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Abstract
1. Estimating the contribution of demographic parameters to changes in popula-

tion growth is essential for understanding why populations fluctuate. Integrated 
population models (IPMs) offer a possibility to estimate the contributions of addi-
tional demographic parameters, for which no data have been explicitly collected— 
typically immigration. Such parameters are often subsequently highlighted as 
important drivers of population growth. Yet, accuracy in estimating their temporal 
variation, and consequently their contribution to changes in population growth 
rate, has not been investigated.

2. To quantify the magnitude and cause of potential biases when estimating the con-
tribution of immigration using IPMs, we simulated data (using northern wheatear 
Oenanthe oenanthe population estimates) from controlled scenarios to examine 
potential biases and how they depend on IPM parameterization, formulation of 
priors, the level of temporal variation in immigration and sample size. We also used 
empirical data on populations with known rates of immigration: Soay sheep Ovis 
aries and Mauritius kestrel Falco punctatus with zero immigration and grey wolf 
Canis lupus in Scandinavia with near- zero immigration.

3. IPMs strongly overestimated the contribution of immigration to changes in popu-
lation growth in scenarios when immigration was simulated with zero temporal 
variation (proportion of variance attributed to immigration = 63% for the more 
constrained formulation and real sample size) and in the wild populations, where 
the true number of immigrants was zero or near- zero (kestrel 19.1%– 98.2%, sheep 
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1  | INTRODUC TION

Quantifying the relative contribution of demographic parameters to 
population growth is essential for understanding the processes in-
fluencing population dynamics (Caswell, 2000; Coulson et al., 2005; 
Koons et al., 2016). This is important in population research, where 
identifying these relationships not only can help to predict the effec-
tiveness of targeted conservation measures on population growth 
but also to provide information about the spatial scale at which con-
servation management should be taken (Schaub et al., 2012; Zipkin 
& Saunders, 2018). For example, if local reproduction is a strong con-
tributor to population growth, this suggests that measures support-
ing reproduction at the local scale may be an effective strategy at 
managing the population, while a strong contribution of immigration 
would instead suggest that supportive measures should be under-
taken at a larger spatial scale. However, acquiring data on all demo-
graphic parameters and their temporal variation is often challenging. 
In particular, the measures of immigration are often limited or ab-
sent from datasets (Abadi et al., 2010). For this reason, modelling 
approaches such as integrated population models (IPMs) have been 
developed that use other demographic data to estimate the miss-
ing demographic parameters and their contribution to population 
growth rates (Abadi et al., 2010; Schaub & Fletcher, 2015; Schaub 
et al., 2013).

IPMs combine data on demographic rates with data on popula-
tion size to allow: (a) an estimate of changes in both demographic 
rates and population growth rate in a joint analysis, and in some 
cases (b) to estimate additional demographic parameters (Riecke 
et al., 2019) for which no data have been explicitly collected by in-
tegrating information from available data on other parameters and 
population growth (Kéry & Schaub, 2011; Schaub & Abadi, 2011). 
Therefore, IPMs offer the exciting possibility to investigate how 
changes in a demographic parameter are associated with changes 

in population growth rate, even in cases where no explicit data on 
this parameter are available (Millon et al., 2019). Hence, a rapidly 
increasing number of recent studies have used IPMs to estimate the 
contribution of such additional parameters, typically immigration 
(e.g. Schaub et al., 2012; Taylor et al., 2018; Weegman et al., 2017), 
but also productivity or breeding success when populations are as-
sumed to be closed to immigration (Baillie et al., 2009; e.g. Besbeas 
et al., 2002; Nuijten et al., 2020).

However, since no explicit data are used, estimating the con-
tribution of an additional demographic parameter such as immi-
gration rate must be based on particular modelling assumptions. It 
has been shown that estimation of the mean immigration rate can 
be sensitive to the parametrization and priors chosen (Schaub & 
Fletcher, 2015), and that systematic bias in the estimation of other 
parameters results in biased estimation of immigration (Riecke 
et al., 2019). Similarly, the estimation of the temporal variation of 
immigration (and consequently its contribution to temporal varia-
tion in population growth) could also depend on how this variation 
is parameterized and on the presence of any bias in the temporal 
variation of the other parameters. Indeed, any residual temporal 
variation of the other demographic parameters (e.g. temporal ran-
dom noise in detection probability, density dependence, temporal 
trends), if not explicitly considered in the models, will likely result 
in bias of the contribution of immigration to changes in population 
growth. Given this, caution is needed when interpreting the find-
ings of the many studies that show immigration has the strongest 
contribution to changes in population growth rate (70% of 44 immi-
gration parameters estimated from 23 studies compiled in Table 1). 
Because it is the residual variation that is used to estimate ‘missing’ 
parameters like immigration (together with the variance of the ob-
servation model), the model parameterization is likely to influence 
these estimates (Paquet et al., 2019; Saunders et al., 2018; Schaub 
et al., 2013). Despite this, the vast majority of IPM studies interpret 

4.2%– 36.1% and wolf 84.0%– 99.2%). Although the estimation of the contribution 
of immigration in the simulation study became more accurate with increasing tem-
poral variation and sample size, it was often not possible to distinguish between an 
accurate estimation from data with high temporal variation versus an overestima-
tion from data with low temporal variation. Unrealistically, large sample sizes may 
be required to estimate the contribution of immigration well.

4. To minimize the risk of overestimating the contribution of immigration (or any ad-
ditional parameter) in IPMs, we recommend to: (a) look for evidence of variation in 
immigration before investigating its contribution to population growth, (b) simu-
late and model data for comparison to the real data and (c) use explicit data on 
immigration when possible.

K E Y W O R D S

immigration, integrated population models, parameter estimation, temporal variation, 
transient Life Table Response Experiment contribution
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this contribution exclusively as immigration (Table 1). Thus, there is 
an obvious need to estimate what proportion of the estimated con-
tribution of immigration is truly due to immigration and not to some 
other component of the residual variation.

Here we use a combination of simulated and empirical data to 
assess the accuracy of IPMs in estimating immigration as a driver 
of temporal changes in population growth when immigration is not 
measured directly. First, we used simulation scenarios to confirm the 
existence and examine the cause of bias in estimating immigration 
within the IPM framework. Using ‘perfect datasets’ simulated with 
known immigration, we investigate whether IPM parametrization, 
specification of priors and the method of estimating population 
growth contribution result in biased estimates of the demographic 
contribution of immigration. Demographic parameter values other 
than immigration were based on estimates from an open population 
of northern wheatear, Oenanthe oenanthe, near Uppsala, Sweden. 
The simulation study allows us to quantify the bias in the estima-
tion of the temporal variation of immigration and its contribution 
to population growth under various scenarios. Second, we use long- 
term data from real populations with known immigration, in order 
to compare the IPM- estimated contribution of immigration versus 
the known true contribution of immigration. More specifically, we 
used data from populations that are either closed to immigration 
(Soay sheep Ovis aries on the island of Hirta and Mauritius kestrels 
Falco punctatus) or where the number of immigrants is very small and 
known (grey wolf Canis lupus population of Scandinavia).

2  | MATERIAL S AND METHODS

2.1 | Simulation study

To assess how accurate IPMs are at estimating the temporal variation 
and contribution of immigration to changes in population growth 
rate, we simulated data using known parameter values for fecundity, 
apparent survival (i.e. accounting for both emigration and mortal-
ity), population size and immigration. We then applied IPMs to the 
simulated data and compared modelled parameter estimates to the 
known values (see Appendix 1 for the scripts used to simulate data 
and to fit IPMs to simulated data). We simulated a series of datasets 
(and their underlying time- varying demographic parameters) using 
the structure of IPMs adapted from the real- data IPM example in 
Kéry and Schaub (2011) with time varying (random) vital rates, de-
mographic stochasticity accounted for using Poisson and Binomial 
distributions and a Poisson distribution for the observation model 
of the count data. We simulated the number of immigrants rather 
than an immigration rate as it has been suggested to better estimate 
immigration, particularly in small populations, whereas modelling im-
migration rate may lead to unrealistically high estimates due to its 
dependency to population size (Schaub & Fletcher, 2015; Zipkin & 
Saunders, 2018). To obtain realistic parameter values for the simula-
tions, we fitted the same IPM structure to a dataset from a northern 
wheatear population of central Sweden that is open to immigration 11
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(Paquet et al., 2020). For all parameters except the number of im-
migrants (for which further details are given below), we used the 
posterior medians from this fit in the simulation (see Appendix 1 for 
parameter values).

2.1.1 | Scenarios

To quantify the bias in the estimation of the temporal variation of 
immigration and its contribution, we simulated six scenarios that re-
sulted from the combination of using three levels of temporal varia-
tion in the number of immigrants (no, moderate or strong) and two 
levels of sample size. In the no variation in immigration scenario, we 
kept the number of immigrants fixed at the median of its value as 
estimated from the wheatear data (Nimm,t = e�imm = 32, which cor-
responds to 39% of the initial population size). For the moderate 
and strong variation in immigration scenarios, we fixed the temporal 
standard deviation of the number of immigrants (on the log scale), 
hereafter �imm, to either 0.2 (simulating moderate temporal variation) 
or 0.4 (simulating strong temporal variation).

To understand how sensitive the estimates of �imm are to the amount 
of data available, we simulated 24 years' datasets of ‘normal’ sample 
size (the same sample sizes per year as in the real wheatear dataset, 
see Appendix 1 for sizes of simulated datasets) or ‘large’ sample sizes 
(sample sizes per year 10 times larger than the wheatear data; with the 
initial population size and mean number of immigrants also 10 times 
bigger).

2.2 | Estimating time- varying immigration and its 
contribution to population growth rate

To estimate temporal variation in the number of immigrants, we 
fitted the two most typically used formulations on each data-
set (Table 1). In the first, most widely used type of IPM (hereafter 
IPMPois), the number of immigrants is strictly positive and allowed 
to vary around a mean value according to a Poisson log- normal 
distribution (e.g. Schaub et al., 2012, 2013; Taylor et al., 2018). In 
the second type of IPM (hereafter IPMNoConst), the number of im-
migrants is a fixed parameter estimated independently for each year 
(Brommer et al., 2017; e.g. Szostek et al., 2014), without constrain-
ing the number of immigrants to be positive, nor to vary randomly 
around a mean.

We estimated the contribution of immigration to changes in 
population growth rate using the two most common methods. First, 
we calculated the correlation coefficient between the annual num-
ber of immigrants and the annual population growth rates for each 

posterior sample, as well as the proportion of positive coefficients 
(Schaub et al., 2012). Second, we computed recently developed 
transient Life Table Response Experiment (LTRE) contributions for 
immigration rate (Koons et al., 2016, 2017; Taylor et al., 2018). This 
method has the advantage of summing into a meaningful quantity, 
which should approximate the variation in population growth rate 
and therefore allows an estimate of the proportion of variation in 
annual population growth that is explained by the variation in immi-
gration rate (Paquet et al., 2019; Taylor et al., 2018). Given the lim-
itations of the ad hoc correlation approach, notably for comparisons 
among populations (Koons et al., 2017), we only present results from 
the LTRE contributions in the main text and refer to results from the 
correlation approach in Figures S3 and S6.

For each of the six scenarios, we simulated 100 datasets. For 
each of the 600 datasets, we fitted the two above- mentioned types 
of Bayesian IPMs (IPMPois and IPMNoConst, see Appendix 1). For each 
IPM, we obtained posterior distributions from three independent 
MCMC chains after an adaptation period of 5,000 iterations, a burn 
in of 1,000 sampling every 30th iteration for 30,000 iterations. We 
used vague priors and true parameter values of the simulated data-
sets as initial values except for �imm which was initially set to 0.02 for 
cases where the true number of immigrants did not vary.

The correlations between the yearly number of immigrants 
and the growth rate and the LTRE contribution of immigration rate 
were computed from the posterior samples, and their true values 
were calculated for each of the simulated datasets for compari-
son. We looked at the correlations with the number of immigrants 
rather than immigration rates (e.g. Saunders et al., 2018), whereas 
contribution had to be calculated for immigration rate. Note that 
the true LTRE contribution of immigration rate is positive even 
when the number of immigrants is fixed because population size, 
and hence immigration rate, still varies when the number of immi-
grants is fixed.

2.3 | Case studies on three real populations

To assess how accurate IPMs are at estimating the temporal vari-
ation of immigration and its contribution in real populations, we 
compare estimated and true contribution of immigration using long- 
term data from real populations with known rates of immigration 
(see Appendix 2 for details on sample sizes, methods and references 
describing data collection). We built Bayesian IPMs with time vary-
ing (random) vital rates. We modelled female breeders only, assum-
ing females are the limiting sex (Rankin & Kokko, 2007). A detailed 
description of the models is provided in Appendix 3.

For each IPM, we obtained posterior distributions from three 
independent MCMC chains. Details on prior distribution, initial val-
ues, number of iterations, convergence assessment and posterior 
predictive checks can be found in Appendix 4. All simulations and 
estimations of posterior distributions were performed using JAGS, 
version 4.2.0 (Plummer, 2003, 2015) run using the rjags package 
(Plummer, 2013) in Program R, version 3.3.1 (R Core Team, 2019). R 

Nimm,t ∼ Poisson
(

e(�imm + �imm,t)
)

,

�imm,t ∼ Normal(0, �imm).
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code to compute LTRE contributions and correlations is provided in 
Appendix 5.

3  | RESULTS

3.1 | Simulation study

Both IPM parameterizations satisfactorily predicted the mean (i.e. 
32 and 320 for both sample sizes) and annual number of immigrants 
in all scenarios (see Figure S1 for illustration on one of the 100 data-
sets in each scenario). Nevertheless, IPMs overestimated the LTRE 
contribution of immigration (Figure 1; Figure S2, panels A and D) as 
well as the correlation between the estimated number of immigrants 
and population growth rate (Figure S3) for most of the simulations 
where the number of immigrants did not vary (Table S1; Figure 2). 
This is because the variation in the number of immigrants was over-
estimated, due to estimation uncertainty combined with the fact 
that the standard deviation is constrained to be positive (Figure 3).

When the simulated number of immigrants varied moderately or 
strongly over time, the IPMPois gave unbiased estimates of the vari-
ance in the number of immigrants (Figure 3) and consequently the 
contributions of immigration rate to changes in population growth 
rate (Figure 2). However, the estimated contributions were not 
clearly different from what would have been estimated in absence 
of variation in the number of immigrants (Figure 1: 95% CrI for IPM 
estimates in panel B or C [with temporal variation in immigration] 
largely overlap with those in panel A [no variation]). The differences 
were more pronounced, although still unclear, when the sample sizes 
were increased 10- fold (Figure 1d– f).

The IPMNoConst poorly estimated the LTRE contributions of immi-
gration rate in all cases (Figure 2).

3.2 | Case studies

For all case studies, estimated numbers of immigrants were small 
relative to population size, and 95% credible intervals almost always 
included zero (Figure S4). Their temporal variation (estimated with 
the IPMPois parameterization) was also low and did not clearly devi-
ate from zero (Figure S5). The kestrel and the sheep populations are 
closed to immigration, and for the wolf population, where immigra-
tion did occur twice, the posterior contribution of the true immigra-
tion rate was close to zero −3.46 × 10– 5 (95% CrI: −0.16.8 × 10– 5, 
6.83 × 10– 5). Despite this, for all three populations, estimates of 
the LTRE contribution of immigration were positive for most poste-
rior samples for the IPMPois formulation and strong for all posterior 
samples for the IPMNoConst formulation (Figure 4). Computing cor-
relations gave similar results (Figure S6). When using the IPMPois 
formulation, LTRE analyses suggest that immigration explained on 
average 19.1% of the variation in population growth rate for the 
kestrel population, 4.2% for the sheep population and 84.0% for 
the wolf population (Figure 4, calculated as: mean(ContribImm)/

mean(ContribImm + ContribOther demographic rates)). The LTRE contribu-
tion of immigration increased dramatically when using the IPMNoConst 
formulation, representing then 98.2% of the variation in population 
growth rate for the kestrel population, 36.1% for the sheep popula-
tion and 99.2% for the wolf population (Figure 4).

4  | DISCUSSION

Using both simulations and real case studies, we show that IPMs can 
strongly overestimate the contribution of immigration to changes in 
population growth rate. This happened when immigration was simu-
lated with zero temporal variation and in our case studies where im-
migration was known to be zero or negligible. The strength of this 
overestimation varied with how immigration was formulated and 
with sample size. The estimation of the contribution of immigration 
to variation in growth rate was more accurate when the true (sim-
ulated) variation in the number of immigrants was substantial (i.e. 
�imm = 0.2 or 0.4 on the log scale). However, despite this, it was still 
often not distinguishable from what was estimated when immigra-
tion did not vary. Below, we discuss the implications of these results 
and provide guidelines for more informed inference when estimat-
ing the importance of immigration (or any demographic parameter 
informed by little or no data) for population dynamics using IPMs.

Although previous empirical work has acknowledged the pos-
sibility for bias when estimating the contribution of immigration, 
for example due to spatial mismatch, lack of fit or unmodelled tem-
poral variation in other parameters (Paquet et al., 2019; Saunders 
et al., 2018; Schaub et al., 2013), our simulation study shows that 
the contribution of immigration can be strongly overestimated, even 
in absence of any such biases. We found that in absence of varia-
tion in the number of immigrants and with a realistic sample size, 
the estimated variation in the number of immigrants was substantial 
(Figure 3; Figure S1a) and immigration rate was the demographic pa-
rameter contributing the most to changes in population growth rate 
(LTRE contribution representing 63% (95% CrI 30– 95) of the total 
variation for the IPMPois parameterization, Figure S2). We found that 
such bias is particularly strong when using the least constrained for-
mulation of immigration IPMNoConst for both the simulation study 
and the case studies. This is likely due to the uniform priors used 
to model the number of immigrants independently each year, which 
induce spurious temporal variation because of the high uncertainty 
in estimating yearly immigration. Although more rarely used, such 
formulation has been recommended instead of the IPMPois formu-
lation to estimate the mean number of immigrants in cases where 
it is expected to be small (as for our case studies), because it allows 
negative values (Schaub & Fletcher, 2015), unlike the IPMPois formu-
lation. While it does perform well in estimating the mean number of 
immigrants, we show that it performs poorly in estimating their tem-
poral variation. A compromise to better estimate both the mean and 
temporal variation of immigration in cases where immigration is low 
could be to use a Normal likelihood for immigration rate as it allows 
for negative values (cf. IPMNoConst) while having constant mean and 
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temporal variance (cf. IPMPois; e.g. Fay et al., 2019). Nevertheless, 
using such a formulation would still presumably provide an overes-
timated contribution of immigration, as we found when using the 
IPMPois formulation. This is because the temporal variance parame-
ters are constrained to be positive and therefore uncertainty around 
a true variance of zero leads to the occurrence of positive (not nega-
tive) posterior values (see Figure 3).

In simulations where immigration varied substantially, IPMs 
provided good estimates of temporal variation in immigration, and 

consequently good estimates of their contribution to changes in 
population growth. However, the estimated contributions may be 
largely indistinguishable from what would be expected if immigra-
tion would not vary (and hence not contribute at all to variation 
in population growth; Figure 1). Only very high variation in immi-
gration and/or huge sample sizes would lead to estimates precise 
enough to distinguish the temporal variation and contribution 
of immigration from what would be expected in the absence of 
variation.

F I G U R E  1   LTRE contribution of immigration rate to variance in population growth rate for the three simulated level of variation in the 
number of immigrants (a & d = no variation; b & e = moderate variation; c & f = strong variation) for both sample sizes (upper panels [a– c] for 
the original sample size and lower panels [d– f] for the 10- fold sample sizes). Simul represents the distribution of the 100 true values of the 
simulated datasets, and IPMPois and IPMNoConst represent the distribution of the combined posteriors for the contributions estimated with 
each IPM parameterization. In the IPMPois parameterization, the number of immigrants is positive with random temporal variation according 
to a Poisson log- normal distribution. For IPMNoConst, the number of immigrants is estimated independently for each year. Dots show the 
posterior means, and lines show the 95% intervals for the combined posterior mass across simulations. Proportions of variation in growth 
rate explained by LTRE contribution of immigration are presented in Figure S2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

No variation in immigration
LT

R
E

 c
on

tri
bu

tio
n 

im
m

ig
ra

tio
n

(a)

Simul IPM Pois IPM NoConst

Sa
m

pl
e 

si
ze

 X
1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Moderate variation in immigration (0.2)

(b)

Simul IPM Pois IPM NoConst

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Strong variation in Immigration (0.4)

(c)

Simul IPM Pois IPM NoConst

0.00

0.02

0.04

0.06

0.08

0.10

LT
R

E
 c

on
tri

bu
tio

n 
im

m
ig

ra
tio

n

(d)

Simul IPM Pois IPM NoConst

Sa
m

pl
e 

si
ze

 X
10

0.00

0.02

0.04

0.06

0.08

0.10 (e)

Simul IPM Pois IPM NoConst

0.00

0.02

0.04

0.06

0.08

0.10 (f)

Simul IPM Pois IPM NoConst



     |  1907Methods in Ecology and EvoluonPAQUET ET Al.

Similar to results from the simulations, our case studies on the 
three wild populations with known immigration show that the con-
tribution of immigration was overestimated for most of the poste-
rior samples and most dramatically when using the least constrained 

formulation of immigration (IPMNoConst, Figure 4). Such bias could be 
driven by many additional factors, including temporal variation in the 
observation process of the count data, any non- random temporal 
variation of the other demographic parameters that would not be 
explicitly considered in the model (Paquet et al., 2019) or a mismatch 
of the spatial scale used to estimate the different components of 
the models (Millon et al., 2019). Knowledge of the biology for each 
study population is therefore important and needs to be considered 
explicitly within the population model in order to minimize bias in 
the estimation of the contribution of additional parameters such as 
immigration.

It is important to note that such biased estimation of temporal 
variation likely applies to any additional parameter (estimated in-
directly by integrating information from other parameters, Riecke 
et al., 2019), and, potentially to a lesser extent, any model parameter 
when there is uncertainty around the estimation of temporal varia-
tion, and the shape of its posterior distribution shows no clear devi-
ation from zero. Therefore, the issues raised in this study should be 
carefully considered when estimating the temporal contribution of 
any parameter and when comparing the contribution of parameters 
informed by largely differing amounts of data.

What can be done in order to get better inference on the tem-
poral contribution of immigration, or any other parameter, to pop-
ulation growth when using IPMs? We recommend to first look for 
evidence of variation before investigating its contribution to pop-
ulation growth. This can be done by evaluating the shape of the 
posterior distribution of its variance and assessing whether its peak 
clearly differs from zero (Figure 3). Although computationally more 
time- consuming, a second recommendation is to proceed as we did 
in our simulation study. That is, simulate datasets of the same size 

F I G U R E  2   Coverages (= proportion of simulations where 95% CrI of estimated parameter includes the true parameter value) for LTRE 
contributions of immigration estimated under each simulated scenario (panel a = original sample size; panel b = 10- fold sample size). Green 
points represent the IPMPois parameterization and yellow points represent the IPMNoConst parameterization. The red dotted line indicates a 
coverage of 95%
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dots show true values, black dots show the means and bold lines 
show the 95% intervals for the combined posterior mass across 
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as the real datasets based on the estimated demographic parame-
ters but where immigration (or any parameter of interest) is fixed in 
time. Then run the IPM using these simulated datasets and compare 
the contribution obtained with the one obtained when using the 
real dataset of interest. We provide a step- by- step procedure and R 
script on how to do so in Appendix 6. As an illustration, using data 
from a northern wheatear population, our procedure highlights that 
although immigration is estimated to be by far the main contributor 
of changes in population growth, a highly similar contribution would 

have been estimated in absence of any variation in the number of 
immigrants (Appendix 6). Because the inclusion of an additional 
parameter in IPMs can help prevent bias in the estimation of the 
other parameters (Riecke et al., 2019), it could be the case likewise 
regarding its temporal variation. Therefore, comparing estimates 
obtained with and without temporal variation in this additional pa-
rameter may be useful for better- informed inference regarding the 
other demographic parameters. That being said, we recommend not 
interpreting the contribution of additional parameters biologically 

F I G U R E  4   Transient LTRE 
contributions representing the part of 
variation in growth rate explained by 
immigration rate, and explained by the 
sum of all other demographic rates for the 
kestrel (a and b), the sheep (c and d) and 
the wolf (e and f) case study populations. 
Left panels represent estimates from the 
IPMPois parameterization, and right panels 
represent estimates from the IPMnoConst 
parameterization. Dots show the posterior 
means, and lines show the 95% credible 
intervals
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if the above- mentioned procedure does not suggest otherwise. 
Calling such a parameter an ‘additional parameter’ throughout the 
text (and define it as immigration + bias in cases where this param-
eter describes immigration) may help prevent systematic biological 
misinterpretation.

An application of our results of practical conservation impor-
tance is that an estimated high contribution of immigration (relative 
to local reproduction and survival) to variation in population growth 
does not necessarily mean that local conservation measures (sup-
porting local reproduction or survival) are of little consequence. 
Yet this is sometimes how an estimated strong (mean) contribution 
of immigration is interpreted (e.g. Schaub et al., 2012; Schaub & 
Ullrich, 2020) with subsequent suggestions that supportive mea-
sures should be undertaken at larger spatial scales. Our results sug-
gest that because the importance of immigration is likely greatly 
overestimated (see the northern wheatear example in Appendix 6), 
then local measures may well be more effective conservation tools 
despite high IPM estimates on the contribution of immigration indi-
cating otherwise.

If the main aim of a study was to investigate the temporal con-
tribution of immigration to changes in population growth rate, it is 
advisable to empirically collect and use explicit data on immigration. 
In rare situations, where all breeders in the population are monitored 
and all offspring are marked, immigration can be estimated as the 
number of unmarked animals recruited into the population (Link & 
Barker, 2005). In the cases where all subpopulations are monitored, 
immigration and emigration from and towards each subpopulation 
can be estimated using multi- state models (Seward et al., 2019). 
Moreover, additional data on individuals’ locations can be used in 
spatially explicit IPMs to estimate individuals’ movements and hence 
immigration and emigration (Chandler & Clark, 2014; Chandler 
et al., 2018; Paquet et al., 2020), although extrapolation to move-
ments at a scale larger than the study area may be problematic. 
Spatially explicit IPMs also allow accounting for spatial autocorrela-
tion of parameters, accommodate data collected at different scales 
and hence avoid bias due to scale mismatch when estimating immi-
gration. Because IPMs offer the possibility of using different types 
of data into a single modelling framework, then other types of avail-
able data such as spatial and genetic data (Millon et al., 2019) should 
be included in IPMs for more informed estimations of immigration 
and its temporal variation.
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