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Seasonal energetic challenges may constrain an animal’s ability to respond to
changing individual and environmental conditions. Here, we investigated
variation in heart rate, awell-established proxy for metabolic rate, in Svalbard
reindeer (Rangifer tarandus platyrhynchus), a species with strong seasonal
changes in foraging and metabolic activity. In 19 adult females, we recorded
heart rate, subcutaneous temperature and activity using biologgers. Mean
heart rate more than doubled from winter to summer. Typical drivers of
energy expenditure, such as reproduction and activity, explained a relatively
limited amount of variation (2–6% in winter and 16–24% in summer) com-
pared to seasonality, which explained 75% of annual variation in heart rate.
The relationship between heart rate and subcutaneous temperature depended
on individual state via body mass, age and reproductive status, and the
results suggested that peripheral heterothermy is an important pathway of
energy management in both winter and summer. While the seasonal plas-
ticity in energetics makes Svalbard reindeer well-adapted to their highly
seasonal environment, intraseasonal constraints on modulation of their
heart rate may limit their ability to respond to severe environmental
change. This study emphasizes the importance of encompassing individual
state and seasonal context when studying energetics in free-living animals.

This article is part of the theme issue ‘Measuring physiology in free-
living animals (Part II)’.
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1. Introduction
The interplay between energy requirements and availability
is fundamental to all living organisms [1]. Because both
energy requirements and availability depend on environ-
mental conditions, the balance between them contributes to
shaping ecological interactions at the level of individuals [2],
populations [3], species [4,5] and whole ecosystems [6]. Seaso-
nal changes in energy supply have led to the evolution of life-
history strategies and a wide range of physiological, morpho-
logical and behavioural adaptations that enable animals to
adjust their metabolic phenotype to the prevailing season of
the year [7]. While seasonal plasticity is relatively well studied,
little is known about the capacity of seasonally adapted
animals to respond to short-term environmental fluctuations
within the season [8–10]. It has been suggested that strong
phenotypic plasticity may limit the potential for evolutionary
responses to climate change [11]. Thus, understanding the
relationship between interseasonal and intraseasonal plasticity
of metabolic adaptations is of fundamental importance for
predicting animal resilience to climate change [12].

For mammals and birds, the cost of maintaining high core
body temperature increases as ambient temperatures decline
[13]. However, in many seasonal environments, the avail-
ability and quality of food plants decline simultaneously
with decreasing ambient temperature, particularly in temper-
ate and arctic environments [14]. Hence when herbivorous
endotherms have potentially the greatest thermoregulatory
demands due to low ambient temperatures, they also have
the lowest supply of food to meet such demands [15]. By con-
trast, when food is more plentiful, animals must both
reproduce and replenish energy reserves. In the most extreme
seasonal environments, this period of high energy supply can
be as short as two months [7]. Trade-offs between energy
investment in offspring and energy acquisition to replenish
reserves are often shaped by physiological [16,17] or nutri-
tional [18] constraints.

The most pronounced temporal reductions in energy
expenditure are observed in species exhibiting daily torpor
and hibernation, characterized by substantially lowered
metabolic rate, body temperature and reduced movement
[19]. However, accumulating evidence shows that many
non-hibernating temperate animals also display seasonal
adjustments in metabolic rate [20–23] through reduced
body temperature and activity levels [24–26]. Similar
responses have been observed in desert ungulates during
the hot, dry season when food is limited [27–29]. Adjust-
ments in behavioural and physiological traits are clearly
important to reduce the energetic costs in periods of low
resource availability, and simultaneously maximize replen-
ishment of body reserves and reproduction in periods of
high resource availability [30].

Heart rate is a key physiological parameter of animal per-
formance because it correlates with oxygen consumption and
hence is often used as a proxy for metabolic rate [31,32]. Also,
heart rate is a key biologging parameter because the heart
beat generates an electrical signal readily monitored by
small implantable devices, providing information on ener-
getics of wild animals in their natural habitat over long
time periods [4], at fine temporal scales [33], and in remote
or harsh environments ([34,35], reviewed in [36]). Further-
more, heart rate can be influenced by locomotor activity
[37,38], ambient temperatures [5,39] and reproduction
[40,41]. Although substantial knowledge about the relation-
ship between energy expenditure (indexed by heart rate)
and specific physiological or environmental processes exists,
few studies have explored how these potentially interact to
influence variation within periods of energy surplus and def-
icit [5,41,42].

We quantified the effects of environmental, behavioural
and physiological factors on variation in heart rate of Sval-
bard reindeer (Rangifer tarandus platyrhynchus)—a keystone
species in the High Arctic with strong seasonal changes in
nutrition and metabolic activity. Inhabiting a predator-free
environment, they forage for up to 70% of their time in
summer to meet the energetic demands of reproduction
[43] and accumulate large fat reserves critical for survival
during the long, cold winter [44]. Svalbard reindeer exhibit
the largest seasonal amplitude in daily resting heart rate
recorded in any ungulate [34] and downregulate metabolic
rate during winter even when fed ad libitum in captivity
[45]. Despite such strong adaptations to seasonal energetic
constraints, there is considerable uncertainty in how flexible
they are in their response to short-term environmental and
physiological challenges.

We deployed internal biologging devices to measure
heart rate and subcutaneous body temperature (Tsc) in 19
adult female Svalbard reindeer of known body mass, age
and reproductive status. In addition, animals were fitted
with a global positioning system (GPS) collars containing
activity sensors. Using these data, we quantified variation
in heart rate in relation to animal age, reproductive status,
body mass, Tsc, activity level and environmental temperature
within the seasonal peak (summer) and trough (winter) of
heart rate. Identifying the correlates of intraseasonal variation
in metabolic rate, as indexed by heart rate, is important for
understanding the challenges faced by Svalbard reindeer in
a rapidly warming Arctic [46].
2. Methods
(a) Study area and animals
The study was conducted in Nordenskiöld Land, Svalbard
(77°500–78°200 N, 15°000–15°600 E). At this latitude, there is con-
tinuous daylight from 19 April to 23 August and continuous
darkness from 14 November to 29 January. The plant growing
season typically lasts from June until late August [47]. Monthly
mean air temperatures in July 2018 and January 2019 were
6.8 ± 1.5°C and –10.1 ± 5.5°C, respectively (Svalbard airport,
SN99840; http://eklima.met.no). Further information on the
study system is provided in the electronic supplementary
material, §1.a. Gestation in Svalbard reindeer lasts for approxi-
mately 7.5 months from October until calving in early June [8].
Peak lactation is expected 3–5 weeks postpartum based on dom-
estic reindeer Rangifer t. tarandus [48]. We selected July as the
representative month for mid-summer due to the seasonal peak
in heart rate, and January to represent mid-winter. During
these periods, circadian rhythmicity is weak [34].

(b) Animal capture and data collection
Adult females (ages 5–8 years, marked as calves) were captured
in March–April 2018 for biologger deployment and in April 2019
for biologger retrieval. On both occasions, animals were caught
by net using snowmobiles [49]: we recorded their body mass
(±0.5 kg) and checked for pregnancy using an ultrasound scan-
ner (Kaixin Electronic Instrument Co., Xuzhou, China). Body

http://eklima.met.no
http://eklima.met.no
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mass and age were not correlated (r =−0.07, p = 0.9). In August
2018, surveys were conducted on foot to relocate marked animals
and assess calf status. Eight out of 19 individuals were not
observed, and their calf status was inferred from pregnancy
status in April and activity pattern in early June as described
in [50] (electronic supplementary material, table S1). Omitting
individuals with inferred calf status resulted in similar parameter
estimates and p-values in the analyses described below. All
females with a calf at heel in August were classified as lactating.
rg/journal/rstb
Phil.Trans.R.Soc.B

376:20200215
(c) Biologger programming, deployment and retrieval
We fitted each animal with a combined heart rate and tempera-
ture logger (DST centi-HRT, Star-Oddi, Gardabaer, Iceland;
approximately 19 g), which was implanted subcutaneously on
the left side of the sternum or behind the left axilla, while ani-
mals were under anaesthesia. Surgical procedures are described
in the electronic supplementary material, §1.b. Heart rate was
automatically calculated from a 4 s electrocardiogram (ECG) at
150 Hz measurement frequency and stored alongside a quality
index of signal clarity. We programmed the loggers to record
heart rate and subcutaneous body temperature (Tsc) every
15 min, and to store a raw ECG signal every 6 h for manual vali-
dation. Validation and filtering steps are described in the
electronic supplementary material, §1.c. Briefly, values were fil-
tered based on minimum and maximum values that could be
validated (20 and 175 beats per minute (bpm), respectively)
and the loggers’ internal quality assessment (keeping only high
quality—level 0). On average, 63% of recordings per animal
per day were retained for analysis. Tsc was recorded with an
accuracy of 0.2°C and calibrations were conducted by the manu-
facturer prior to implantations and validated again 12–13 months
later, after removal. After retrieval, data were downloaded with
the Mercury software program and a communication box [51].
Of the animals recaptured in April 2019, nine had uninterrupted
recordings of heart rate and Tsc available for the whole year,
while ten stopped recording before January due to battery
failure. Consequently, summer analyses ( July 2018) were based
on the data available for all 19 females, while winter analyses
( January 2019) relied on data for nine animals. Subsetting the
summer data using just the nine individuals from the winter
dataset resulted in qualitatively similar results.

The animals were also fitted with a collar (Vertex Plus, Vec-
tronic Aerospace GmbH, Berlin, Germany, approximately 750 g)
containing a GPS receiver, an activity sensor and an Iridium
Communication (satellite) system. The GPS receiver had a fix
rate of 8 h and was used to locate animals prior to capture.
The activity sensor measured acceleration along two orthogonal
axes representing back–forward and right–left movements at
4 Hz intervals. An internal algorithm calculates activity as the
difference in acceleration between two consecutive measure-
ments and is given within a relative range between 0 and 255,
providing a mean value of acceleration in each axis every
5 min [52]. Because heart rate was recorded every 15 min, we
used the sum of all activity recorded in both axes between two
heart rate timestamps. For example, for a heart rate recorded at
16 : 15, we used the sum of activity recorded at 16 : 05, 16 : 10
and 16 : 15. Activity values therefore ranged between 0 and
1530, where 0 represented no activity and 1530 maximum activity.
We categorized behaviour into resting/stationary (less than 50;
hereafter ‘resting’) and moving (≥50; hereafter ‘active’) based on
the bimodal distribution of activity data (details provided in the
electronic supplementary material, §1.d).

In the main valley of our study area, we had a black bulb
thermistor (15 cm in diameter) containing an iButton tempera-
ture logger (iButton Link) situated 1.5 m above the ground.
These black spheres are designed to measure effective environ-
mental temperatures, as the temperature inside the black bulb
is influenced by solar radiation, wind chill and precipitation in
addition to air temperature [53]. Temperatures were recorded
every 4 h throughout the study period. Therefore, we matched
recordings by 2 h in each direction of the time stamp to match
with heart rate and Tsc records. For example, black bulb tempera-
ture recorded at 1600 h was matched to all heart rate and Tsc

records between 1400 and 1800 h. Information about the
construction of the black bulb is provided in electronic
supplementary material, §1.e. Hereafter, black bulb temperatures
are referred to as effective environmental temperature (Te).

(d) Statistical analyses
All statistical analyses were conducted in R v. 4.0.0 [54]. First, we
modelled heart rate over the whole year (n = 393 708 recordings
in total) with a generalized additive mixed-effects model using
the ‘bam’ function for large datasets [55] to analyse the seasonal
trend. We fitted heart rate as the response variable and time
(days) as a thin plate regression spline with smoothing parameter
k = 20 and a penalization value (λ) of 1.4 [55]. k was selected and
assessed using the ‘gam.check’ function from the ‘mgcv’ package.
An individual term was fitted as both random slope and inter-
cept. We used an autoregressive structure (AR1) to account for
intraindividual temporal autocorrelation. Since the filtering of
recordings left missing values in the dataset, we added a
weighting parameter that gave missing values a weight of 0
and non-missing values a weight of 1.

Second, we investigated the drivers of variation in resting
and active (defined above) heart rate during July and January
with separate models for each activity level and season. We
used a linear mixed-effects (lme) model using the ‘nlme’ package
with the individual as a random intercept and fitted an AR1
structure as described above. All models were initially fitted
with the same explanatory variables using maximum likelihood
and simplified through a stepwise backward model selection
approach [56], with a likelihood ratio test performed at each
removal step (electronic supplementary material, tables S2–S5).
The explanatory variables fitted were time (calendar day), Te,
body mass recorded during capture (April 2018 for summer
models, March 2019 for winter models), reproductive status (lac-
tation status in summer, pregnancy in winter; categorical ‘yes/
no’) and age, Tsc, as well as several biologically relevant inter-
actions between the variables. For the models of active heart
rate, an additional term for activity (continuous values from 50
to 1530) was fitted, together with additional interactions between
activity and other variables (all parameters are listed in the elec-
tronic supplementary material, tables S2–S5). The final models
were fitted with restricted maximum likelihood to account for
random effects [56]. All continuous variables (activity, body
mass, Te, Tsc and time) except age were scaled within seasons
to a mean of zero and standard deviation relative to the var-
iance. Time was fitted as a quadratic term in the summer
models to account for the peak in heart rate in mid-July and
as a linear term in the winter models. We used the function
‘rsquared.GLMM’ from the ‘MuMIn’ package to derive the coef-
ficients of determination (R2) for fixed effects (marginal R2) and
fixed and random effects combined (conditional R2) to assess
the amount of variation explained by each model [57]. The gen-
eration of figures from model predictions is described in the
electronic supplementary material, §2.c.
3. Results
Predicted heart rates from the generalized additive mixed-
effects model peaked in mid-July at 103 bpm, declined to
40 bpm in December and then remained relatively stable
until April, when the loggers were removed (figure 1). Day
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Figure 1. Annual variation in heart rate across activity and reproductive states in Svalbard reindeer females, based on the data for 19 individuals (sample size
declines throughout the year; see §2 for details). The x-axis spans from March 2018 to April 2019, and each tick mark indicates the first day of the month. The solid
yellow line represents predictions of heart rate across all individuals, fitted with a generalized additive mixed model as a function of time with the individual as a
random term (R2 = 0.75). The black points are raw data values; the dark blue area represents values within the lower 5% and upper 95% quantiles, and the light
blue area represents values within the lower 25% and upper 75% quantiles of the data.
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of the year and individual variation explained 75% of the
variation in heart rate. In both winter ( January) and
summer ( July), arithmetic means of heart rate were 10 bpm
lower when resting compared to active heart rate (electronic
supplementary material, table S2, and figure S9). In winter,
animals were active 44% of the time compared to 66% in
summer (electronic supplementary material, table S2).

The lme models of winter heart rate explained relatively
little variation. Together, fixed and random effects explained
only 5% (fixed effects 2%) and 7% (fixed effects 6%) for rest-
ing and active heart rate, respectively. The summer lme
models explained considerably more variation in heart rate,
accounting for a total of 42% (fixed effects 16%) of variation
in the resting state and 38% (fixed effects 24%) of variation
in the active state. Despite the marked difference in the fit
of the final models in each season, there were many simi-
larities in the model parameters included. Therefore, we
continue by describing the explanatory variables from lme
models in turn, presenting results of model predictions
with 95% confidence intervals (CI) in parentheses.

Bodymass did not influence heart rate in resting animals in
either summer or winter (table 1). In the active state, however,
the increase in heart rate with increasing activity was greater in
heavier animals (table 1). In winter, predicted heart rate rose
from 34 bpm (CI: 31–39) to 54 bpm (CI: 51–58) at the highest
activity levels in heavy (approx. 56 kg) individuals compared
with a rise from 35 bpm (CI: 32–39) to 45 bpm (CI: 42–49) in
light individuals (approx. 43 kg, figure 2a). This interaction
was also significant in summer (table 1), but less pronounced
with only a 4 bpm difference between heavy individuals at
113 bpm (CI: 110–115) and light individuals at 109 bpm (CI:
106–113) at the highest activity levels (figure 2b). In the active
state, body mass also interacted with Tsc, but only in winter
(table 1). Whereas lighter animals reduced heart rate markedly
from 47 bpm (CI: 44–50) at Tsc 37°C to 28 bpm (CI: 21–34) at Tsc

31°C, heavy individuals maintained a constant heart rate at
approximately 44 bpm (CI: 41–47) across the range of Tsc

(electronic supplementary material, figure S10).
Reproductive status affected heart rate in summer and
during activity in winter. The effect size in summer, when lac-
tating, was greater (on average 4 bpm higher in reproductive
females) than in winter when pregnant (2 bpm difference)
(figure 3a). The reproductive status also interacted with Tsc,
but differently for summer and winter (table 1). During
summer, lactating females had higher heart rates at higher
Tsc, both during activity and at rest (table 1, figure 3b). In
winter, the interaction between reproductive status and Tsc
was only significant when active (table 1), with the heart rate
of pregnant females displaying both a positive relationship
with, and a greater range of Tsc (electronic supplementary
material, figure S11). Finally, in summer, lactating females
spent on average 6% more time active (67% versus 61% in
non-lactating females, p< 0.001), whereas in winter, there was
no significant difference in time spent active between the
two reproductive groups (electronic supplementary material,
table S2).

Age had a pronounced effect on heart rate in summer,
regardless of reproductive and activity states. Predicted
heart rate declined by 10 (resting) and 12 (active) bpm in
8-year olds compared to 5-year olds (table 1). Furthermore,
there was an interaction between age and Tsc during
summer, with a greater effect in older animals. When resting,
an 8-year old who lowered Tsc to 30°C had a predicted heart
rate of 84 bpm (CI: 82–87) compared to 100 bpm (CI: 98–102)
in a 5-year old (figure 4). When active, the magnitude of the
age difference was again greater at lower Tsc (figure 4). The
interaction between age and Tsc was also significant in
winter; however, differences were small (differences of
1–2 bpm) and no 8-year olds were present in the winter
dataset (electronic supplementary material, table S1 and
figure S12).

Being active raised heart rate as expected, but relatively
more so in winter than in summer (table 1). However, the
effect of activity on heart rate interacted with body mass, as
described above (figure 2), and furthermore with Tsc,
especially in winter (table 1). The relation of heart rate with



Table 1. Results of linear mixed-effects models on the heart rate of Svalbard reindeer females, during rest and while active in both summer (July) and winter
(January). The values are parameter estimates of the fixed effects, with upper and lower 95% CIs given in brackets. The standard deviations of the random
intercepts of each model were 1.2 and 2.1 for resting and active in winter, and 5.6 and 4.4 for resting and active in summer, respectively. All continuous
variables except age were scaled with a mean of 0 within each season. The final models were fitted with restricted maximum likelihood. Sample size ‘N’
represents the number of unique individuals, while ‘n’ represents the number of unique observations. For each model, reference levels for the intercepts are
based on non-reproductive females (0). BM, body mass (kg); ‘–‘, not applicable/tested in model; ns, not significant (removal based on maximum likelihood
ratio test); RS, reproductive status (1 = lactating in summer or pregnant in winter, 0 = non-reproductive); Te, environmental temperature; Tsc, subcutaneous body
temperature.

model parameters (fixed effects)

summer (N = 19) winter (N = 9)

resting (n = 11 287) active (n = 24 436) resting (n = 8936) active (n = 4495)

intercept 113.8 (98.2, 129.5) 126.3 (113.9, 138.6) 33.2 (28.0, 38.5) 48.7 (37.8, 59.6)

time (days) −0.5 (−0.7, −0.3) −1.9 (−2.1, −1.7) 0.4 (0.2, 0.5) 0.2 (−0.3, 0.9)
time (days)2 −1.9 (−2.1, −1.7) −2.1 (−2.3, −2.0) – –

activity – 3.2 (3.0, 3.4) – 5.2 (4.3, 6.1)

age −3.4 (−6.0, −0.8) −3.9 (−6.0, −1.9) −0.1 (−1.2, 0.9) −0.8 (−2.9, 1.3)
BM ns 1.4 (−1.1, 3.9) ns 0.4 (−1.7, 2.6)
RS (1) 3.8 (−2.1, 9.7) 3.6 (−1.1, 8.3) 2.0 (−0.3, 4.4) −5.9 (−12.8, 1.1)
Te −0.7 (−0.9, −0.6) −0.2 (−0.4, −0.1) −0.2 (−0.3, −0.1) −0.8 (−1.3, −0.2)
Tsc −2.3 (−3.2, −1.4) −3.3 (−4.4, −2.4) −0.8 (−1.7, 0.1) 1.1 (−7.8, 10.0)
activity × BM – 0.5 (0.3, 0.8) – 1.4 (0.5, 2.3)

activity × Tsc – 0.3 (0.1, 0.5) – 3.8 (2.4, 5.3)

age × Tsc 0.4 (0.2, 0.5) 0.6 (0.4, 0.7) 0.2 (0.0, 0.4) −1.5 (−2.7, −0.3)
BM × Tsc ns ns ns −2.5 (−3.8, −1.3)
RS (1) × Tsc 0.6 (0.3, 1.0) 1.4 (1.0, 1.8) ns 8.2 (2.2, 14.1)
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Figure 2. Predicted heart rate (±95% CI) of Svalbard reindeer females, plotted against activity levels in interaction with body mass grouped based on the 0.15, 0.5
and 0.85 quantiles of the distribution of body mass in (a) winter and (b) summer.
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Tsc was greatest at high activity levels and virtually absent at
low activity levels (electronic supplementary material, figure
S13a). Conversely, in summer, the relation of heart rate with
Tsc was more similar at various activity levels, albeit still sig-
nificantly different (table 1; electronic supplementary
material, figure S13b).

Declining environmental temperature (Te) raised heart
rate in both winter and summer. The effect was slightly
more pronounced when active compared to resting in
winter, with predicted differences of 2.4 bpm and 0.7 bpm,
respectively, when Te declined from −2°C to −22°C (elec-
tronic supplementary material, figure S14). In summer, the
effect was greater when resting compared to active: predicted
difference of 4.2 bpm and 1.2 bpm, respectively, when Te
declined from 25°C to 4°C (electronic supplementary
material, figure S14).
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4. Discussion
Our results demonstrate that the impact of physiological and
environmental factors on heart rate depends on both individ-
ual state and seasonal context. In particular, the relationship
between heart rate and subcutaneous body temperature
(Tsc) suggests that peripheral heterothermy, i.e. variability in
the body ‘shell’ temperature [58], is an important mechanism
for energy management, not only in winter, but also in
summer. Furthermore, several interactions indicate that the
benefit of heterothermy is dependent on activity, body
mass, reproductive status and age, especially in summer.
The most common drivers of energy expenditure such as
reproduction [59] and activity [60] had only small effects on
heart rate within the seasons (2–6% in winter and 16–24%
in summer), whereas seasonality itself explained a large
amount of the variation (75%) in annual heart rate. This sea-
sonality is consistent with a strong selective pressure on
energy conservation in winter and maximizing energy
intake in summer for reproduction and replenishment of
body reserves. Here, we discuss the observed energy man-
agement mechanisms that contribute to meeting these
seasonal energetic constraints.

Endogenous heat production is an inevitable energetic
cost for endotherms, and mechanisms to reduce this cost
can be of great importance, particularly during periods of
energy deficits and low ambient temperatures [15].
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Reductions in heart rate have been strongly associated with a
decrease in both core [25,34] and peripheral body tempera-
tures [40,61,62]. We found that heart rate and Tsc were
correlated in both seasons. Interestingly, this association
was greater (more positive) in individuals with lower body
mass in winter and in older females in summer. Peripheral
heterothermy is likely to be an important mechanism to
reduce heat loss and save energy by minimizing the tempera-
ture gradient between the body shell and the environment
[58,63]. Winter body mass in Svalbard reindeer is strongly
influenced by the size of the fat stores [8]. Body condition
(indexed by fat stores) begins to decline around age seven
(Pigeon, unpublished data), at an age when teeth also start to
wear down, which may cause a lower rate of energy assimi-
lation [64] due to larger particles and longer retention time in
the digestive system [65]. Our results indicate that peripheral
heterothermy may be more pronounced in individuals of
poorer body condition in winter, or with limitations on
food intake in summer. Indeed, state-dependent hetero-
thermy has been demonstrated in moose, where individuals
of poor body condition displayed lower core body tempera-
ture [66]. Furthermore, the degree of hypothermia in both
peripheral [67,68] and core body temperature [69] has been
shown to increase in response to food restriction. Plasticity
in the ability to employ heterothermy may therefore be a
key factor that enables animals to respond to short-term
energy deficits or limitations in energy uptake [12].

Reproduction, and lactation in particular, is considered
the most energetically demanding part of the annual cycle
for female mammals [70] and has been proposed as the
main driver of seasonally elevated mammalian energy expen-
diture [71]. Although we found a significantly higher heart
rate in lactating compared to non-lactating female Svalbard
reindeer, the difference was surprisingly small (approx. 6%)
and heart rates of non-lactating females were still more
than twice that of winter rates (figure 2a). Our results
demonstrate that elevated heart rate in summer is largely
independent of reproduction, as has been observed in
other seasonal animals [25,41]. The most likely explanation
for the seasonal increase is the relatively narrow time
window when forage is abundant, requiring a substantial
upregulation of the metabolic machinery in order to recover
body reserves and ensure survival during the coming winter,
regardless of reproductive state [34]. The energetic cost of
lactation is mainly determined by the amount of energy
exported through the milk and is not necessarily reflected
in an elevation of the total metabolic rate [72]. Further, the
simultaneous increase of heart rate with Tsc found in lactat-
ing females only (figure 2b) may indicate that lactating
females are constrained in dissipating surplus heat and
thus are more susceptible to heat stress in summer [17].
Altogether, the relatively small increase of heart rate associ-
ated with lactation suggests that females may compensate
for the additional cost of lactation by downregulating other
metabolic processes such as ‘background’ metabolic rate
[72,73] or replenishment of fat reserves [74]. In addition, lac-
tating females were more active than non-lactating females in
summer, suggesting higher foraging activity in response to
elevated energy demands. However, this behavioural
response is apparently not able to compensate fully for lacta-
tional costs as females that do not raise a calf have been
found to be heavier, i.e. fatter, in autumn than those that
reproduced successfully [8,74].

Although an increase in heart rate with increasing activity
levels occurred in both seasons, in line with previous studies
in other Rangifer subspecies [75], the relative increase in mean
heart rate from resting to active was much greater in winter
than in summer (29% versus 10%). Walking through snow
and cratering in snow are both energetically costly activities
and likely contribute to relatively greater increases in heart
rate during activity in winter compared to summer [76,77].
This effect was even greater in heavier females, suggesting
that the cost of locomotion increases disproportionally with
body mass and the intensity of activity [78]. Also, the reduced
time spent active in winter is indicative of behavioural com-
pensation to reduce energy deficits during periods of low
food supply [79]. In summer, a higher proportion of time
spent foraging [42] is likely to lead to a greater degree of
rumen filling and, in turn, precipitate increased energy
uptake and necessary increase in blood supply to the
rumen [80] contributing to increased heart rates, even when
resting.
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Overall, the strong seasonal pattern in heart rate contrib-
utes to the increasing evidence that seasonal animals
upregulate energy expenditure in periods of high supply
and downregulate it when food is scarce [22–24]. The rela-
tively small elevations in heart rate in lactating females
could indicate that breeding female reindeer are close to
their upper limits of sustained metabolic rate in summer. Fur-
thermore, the low proportion of variance explained in winter
heart rate may indicate that Svalbard reindeer operate close to
their lower limits of metabolic rate, a limit that may also be
dictated by the cost of maintaining high core body tempera-
ture to maintain the rumen biota [80], and that is reflected in
the high mortality observed in winters with severely
restricted food access [81]. While enhanced insulation in
winter counteracts thermoregulatory challenges in
endotherms exposed to low ambient temperatures [13], a
negative relationship between ambient temperature and
heart rate within seasons suggests that thermoregulatory
responses to low temperature are still present even in
highly seasonal animals, albeit at a much smaller scale com-
pared to the seasonal effect [5,39,41]. This could indicate that
intraseasonal and interseasonal responses to environmental
variation can differ within a species [42]. While the seasonal
plasticity in energetics makes Svalbard reindeer well-adapted
to their highly seasonal environment, intraseasonal constraints
on yet further upregulation or downregulation of heart rate
may limit their ability to respond to severe environmental
change [12].
5. Conclusion
Here, we have highlighted the intraseasonal responses in heart
rate to short-term environmental and physiological changes in
a high-Arctic ungulate. We find that energy-saving mechan-
isms such as peripheral heterothermy depend on body
condition, age and reproductive state. Overall, a strong seaso-
nal pattern overshadowed relatively small intraseasonal
responses in heart rate, emphasizing the importance of evalu-
ating individual state and seasonal context when studying
energetics in free-living animals [79].
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