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prokaryotic genomes collection filtered by
metagenome data
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Abstract

Background: A major bottleneck in the use of metagenome sequencing for human gut microbiome studies has
been the lack of a comprehensive genome collection to be used as a reference database. Several recent efforts
have been made to re-construct genomes from human gut metagenome data, resulting in a huge increase in the
number of relevant genomes. In this work, we aimed to create a collection of the most prevalent healthy human
gut prokaryotic genomes, to be used as a reference database, including both MAGs from the human gut and
ordinary RefSeq genomes.

Results: We screened > 5,700 healthy human gut metagenomes for the containment of > 490,000 publicly
available prokaryotic genomes sourced from RefSeq and the recently announced UHGG collection. This resulted in
a pool of > 381,000 genomes that were subsequently scored and ranked based on their prevalence in the healthy
human metagenomes. The genomes were then clustered at a 97.5% sequence identity resolution, and cluster
representatives (30,691 in total) were retained to comprise the HumGut collection. Using the Kraken2 software for
classification, we find superior performance in the assignment of metagenomic reads, classifying on average 94.5%
of the reads in a metagenome, as opposed to 86% with UHGG and 44% when using standard Kraken2 database. A
coarser HumGut collection, consisting of genomes dereplicated at 95% sequence identity—similar to UHGG,
classified 88.25% of the reads. HumGut, half the size of standard Kraken2 database and directly comparable to the
UHGG size, outperforms them both.

Conclusions: The HumGut collection contains > 30,000 genomes clustered at a 97.5% sequence identity resolution
and ranked by human gut prevalence. We demonstrate how metagenomes from IBD-patients map equally well to
this collection, indicating this reference is relevant also for studies well outside the metagenome reference set used
to obtain HumGut. All data and metadata, as well as helpful code, are available at http://arken.nmbu.no/~larssn/humgut/.
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Introduction

Significant efforts have been undertaken to characterize
the human gut microbiome, both by microbe isolation
and DNA sequencing [1]. A major contribution has also
been made by de novo-assembled genomes (Metagen-
ome-Assembled Genomes—MAGs), facilitated by the
latest advances in bioinformatics tools [2-6]. As a wrap,
a Unified Human Gastrointestinal Genome (UHGGQG) col-
lection comprised of > 200,000 non-redundant reference
genomes was recently announced [7], marking a major
milestone in this field.

These studies have laid a solid foundation, identifying
a vast variety of genomes encountered in human guts.
However, none of them addresses the global prevalence
of genomes within healthy people, ie., providing infor-
mation about their frequency of occurrence. This know-
ledge is essential for setting up a collection of human
gut-associated prokaryotic genomes that reflects the
worldwide healthy human gut microbiome. It is espe-
cially important for building custom databases intended
to be used for comparative studies in human gastrointes-
tinal microbiome research.

Regionally, studies have shown that the intestinal flora
is greatly shaped by the environment [8] and that its
composition can be linked to a range of diseases and dis-
orders [9-12]; thus, we are now at a stage where gut
microbiota therapeutic interventions are being intro-
duced [13, 14]. However, the lack of a global reference
for the intestinal flora in healthy humans represents a
bottleneck [15]. This impedes both the understanding of
gut microbiota on a worldwide scale and the introduc-
tion of large-scale intervention strategies.

The aim of this work was to create a single, compre-
hensive genome collection of gut microbes associated
with healthy humans, called HumGut, as a universal ref-
erence for all human gut microbiota studies. We utilized
the UHGG collection, mentioned above, along with the
NCBI RefSeq genomes. The strategy of building Hum-
Gut is outlined in Fig. 1.

HumGut genomes are ranked by their containment in
healthy human gut metagenomes collected worldwide. The
most commonly encountered genomes (i.e., top-ranked on
the list) were selected as taxa representatives during derepli-
cation, securing thus a list of those most relevant.

While it may seem like a relatively simple concept, this
work has only become possible with the recent development
of bioinformatics tools that allow the swift screening of pub-
licly available human gut metagenomes for the containment
of the ever-growing pool of prokaryotic genomes.

Results

Reference metagenomes

More than 5,700 gut metagenome samples collected
from healthy people of various ages worldwide were
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downloaded. These belonged to 72 different BioProjects.
To avoid the bias of containing groups of highly similar
samples, we computed the MASH distance between meta-
genomes within each BioProject, then clustered samples
with > 95% sequence identity. From each cluster, we only
kept the medoid sample, resulting thus in a collection of
3,534 healthy human gut metagenomes (Fig. 2a).

On average, samples within each project shared a 90%
sequence identity (D = 0.1), indicating a relatively high
degree of similarity between one another. There were
some outliers, however. Some infant samples (10 belong-
ing to PRINA473126 project and 1 to PRJEB6456), 10
samples from a project studying the human gut micro-
biome of vegetarians, vegans, and omnivores
(PRJNA421881), and a sample from a study focusing on
microbiome diversity among Cheyenne and Arapaho of
Oklahoma (PRJNA299502), showed the highest dissimi-
larity with at least one other sample from the same pro-
ject (D = 1) (Fig. 2b).

We wanted to see if samples clustered based on their
continent of origin (Fig. 2c). To do so, we computed the
average linkage hierarchical clustering of BioProjects.
The distance between two BioProjects is the mean pair-
wise distance between all their samples. Here, we also
included a BioProject containing primate gut metagen-
ome samples (n = 95) as an outgroup against which all
human BioProjects were compared. The lowest and
highest observed average MASH distances (D = 0.05,
and D = 0.14, respectively) were between two sets of
projects stemming from separate continents each, one
from Europe and the other from North America. These
observations, together with the mixed distribution of
BioProjects in the cluster dendrogram, suggested that
the clustering of samples did not heavily depend on
continent-of-origin. The primate samples were markedly
separated from the rest of the tree, showing an average
distance of 0.22 from all other BioProjects.

From genomes to HumGut collection

The majority of genomes stemming from the UHGG
collection (99%) and 48% of RefSeq genomes qualified
for inclusion in HumGut, resulting thus in a total collec-
tion of 381,779 genomes (Fig. 3a). The qualified ge-
nomes were contained within at least one reference
metagenome. We inferred the containment by comput-
ing sequence identity between genomes and metagen-
omes using MASH screen, and considered a genome as
contained when identity was > 0.95.

By applying a rarefaction, we found that the number
of new genomes saturated after screening for ca. 1,000
metagenomes, indicating that with > 3,500 metagenomes
very few new genomes will be added if screening even
more metagenomes from the same population (supple-
mentary material, Figure S1).
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Fig. 1 HumGut overview. HumGut represents a collection of genomes and MAGs contained in 3,534 healthy human gut metagenomes. To be
considered as contained, a genome shared at least 0.95 sequence identity with at least one of the metagenomes (inferred by the number of
shared hashes). The qualified genomes were scored based on the average sequence identity across all the metagenomes. Next, they were ranked
based on their scores: the higher the score, the higher the position on the list. Subsequently, the genomes were clustered based on MASH and
fastANI distance (D). The top-ranked genome formed a cluster centroid. Around 30,600 clusters were formed applying a D = 0.025-threshold. The
use of HumGut as a reference set helps the process of taxonomic assignments by drastically reducing the number of unclassified human gut
metagenomic reads

The most prevalent genomes, i.e., the genomes con-
tained in most metagenomes, belonged to the genus
Bacteroides, led by B. vulgatus (also known as Phocaei-
cola vulgatus), found in more than 70% of samples. It is

worth noting that the UHGG collection contained no
genome with this species name. The genomes are named
as Bacteroides dorei instead. We presume that is related
to an earlier GTDB database release used for genome
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severe clustering of samples based on origin is detected

Fig. 2 An outline of the metagenomes used in this study. a The geographical, age, and gender distribution of 3,534 metagenomes collected
from healthy people. b Boxplots illustrating the distribution of MASH distances between samples within each BioProject. The BioProject accession
is used as a label, and the color gradient indicates the size, i.e, the number of samples in each. ¢ Average linkage hierarchical clustering of 72
BioProjects containing healthy samples. BioProjects containing samples from different continents are presented separately. Labels indicate the
continent of origin: EU—Europe, AS—Asia, NA—North America, AS—Australia, AF—Africa, SA—South America, and P stands for Primates. Except
for the single primate BioProject (BioSample), each BioProject is listed in colored font according to the continent from which it originates. No

taxonomic classifications by Almeida et al. (GTDB-Tk
v0.3.1; database release 04-RS89) [7]. In the current ver-
sion of GTDB, the species Phocaeicola vulgatus is listed.

We performed clustering of genomes based on se-
quence similarity using the top-ranked genome as a
cluster centroid for each iteration. We initially applied
an ANI threshold of 97.5% to compile a HumGut collec-
tion of highest resolution (HumGut_97.5). This collec-
tion resulted in 30,691 genomes with > 50% genome
completeness and < 5% contamination. They were all

given a GTDB-Tk taxonomic annotation [16] as well as
an NCBI taxonomy assignment.

These genomes were subsequently clustered further to
form a coarser collection at 95% identity, the HumGut_
95 with 5,170 genomes. This corresponds roughly to
species resolution [17].

Looking into genome sources, we found that 9% of
HumGut_95 clusters were RefSeq-only genomes (Fig.
3c). These genomes, 756 in total, clustered into 460
HumGut_95 clusters, belonged to 125 different genera.
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Fig. 3 An overview of the genomes used to build HumGut. a The pie charts show the proportion of genomes from each collection (UHGG
above, RefSeq below) included in HumGut. To qualify for HumGut inclusion, genomes had to have at least 0.95 MASH screen identity with at
least one healthy metagenome, as did most of the UHGG and half of the RefSeq genomes. Histograms show the distribution of the mean
identity shared between the qualified genomes and healthy metagenomes. A high average identity means that the qualified genome has been
found contained in most of the screened samples. b The genome sources for HumGut clusters. The upper pie chart shows data for 30,691
clusters belonging to HumGut_97.5 (genomes grouped based on 97.5% genome sequence identity); the bottom one presents data for 5,170
HumGut_95 clusters (95% sequence identity—species level threshold). The majority of clusters in both HumGut collections are comprised of only
UHGG genomes, while 6% and 9% of the clusters consist of only RefSeq genomes (HumGut_97.5 and HumGut_95, respectively)
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Most of the genomes (299 in total) belonged to various
Streptococcus species.

HumGut genome clusters

Not all species-level clusters were equally diverse, that is,
not all of them encompassed a similar number of Hum-
Gut_97.5 clusters. The majority of HumGut_95 clusters
(3,009 out of 5,100) consisted of a single HumGut_97.5
cluster. On the other hand, the most diverse HumGut_
95 cluster was one built of 533 different HumGut_97.5
clusters, all named as Agathobacter rectalis with GTDB
taxonomy ([Eubacterium] rectale ATCC 33656 with
NCBI). It was followed by a group of 495 clusters of
97.5% sequence identity, consisting of various Collin-
sella-related species names, and a HumGut_95 cluster
comprised of 400 different HumGut_97.5 clusters, all
GTDB-named as UBAI11524 sp000437595, and NCBI-
named as Faecalibacterium sp. CAG:74.

Regarding taxonomy, many genomes were not given
species names by GTDB, rather they were named after
the genus, family, order, or class they belong to. Simi-
larly, the NCBI taxonomic annotations for many ge-
nomes resulted in ambiguous names not specific to
species, such as for example wuncultured bacterium or
Firmicutes bacterium. This contributed greatly in a dis-
crepancy between the total number of species-level clus-
ters (5,170 clusters in HumGut_95) and the total
number of distinct cluster names (3,310 GTDB names,
1,716 NCBI names).

There were also many species-level clusters that
shared the same species name. This was especially the
case with various Collinsella clusters, where 81 different
GTDB Collinsella species gave name to 7 different clus-
ters each, on average. Comparably, 19 NCBI Collinsella
species were seen in 44 different clusters on average.

Classifying the metagenome reads

We used the HumGut collection at both resolutions, in
addition to the UHGG (species-level collection, contain-
ing 4,644 genomes) and the standard Kraken2 database,
to classify the metagenomic reads from the 3,534 down-
loaded samples. On average, there were 56% unclassified
reads when using the standard Kraken2 database, while
the average dropped substantially when any one of the
HumGut or the UHGG collection was utilized (UHGG
= 14.1%, Humgut 95 = 11.7%, and HumGut_97.5 =
5.4%, Fig. 4a).

In comparison to the UHGG, both HumGut collec-
tions performed better. HumGut_95, a collection of
species-level representatives—much like the UHGG col-
lection—classified on average 2.3% more reads than the
latter. With HumGut_97.5 as a custom database, this in-
creased by 8.7%, marking a significant increase in
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Fig. 4 The performance of HumGut versions in comparison to the
standard Kraken2 database and UHGG collection. a. The boxplot
shows the distribution of unclassified reads for the 3,534 analyzed
healthy reference metagenome samples. The dashed line represents
the k-mer database sizes (right y-axis). Every database version
includes standard human genome sequences, in addition to
database-specific (sub)sets of bacteria and archaea, and the
difference in size is only due to differences in the latter. b The
classification of an additional 963 human gut metagenomes, not
part of the reference set

recognized reads, with an obvious potential for improved
classification accuracy.

Both HumGut k-mer databases were smaller than the
standard Kraken2 database of k-mers, necessitating re-
duced computer memory to perform the analyses. The
lowest memory was required by the HumGut_95 data-
base (Standard = 42.1 GB, UHGG = 20.9, HumGut_95 =
15.9 GB, HumGut_97.5 = 24.9).

Analysis of an additional 963 gut metagenome samples
(collected from people suffering from IBD), not part of
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the reference set, showed similar results regarding the
number of classified reads: 42.3% unclassified reads on
average when the Standard database was used, dropping
to 12.5%—UHGG, 11.8%—HumGut_95, and 6.2% with
HumGut_97.5 usage (Fig. 4b).

In comparison to UHGG, > 92% of samples from both
datasets individually (healthy and IBD), had a higher
number of classified reads with HumGut_95.

In addition to classification with Kraken2, we mapped
the reads of 72 random healthy samples (one sample
from each BioProject) using Bowtie2. We wanted to
have an approximation of how well the results from a
full-length-alignment approach corresponded to those of
a k-mer-based algorithm. For this example, we only built
UHGG and HumGut_95 indexes. On average, 20.5% of
the reads were left unmapped with UHGG, and 17.1%
with HumGut_95 (Supplementary material, Figure S2).
That is an increase of 8.3% and 7.5% for UHGG and
HumGut_95 correspondingly, compared to the results
retrieved with Kraken2 for the same samples.

Taxa abundances

We used the KrakenUniq as a means of identifying false
positive classifications, and removing them from the
Kraken2 reports. We then used the Bracken software on
the modified Kraken2 results, to re-estimate species
abundance in the classified human gut metagenomes.
These tasks were performed using HumGut_97.5 and
GTDB taxonomy.

The results showed that, on average, healthy adults
contained 202 species, people diagnosed with IBD, 145,
and infants, 79 species. The overall species number dis-
tribution is presented in Fig. 5a.

In total, 52 species were found present in > 70% of
healthy adult samples, led by Agathobacter rectalis,
Blautia_A sp900066165, Bacteroides uniformis, KLE1615
sp900066985, Agathobaculum butyriciproducens, and
Fusicatenibacter saccharivorans, discovered in > 90% of
healthy adult samples, representing a core community of
healthy adult human gut microbiota (Fig. 5b). A
complete hierarchical linkage of samples, computed
based on the abundance of these top 52 prevalent spe-
cies, showed that African and South American (coming
exclusively from Peru) metagenomes were more distant
from the rest, while two species were not encountered at
all in South American samples (Alistipes onderdonkii
and Lawsonibacter assacharolyticus). In addition, these
samples clustered more distantly from the others on a
PCA plot (built based on the readcounts from all spe-
cies), as depicted on Fig. 5c. The PCA loadings show
that Prevotella species were more abundant in South
American and African samples. In contrast, the Alistipes
and Bacteroides species and lay on the opposite side of
the plot, indicating a negative correlation to the former.
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Infant samples separated from the adult samples as
well. They are represented with crosses instead of dots
on the PCA ordination plot, positioned on the leftmost
part of the graph along PC1 axis. The loading plot shows
that Escherichia coli species exercise the largest effect on
samples positioned there. The most prevalent bacterium
in infants was Bifidobacterium longum (68%), followed
by E. coli (64%).

Bacteroides vulgatus, which, after screening the meta-
genomes using the MASH screen software, was the spe-
cies of the top scoring genome, was no longer the most
prevalent species among healthy human guts when clas-
sifying with all HumGut genomes. This was due to a
lower diversity among B. vulgatus genomes, compared
to Agathobacter rectalis. The genomes belonging to the
former grouped into 2 species-level clusters (D = 0.05),
while the latter resulted in 16 such groups. It is worth
noting that we found the top B. vulgatus genome
present in 2,536 healthy samples using MASH screen,
and we found this species present in 2,537 healthy sam-
ples using Kraken2-KrakenUniq-Bracken classification
tools. These almost identical results, obtained by two
different sets of tools, increase confidence in the trust-
worthiness of these findings.

We also investigated the prevalence of species that
only had RefSeq as a genome source in our collection.
Streptococcus sanguinis was found present in 73% of all
samples (healthy infants and adults, and IBD), followed
by Flavonifractor sp002161085, Escherichia
sp005843885, Streptococcus sp001587175, Pauljensenia
sp000466265, Flavonifractor sp002161215, Actinomyces
naeslundii, Raoultella terrigena, and Mediterraneibacter
sp900120155 (found in 10-36% of samples).

Discussion

The HumGut collection contains 30,691 genomes
(HumGut_97.5), with a subset of 5,170 genomes clus-
tered at 95% sequence identity (HumGut_95). The cri-
terion for including a genome in HumGut was its
prevalence in healthy human gut metagenomes.

Both HumGut versions showed superior performance
in terms of assigned reads compared to the standard
Kraken2 database, while demanding far less computa-
tional resources, as presented in Fig. 4. In addition, the
species-level HumGut mapped more reads than UHGG
when Bowtie2 was tested in a small subset of healthy
samples. We consider this to be a strong argument in
favor of HumGut's comprehensiveness and utility. Clas-
sifying a record-high proportion of classified reads per
sample, HumGut aids the accuracy of taxonomic classifi-
cation, which in turn facilitates a next-generation explor-
ation of the human gut microbiome.

The vast majority of UHGG genomes qualified for in-
clusion in HumGut, as shown in Fig. 3a. However, in
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comparison to the UHGG collection, HumGut holds the
advantage of containing more relevant human gut pro-
karyotic genomes in its pool, reflected by the additional
RefSeq genomes that showed no sequence similarity
with the qualified UHGG genomes, forming separate
clusters of 95% sequence identity (Fig. 3b). An example
of its utility is the discovery of Streptococcus sanguinis in

> 70% of all metagenome samples, which would otherwise
be impossible using the UHGG collection as a custom
Kraken2 database. Also, the identification of one of the
most prevalent species in human guts, Bacteroides vulga-
tus, would have been mistaken for Bacteroides dorei.
HumGut sets were built after ranking the genomes
based on their prevalence among metagenomes and
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using the top-ranked ones as cluster representatives.
This has ensured that the collections only contain ge-
nomes highly relevant to healthy human guts worldwide.
Comparing the HumGut_95 collection to the UHGG
collection (same resolution) shows that more metage-
nomic reads are classified for the former. Additionally,
its set of unique k-mers is 24% smaller in size than the
UHGG. This indicates the UHGG contains a higher gen-
omic diversity, requiring memory which is not really
needed for successful read classification. These are rare
genomes found in the occasional human gut metagen-
ome, but with low prevalence.

HumGut can serve as a global reference for bacteria
inhabiting the gut of healthy humans, highlighting its
importance for future gut microbiome studies and is
available for download (http://arken.nmbu.no/~larssn/
humgut/).

Our analysis showed that the diversity of gut samples
across the world is not profoundly affected by geography
(Fig. 2); therefore, having a global genome collection like
HumGut is reasonable.

However, we acknowledge that such a finding may be
confounded by the shared similarity of lifestyle choices
across people whose metagenomes were analyzed here.

We found 50 bacterial species present in more than
70% of the samples, regardless of the country of origin.
This group of species, led by Agathobacter rectalis, rep-
resents what we think is the core human gut bacterial
community (Fig. 5b). We must, however, cautiously refer
to A. rectalis as the most prevalent/abundant species
found in human gut samples. That because we found
this species to be highly diverse in sequence identity. In
our collection, we have 16 different species-level clusters,
and more than 530 clusters of 97.5% sequence identity
with this name.

We discovered that, on average, healthy adults contain
around 60 bacterial species more than IBD subjects, and
around 120 species more than healthy infants (Fig. 5a).
A low microbiome complexity among the latter two
groups is well documented in literature [18-22].

Although we found a great homogeneity of top preva-
lent species among healthy adults, our analysis showed
that samples originating from Africa and South America
were rich in Prevotella and poor in Bacteroides, which
made them cluster in our principal component analysis,
as depicted in Fig. 5c. A Prevotella-Bacteroides antagon-
ism and their correlation to lifestyle and diet have long
been described in literature [23, 24]. Our results are,
therefore, consistent with these findings.

We have demonstrated that HumGut is useful in
research that goes beyond studying healthy sub-
jects, exemplified by the equally high number of
classified metagenomic reads collected from IBD
subjects.
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A challenge that remains is the nomenclature of spe-
cies in our genome collection. There is a profound in-
consistency between the total number of species-level
clusters and the total number of names annotating them
(a ratio of 1.5:1 with GDTB-based annotation, and 3:1
with NCBI names). We believe that as long as not all
names reflect species individuality, it will be difficult to
truly explore the composition differences between vari-
ous cohorts, in addition to posing a challenge in studies
linking functions to species. On our website, we have
prepared files for building a custom Kraken2 database
where all HumGut clusters also have been given artificial
“taxonomy IDs,” making it possible to classify to clusters
instead of taxa. We note that the decision regarding
which version the HumGut collection to employ de-
pends on users’ computational resources as well as the
level of taxonomic resolution required.

On another note, it is important to emphasize that the
microbiome composition results presented here are all
based on k-mer-based methods. It remains to be seen
how well these results compare to those from whole-
read-based alignment methods.

As future work, we will also extend our approach to
more disease-associated genomes and metagenomes, in
addition to screening for gut genomes that will expect-
edly be published in the future.

Conclusion

We believe that by using HumGut as a reference, the
scientific community will be one step closer to method
standardization sorely needed in the field of human gut
microbiome analysis, and that the discovery of potential
microbiome markers will be facilitated with higher
certainty in less time and computational resources.

Methods

Human gut reference metagenomes

A set of publicly available human gut metagenome sam-
ples was collected and used for ranking all genomes in
the search for human gut relevant ones. A text search
for all human gut microbiome samples at the Sequence
Read Archive (NCBI/SRA, https://www.ncbi.nlm.nih.
gov/sra) was performed. The list of hits was manually
curated, keeping only samples with > 1,000,000 reads
and annotated as healthy individuals. NCBI/BioProject
accessions of these projects were used to locate the same
data in the European Nucleotide Archive (EMBL-EBI/
ENA, https://www.ebi.ac.uk/ena), from which all samples
were downloaded as compressed fastq-files, using the
Aspera download system (https://www.ibm.com/
products/aspera). This resulted in 5,737 healthy meta-
genomes (samples) covering 74 BioProjects. For many
BioProjects, some samples tended to be very similar to
each other, presumably due to samples collected from
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individuals sharing the same lifestyle, geographical sub-
population, genetics, or other factors that may affect the
human gut microbiome. To avoid too much bias in the
direction of such heavily sampled sub-populations, sam-
ples from the same BioProject were clustered. From each
metagenome sample, a MinHash sketch of 10,000 k-
mers was computed using the MASH software [25], dis-
carding singleton k-mers (21-mers). Based on these
sketches the MASH distances between all pairs of sam-
ples were calculated. A MASH distance close to zero
means two samples are very similar, sharing most of
their k-mers. Next, hierarchical clustering with complete
linkage was computed, and samples were partitioned at
a 0.05 distance threshold, resulting in clusters with “di-
ameters” no larger than this chosen threshold. The
medoid sample from each cluster, i.e., the one with the
minimum sum of distances to all members of the clus-
ter, was retained as the reference sample representing its
cluster. This resulted in the set of 3,534 healthy meta-
genome samples. Below, we refer to this collection as
MetHealthy.

The same procedure was utilized to collect another set
of metagenomes from patients diagnosed with Inflam-
matory Bowel Disease (ulcerative colitis, or Crohn’s dis-
ease). From initially 2,064 metagenomes, the clustering
resulted in a collection of 963 metagenomes covering 14
BioProjects. This is the MetIBD collection. Finally, a set
of 95 samples containing gut metagenome data from pri-
mates was collected and used as an outgroup in a com-
parison of the human gut metagenomes. The
metagenomes’ metadata is included in the Supplemen-
tary Table 1.

Genome collections
The main source was the recently published Unified Hu-
man Gut Genomes (UHGG) collection, containing
286,997 genomes exclusively related to human guts:
http://ftp.ebi.ac.uk/pub/databases/metagenomics/
mgnify_genomes/human-gut/v1.0/all_genomes/. The
other source was NCBI/Genome, the RefSeq repository
at ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
and ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/.
At the time of writing, ~204,000 genomes were down-
loaded from this site.

Metadata about the genomes considered and qualified
for HumGut are presented in Supplementary Table 2.

Genome ranking

Only metagenomes collected from healthy individuals,
MetHealthy, were used in this step. For all genomes, the
MASH software was again used to compute sketches of
1,000 k-mers, including singletons [26]. The MASH
screen compares the sketched genome hashes to all
hashes of a metagenome, and, based on the shared
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number of them, estimates the genome sequence iden-
tity I to the metagenome. Given that / = 0.95 (95% iden-
tity) is regarded as a species delineation for whole-
genome comparisons [17], it was used as a soft threshold
to determine if a genome was contained in a metagen-
ome. Genomes meeting this threshold for at least one of
the MetHealthy metagenomes were qualified for further
processing. Then the average [ value across all
MetHealthy metagenomes was computed for each gen-
ome, and this prevalence-score was used to rank them.
The genome with the highest prevalence-score was con-
sidered the most prevalent among the MetHealthy sam-
ples, and thereby the best candidate to be found in any
healthy human gut. This resulted in a list of genomes
ranked by their prevalence in healthy human guts.

Genome clustering

Many ranked genomes were very similar, some even
identical. Due to errors introduced in sequencing and
genome assembly, it made sense to group genomes and
use one member from each group as a representative
genome. Even without any technical errors, a lower
meaningful resolution in terms of whole genome differ-
ences was expected, i.e., genomes differing in only a
small fraction of their bases should be considered
identical.

The clustering of the genomes was performed in two
steps, like the procedure used in the dRep software [27],
but in a greedy way based on the ranking of the ge-
nomes. The huge number of genomes (hundreds of
thousands) made it extremely computationally expensive
to compute all-versus-all distances. The greedy algo-
rithm starts by using the top ranked genome as a cluster
centroid, and then assigns all other genomes to the same
cluster if they are within a chosen distance D from this
centroid. Next, these clustered genomes are removed
from the list, and the procedure is repeated, always using
the top ranked genome as centroid.

The whole-genome distance between the centroid and
all other genomes was computed by the fastANI soft-
ware [17]. However, despite its name, these computa-
tions are slow in comparison to the ones obtained by the
MASH software. The latter is, however, less accurate, es-
pecially for fragmented genomes. Thus, we used MASH-
distances to make a first filtering of genomes for each
centroid, only computing fastANI distances for those
who were close enough to have a reasonable chance of
belonging to the same cluster. For a given fastANI dis-
tance threshold D, we first used a MASH distance
threshold D, >> D to reduce the search space. In
supplementary material, Figure S3, we show some results
guiding the choice of D,,,, for a given D.

A distance threshold of D = 0.05 is regarded as a
rough estimate of a species, i.e., all genomes within a
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species are within this fastANI distance from each other
[16, 17]. This threshold was also used to arrive at the
4,644 genomes extracted from the UHGG collection and
presented at the MGnify website. However, given shot-
gun data, a larger resolution should be possible, at least
for some taxa. For this reason, we started out with a
threshold D = 0.025, i.e., half the “species radius.” An
even higher resolution was tested (D = 0.01), but the
computational burden increases vastly as we approach
100% identity between genomes. It is also our experience
that genomes more than ~98% identical are very difficult
to separate, given today’s sequencing technologies [28].
However, the genomes found at D = 0.025 (HumGut_
97.5) were also again clustered at D = 0.05 (HumGut_
95) giving two resolutions of the genome collection.

The taxonomic annotation of the genomes was per-
formed with GTDB toolkit (GTDB-Tk, release 05-RS95,
https://github.com/Ecogenomics/GTDBTk) [16], and in
the genome metadata tables we provide on our website,
we made efforts to also list the corresponding NCBI
Taxonomy names and ID’s for all genomes.

All UHGG genomes were already checked for com-
pleteness and contamination [7]. The completeness and
contamination of RefSeq genomes was performed using
CheckM  (https://ecogenomics.github.io/CheckM/) [29].
The handful genomes not having > 50% completeness
and < 5% contamination were discarded. All qualified
genomes had a genome quality score > 50 (completeness
— 5xcontamination).

Metagenome classifications

The Kraken2 software was used for classifying reads
from the metagenome samples [30]. To see the effects of
using a different database, the standard Kraken2-
database was compared by custom databases built from
the 4,644 UHGG genomes at the MGnify website as well
as our HumGut collections. In all custom databases, the
standard Kraken2 library for the human genome was
also included, since host contamination is quite normal
in metagenome data. All classifications were performed
using default settings in Kraken2.

Since Kraken2, like most other software for taxonomic
classification, uses the Lowest Common Ancestor (LCA)
approach, many reads are assigned to ranks high up in
the taxonomy. The Bracken software [31] has been de-
signed to re-estimate the abundances at some fixed rank,
by distributing reads from higher ranks into the lower
rank, based on conditional probabilities estimated from
the database content. A Bracken database (100-mers)
was created for HumGut_97.5 database and used to re-
estimate all abundances at the species rank.

If counting all listed taxa, regardless of low readcounts,
the Kraken2 is known to produce many false positives
[32], i.e., list taxa as present when they are in fact not.
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The KrakenUniq software has been developed to handle
this problem [32]. We ran it to classify the metagenome
reads for both healthy and IBD metagenomes. The over-
all results from both Kraken2 and KrakenUniq tools
were similar, but KrakenUniq also reports the number
of unique k-mers in each genome covered by the reads.
On the other hand, only Kraken2 reports are compatible
for running the Bracken software. Since we were inter-
ested in both—that is finding the true positive identifica-
tions, and their estimated abundances—we combined
the two approaches. For each sample, we found from the
KrakenUniq report a k-mer count threshold, following
the authors recommendations (2,000 unique k-mers per
1,000,000 sequencing reads depth) [32]. Taxa falling
below this threshold were given zero read counts in the
corresponding modified Kraken2 reports. We then ran
Bracken on these modified Kraken2 reports.

Additionally, we tested 72 random healthy samples,
each belonging to a distinct BioProject, using Bowtie2—
a full-length sequence aligner (HumGut_95 and UHGG
reference databases only) [33].

A principal component analysis was conducted on the
matrix of species readcounts for all metagenome sam-
ples, after the following transformation: a pseudo-count
of 10 was added to all species before using Aitchison’s
centered log-ratio transform [34, 35] to remove the unit-
sum constraint otherwise affecting a PCA of such data.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/540168-021-01114-w.

Additional file 1. Figure S1. Rarefaction curves for healthy (left panel)
and IBD metagenomes (right panel), showing that the number of new
expected genomes flattens after screening ca. 1,000 metagenomes.

Additional file 2. Figure S2. Mapping of 72 samples using Bowtie2. Y-
axis shows the percentage of unmapped reads when any of the two ref-
erence index databases was used (UHGG, or HumGut_95).

Additional file 3 Figure S3. MASH and fastANI distances. a. A plot of ca.
20,000 genome distances computed with both fastANI (x-axis) and MASH
(y-axis). fastANI distances tend to be a little smaller than MASH distances,
they however have a substantial variance. b. The rationale behind using
0.08, and 0.1 MASH distance thresholds (vertical dashed lines) for
HumGut clustering algorithm. The vast majority of fastANI distances <
0.025 have a MASH distance < 0.08 and genomes with fastANI < 0.05
have a MASH distance < 0.1. When clustering, the distance between all
genomes was first computed using MASH, then only genomes with
distances below the abovementioned thresholds were included to speed
up fastANI computations.

Additional file 4. Table S1. Metagenenomes metadata. Table S2.
Genomes metadata.
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