 

can serve as a basis for sense-making independent of the child’s competence (cf. DP 4). In this 

regard, I think that the large-scaled multi-dotted circle is a promising starting point, as my 

dissertation study demonstrates its applicability in the incorporation of children’s culture of 

play in the embodied learning activities and in observation and assessment of specific 

mathematical targeting domains. This is consistent with Malinverni et al.’s (2014) systematic 

review of design studies on learning of abstract concepts through whole-body interaction and 

the author’s suggestion that the development of adequate tools for assessment should be 

combined with analysis of the design choices, behaviour and cognitive processes. 

In the Caviola et al. (2017) review study of how time pressure manipulation can interfere with 

strategy selection in arithmetical tasks, the authors conclude that although the survey shows 

that time pressure has a great influence on both strategic and emotional aspects of task 

performance, very few studies consider executive functions and cognitive processes. In this 

regard, I think my findings connected to effectiveness in children’s grounding of mathematical 
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thinking can inspire further investigations into the relationship between mental arithmetic and 

embodied tasks that enable self-regulation of time pressure (cf. the Jumping task and the Min 

task in subsection 5.3.1). There is also need for more DBR that builds on the blending of 

structural (e.g., Björklund et al., 2018; Kullberg et al., 2020) and embodied  (e.g., Fischer et al., 

2011; McCluskey et al., 2018) approaches to early learning of numbers and arithmetic.  

However, as mentioned earlier, the wrapping of mathematical ideas in embodied action should 

always consider that some children might experience shortcomings and failures in their attempts 

to make sense of the complex network of cross-modal number-space mappings. Hence, 

embodied learning is not necessarily desirable for all children (Tran et al., 2017). In addition, 

strong rules and guidance can destroy the children’s motivation for outdoor play. Therefore, I 

recommend that any embodied intervention consider the fragile balance between empowering 

the children’s culture of play, motor proficiencies, joy, feelings and freedom of being outdoors 

against degrading these core aspects that define the children as subjects with their own personal 

values, needs and goals. I think a main goal in this regard is to promote children’s awareness 

and abilities in using their body as a flexible means of meaningful mathematical thinking, 

communication and play with peers, for a better understanding of the world around them and 

for personal and social development.  Based on these reflections, I think that the results of my 

dissertation study give reason to rethink the role that the moving body can play in outdoor 

learning of mathematics in Norwegian ECEC institutions. 

To summarise, although the dissertation study shows some promising results, much is still 

unknown regarding the direction of influence between motor activation, environment and 

mathematical thinking (cf. Shaki & Fischer, 2014). However, in light of current theories about 

the role of the EC perspective in supporting the emergence and retrieval of number-space 

associations, I hope that my dissertation study will encourage further research on how full-body 

movement can contribute to and explain young children’s mathematical thinking in outdoor 

contexts.  

 

7.8  Summary  
 

Based on an EC perspective, the main objectives of my dissertation were to deepen the 

understanding of the embodied grounding of three mathematical domains considered important 
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to foster in early years, and to develop knowledge of how outdoor embodied designs can 

facilitate meaningful number-space associations targeting these areas.  

Although my research project has generated more hypotheses and new questions than exact 

answers, the findings have in several ways added to the literature of educational research that 

focuses on the role of the moving and acting body in young children’s mathematical thinking. 

Firstly, it demonstrates deviant and recurring patterns of kindergarteners’ structure-based 

bodily situating of cardinality and addition, and in the transformation of physical experiences 

of numerosities across content domain via gestures and manipulation with tools in parts-whole 

reasoning. In this way, my study underlines previous findings suggesting that structured-based 

experiences with numbers are foundational to young children’s development of arithmetic skills 

(e.g., Björklund, Marton, et al., 2021; Venkat et al., 2019), and it underscores the dialectical 

nature of outdoor physical experiences and simulated action in mathematical thinking (Wilson, 

2002). Secondly, it shows how distinct and connected number-space mappings might be rooted 

in young children’s everyday experiences (e.g., walk, jump, body-gestures, manipulation with 

tools) in a manner that cohere with the logic and rules of ordinality, cardinality and arithmetic. 

Thirdly, it shows how children’s upper- and full-body spatial interaction, use, and manipulation 

with tools might extend and load mathematical ideas and reasoning onto spatial extensions and 

locations. Fourthly, it demonstrates the epistemic power of the dynamic and bidirectional 

relation of number-space mappings, allowing the child to experience the targeting concepts with 

multiple cues, representations and layers of meaning and for fostering the emergence and 

resolution of conflicting tensions between thinking and experiences. Fifthly, it shows that the 

basic criteria for effectivity in the bodily situating of mathematical thinking was that it 

functioned under the pressure of real-time interaction with the environment. Next, and most 

interestingly I think is that the study reveals how the body can convey mathematical content in 

combination with complex and expressive movement patterns, which in turn allows the child 

to perceive the cognitive work as a means to provide personal meaning and relevance. Finally, 

based on the partial and situated nature of embodied actualisations of mathematical thinking, 

the findings also demonstrate that the young children’s bodily grounding of mathematical 

thinking provide limitations in the robustness and generalisability of the learned content.  

I positioned the DBR part of my dissertation study in the category of educational embodied 

studies involving a high level of task integration and bodily engagement (Skulmowski & Rey, 

2018). In this regard, I think that the main contribution is that my results show how the design 

principles can guide the (re-)design of activities that enable the children to experience abstract 
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mathematical targeting domains with mutually coexisting layers of meaning including elements 

from children’s culture of play and existing motor skills. In particular, the whole-body approach 

was fruitful as it underlines that learning for young children can be associated with finding new 

ways of moving and interacting in space. In addition, my dissertation study shows that children 

with diverse mathematical proficiencies might work with the same embodied activities 

outdoors, and that the cultivation of these first-hand experiences (cf. ETP 1) can range from 

basic quantification (cf. the Navigation task in focal study 1) to more complex arithmetic 

reasoning (cf. the Jumping task in focal study 2). In this regard, I think that the strongest 

argument for this dissertation study concerning children labelled as low, medium or high-

performers, is that the results show the conjectures of the integration of learning and assessment 

in physical activities outdoors across competencies (cf. the suggested progression paths), 

thereby contributing to counteract a trend towards indoor testing and scholastic teaching in 

ECEC institutions (cf. section 2.1). Although much remains unknown about how the physical 

body and its intrinsic dynamics can contribute to and explain young children’s mapping of 

mathematical ideas in space, the EC approach provides a suitable framework for the qualitative 

in-depth study of young children’s mathematical thinking in dynamic settings outdoors in 

ECEC institutions. In conclusion, the dissertation study has deepened our understanding of 

young children’s grounding of mathematical thinking in embodied action.  
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Appendices 

 

Appendix 1: Pilot study 
 

A pilot study was conducted in an ECEC institution in the eastern part of Norway engaging 

four 4-year-olds’ in a 6-week outdoor embodied design programme (Bjørnebye et al., 2017). 

The design of the 1- to 4-dotted arrays was framed within a square format and addressed the 

dual goal of using the arrays in both simultaneous and sequential physical mapping of numbers.  

 
Figure 39: First step 

(“One”) of the aerobic 

movement pattern 

 
Figure 40: Second step 

(“Two”) of the aerobic 

movement pattern 

 
Figure 41: Third step 

(“Three”) of the aerobic 

movement pattern 

 
Figure 42: Keeping the 

balance in the fourth 

step (“Four”) 

The sequential approach reflected an adapted gait pattern known as the aerobic movement 

pattern. First, the right foot is moved forward followed by placing the left leg in parallel, and 

then the right leg is moved backward, followed by moving the left leg in parallel to complete a 

four-step cycle (see Figures 28-31). To support flow and rhythm, only one leg should touch the 

ground at a time. During the joint sessions, streamed music connected to mini-speakers 

provided focus for the children’s engagement with the aerobic movement pattern (see the 

Rhythmic tagging activity in section 4.2.1).  

 

Figure 43: Arrays used in the 

training sessions 

 

Figure 44: Circle with 16 dots used 

in the modified Give-N post-task 

 

Figure 45: High jump and bodily 

twist preceding the tagging 
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However, the main goal of the pilot study was to examine young children’s abilities to use 

animal metaphors as verbal references in the physical production of small sets (Bjørnebye et 

al., 2017). The interventional experiences related to this part of the pilot-study involved 

simultaneously expressed physical couplings of the arrays in consecutive order while 

articulating a corresponding verbal referent (i.e., “rooster-one”/“cook-a-doodle-one”, 

“kangaroo-two”, “monkey-three” and “dog-four/cat-four/frog-four”; see Figure 43). Data from 

individual post-tests in a modified large scaled Give-N post-task (e.g., “Can you jump a 

monkey-three?”) contextualised to a circle (d = 2 m; see Figure 44) with 16 arbitrarily 

distributed dots showed that the children enabled exact numbering in a manner that exceeded 

their assessed knower-level (cf. the standardised Give-N task). Additional lessons to be learned 

from the pilot study include the following observations:  

1. The children needed guidance to discern numerosities in arrays and to use animal metaphors 

in verbal communication of their embodied action.  

2. Some children attributed bodily creativity to the physical coupling of sets (e.g., making 

twists when entering into the arrays; see Figure 45).  

3. Some children introduced novel metaphors (e.g., “Superman/Superman-two”, “Bear-four”, 

“Lightning McQueen-four”, and “Horse-four”).  

4. Training contextualised to games and play improved motivation and consistency. 

5. Sprayed arrays worked better than chalked ones due to rain, wear and tear.  

6. The modified large-scale Give-N task proved to be an effective tool for outdoor 

measurement of children’s abilities in the bodily production of small sets (see Figure 44). 

To summarise, the pilot study provided valuable practical experience in implementing and 

conducting outdoor embodied design research in ECEC institutions, and it identified 

limitations, strengths, and new ways of engaging young children in physical learning of 

mathematics. 
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Appendix 2: NSD evaluation 
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Appendix 3: Information letter with consent form – leaders of the ECEC institutions23  

 
Til: NN 

Leder ved NN barnehage 

 

 

Høgskolen i Innlandet 

Prosjektansvarlig: Morten Bjørnebye 

Tlf: 91116376 

Email: morten.bjornebye@inn.no     Elverum, 23. mai 2017 

 

Informasjon om forskningsprosjektet «Tidlig innlæring av tallbegrepet 

gjennom kropp og bevegelse» 

Våre navn er Morten Bjørnebye og Reinert Rinvold og vi arbeider til daglig ved Høgskolen i 

Innlandet. I tillegg til å forske på tidlig innlæring av matematiske begreper utdanner vi 

førskolelærere og lærere i matematikk ved campus Hamar. Reinert Rinvold er leder for en 

gruppe på fem ansatte ved Høgskolen i Innlandet som forsker på barnehagematetikk. Som en 

del av denne forskningen skal vi igangsette et nytt prosjekt knyttet til innlæring av 

matematiske begreper gjennom bevegelse og kroppslige uttrykk. Prosjektet «Tidlig innlæring 

av tallbegrepet gjennom kropp og bevegelse» er således en del av et større forsknings- og 

utviklingsprosjekt ved Høgskolen i Innlandet, og det er fra Høgskolens side satt av midler til 

dette delprosjektet i en fire-års periode. I regi av sitt dr.grads arbeid er Morten Bjørnebye 

ansvarlig for dette prosjektet. 

 

Nylig publiserte studier viser at norske barn sjeldent bruker tallord (en, to, tre, fire, …) til 

daglig. Sammenlignet med andre land er frekvensen langt lavere, og forskerne lurer på om det 

er kulturbetingede faktorer som spiller inn. Det er forskningsmessig belegg for at tidlig innsats 

gir læring, og dermed positive resultater på senere kartleggingsprøver i grunnskolen. Vi mener 

at barn gjennom bevegelsesaktiviteter som kobler tall og rytmer kan utvikle en helhetlig 

forståelse av tall på et tidlig stadium. Det å kunne uttrykke og behandle tall uten telling anses 

å være den mest avgjørende faktoren for at barna utvikler matematisk tallforståelse. 

Hensikten er å stimulere tidlig utvikling av tallbegrepet gjennom lek, bevegelse, rytme og 

samspill. Vi ønsker gjennom det å koble kroppslig rytme til utvikling av et meningsfullt 

tallbegrep, og som gjør at barnas spontane oppmerksomhet på tellbare strukturer i 

omgivelsene øker.  

Gjennomføringen vil foregå innenfor barnehagens faste rammer med aktivitet inne og ute, 

men med spesiell vekt på å utnytte uterommet som læringsarena. Læringsøktene vil variere 

fra rutiner i barnehagehverdagen (f.eks. trampe av seg møkk på sko og klær i en firestegs-

rytme før barnet går inn i barnehagen), til korte og intensive bevegelsesaktiviteter (f.eks. 

hoppe «kenguru-to» eller «froske-fire» i tallmatriser) og til lengre uteøkter (f.eks. undersøke 

hva som kan telles med «talldans» av naturmateriale). Lengden på det matematiske fokuset 

                                                           
23 This is basically the same information letter provided to the participating KTs.  
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vil avhenge av barnas interesse for aktiviteten. Det er i hovedsak undertegnede i samarbeid 

med barnehagens personell som står ansvarlig for organisering og gjennomføring av 

aktiviteten. Det er ønskelig at de barna som deltar i studien følger et ukentlig opplegg i opp 

mot et og et halvt år med vekt på snøfrie måneder (perioden august til og med september, og 

fra april/mai til og med juni). Innhenting av informasjon om barnas samhandling og utvikling 

av tallforståelse vil skje gjennom observasjon og videoopptak av enkelte økter. Deltagere vil 

gjennomføre enkle kartlegginger i telling, tallbegrep og motorisk kompetanse. 

Prosjektet er underlagt vanlige forskningsetiske retningslinjer og er således underlagt 

taushetsplikt. Det vil si at all informasjon vil bli anonymisert slik at det ikke er mulig å 

identifisere barn ved publikasjoner av forskningsresultat. Det søkes om tillatelse til 

forskningsprosjektet som ikke vil bli igangsatt før godkjenning er gitt av Personvernombudet 

for forskning, Norsk samfunnsvitenskapelig datatjeneste (NSD). Prosjektstart er planlagt til 1. 

august 2017 og planlagt prosjektslutt er 1. juli 2021. Innsamlet informasjon vil bli oppbevart 

og behandlet i henhold til NSD sine retningslinjer. Deler av videoopptakene vil bli brukt hvor 

forskerne presentere data fra undersøkelsen, men dette vil bli gjort på en konfidensiell måte. 

Vi søker herved om at dere blir aktive partnere i gjennomføring av forskningsprosjektet «Tidlig 

innlæring av tallbegrepet gjennom kropp og bevegelse». 

Med vennlig hilsen 

 

  

 

Morten Bjørnebye      

Prosjektleder      

 

Jeg bekrefter at jeg har fått muntlig og skriftlig informasjon om prosjektet og er innforstått 

med intensjonene. Jeg samtykker at prosjektet gjennomføres ved NN barnehage og at utvalgte 

barn deltar i prosjektet. 

 

Sted/dato: _______________________     

 

Barnehageleders underskrift: ________________________________________________ 
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Appendix 4: Information letter with consent form - parents 

 
Til: Foresatte i NN 

 

Høgskolen i Innlandet 

Prosjektansvarlig: Morten Bjørnebye 

Tlf: 91116376 

Email: morten.bjornebye@inn.no     Elverum, 09. august 2017 

 

Informasjon om forskningsprosjektet «Tidlig innlæring av tallbegrepet 

gjennom kropp og bevegelse» 

Våre navn er Morten Bjørnebye og Reinert Rinvold og vi arbeider til daglig ved Høgskolen i 

Innlandet. I tillegg til å forske på tidlig innlæring av matematiske begreper, utdanner vi 

førskolelærere og lærere i matematikk ved campus Hamar. Reinert Rinvold er leder for en 

gruppe på fem ansatte ved Høgskolen i Innlandet som forsker på barnehagematetikk. Som en 

del av denne forskningen skal vi igangsette et nytt prosjekt knyttet til innlæring av 

matematiske begreper gjennom bevegelse og kroppslige uttrykk. Prosjektet «Tidlig innlæring 

av tallbegrepet gjennom kropp og bevegelse» er således en del av et større forsknings- og 

utviklingsprosjekt ved Høgskolen i Innlandet, og det er fra Høgskolens side satt av midler til 

dette delprosjektet i en fire-års periode. I regi av sitt dr.grads arbeid er Morten Bjørnebye 

ansvarlig for dette prosjektet. 

 

Nylig publiserte studier viser at norske barn sjeldent bruker tallord (en, to, tre, fire, …) til 

daglig. Sammenlignet med andre land er frekvensen langt lavere, og forskerne lurer på om det 

er kulturbetingede faktorer som spiller inn. Det er forskningsmessig belegg for at tidlig innsats 

gir læring, og dermed positive resultater på senere kartleggingsprøver i grunnskolen. Vi mener 

at barn gjennom bevegelsesaktiviteter som kobler tall og rytmer kan utvikle en helhetlig 

forståelse av tall på et tidlig stadium. Det å kunne uttrykke og behandle tall uten telling anses 

å være den mest avgjørende faktoren for at barna utvikler matematisk tallforståelse. 

Hensikten er å stimulere tidlig utvikling av tallbegrepet gjennom lek, bevegelse, rytme og 

samspill. Vi ønsker gjennom det å koble kroppslig rytme til utvikling av et meningsfullt 

tallbegrep, og som gjør at barnas spontane oppmerksomhet på tellbare strukturer i 

omgivelsene øker.  

Gjennomføringen vil foregå innenfor barnehagens faste rammer med aktivitet inne og ute, 

men med spesiell vekt på å utnytte uterommet som læringsarena. Læringsøktene vil variere 

fra rutiner i barnehagehverdagen (f.eks. trampe av seg møkk på sko og klær i en firestegs-

rytme før barnet går inn i barnehagen), til korte og intensive bevegelsesaktiviteter (f.eks. 

hoppe «kenguru-to» eller «froske-fire» i tallmatriser) og til lengre uteøkter (f.eks. undersøke 

hva som kan telles med «talldans» av naturmateriale). Lengden på det matematiske fokuset 

vil avhenge av barnas interesse for aktiviteten. Det er i hovedsak undertegnede i samarbeid 

med barnehagens personell som står ansvarlig for organisering og gjennomføring av 

aktiviteten. Det er ønskelig at de barna som deltar i studien følger et ukentlig opplegg i opp 

mot et og et halvt år med vekt på snøfrie måneder (perioden august til og med september, og 
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fra april/mai til og med juni). Innhenting av informasjon om barnas samhandling og utvikling 

av tallforståelse vil skje gjennom observasjon og videoopptak av enkelte økter. Deltagere vil 

gjennomføre enkle kartlegginger i telling, tallbegrep og motorisk kompetanse. 

Prosjektet er underlagt vanlige forskningsetiske retningslinjer og er således underlagt 

taushetsplikt. Det vil si at all informasjon vil bli anonymisert slik at det ikke er mulig å 

identifisere barn ved publikasjoner av forskningsresultat. Prosjektet er meldt til 

Personvernombudet for forskning, NSD - Norsk senter for forskningsdata AS. Prosjektstart er 

planlagt til 1. august 2017 og planlagt prosjektslutt er 1. juli 2021. Innsamlet informasjon vil 

bli oppbevart og behandlet i henhold til NSD sine retningslinjer. Deler av videoopptakene vil 

bli brukt hvor forskerne presentere data fra undersøkelsen, men dette vil bli gjort på en 

konfidensiell måte. Datamaterialet skal anonymiseres ved prosjektslutt. 

Med vennlig hilsen 

 

  

 

Morten Bjørnebye      

Prosjektleder      

Samtykkeerklæring til forskningsprosjektet «Tidlig innlæring av tallbegrepet 

gjennom kropp og bevegelse» 

Jeg/vi har fått skriftlig informasjon om forskningsprosjektet «Tidlig innlæring av tallbegrepet 

gjennom kropp og bevegelse» i NN, og er innforstått med hva mitt barn deltagelse i prosjektet 

innebærer. Jeg/vi samtykker at mitt barn deltar i prosjektet. Jeg/vi er innforstått med at 

medvirkning i studien er frivillig og at jeg/vi når som helst kan velge å avbryte mitt barns 

deltagelse i studien uten å begrunne hvorfor.  

 

Sted/dato: _______________________    Barnets navn: ______________________________ 

 

Foresattes underskrift: ________________________________________________ 

 

 

  



134 
 

Appendix 5: Author’s declarations 

 

 

 



135 
 

 



136 
 

 

 











$§
PhD Dissertation in Teaching and Teacher Education
2021

Faculty of Education

Morten Bjørnebye
PhD Dissertation

Young children’s grounding of mathematical 
thinking in sensory-motor experiences

M
orten Bjørnebye • Young children’s grounding of m

athem
atical thinking in sensory-m

otor experiences • 20
21

In this thesis, I explore characteristics of 3- to 5-year-olds’ grounding of mathe- 
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designs can facilitate such experiences. 

With children unable to master verbal counting as a target group, the first focus 
study examined their production of small sets through speech and bodily inter-
action in a circle with 50 dots. The second focus study examined the children’s 
abilities to re-enact symmetrically structured bodily experiences with numbers 
to support additive reasoning, while the third focus study explored coherence 
in speech and bodily modelling of counting-based addition. 

In light of theory of Embodied Cognition, the results showed patterns of the 
children’s bodily production of small sets that also exceeded their measured 
concept level (cf. standardised tests), and the findings showed how sensory- 
motor action might concur with counting-based addition and support reason-
ing about additive compositions. Unexpected findings were the integration of 
composite and expressive body movements (e.g., rotation, rhythm, force, and 
tempo) in the physical grounding of mathematical thinking. 

The results should encourage the design of outdoor activities that involve 
movement and rhythm in the early learning of mathematics. The study shows 
that embodied designs should be considered a suitable approach for realising 
some of the mathematical targeting goals of the Norwegian Framework Plan 
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