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Abstract 

A bivariate diameter and height distribution yields a unified model of a forest stand. The bivariate 

Johnson’s System bounded distribution and the bivariate power-normal distribution are explored. 

The power-normal originates from the well-known Box-Cox transformation. As evaluated by the 

bivariate Kolmogorov-Smirnov distance, the bivariate power-normal distribution seems to be 

superior to the bivariate Johnson’s System bounded distribution.  

The conditional median height given the diameter is a possible height curve and is compared with a 

simple hyperbolic height curve. Evaluated by the height deviance, the hyperbolic function yields the 

best height prediction. A close second is the curve generated by a bivariate power-normal 

distribution. Johnson’s System bounded distributions suffer from the sigmoid shape of the 

association between height and diameter. 

The bivariate power-normal is easy to estimate with good numerical properties. The bivariate power-

normal is a good candidate model for use in forest stands.  

Key words 

Bi-normal, bivariate Johnson’s System bounded distribution, bivariate power-normal distribution, 

height curve, Box-Cox transformation. 
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Introduction 

A major task in forestry is to predict the distribution of diameters or heights of a forest stand. The 

consideration of the possible shapes of a theoretical distribution was addressed by Hafley and 

Schreuder (1977), who introduced the Johnson System of distributions (Johnson 1949) and the 

Weibull and Gamma distributions into forestry. Prediction functions that use a maximum likelihood 

(ML) estimation of the Johnson’s System Bounded (SB) distribution were proposed by Mønness 

(1982) . Some issues involved in the estimation of SB were discussed in Lambert (1970), who 

introduced an improved parameterization that was revisited by Siekierski (1992) and Rennolls and 

Wang (2005). The Weibull distribution was reconsidered by Maltamo et al. (2000) and Merganič and 

Sterba (2006). A new distribution, the logit-logistic, was introduced by Wang and Rennolls (2005). 

The Power-Normal distribution (PN) (Freeman and Modarres 2006) originates from the well-known 

Box-Cox transformation to normality (Box and Cox 1964). PN was introduced into forestry by 

Mønness (2011b). It was shown that the PN, using only three parameters, covered a large region of 

the skewness x kurtosis space of shapes, comparable to SB but also “below” the log-normal curve. 

The PN was found to be superior to the SB measured by the Kolmogorov-Smirnov distribution 

distance in both diameter and height. On the normal scale, the PN was empirically “more normal” 

than the SB. The maximum likelihood estimation of PN has better numerically properties. With SB, 

numerical problems can arise in some cases, as was also reported by Siekierski (1992). 

 

The bivariate Johnson’s System bounded, described in Johnson and Kotz (1972), were introduced into 

forestry by Schreuder and Hafley (1977) and have been much used (Wang and Rennolls 2007). 

Bivariate distributions can be classified as in Johnson and Kotz (1972): 1) based on transformations of 

a bivariate normal and 2) based on distributions that may not be transformed into a bivariate 

normal. With the bi-normal assumption, the association between the two variables is the ordinary 

correlation coefficient on the normal scale. Estimation is performed for the two marginal 
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distributions; the correlation is estimated as the ordinary correlation on the normal scale. Without 

the bi-normal assumption, the bivariate distribution is not unique, even if the marginal distributions 

are known. Estimation must be performed directly on the joint distribution (Wang and Rennolls 

2007). They compare the bivariate Johnson’s System bounded (SBB ), which are based on the bi-

normal assumption, with what they call Plackett’s Bivariate Beta, SB and Logit-Logistic distributions. 

In fact, “Plackett” arises from the estimation method (Johnson and Kotz 1972). These authors 

conclude that “the SBB has out-performed all three bivariate Plackett-based distributional models in 

our empirical comparisons. ”…” SBB distribution is recommended.” 

An alternative to using a transformed normal (or bi-normal) distribution as model for a tree 

distribution is to use a mixture of normal distributions (Zucchini et al. 2001). The authors report a 

nice fit for one stand with uneven-aged Beech. However, the comparison is against a SBB with a lower 

bound on height close to “minus infinity”. The authors also advocate the use of pseudo-residuals 

(transforming one-dimensional residuals to normal) as a measure of fit.  

Predicting the height given the diameter is a common forestry task because diameter historically has 

been easy to measure, and height harder to measure. A large set of mathematical functions have 

been explored, e.g., see Fang and Bailey (1998). However, using airborne laser height measurements 

(Gobakken and Næsset 2004), this situation might be reversed, generating a need for a diameter-

given-height relationship. A bivariate distribution is a tool for a symmetric view of diameter and 

height. 

 

Methods 

This article will explore the bivariate Power-Normal distribution (PN2) and the bivariate Johnson’s 

System bounded distribution (SBB). Both distributions are transformations of a bi-normal distribution, 

and both will also be utilized as a source for a height given diameter curve. 
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Consider (diameter, height) data from every tree in a stand ( ) ( )1 1, ,..., ,n nD H D H ., with n being the 

number of trees. D and H are arbitrary diameter/height measures. X is either of them, whereas Z is a 

standard normal variate. 

The distance between the empirical observed bi-variate cumulative distribution and the theoretical 

estimated bi-variate cumulative distribution will be evaluated by the Kolmogorov-Smirnov distance in 

two dimensions (KS2) (Peacock 1983). The distance has to be calculated at every n2 ( ),i jD H  

combinations in the plane. Unlike the one-dimensional case, where the empirical cumulative 

distribution function is unique, the empirical bivariate cumulative distribution can be calculated in 

four ways that may obtain different values: ( )≤ ≤P D d H h , ( )≤ ≥P D d H h , ( )≥ ≤P D d H h  

and ( )≥ ≥P D d H h . Thus, the KS2 has four versions for each candidate distribution on each stand. 

Herein, all four ways are calculated, and the maximum KS2 values are reported.  

An additional feature of a bivariate distribution is the median height given diameter. The curve will 

be estimated and compared to a simple hyperbolic function (Vestjordet 1972). 

The Johnson Distributions 

The Johnson’s distribution system consists of three non-linear transformations of a normal variate 

that cover the entire skewness x kurtosis space of shapes. Johnson himself referred to these three 

transformations as System bounded (SB), System lognormal (SL), and system unbounded (SU). 

Lambert (1970) introduced a statistically improved parameterization of SB that was revisited by 

Rennolls and Wang (2005) and will be used herein. 

Let Z be a standard normal variate and X be the observed data. SB is defined by the non-linear 

transformation: 



The bivariate Power-Normal  6/23 

[1]           

Xlog
XZ

− τ  −µ θ − =
σ

 

where (τ,θ) are the lower and upper bounds on the X scale, whereas (µ,σ) are the expectation and 

standard deviation on the normal scale. The SB distribution is the distribution of X . Having two SB, 

that in addition are assumed bi-normal on the normal scale, yield the SBB . With the bi-normal 

assumption, estimation can be done on the marginal distributions. ρ  is the correlation on the 

normal scale. The SBB have nine parameters ( )τ θ µ σ τ θ µ σ ρ, , , , , , , ,D D D D H H H H . 

The Power-Normal distribution 

The Power-Normal (PN) distribution originated from the Box-Cox transformation (Box and Cox 1964). 

Box-Cox is applicable to positive data, i.e., X≥0.  

[2]   Z
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The power-normal distribution (PN) is the distribution of X . The log() case [3] is identical to the 

Johnson’s SL, so both PN and SB have SL as a limiting case. Transformation [2] is always possible, but Z 

can only be N(0,1) when λ=1 and when λ=0. Z is generally a truncated normal. 

The power-normal distribution(Freeman and Modarres 2006) has the density 
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[5]   
( )( )

( )x 11F(x) ,x 0
sign k

λ − λµ +
= Φ ≥ σλΦ λ  

 

where ( )Φ  is the cumulative standard normal distribution function,  

with k 1 1λμ μ
σλ σ σλ

=
+

= +  . 

λ and k are shape parameters while (μ,σ) are location and scale parameters on the normal scale.  

The truncation is, in forestry, in practice small because µ σ>> ; thus, the ( )( )sign k 1Φ λ ≈  . 

(Mønness 2011b). The parameter k was there shown to be larger than two for both diameter and 

height on every stand. Here, the bivariate truncation will be reported. Because the inverse 

distribution is almost normal, the bivariate normal distribution properties can be used to establish a 

bivariate PN-distribution. Thus, the association between diameter and height is the ordinary 

correlation on the normal scale. The PN distribution parameters, ( )λ µ σ, ,D D D  and ( )λ µ σ, ,H H H , are 

estimated separately. A maximum likelihood procedure for this case has been well established as the 

Box-Cox approach with good numerical properties1 (Madansky 1988). The transformed data is used 

to estimate the usual correlation ρ . The PN2 has seven parameters ( )λ µ σ λ µ σ ρ, , , , , ,D D D H H H  

Height curves 

A large set of mathematical functions have been explored, e.g., see Fang and Bailey (1998) including 

the reference function below (Vestjordet 1972), which is also function no 12 in Fang and Bailey 

(1998): 

[6]   ( )−− = + = + + + 

2
211.3 1.3dh Ad B

A Bd
 named Vestjordet2 herein (“2” for second power).  

                                                           
1 The truncation ( )( )sign kΦ λ  is ignored under the estimation, so it is rather an approximate maximum 

likelihood procedure. 
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where h is in meters and d is diameter at breast height (1.3 m). The function is a concave-bounded 

hyperbolic curve with ( ) =0 1.3h  and ( ) −∞ = + 21.3h B . The estimation process by a non-linear 

regression program (Systat Software 2012) is straightforward and numerically stable. The reason that 

[6] is used as a reference is that it was used in the original publication, although a simple two-

parameter concave curve fits these data well. The task at hand requires no evaluation of the height 

curves in general. 

Finding the conditional expected height given a diameter with SBB and PN2 is very complicated, but 

because the normal is symmetric, the next best thing is to find the conditional median (or any 

percentile) height given a diameter. 

The SBB Height curve. 

The conditional median height given diameter is 

[7]   ( )
σρ σρ µ µσ

σττ θ τ
θ

−
−  

− 
 

 
 − = + − +   −  

 

1

0.5( ) 1 e
H

H
D HD

DD
H H H

D

dh d
d

 

The curve is increasing and bounded by τ τ=0.5( )D Hh  and θ θ=0.5( )D Hh .If H

D

1σ
ρ >
σ

 the curve is 

sigmoid-shaped as seen from the d axis (Johnson and Kotz 1972). The sigmoid-shape is a drawback of 

the SBB when applied in forestry because the H given D relation is often concave. This shape can be 

acceptable depending on which part of the sigmoid appears in the relevant domain of the d and h 

values. When H

D

0 1σ
< ρ <

σ
, the curve is sigmoid-shaped, as seen from the h axis.  

The PN2 height curve. 

The conditional median height given the diameter d is given by 



The bivariate Power-Normal  9/23 

[8]   ( )
λ

λρσ λ ρσ λλ µ µ λ
σ λ σ λ

 
= + − + + 
 

1

0.5( ) 1 1
H

DH H H H
H H D D

D D D D

h d d   

In a standard bi-normal, the ( ) ρ= =2 1 1 1median Z Z z z  . Substituting the Z’s with the Box-Cox 

transformation [2] yields [8]. Based on this data,λH  andλD  are larger than zero in every case 

(Mønness 2011b); thus, the curve is increasing in our setting. If  λ
λ

<1D

H

, the shape is concave, given 

that the other parameters are consistent and reasonable, and the curve is unbounded. 

The statistical software SAS (SAS 2008) was used for programming; mathematical details and SAS 

programs are found in Mønness (2011a, a working paper). The SAS function PROBBNRM was used for 

bi-normal calculations. SYSTAT (Systat Software 2012) was used for graphics, and graphs were 

enhanced using a metafile program (Companion-Software 2008) 

 

Data 

The data sets were obtained from 139 young stands in South East Norway, representing both Scots 

Pine and Norway Spruce. The fields were established in 1954 and maintained thereafter. The 

diameter and height of each tree in the stands (16984 in total) were measured. The data are 

described in Vestjordet (1977) (In Norwegian, with a summary in English). The mean size of the plots 

was 420 m2 for Scots Pine and 370 m2 for Norway Spruce. The elevation varied from 25 to 510 m 

above sea level. Some stands were located on or near the coast, whereas others were located further 

inland. The samples were not intended to be a representative sample of young forests in southern 

Norway. The reasons behind the selection were as follows: 1) the mobility of the researchers was low 

at the time of the study, and 2) usable areas of even-aged young forest were concentrated in a few 

locations, because clear-cutting was not common in Norway at the time the stands were established. 

On the other hand, this was at the time considered a benefit, as several stands in the same area 



The bivariate Power-Normal  10/23 

could be considered as replicates. The stands were established originally to explore the effects of 

pre-commercial thinning (via an early regulation of spacing, which was designed to be carried out 

before the stand achieved a mean height of 5 m). Both un-thinned and thinned stands are included in 

the data. In the thinned stands, a regime was in place under the following guidelines: 1) the 

remaining trees should be spaced evenly where possible; 2) the arithmetic mean heights of stands in 

the same area should have a small variation; 3) the height variation within a stand should be small, 

and the canopy should be smooth2; 4) deciduous trees should be removed; 5) the remaining trees 

should be of good quality; and 6) the mean height of a stand should be as high as possible. A 

summary of the stand characteristics is given in Table 1. This dataset was the empirical basis for 

Mønness (2011b). There, figure 2 and 7 depicted diameter and height variation. Figure 5 here depicts 

diameter and height relation on sample stands, including estimated height curves. The sample stands 

are chosen as the stands with best and worst height predictions, as measured by the deviances, see 

Table 4.  

Results 

The marginal estimation and results are documented in Mønness (2011b). The KS2 distance 

(maximum of four definitions) of SBB and PN2 for all stands are shown in Table 2 and Figure 1. KS2=1 

is the theoretical maximum. Points (stands) on the diagonal have equal fit. PN2 is in general closer to 

the empirical data than SBB, even if SBB is close on many stands. When both distributions are far from 

the empirical data, SBB has larger values, indicating an even lower fit. This finding is in accordance 

with the marginal results (Mønness 2011b). On some stands, the SB maximum likelihood estimation 

encountered convergence problems. Splitting the data along this criterion did not alter the 

comparison (not shown). 

                                                           
2 However, most stands (not shown) shows the typical concave pattern between diameter and height. 
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The bivariate truncation value of PN2 is also given in Table 2. The truncation, on most stands, do not 

appear as a significant problem assuming PN2 as bi-normal on the normal scale.  

The height prediction fit was evaluated by the deviance3, ( )−∑
2

observed predictedH H n , and by visual 

inspection of the H/D plots of every stand (not shown). Figure 2 depicts the deviance on each stand 

between PN2 and SBB vs. Vestjordet2. Points on the diagonal have an equal fit based on the two 

methods in question. The curve is a LOWESS regression.  

The correlations between D and H on the normal scale for both SBB and PN2 are themselves highly 

correlated (Figure 3). The deviances (Figure 2) are also highly correlated; some stands yield good 

prediction by all methods and other stands yield poorer predictions by all methods. It is evident that 

SBB has the highest deviance on most stands. Vestjordet2 and PN2 are very close. Table 3 shows the 

residuals from all stands, (heights are estimated within each stand), taken together. Figure 2 and 

Table 3 tell the same story. Vestjordet2 has the smallest mean residuals (also on nearly every stand, 

not shown). Often SBB underestimates the heights slightly, whereas PN2 overestimates the heights 

slightly (Table 3, arithmetic mean).  

The shape of the SBB height curve is given by H

D

σ
ρ
σ

, whereas the shape of the PN2 height curve is 

given by λ
λ

D

H

. These parameters are depicted in Figure 4 for each stand on a log scale. Most stands 

appear with H

D

1σ
ρ >
σ

 and λ
λ

<1D

H

. In those cases, the SBB is sigmoid-shaped, and PN2 is concave. In 

most other cases, the SBB curve appear close to straight lines (not shown). The higher H

D

σ
ρ
σ

, the more 

                                                           
3 The denominator has not been adjusted for the number of estimated parameters; 2 (Vestjordet2), 7 (PN2) 
and 9 (SBB). This is for not penalizing the bivariate solutions within this comparison. 
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evident is the sigmoid-shape of the SBB. The more evident the sigmoid-shape, the higher is the 

deviance of the SBB height curve.  

Discussion 

Estimation:  

First, any estimation of a bivariate distribution requires stands where both the diameter and height 

are measured on every tree, potentially limiting the use of this approach. Using a distribution that 

can be transformed into a bi-normal is superior compared to some others (Wang and Rennolls 2007). 

Estimation can be performed on the marginal through simple, well-known procedures. The 

association between diameter and height are estimated in a separate step with a common known 

interpretation.  

A comment should be made about the PN and PN2. The calculations of exact PN moments 

(expectation, variance etc.) are very complicated. The Box-Cox transformation is an approximate data 

manipulation. The estimation of λ is based on the likelihood as if λX  is normal. Else, the likelihood 

will be very complicated including an integral. If the truncation (=the distribution tail below = 0X ) 

shows to be small, the λ is acceptable and the transformed distribution is close to normal. However, 

in order to use the found function as a cumulative distribution function PN or PN2, one need to 

ensure that ( )+∞ =1F  , so the truncation value (which act as a scaling) must be included. This must 

also apply to the Kolmogorov-Smirnov statistic. The formula [8] for height given diameter assumes a 

bi-normal distribution, not including the truncations.  

For SB and SBB, all this is no problem since the transformed data is exact normal. However, these 

distributions have both a lower and an upper bound, which impose other estimation issues.  

 

Use:  
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With a continuous bivariate distribution, the number of trees with ( )≤ ≤D d H h within a stand can 

be calculated from ( )≤ ≤P D d H h . The other intervals are found by subtraction. Confidence 

bands and confidence ellipsoids can be calculated based on the well-known standard normal theory. 

Prediction.  

Often, a prediction is based on a set of stands called the training data set, based on some regression 

of the parameters against the stand characteristics’ “parameter prediction”. This regression might 

not prove efficient, especially regarding shape parameters. An alternative to this path is to calculate 

certain stand characteristics and to perform the regression on them instead. The parameters are 

then recovered from the predicted characteristics “parameter recovery” See Burkhart (2012) chapter 

12. SB can be recovered from four percentiles, but the equations might not always be solvable 

(Mønness 1982) revisited in Siekierski (1992). PN can be recovered from three percentiles (including 

the median), and the equations are always solvable (Madansky 1988). Details are given in Mønness 

(2011a). Extending with the conditional median height given the median diameter, the correlation ρ 

can easily be recovered from [8]. 

Height given diameter prediction.  

The bivariate distribution yields a unified model of distributions and the H/D relation. Any height 

given diameter percentile can be calculated, not only that of the median. This distribution is also 

symmetric between height and diameter.  

 

Conclusions 

The PN2 seems to be superior to the SBB  measured by the Kolmogorov-Smirnov statistic, both 

bivariate, as shown here, and marginally (Mønness 2011b).  
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Here, the simple Vestjordet2 height curve gave a better fit than the median height given diameter. 

This might be expected because Vestjordet2 exploit the height-diameter data directly, whereas PN2 

and SBB work indirectly through the bivariate distribution and transformed-retransformed values. 

However, the PN2 median height given diameter has an overall fit close to that of Vestjordet2. PN2 

was proven concave on most stands. The SBB has a drawback concerning the functional sigmoid-

shape of the H given D association that also appears in many real cases.  

The PN is easy to estimate with good numerical properties. Based on these data, the bivariate PN is a 

good model for studies of forest stands. 
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Number of forest stands =139 
Minim

um Maximum Mean 
Standard 
Deviation 

Total age 17.0 36.0 23.6 4.2 
Number of trees 33.0 527.0 122.2 61.3 

No. Trees pr. hectare 1000.0 6918.9 2831.9 997.2 
Dominant height at 15 year breast height, m 4.6 9.5 7.3 9.3 
Dominant height *), m 4.6 14.5 8.5 20.1 
Minimum tree height, m  1.2 8.5 3.0 1.5 

Maximum tree height, m 5.1 15.8 9.5 2.3 
Mean height, Lorey's formula Hl, m 3.7 13.3 7.4 2.0 
Basal area mean diameter Dg **), cm 4.2 15.4 8.5 2.1 
Minimum diameter at breast height, cm 0.3 10.7 2.5 1.8 
Maximum diameter at breast height, cm  7.0 22.4 14.6 3. 
*) «Dominant height» is the mean height of the 100 thickest (diameter) trees pr. hectare. Dominant Height at 15 year 
breast height is taken as the site index. 
**) Dg is the diameter corresponding to the mean basal area of the stand. 

 
Table 1 Stand characteristics of the 139 stands. 
 

 

  Max KS2(SBB)  Max KS2(PN2) Difference Bivariate 
truncation value 

N of Stands 139 139 139 139 

Minimum 0.004 0.007 -0.021 0.984 

Maximum 0.167 0.088 0.133 1.000 

Median 0.027 0.021 0.007 0.999 

Arithmetic Mean 0.038 0.025 0.013 0.998 

Standard Deviation 0.032 0.017 0.022 0.003 

Table 2 Maximum Kolmogorov-Smirnov (2 Dimensions) values of SBB and PN2, and their difference. The bivariate 
truncation value. 

  

  Height residuals in dm 
  PN2 SBB Vestjordet2 
N of Trees 16984 16984 16984 
Minimum -31.26 -35.13 -37.20 
Maximum 36.97 40.61 32.11 
Arithmetic Mean 0.28 -0.25 0.05 
Standard Deviation 6.54 7.44 6.47 
Deviance 6.55 7.44 6.47 

Table 3 Residuals around predicted heights, prediction within each stand. 
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Stand PN2 SBB Vestjordet2 
  Rank Deviance Rank Deviance Rank Deviance 

13 3 2.89 20 4.58 1 2.90 
14 1 2.54 1 2.48 3 3.06 
16 113 7.72 139 12.10 115 7.69 
55 137 10.21 135 10.76 139 10.19 
61 139 10.58 136 10.83 138 10.18 

123 54 5.45 56 6.33 70 (median) 5.77 
Table 4. The sample stands. Ranked according to deviance value (dm). 1=best, 139=worst. 
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Figure 1 Maximum Kolmogorov-Smirnov (2 Dimensions) values of SBB and PN2 and a histogram of their difference 

 

  

Figure 2 Deviance on each stand among the three height curve methods. The curve is a LOWESS regression. 
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Figure 3. Correlation (D,H) on the normal scale for the SBB and PN2 

 

 

Figure 4 SBB and PN2 shape parameters of the stands. 
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Stand 13 

 

Stand 14 

 

Stand 16 
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Stand 61 

 

Stand 123 

 

Figure 5. Sample stands depicting diameter height relation. Dotted line: SBB. Dashed line: PN2. Solid line: Vestjordet2 
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