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location and home range (HR) levels, using two geo-
graphic layers: Tree Cover Density (TCD) and Corine 
Land Cover (CLC).
Methods  We first measured the classification mis-
match of red and roe deer GPS locations between 
TCD and CLC, also with respect to habitat units’ 
size. Then, we used Generalised Least Squares mod-
els to assess the proportional use of forest at day and 
night at the GPS location and HR levels, both with 
TCD and CLC.
Results  About 20% of the GPS locations were 
inconsistently classified as forest or open habitat by 
the two layers, particularly within smaller habitat 
units. Overall proportion of forest and open habitat, 
though, was very similar for both layers. In all popu-
lations, both deer species used forest more at day than 
at night and this pattern was more evident with TCD 
than with CLC. However, at the HR level, forest use 

Abstract 
Context  Diel use of forest and open habitats by 
large herbivores is linked to species-specific needs 
of multiple and heterogeneous resources. However, 
forest cover layers might deviate considerably for a 
given landscape, potentially affecting evaluations of 
animals’ habitat use.
Objectives  We assessed inconsistency in the esti-
mates of diel forest use by red and roe deer at GPS 
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estimates were only marginally different between the 
two layers.
Conclusions  When estimating animal habitat use, 
geographic layer choice requires careful evaluation 
with respect to ecological questions and target spe-
cies. Habitat use analyses based on GPS locations 
are more sensitive to layer choice than those based on 
home ranges.

Keywords  Habitat analysis · Habitat use · Home 
range · Ungulates · GPS-telemetry · Movement 
ecology · Geographic layers · Remote sensing

Introduction

Estimating animal habitat use has become an achiev-
able task thanks to two technological advances of 
the early 2000s that have become standard practice: 
GPS technology and remote sensing (Cagnacci et al. 
2010). Over the last 2  decades, geographic layers 
have been based more frequently on satellite data 
(Kuenzer et al. 2014; Pettorelli et al. 2014) and have 
facilitated standardized and large-scale ecological 
analyses regarding the interaction between animals 

and their environment (Pettorelli et  al. 2005; Hand-
cock et al. 2009; Dodge et al. 2013). However, for a 
given landscape, different layers may show different 
habitat patterns, depending on the purpose for which 
they were created (e.g., human land use, vegetation 
productivity), on the nature of the data source (e.g., 
number and type of sensors, spatial and spectral reso-
lution), and on the data processing used to develop 
them (e.g., type of classification algorithm, filtering 
rules). For these reasons, accurate assessment of ani-
mals’ habitat use is potentially very susceptible to the 
inconsistent classification of animal locations within 
the landscape by different geographic layers (Ewald 
et  al. 2014). For example, Oeser et  al. (2020) found 
that habitat suitability maps for red deer, roe deer 
and lynx (Cervus elaphus, Capreolus capreolus, and 
Lynx lynx, respectively) directly derived from Land-
sat imagery markedly differed from those based upon 
standard land-cover layers, potentially leading to dif-
ferent management decisions. Yet, surprisingly little 
attention has been given to the effect of using differ-
ent geographic products on habitat use estimates (but 
see Fleming et al. 2004; Neumann et al. 2015; Remel-
gado et al. 2018), even for habitat assessments of eco-
tone species (i.e., species exploiting transition areas 

N. Morellet 
Université de Toulouse, INRAE, CEFS, BP 52627–
31326 Castanet‑Tolosan, France

N. Morellet 
LTSER ZA PYrénées GARonne, 
31320 Auzeville Tolosane, France

S. Focardi 
Istituto dei Sistemi Complessi, Sezione di Firenze, 
50019 Sesto Fiorentino, Italy

N. C. Bonnot 
INRAE, EFNO, F‑45290 Nogent‑sur‑Vernisson, France

B. Gehr 
Department of Evolutionary Biology and Environmental 
Studies, University of Zurich, 8057 Zurich, Switzerland

M. Heurich 
Department of Visitor Management and National 
Park Monitoring, Bavarian Forest National Park, 
94481 Grafenau, Germany

M. Heurich · M. Kroeschel 
Wildlife Ecology and Wildlife Management, Faculty 
of Environment and Natural Resources, University 
of Freiburg, 79106 Freiburg, Germany

M. Heurich 
Institute for forest and wildlife management, Innland 
Norway University of Applied Science, Campus Evenstad, 
NO‑2480 Koppang, Norway

M. Kroeschel 
FVA-Wildlife Institute, Forest Research Institute Baden-
Wuerttemberg, 79100 Freiburg, Germany

A. Licoppe 
Natural and Agricultural Environmental Studies 
Department, DEMNA, Service Public de Wallonie, 
5030 Gembloux, Belgium

P. Moorcroft · F. Cagnacci 
Organismic and Evolutionary Biology, Harvard University, 
Cambridge, MA 02138, USA

L. Pedrotti 
Stelvio National Park, 23032 Bormio, Sondrio, Italy

J. Signer 
Wildlife Sciences Faculty of Forest Sciences and Forest 
Ecology, University of Goettingen, 37073 Göttingen, 
Germany



1455Landsc Ecol (2022) 37:1453–1468	

1 3
Vol.: (0123456789)

between different vegetation communities, like roe 
deer) that may be particularly sensitive to small errors 
in mapping. Ecotone species often prefer landscapes 
with small habitat patches and high amounts of edge, 
such as fragmented forest units within human-modi-
fied agricultural matrices (Tufto et  al. 1996; Rivrud 
et  al. 2009), that may be misclassified in simplified, 
categorical land cover layers (Pekkarinen et al. 2009).

Patterns in habitat use is also affected by human 
disturbance, with evidence pointing towards species 
becoming more nocturnal with increasing human 
activity. For example, red and roe deer in European 
landscapes have been shown to be more active during 
crepuscular and night time hours and to alternate their 
use of forested habitat to avoid human disturbance—
deer have been observed moving from forested, less 
anthropized refugia during the day to food-rich, yet 
also more anthropized, open habitats in the cover of 
darkness (e.g., Rivrud et al. 2009; Bonnot et al. 2013; 
Padié et al. 2015; Dupke et al. 2017). This observed 
diel-cycle of forest use has been used not only to 
measure deer responses to human activity (Bonnot 
et al. 2013), but also as a proxy for examining effects 
of hunting and predation risk (Gehr et  al. 2018), 
grazing damage (Rivrud et  al. 2009), and temporal 
exposure to vehicle collision (Bruinderink and Haze-
broek 1996; Balčiauskas et al. 2020). Carbillet et al. 
(2020) showed that roe deer ranging closer to roads 
and human infrastructure during daytime have higher 
cortisol levels (evidence of higher stress levels), but 
only when in open habitats. In this study, we aimed to 
assess two scales of forest use—fine (using raw GPS 

locations) and broad (within the home range derived 
from the same locations)—of red and roe deer across 
European landscapes, relying on and comparing the 
outputs from two pan-European, freely available geo-
graphic layers derived from satellite imagery: Corine 
Land Cover (CLC) and Tree Cover Density (TCD) 
(Table 1).

Due to its standardized land cover classification, 
CLC has been widely used to assess habitat use and 
selection (e.g., Lundy et  al. 2012; De Groeve et  al. 
2016), habitat suitability (e.g., Schadt et al. 2002; Fal-
cucci et al. 2009; Bosch et al. 2012), and connectivity 
(e.g., Vogt et  al. 2007; Saura et  al. 2011) of animal 
populations ranging in Europe. However, as pointed 
out by Pekkarinen et al. (2009), CLC filters out for-
est patches smaller than 25 ha (250 000  m2), imply-
ing that small habitat components, such as hedge-
rows, edges, small forest or open habitat patches, go 
undetected or get oversimplified. While simplification 
and generalization are essential for defining broad 
land cover classes, they might also lead to errors in 
the environmental classification of animal move-
ment trajectories. In contrast, the high-resolution 
layer Copernicus TCD is not based upon a mini-
mum size of mapped features, but on the percentage 
of canopy cover per raster cell (resolution of 20 m). 
Unlike CLC, TCD does not give any information on 
land cover types, but only provides a tree cover index. 
While available for use since 2015, TCD remains 
underutilized in movement ecology studies based in 
Europe, to the best of our knowledge (but see De Gro-
eve et al. 2020; Fenton et al. 2021).

Table 1   Most relevant features of CLC 2012 and TCD 2012

a CLC 2012: https://​land.​coper​nicus.​eu/​user-​corner/​techn​ical-​libra​ry/​clc-​2012-​valid​ation-​report-1
b TCD 2012: https://​land.​coper​nicus.​eu/​user-​corner/​techn​ical-​libra​ry/​compa​rative-​valid​ation (p. 19–23).

Corine Land Cover 2012 Tree Cover Density 2012

Satellite sources SPOT-4, IRS LISS III, RapidEye IRS-p6, ResourceSat-2, SPOT-4, SPOT-5
Spatial resolution 100 m 20 m
Minimum size of mapping unit 25 hectares None; pixel-based
Minimum mapping width 100 m 20 m
Geometric accuracy Less than one pixel Less than one pixel
Values 44 land cover classes 0–100% TCD
Mapping methodology Computer-assisted photo-interpretation of pre-

processed satellite images
Semi-automatic classification of pre-processed 

satellite images
Temporal extent 2011–2012 2011–2013
Thematic accuracy User/producer accuracya: 85.8%/88.1% User/producer accuracyb: 81.6%/89.0%

https://land.copernicus.eu/user-corner/technical-library/clc-2012-validation-report-1
https://land.copernicus.eu/user-corner/technical-library/comparative-validation
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To assess the inconsistencies in the estimates of 
deer habitat use based on two contrasted geographic 
layers like TCD and CLC, we first evaluated the clas-
sification mismatch of red and roe deer GPS locations 
based on the two layers; then, we modelled day/night 
forest use at the GPS location and home range (HR) 
level using both layers and compared the outputs 
(Fig. 1; Table 2). We outlined our research questions, 
predictions and analytical steps in Table 2. 

Materials and methods

Movement data

From five populations of each species (i.e. 10 popu-
lations in total) we derived space use metrics for a 
total of 85 red deer and 105 roe deer (Fig. 1—Data 
Preparation) from the Eureddeer and Eurodeer data-
bases (euromammals.org, e.g., Peters et  al. (2019); 
see Online Appendix S1 and Fig. 2 for a description 
of the populations and Urbano et al. (2021) for a gen-
eral presentation of the database). The use of differ-
ent populations distributed across Europe allowed us 
to have a good representation of the different forested 
landscapes across the continent. For each individ-
ual deer, we sub-sampled two GPS locations a day, 
at noon and midnight (12  h ± 1  h 30  min, 0  h ± 1  h 
30 min), so to exclude GPS locations that might occur 
during crepuscular periods and therefore ensure an 

unambiguous representation of day and nighttime 
habitat use. We only included summer GPS loca-
tions (from May to October) to avoid the inclusion of 
seasonal migration movements, that could confound 
our analyses. We considered GPS locations from the 
same individual for different years separately, leading 
to an average of 160 ± 26 and 170 ± 21 fixes for day 
and night, respectively. This resulted in a dataset of 
117 animal-years for red deer and 141 animal-years 
for roe deer (Fig. 1), with a total of 39,522 and 45,529 
GPS locations, respectively (see Online Appendix S2 
for a complete list of the individuals, summer GPS 
location samples and monitoring periods).

We computed the day and night home ranges 
(HRs) for each summer GPS location sample using 
Kernel Density Estimation (KDE). A KDE pro-
duces a utilization distribution resulting from a sum 
of unimodal distributions centred around each GPS 
location, whose spread is controlled by a smoothing 
parameter. KDEs were calculated using the function 
KernelUD of the R package adehabitatHR (Calenge 
2011), using a bivariate Gaussian kernel, the plug-in 
estimate for the smoothing parameter (savg n1/6, with 
savg the average standard deviation of x and y coor-
dinates and n the number of GPS fixes) and the 90% 
isopleth (Börger et al. 2006).

Classification of movement data with environmental 
data: TCD and CLC

To estimate the diel use of forest by deer (Fig.  1—
Data Preparation), we classified each sampled GPS 
location as forest or open, and described each HR 
by its proportion of forest and open habitats. For this 
purpose, we intersected GPS locations and HRs with 
both Copernicus (TCD 2012; Table  1) and  Corine 
(CLC 2012; Table 1), extracting the habitat values at 
their corresponding positions. We chose the 2012 lay-
ers being the closest in time to most of the roe and red 
deer individuals monitored by GPS (Table S2.1).

To estimate the use of forest vs open habitat by 
deer we needed to reclassify the original TCD and 
CLC layers into binary layers of forest and open, as is 
common practice in habitat use or suitability studies 
focused on forest species (e.g., Bosch et al. 2012; Fal-
cucci et al. 2009). We reclassified the TCD raster to 
a binary layer where a pixel is considered forest at a 
minimum canopy cover threshold of 10%, in line with 
the FAO (Food and Agriculture Organisation) official 

Fig. 1   Graphical summary of the analyses of red and roe deer 
habitat use based on TCD and CLC geographic layers. The 
upper box (Data Preparation) describes the extraction of red 
and roe deer GPS locations during daytime and nighttime from 
the Eureddeer and Eurodeer databases, the computation of 
Kernel Density Estimates for HRs, and their classification with 
both TCD and CLC as forest or open. As a result, the propor-
tion of forest at the GPS location and HR level, using both lay-
ers, is shown. The lower box describes our analysis workflow 
consisting out of three parts. The upper panel (Classification 
mismatch) indicates the comparison of GPS locations classi-
fied using the two layers, to identify mismatches. These hap-
pen when one GPS location is classified as open by TCD and 
as forest by CLC (OF in the figure, light blue points), or vice 
versa (FO in the figure, dark blue points). The central panel 
(Validation) shows the workflow of the validation of samples 
of mismatching GPS locations (light blue/dark blue) using 
Google Earth orthophotos. The lower panel (Analysis-GLSM) 
indicates modelling of forest use, at day and night, by the two 
species (full model), both at GPS location and HR level. The 
model has been applied to data classified with TCD and with 
CLC separately. (Color figure online)

◂
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definition of forest (Global Forest Resources Assess-
ment 2020), and as a conservative choice after a sen-
sitivity analysis that showed marginal change in the 
output classification with thresholds up to 40% (see 
Online Appendix S3). Pixels with a forest canopy 
cover < 10% were therefore considered as open habi-
tats. The CLC original vector layer was rasterized to 
a resolution of 20 m to match the grid of TCD, based 
on the class of the vector feature covered by the raster 
pixels, and considering the class of the feature with 

the larger area when two features were juxtaposed. 
We assigned the class ‘forest’ to all pixels belong-
ing to the classes broad-leaved, coniferous and mixed 
forest (311, 312, 313), and ‘open’ to all others. We 
compared our raster layer to the original 100 m CLC 
layer, and to a CLC classification including also agro-
forestry class as ‘forest’, finding no relevant differ-
ences (Online Appendix S3). Note that in both layers, 
open habitats may also include non-habitats, such as 
roads and infrastructure.

Table 2   List of research questions, Q, and relative predictions, P, with corresponding analytical steps

Research questions (Q) and predictions (P) Analysis

Classification mismatch (A)
Q.A1 Do we observe a classification mismatch for used GPS locations 

between TCD and CLC? How large is the classification mis-
match? Do we observe differences in the classification mismatch 
between the two species?

Confusion matrix A, Table 3A

P.A1 We expected a difference in the classification mismatch between the 
two species, with more mismatches for roe deer, which is known 
to be ecotonal (and thus likely to use areas sensitive to misclas-
sification)

Q.A2 Are GPS locations in small habitat patches more prone to be classi-
fied differently by the two layers?

Patch analysis

P.A2 Given that CLC uses composite land cover classes for mixed 
landscapes we expected a high classification mismatch for small 
patches

Q.A3 For those mismatching locations, which of the two layers is more 
often correct?

Confusion matrix B, Table 3B

P.A3 We expected TCD to be more often correct, given that it is specifi-
cally developed to map forest proportion

Diel habitat use analysis (B)
Q.B1 Do red and roe deer use forest more during the day than night, and, 

if so, is this behaviour consistent across European populations?
Generalised least squares models

P.B1 We predicted that red deer and roe deer use forests more during 
the day to avoid human disturbance consistently across European 
populations

Q.B2 Do estimates of diel forest use differ between the geographic layers 
CLC and TCD?

P.B2 We predicted that the estimates of diel forest use would differ 
between the two layers, given their different features, specifically 
with TCD estimating a higher difference between day and night 
forest use than CLC

Q.B3 If so, is this difference more pronounced at the GPS location level 
than at the HR level?

P.B3 We expected this discrepancy between the two layers to be higher at 
the GPS location than at the HR level, given that in the latter case 
habitat use estimates are averaged across the HR area

Q.B4 Are roe deer diel forest use estimates more different between TCD 
and CLC compared to red deer?

P.B4 We predicted a greater discrepancy for roe deer, given its tendency 
to exploit ecotones and small patches
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Classification mismatch between TCD and CLC in 
red and roe deer GPS locations

We compared the TCD and CLC classifications of red 
and roe deer GPS locations (Fig.  1, Analysis panel, 
part A) by computing a confusion matrix for each 
species. A confusion matrix typically aims to com-
pare a predicted class to an actual (‘true’) class. In 
this first objective (Table 2, Q.A1), we used it to com-
pare two forest-open classifications that can be both 
considered predictions. Hence, the mismatch catego-
ries in the matrix (FO and OF, see below) indicate the 
relative inconsistency between the two classifications. 
Specifically, our confusion matrices include four cat-
egories: GPS locations that were consistently classi-
fied by TCD and CLC either as forest or open habitat 
(i.e.,—FF and OO, Fig. 1); GPS locations oppositely 

classified by TCD and CLC (i.e. GPS locations clas-
sified as forest by TCD, but as open by CLC, or vice 
versa resulting in a classification mismatch—FO and 
OF, Fig. 1).

To test whether the size of the habitat patches was 
particularly associated with a classification mismatch 
among the two layers (see Table  2), we used the 
FRAGSTATS software for landscape structure anal-
ysis (McGarigal et  al. 2012) and measured the size 
of open or forest units used by deer (i.e., with GPS 
locations falling therein) as determined by TCD and 
compared the median size of those units that were 
consistently classified by TCD and CLC (i.e. FF, OO) 
to the median size of units that were oppositely clas-
sified by TCD and CLC (i.e. FO, OF) (Wilcoxon rank 
sum test).

Fig. 2   Red and roe deer GPS locations (in ochre and brown 
respectively) mapped on the TCD geographic layer in five dif-
ferent populations per species. Red deer populations concern 
SE-Germany (1A), N-Italy (2A), SW-Belgium (3A), SE-

Belgium (4A), N-Germany (5A). Roe deer populations con-
cern SE-Germany (1B), N-Italy (2B), Switzerland (3B), SW-
France (4B), SW-Germany (5B). See Online Appendix S1 for 
a description of the study areas
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Classification mismatch validation with Google Earth

To further compare inconsistent classifications 
between both layers, we also conducted a ground-
truth validation with a random sub-sample of 500 
GPS locations per species (i.e., 100 GPS locations 
per population, equal to 1000 GPS locations in total) 
with mismatched classification (i.e., FO, OF; Fig. 1, 
Analysis panel, part B). We overlaid these GPS loca-
tions with orthophotos from Google Earth (Gorelick 
et  al. 2017) that we assumed as the “ground truth”. 
To match the reference time of orthophotos with that 
of raster layers, we used the Google Earth function 
“Historical Imagery” to retrieve older images. We 
then visually interpreted whether a GPS location was 
in forest or open habitat in the Google Earth Pro soft-
ware. In this second objective (Table  2, Q.A3), we 
used a confusion matrix to compare opposite predic-
tions from the two geographic layers to ground-truth 
values, instead of comparing a single geographic layer 
to ground-truth, as customarily done to estimate accu-
racy (Stehman 1997; Pekkarinen et al. 2009). Hence, 
in this case the matrix indicates which of the two pre-
dictions was correct. Thus, we could determine which 
of the two layers had correctly classified each GPS 
location in retrospect and summarised the results of 
this validation as a post-validation confusion matrix 
for each species, with two dimensions (GPS locations 
oppositely classified by TCD and CLC and Google 
Earth) and two classes (forest and open habitat).

Day versus night use of forest in roe and red deer at 
the GPS and home range scales as determined by 
TCD and CLC

We modelled the proportion of forest used, respec-
tively by red (n = 117 animal/year) and roe deer 
(n = 141 animal/year), using Generalized Least 
Squares models (GLS) with a Gaussian distribution 
of residuals (Aitken, 1935; Fig.  1, Analysis panel, 
part C). Our response variables were FGPS, namely 
the proportion of GPS locations in forest habitat per 
individual, and FHR, namely the proportion of forest 
habitat within the HR per individual, modelled as a 
function of the explanatory variables time of the day 
(daytime vs. nighttime), and population (five popula-
tions for each species; Fig. 1, Analysis panel, part C; 
Fig. 2). We used GLS, rather than an Ordinary Least 
Squares model, to correctly describe the differing 

variances among time of day and populations. Our 
data met the GLS model assumptions. We compared 
all models with the different combinations of the two 
explanatory variables time of the day and population, 
both the additive effects and their two-way interac-
tion. We added two further models with the variance 
term for population and time of day, respectively, 
when the predictors were included as additive factors. 
This resulted in eight models for each species (red 
and roe deer), space use metric (GPS locations and 
HRs), and layer used (TCD and CLC). The models 
were ranked according to the Akaike Information Cri-
terion corrected for small sample sizes (AICc, Burn-
ham and Anderson 2002; see Online Appendix S5, 
Tables S5.1–S5.8). Predictions in day vs nighttime 
forest use are visualized in Fig. 4, comparing predic-
tions derived from CLC and TCD within each panel, 
for each metric and species combination (GPS—roe 
deer; GPS—red deer; HR—roe deer; HR—red deer).

Results

Classification mismatch between TCD and CLC in 
red and roe deer GPS locations

For red deer, 22% of GPS locations were oppositely 
classified by TCD and CLC layers (8959 out of 
39,522 GPS locations, Table 3.A, top-left panel). Spe-
cifically, 13% of the GPS locations were classified as 
forest by TCD but as open by CLC (Table 3.A. dark 
blue, ‘FO’), and 9% as open by TCD but as forest by 
CLC (Table 3.A. light blue, ‘OF’). Similarly, 18% of 
roe deer GPS locations were oppositely classified by 
TCD and CLC (8294 out of 45,529 GPS locations, 
Table 3.A, bottom-left panel), with 10% classified as 
forest by TCD but as open by CLC, and vice versa for 
8% of the GPS locations. Thus, prediction P.A1 was 
not confirmed, since both species presented a similar 
percentage of GPS locations oppositely classified by 
TCD and CLC, and even a slightly greater percent-
age of misclassification for red deer than for roe deer. 
Interestingly, despite such mismatched classification 
of single GPS locations, the overall proportion of 
GPS locations classified as forest or open was very 
similar when using the two layers (overall propor-
tion of GPS locations classified as forest for red deer: 
67% with TCD, 63% with CLC; for roe deer: 38% 
with TCD, 36% with CLC). This result is showcased 
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with individual examples in Fig. 3 (upper panels, red 
deer; lower panels: roe deer). In the right-hand panel, 
the dark-blue and light-blue habitat patches are oppo-
sitely classified by TCD and CLC. Consequently, 
the intersecting GPS locations show a mismatched 
classification. Visual inspection in Google Earth® 
shows that oppositely classified habitat patches, in 
this example, correspond to small fragments or linear 
features.1 In particular, the patches classified as for-
est by TCD, but open by CLC (dark blue), are small 
woody fragments, whereas patches classified as open 
habitat by TCD, but forest by CLC (light blue), are 
small openings or roads. This example was also con-
firmed at the population level, since GPS locations 
oppositely classified by TCD and CLC were found 
in habitat units significantly smaller than average, 

confirming our prediction P.A2. Indeed, the median 
size of used forest units (as determined by TCD) that 
were oppositely classified by TCD and CLC (FO) was 
3468 ha and 68 ha for red and roe deer respectively, 
while the median size of used forest units consistently 
classified by TCD and CLC (FF) was 5302  ha and 
170  ha for red and roe deer respectively (Wilcoxon 
Tests: red deer W = 40,459,941, p < 0.001; roe deer 
W = 17,327,785, p < 0.001). Similarly, used open hab-
itat units that were oppositely classified by TCD and 
CLC (OF) had a median size of 4 ha in red deer and 
102 ha in roe deer, while those that were consistently 

Table 3   (A) Confusion matrices (See also Fig. 1—Analysis Classification Mismatch) comparing the TCD and CLC classifications 
of red and roe deer GPS locations as forest or open habitats (output for all individuals across the five populations combined).

A. TCD/CLC Classifica�on of GPS Loca�ons B. Valida�on of Mismatched Classifica�on 

CLC Google Earth

F O F O

TCD
F 21289[54%] 5219[13%] 26508[67%] FTCDOCLC 228[48%] 43[9%] 271[57%]

O 3740[9%] 9274[24%] 13014[33%] OTCDFCLC 46[10%] 158[33%] 204[43%]

25029[63%] 14493[37%] 39522 274[58%] 201[42%] 475

CLC Google Earth

F O F O

TCD
F 12568[28%] 4637[10%] 17205[38%] FTCDOCLC 270[58%] 66[14%] 336[72%]

O 3657[8%] 24667[54%] 28324[62%] OTCDFCLC 58[12%] 74[16%] 132[28%]

16225[36%] 29304[64%] 45529 328[70%] 140[30%] 468

Total number of GPS locations and their relative percentages (in brackets) are indicated for all cases, i.e. consistent classification 
between TCD and CLC location in green (dark for forest, light for open), and opposite classifications between TCD and CLC loca-
tion in blue (dark blue: TCD classification as forest but CLC classification as open—FTCDOCLC; light blue: TCD classification as 
open but CLC classification as forest—OTCDFCLC).
(B) Post-validation confusion matrices for a sub-sample of 500 GPS locations per species with a TCD/CLC mismatched classifica-
tion, using orthophotos from Google Earth as ground truth. Of these, only 475 GPS locations for red deer and 468 for roe deer could 
be validated, so that proportions do not exactly sum up to 1

1  Deer bounding box coordinates (WGS84) in Fig. 3:
  Red deer—5.3461858 50.0663290; 5.4569154 50.1124290.
  Roe deer—7.5515032 46.6170573; 7.5967323 46.6481488.
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classified by TCD and CLC (OO) had a median size 
of 753  ha in red deer and 856  ha in roe deer (Wil-
coxon Tests: red deer W = 5,359,340, p < 0.001; roe 
deer W = 26,076,120, p < 0.001). Hence, oppositely 
classified GPS locations primarily occurred in small 
openings for red deer and both small forest patches 
and openings for roe deer. This is likely linked with 
the prevalent use of small forest patches by roe deer, 
when forest is used (23% of roe deer GPS locations 
classified as forest by TCD were in forest patches 
smaller than 25  ha (see above, minimum mapping 

unit for CLC); 4% of GPS locations for red deer) 
and of small clearings by red deer, when open habi-
tat is used (32% of red deer GPS locations classified 
as open by TCD were in open patches smaller than 
25 ha; 6% of GPS locations for roe deer). 

Classification mismatch validation with Google Earth

Finally, the validation analysis on 500 GPS locations per 
species that were oppositely classified by TCD and CLC 
(i.e., OF and FO) showed that, according to the ground-
truth layer, TCD classification was more often correct 

Fig. 3   Summer GPS locations and HRs (HR, 90% KDE; yel-
low for day and black for night) for one red deer (upper pan-
els: ID 762, adult female, SW-Belgium, summer 2010) one roe 
deer (lower panels: ID 2285, adult male, Switzerland, summer 
2013) overlaid onto TCD (left panel) and CLC (middle panel) 
layers. The bar charts below the plots indicate the proportion 
of forest (dark green) and open habitat (light green) within 
HRs and for GPS locations as classified by the respective lay-

ers. The right column illustrates the classification mismatch 
between the two raster layers, with consistent classification 
between TCD and CLC indicated in green (dark for forest, 
light for open), and opposite classifications between TCD and 
CLC in blue (dark blue: TCD classification as forest but CLC 
classification as open; light blue: TCD classification as open 
but CLC classification as forest). See also the colour codes in 
Table 3. (Color figure online)
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than CLC, confirming P.A3: 81% for red deer (386 out of 
475) and 74% of these for roe deer (344 out of 468) were 
correctly classified by TCD (Table 3.B). Conversely, 19% 
of the GPS locations for red deer (89 out of 475) and 26% 
of the GPS locations for roe deer (124 out of 468) were 
correctly classified by CLC. For 5% of the oppositely clas-
sified GPS locations (57 out of 1000) we could not deter-
mine the habitat type through visual interpretation of the 
orthophotos. When comparing populations, the propor-
tion of GPS locations correctly classified by either TCD 
or CLC slightly differed, but TCD outperformed CLC in 
all cases (see Online Appendix S4 for more details).

Day versus night use of forest in roe and red deer at 
the GPS and home range scales as determined by 
TCD and CLC

Confirming our prediction P.B1, red and roe deer for-
est use was greater during daytime than nighttime. 
Forest use also varied across populations, although 
the difference observed between daytime and night-
time forest use was consistent across populations (no 
two-way interaction retained between time of the day 
and population, see Online Appendix S5). These pat-
terns were more pronounced with TCD, especially 

when GPS locations were used instead of HRs (Fig. 4 
and Table S5.9, S5.10).

The difference in the use of forest from day to night 
in both species was larger when using TCD than with 
CLC, confirming our prediction P.B2. For red deer, 
the difference in the use of forest from day to night 
showed on average a decrease of 39% with TCD (cir-
cles in Fig. 4, top left panel; Table S5.10), compared 
to a 22% decrease with CLC (triangles in Fig. 4, top 
left panel; Table  S5.10), at the GPS location level. 
Similarly, for roe deer, the difference in the use of 
forest between day and night showed on average a 
decrease of 53% with TCD (circles in Fig. 4, bottom 
left panel; Table  S5.10), and 46% with CLC (trian-
gles in Fig. 4, bottom left panel; Table S5.10). Also, 
CLC-based estimates showed a larger within-pop-
ulation variability: the average standard error across 
populations for red deer was 0.03 and 0.06 for TCD 
and CLC, respectively; for roe deer, 0.03 and 0.04 for 
TCD and CLC, respectively (see Table  S5.10). On 
average, the absolute difference between estimated 
forest use by TCD and CLC was 11.5% for red deer 
and 6.95% for roe deer during daytime, and respec-
tively 7.01% and 8.02% during nighttime. Hence, 
while we confirmed our prediction P.B2 that the 

Fig. 4   Model predictions of red and roe deer forest use dur-
ing day and night. Upper and lower panels are respectively 
the model predictions for red and roe deer and left and right 
for GPS location and HR levels. Model predictions based on 
TCD and CLC layers are indicated respectively by circles and 

triangles, and the colour distinguishes the predictions for day 
and night (in yellow and black respectively). All best models 
included a Generalized Least Squares estimate of the variance, 
except HR-TCD for roe deer (grey bars, see also Table S5.9). 
(Color figure online)
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estimates of diel forest use differed between the two 
layers, we did not find greater discrepancy between 
TCD and CLC layers for roe deer (P.B4) given that 
estimates showed a similar difference between layers 
in roe and red deer. Interestingly, during daytime for-
est use estimates were prevalently larger for TCD (9 
out of 10 populations), while during nighttime CLC 
estimates were often larger (6 out of 10 populations). 
The differences between day and night use of for-
est were much less evident at the HR level, both for 
red and roe deer (Fig. 4, right panels; Table S5.10). 
In addition, differences between forest use estimates 
obtained with TCD and with CLC were also reduced 
at the HR level compared to the GPS location one 
(P.B3), although not markedly (i.e. circles and trian-
gles are closer together in the right panels than in the 
left panels of Fig. 4; see Table S5.10).

Discussion

We estimated the diel use of forest in five populations 
of red deer and five populations of roe deer across 
Europe with two different geographic layers, using 
two spatial scales of analysis. First, we showed that 
about 20% of the GPS locations (23% for red deer and 
18% for roe deer) were classified oppositely by CLC 
and TCD, although the overall proportion of forest 
and open habitat was similarly estimated by the two 
layers (Table 1A), raising the need for further evalu-
ations on the use of these layers for animal ecology 
applications. Second, our case study shows that both 
deer species consistently used more forest habitat 
during the day than at night across Europe (as much 
as 40–50% more; Table  1B). Ungulates inhabiting 
European human-dominated landscapes must cope 
with high human densities and an extensive road net-
work, and have consequently adjusted their activity 
pattern and habitat use to decrease the exposure to 
human disturbance (Bonnot et al. 2020). Our findings 
indicate that open areas, generally rich in herbaceous 
plants but also riskier in terms of exposure to human 
activities (Abbas et al. 2011; Bonnot et al. 2013), are 
visited substantially more during nighttime and con-
versely, forested, less anthropized habitats are visited 
more during the day. However, this crucial behav-
ioural strategy, estimated via the proportion of for-
est use, was estimated differently using the two geo-
graphic layers here considered, TCD and CLC, and at 

the two spatial scales of the analysis, GPS locations 
and HRs.

By sampling 1000 of the GPS locations that were 
oppositely classified by CLC and TCD and annotat-
ing them as forest or open according to orthophotos 
of Google Earth, we found that TCD was more accu-
rate than CLC (Table  3 and Online Appendix S4; 
P.A3). Indeed, TCD and CLC have an overall similar 
classification accuracy (Table  1), but deer often use 
those areas, such as forest openings and edges, that 
are more prone to misclassification. Indeed, we found 
that the GPS locations classified oppositely by CLC 
and TCD were found in patches significantly smaller 
compared to the consistently classified GPS locations 
(P.A2). This highlights that the sensitivity of animal 
habitat use analysis to misclassification will depend 
on how well geographic layers describe small-scaled 
habitat features used by animals.

When we modelled deer differential use of forest in 
diurnal and nocturnal hours using the two layers, we 
obtained different results at the GPS location and HR 
level, as expected (P.B3). In particular, TCD pointed 
at a greater difference in the use of forest between 
daytime and nighttime at the GPS location level, i.e. 
a greater deer day-night shift, than CLC, resulting in 
potentially contrasting conclusions when using either 
layer. Indeed, using CLC to estimate day-night shifts 
in the use of forest by deer would lead to an underes-
timation of this behavioural strategy that TCD identi-
fied consistently across individuals and populations, 
instead. On the other hand, at the HR level, forest use 
estimates were only marginally different between the 
two layers, and a day/night shift was hardly detect-
able by using either layer. To sum up, we found that 
the forest use estimates depended not only on the 
geographic layer used, but also on the spatial scale 
of analysis (i.e., GPS locations or HR). The analysis 
at the GPS location scale allowed to better detect the 
day-night shift in the use of forest, but was also more 
sensitive to the specific geographic layer used. For 
this reason, special attention should be given when 
habitat use is evaluated at the level of GPS locations 
or trajectories, for example in Resource Selection 
Analysis (especially Step Selection Functions, Thur-
fjell et al. 2014, and integrated Step Selection Analy-
sis, Avgar et al. 2016), or in the analysis of sequential 
habitat use (Sequence Analysis Methods, De Groeve 
et al. 2016, 2020).
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Best practice in the use of geographic layers for 
movement ecology analysis: considerations and 
limitations

The potential problem of obtaining different results 
from geographic layers has been given relatively little 
attention in movement ecology. Since maps are only 
representations of reality, each with their own limi-
tations and biases (Monmonier 2018), we advise to 
treat them critically when estimating animals’ habi-
tat use. Our results go beyond the comparison of two 
specific geographic layers as they demonstrate the 
need to account for potential sources of errors inher-
ent in the use of geographic layers in animal ecology.

A first general recommendation is to always 
visually compare layers and select those that bet-
ter describe the habitat features used by the species 
of interest. Fleming et  al. (2004) suggested starting 
with the highest resolution imagery available to better 
assess local-scale relationships when examining habi-
tat associations. Such comparisons can be performed 
in various GIS environments such as QGIS, ArcGIS, 
and common programming environments specialized 
in spatial analysis such as R and Python. A typical 
example of a comparison between layers is provided 
in Fig. 3, where we showcase the mismatch between 
CLC and TCD and their respective reclassifications 
both with maps and proportional barplots.

Next, users should measure the accuracy of geo-
graphic layers, when possible, with respect to the hab-
itat features of interest. Remote sensing products used 
for habitat or land features identification are often 
validated through visual interpretation of orthophotos 
for a random or stratified sample of locations/areas 
(Pekkarinen et  al. 2009). For applications in move-
ment ecology, we recommend applying a validation 
using orthophotos both for random locations and for 
locations used by the animals. The former will show 
the general accuracy of a habitat layer, while the latter 
will allow assessing whether those areas specifically 
used by animals (for example, small habitat patches) 
are more sensitive to misclassification. Here, for the 
general accuracy we relied on the official accuracy 
report that accompanied the products (see Table  1), 
and focussed on locations used by animals. How-
ever, local differences on general accuracy have been 
reported (De Groeve 2018, Online Appendix S3), so 
if possible also random locations may be evaluated.

Another typical critical step in the workflow of 
spatial analysis is the reclassification of the original 
geographic layer. This step, which is often neces-
sary before performing animal habitat use analysis 
(e.g., Falcucci et al. 2009; Bosch et al. 2012; De Gro-
eve et  al. 2016), may consist of merging land cover 
classes (e.g. CLC) or defining a specific value as the 
threshold (e.g. TCD) to distinguish different habitats 
in a raster layer. Reclassifications can introduce fur-
ther inaccuracy and should be carefully defined, as we 
did in the present work through a sensitivity analysis 
(Online Appendix S3) that compared different aggre-
gations of CLC-classes and different forest percent-
age thresholds of TCD. In this work, a reclassification 
was essential for directly comparing CLC and TCD, 
however we recommend using original input values 
of a layer where possible.

While validation is essential, researchers may not 
limit their analysis to a single geographic layer. Eco-
logical models can be run in parallel with multiple 
geographic layers expressing the same environmental 
covariate, as done in this study (Fig.  4). This could 
further help to disentangle the ecological effect of the 
covariate, from the characteristics of the data source. 
Our results suggest that TCD performs better for the 
analysis of forest use and allowed to identify day/
night shift by deer. However, CLC provides infor-
mation on many other land use categories for which 
harmonized European layers are still missing, such as 
agricultural fields. Its use in movement ecology stud-
ies is useful but should consider the limitations on 
spatial resolution and class aggregation that we fur-
ther evidenced in this work.

Here we used static layers that refer to a relatively 
long period (6 years for CLC and 3 years for TCD) 
to match instantaneous animal relocations. The tem-
poral mismatch between the habitat types represented 
by the geographic layers and those experienced by 
animals can represent a source of bias. Static layers 
can become outdated within a relatively short interval 
of time, for example because of local or large-scale 
changes in forest landscapes due to insect outbreaks 
(Oeser et  al. 2021), tempests (Gaillard et  al. 2003), 
fires (Silva et  al. 2014) and logging activities. New 
satellite sensors releasing almost real-time observa-
tions, together with remote processing engines (e.g. 
Google Earth Engine) represent the next generation 
of opportunities (Oeser et  al. 2020), allowing more 
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dynamic mapping to match animal movement and 
behaviour.

In conclusion, the choice of the geographic layer 
to utilize should be considered as a crucial step in 
habitat use and selection studies (Oeser et al. 2020), 
which requires careful evaluation of the layer-specific 
characteristics with respect to the target species ecol-
ogy and behaviour. Here, we suggest to carefully 
evaluate geographic layers, paying attention to spatial 
resolution, temporal match, classification accuracy 
in respect to the spatial scale of animal space use 
analysis.
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