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Abstract: A halotolerant, exopolysaccharide-producing bacterium isolated from the Salar de Uyuni
salt flat in Bolivia was identified as Bacillus atrophaeus using next-generation sequencing. Compar-
isons indicate that the genome most likely (p-value: 0.0024) belongs to a subspecies previously not
represented in the database. The growth of the bacterial strain and its ability to produce exopolysac-
charides (EPS) in synthetic media with glucose or xylose as carbon sources, and in hydrolysates
of quinoa stalks, was investigated. The strain grew well in all synthetic media, but the growth in
glucose was better than that in xylose. Sugar consumption was better when initial concentrations
were low. The growth was good in enzymatically produced cellulosic hydrolysates but was inhibited
in hemicellulosic hydrolysates produced using hydrothermal pretreatment. The EPS yields were up
to 0.064 g/g on initial glucose and 0.047 g/g on initial xylose, and was higher in media with relatively
low sugar concentrations. The EPS was isolated and purified by a sequential procedure including
centrifugation, cold ethanol precipitation, trichloroacetic acid treatment, dialysis, and freeze-drying.
Glucose and mannose were the main sugars identified in hydrolyzed EPS. The EPS was characterized
by size-exclusion chromatography, Fourier-transform infrared (FTIR) spectroscopy, heteronuclear
single-quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy, scanning electron
microscopy, X-ray diffraction, and thermogravimetric analysis. No major differences were elucidated
between EPS resulting from cultivations in glucose- or-xylose-based synthetic media, while some
divergences with regard to molecular-weight averages and FTIR and HSQC NMR spectra were
detected for EPS from hydrolysate-based media.

Keywords: genome sequencing; Bacillus atrophaeus; exopolysaccharide; halotolerant bacterium;
quinoa stalk; lignocellulose bioconversion
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1. Introduction

Investigating the potential of extremophiles, e.g., microorganisms isolated from par-
ticular ecosystems characterized by extreme conditions regarding temperature, salinity,
acidity, UV radiation, aeration, pressure, or contamination, is of high importance for produc-
ing bulk chemicals, materials, biofuels, and other products by next-generation industrial
biotechnology approaches [1,2]. One such group of extremophiles include halophilic and
halotolerant microorganisms, i.e., microorganisms capable of surviving in salt-rich habitats,
where the salinity can be even higher than that of sea water. Depending on the optimal salt
concentration required for growth, they can be classified into extreme halophiles, moderate
halophiles, and slight halophiles [3]. For slight halophiles, which include halotolerant
bacteria, salt presence is not a requirement to growth, but they can tolerate salinity levels
between 1 and 5% (w/v) NaCl [1]. Microbes living in high-salinity habitats have developed
adaptive mechanisms to support growth under the adverse conditions induced by high salt
concentrations. These include accumulation of inorganic ions or organic solutes to balance
the osmotic pressure of the environment, synthesis of salt-stable enzymes, and production
of biopolymers, such as exopolysaccharides (EPS).

EPS are extracellular polymers that are secreted by microorganisms in high-salt ecosys-
tems. EPS surround microbes either through close attachment to the cell wall or through
being loosely bound onto the cell surface as slime. They influence the physicochemical envi-
ronment in the proximity of the cells, enhancing their survival [4]. The unique properties of
EPS and their ecofriendly features, such as biodegradability, renewability, and non-toxicity,
contribute to making them interesting substitutes for synthetic polymers. The high viscosity
of EPS makes them useful as rheological modifiers in food and cosmetic products [5]. EPS
are also of high interest for pharmaceutical and biomedical applications, as conjugates for
intelligent drug delivery, anticancer drug-targeting, tissue engineering [6], or as enhancers
of immunomodulatory, antiviral, anti-inflammatory, or antioxidant activities [7]. They can
also be used in bioremediation of contaminated soils [8] and in wastewater treatment [9].
Furthermore, since EPS are secreted outside the cells, it is rather straightforward and
cost-effective to harvest them from the cell-free supernatant without using environmentally
unfriendly cell-lysing chemicals [5].

The Bolivian Altiplano, a high plateau with altitudes between 3000 and 4500 m above
sea level (m a.s.l.), where salt concentrations can be over 100 g/L due to the scarcity of
precipitation, is an important source of halophilic microbes with biotechnological poten-
tial [10]. Biopolymer-producing bacteria of interest, such as Halomonas boliviensis [11] and
Halomonas andesensis [12], have been isolated from that area. In a recent study, we reported
an EPS-producing halotolerant bacterial strain isolated from Salar de Uyuni, which is a
salt desert at 3600 m a.s.l. in the Altiplano [13]. The study provided some initial input, but
further efforts were required to clarify the biotechnological potential of the bacterial isolate
and to explore application possibilities of the produced EPS.

Using locally produced crop residues as raw material for producing bio-based com-
modities, such as EPS, is important for sustainable development. Quinoa (Chenopodium
quinoa Willd.) is a widely cultivated crop in the Andean region, including the Bolivian
Altiplano [14]. The stalks accumulated during quinoa harvest are a major residue that is
currently sub-utilized in spite of its huge exploitation potential [15]. By pretreatment and
enzymatic saccharification, the hemicelluloses and cellulose contained in quinoa stalks
yield sugars that can be converted into different valuable products [16,17].

In the current study, next-generation sequencing was used for identification of the
halotolerant EPS-producing bacterial strain previously isolated from Salar de Uyuni [13],
and further insights into its ability to produce EPS from different carbon sources were
provided. Furthermore, a thorough characterization of the produced EPS using analytical
techniques, such as size exclusion chromatography, FTIR spectroscopy, HSQC NMR spec-
troscopy, scanning electron microscopy, and thermogravimetric analysis, was performed.
The results allowed elucidation of the characteristics of EPS preparations produced in
glucose-based mineral media, xylose-based mineral media, and cellulosic hydrolysates.
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2. Materials and Methods
2.1. Microorganism

A halotolerant bacterial strain termed BU4, isolated from the hypersaline environment
of Salar de Uyuni, in the Bolivian Altiplano, was used in this study. It is a Gram-positive
bacterium with elongated rod-shaped cells that interact with one another to generate a
biofilm. The bacterium had spore-forming ability and facultative anaerobic metabolism [13].
The strain was maintained at 4 ◦C in a solid medium containing (% (w/v)) NaCl (4.45),
MgSO4·7 H2O (0.025), CaCl2·2 H2O (0.009), KCl (0.05), NaBr (0.006), soybean peptone
(0.5), yeast extract (0.3), agar (2.0), and glucose (2.0). The pH was adjusted to 7.0 us-
ing a 1 M aqueous solution of NaOH. All chemicals were supplied by Sigma-Aldrich
(Steinheim, Germany).

2.2. Characterization of the Bacterial Isolate
2.2.1. SEM Analysis

Scanning electron microscopy (SEM) imaging was used for providing insights about
cell morphology and biopolymer formation. The BU4 isolate was cultivated on agar at
35 ◦C overnight, and the following day small pieces of bacteria-containing agar were cut
out and fixated overnight at 4 ◦C in a mixture containing 2.5% (v/v) glutaraldehyde, 0.09 M
sodium cacodylate trihydrate, 0.09 M NaCl, and 0.09 M MgSO4·7 H2O [18]. The agar
pieces were washed twice with 10 mL of a solution containing 0.09 M sodium cacodylate
trihydrate, 0.09 M NaCl, and 0.09 M MgSO4·7 H2O.

SEM imaging was performed at the Umeå Centre for Electron Microscopy and National
Microscopy Infrastructure (UCEM-NMI) of the Chemical Biological Centre (KBC) (Umeå,
Sweden). In brief, the samples were dehydrated with ethanol, dried, and coated with 5 nm
platinum. The images were visualized by a field-emission scanning electron microscope
(Carl Zeiss Merlin FE-SEM, Germany) using a chamber secondary electron detector (ETD,
Everhart–Thornley detector) operated with a beam voltage of 5 kV and a current of 100 pA,
with images recorded digitally with SmartSEM V.5.05 software.

2.2.2. Genome Sequencing

For preparation of genomic DNA, the BU4 isolate was cultivated in a 50 mL medium
containing 50 g/L NaCl, 9 g/L MgCl2·6 H2O, 13 g/L MgSO4·7 H2O, 0.2 g/L CaCl2·2 H2O,
1.3 g/L KCl, 0.05 g/L NaHCO3, 0.15 g/L NaBr, 0.005 g/L FeCl3·6 H2O, 10 g/L glucose,
3 g/L malt extract, 3 g/L yeast extract, and 5 g/L Bacto peptone. The pH was adjusted to 7.2.
The cultivation was performed at 35 ◦C and 160 rpm in an Ecotron shaker incubator (Infors,
Bottmingen, Switzerland). The following day, bacteria were collected by centrifugation at
5000× g for 10 min and washed twice with 15 mL of a 0.7% (w/v) solution of NaCl.

Genomic DNA from the washed pellet was isolated using a Genomic-tip 500/G kit (Qi-
agen, Hilden, Germany). Bacterial polysaccharides that could potentially interfere with the
sequencing were removed by selective precipitation by cetyltrimethylammonium bromide
(CTAB). Sodium chloride was added to the genomic DNA to a final concentration of 0.7 M,
and then 0.1 volume of 10% CTAB (w/v) dissolved in 0.7 M NaCl was added. The sample
was thoroughly mixed and incubated at 65 ◦C for 10 min. An equal volume of a 24:1 chloro-
form:isoamyl alcohol (v/v) mixture was added to the sample, which was thoroughly mixed.
Contaminating polysaccharides were removed by 5 min centrifugation at 14,000 rpm in an
Eppendorf table-top centrifuge. An equal volume of a 25:24:1 phenol:chloroform:isoamyl
alcohol (v/v) mixture was added to the DNA-containing supernatant. The mixture was
carefully blended and centrifuged for 5 min at 14,000 rpm. Isopropanol (0.6 volume) was
added to the supernatant to precipitate the DNA. Residual CTAB was removed by washing
with 70% ethanol (v/v). The DNA was carefully air-dried and finally dissolved in 100 µL
10 mM Tris pH 8.

For completing the identification of BU4, the high-quality genomic DNA was subjected
to Illumina paired end sequencing (150 bp) using a NovaSeq 6000 (Eurofins Genomics, Kon-
stanz, Germany). Raw sequence reads were adapter-trimmed, quality-trimmed, and filtered



Fermentation 2022, 8, 79 4 of 22

(Q20) using BBDuk (https://jgi.doe.gov/data-and-tools/bbtools/, accessed on 20 Decem-
ber 2021). PathoSystems Resource Integration Center (PATRIC) was used to run SPAdes
with BayesHammer to obtain high-quality scaffolds, and subsequently also to build a phy-
logenetic tree using a codon tree-pipeline from single-copy genes [19]. Closely related refer-
ence genomes to be included in the tree were identified using Mash/MinHash [20]. In-depth
quantitative taxonomic classification and genome comparisons were performed based on
genome-aggregate Average Nucleotide Identity and Amino Acid Identity (ANI/AAI) using
the Microbial Genomes Atlas (MiGA) with both complete and chromosome-level NCBI
genomes [21].

2.3. Raw Material

Residual stalks of royal quinoa (C. quinoa Willd.) were collected from different farms
in the departments of Oruro and Potosí, Bolivia. The stalks were air-dried, size-reduced by
hammer-milling and sieved to approximately 3-mm particle size. For removal of saponins,
the milled stalks were subjected to three consecutive one-hour washings with water at
40 ◦C at a 20:1 liquid-to-solid ratio (LSR). After that, the washed material was separated
by vacuum filtration, and air-dried for five days at room temperature until approximately
90% dry matter (DM) content. A sample of dry solids was saved for compositional analysis,
and the rest was used for preparation of the hydrolysates. Water-washed quinoa stalks
contained (in % (w/w)) cellulose (39.0), xylan (25.7), mannan (1.8), galactan (2.0), arabinan
(1.9), and lignin (22.0).

2.4. Preparation of the Hydrolysates
2.4.1. Hemicellulosic Hydrolysate

The hemicellulosic hydrolysate was prepared by sulfuric-acid-catalyzed hydrothermal
pretreatment. The pretreatment was carried out in a 1-L pressurized stainless-steel Parr
reactor 4520 (Parr Instrument Co., Moline, IL, USA) equipped with magnetically driven
impellers, electrical heating, and PID temperature control. The water-washed quinoa stalks
were mixed in the reactor chamber with a dilute-sulfuric acid solution giving a 300-g
suspension with a 12.5% (w/w) consistency. The concentration of the acid solution was
calculated so that the final load was 0.2 g H2SO4 per 100 g reaction mixture. Based on the
results of preliminary studies [17], the pretreatment was run at 200 ◦C for 5 min. Cooling
was performed by passing water through an internal coil connected to an automatically
controlled solenoid valve package. At the end of the pretreatment, the resulting slurry was
separated by vacuum filtration into a liquid fraction, hereafter referred to as hemicellulosic
hydrolysate, and a cellulose-rich solid fraction. Six pretreatment batches were performed
in order to get enough materials for the enzymatic saccharification and cultivation.

2.4.2. Cellulosic Hydrolysate

The solid fraction resulting from the pretreatment was subjected to preparative en-
zymatic saccharification for generating cellulosic hydrolysates to be used in fermentation
experiments. Around 65 g (DM) of the pretreated solids were mixed with 20 mM citrate
buffer (pH 5.0) giving a slurry with a total weight of 864 g and a 7.5% (w/w) consistency.
The cellulase blend Cellic CTec2, procured from Sigma-Aldrich, was added at a load of
200 CMCase units per gram (DM) of biomass. The mixture was incubated for 72 h at 50 ◦C
and 150 rpm in the Ecotron shaker incubator. At the end, the cellulosic hydrolysate was
separated from the residual lignin by vacuum filtration. Two enzymatic saccharification
batches were run.

2.5. Cultivation of Bacteria for EPS Production
2.5.1. Media

The cultivations were performed in either synthetic media or quinoa stalk hydrolysates.
In the synthetic media, xylose and glucose were used as carbon sources, and their initial
amount was based on their concentration in the hemicellulosic and cellulosic hydrolysates,

https://jgi.doe.gov/data-and-tools/bbtools/
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respectively. The synthetic media contained (in g/L) NaCl (50), MgSO4·7 H2O (0.25),
CaCl2·2 H2O (0.09), KCl (0.5), NaBr (0.06), soybean peptone (5), and yeast extract (0.3).
The hydrolysates were supplemented with the same concentrations of nutrients as the
synthetic media. The pH was adjusted to 7.5 using a 1 M aqueous solution of NaOH, and
the media were sterilized by autoclaving at 121 ◦C for 15 min. Three different concentration
levels (45 g/L, 30 g/L, and 15 g/L) were used for the glucose-based synthetic media and
cellulosic hydrolysates, and two concentration levels (16 g/L and 8 g/L) were used for
xylose-based synthetic media and hemicellulosic hydrolysates. Furthermore, fermentation
tests with the undiluted hydrolysates were also performed.

2.5.2. Cultivation

Pre-cultures, inoculated from agar plates, were grown in 50 mL of a glucose-based
(20 g/L) synthetic medium at 35 ◦C for 24 h in 100 mL Erlenmeyer flasks with agitation
(100 rpm) in an Ecotron shaker incubator. A total of 15 mL of the pre-culture were inocu-
lated in 250 mL Erlenmeyer flasks containing 150 mL medium, and the cultivation was
conducted at 30 ◦C and 100 rpm for 72 to 96 h depending on the OD of the culture. The
cultivation was monitored by OD measurements at 620 nm using a UV-1800 spectropho-
tometer (Shimadzu, Kyoto, Japan). Samples for determination of the consumption of sugars
and protein were withdrawn periodically. The samples were stored frozen until analysis.

2.5.3. Analysis of the Cultivation Samples

Sugar consumption during cultivation was determined by HPLC with a Thermo
Scientific Ultimate 3000 system (Dionex Softron GmbH, Germering, Germany) using the
refractive index detector (RID) of the instrument. The separation was performed using a
Bio-Rad Aminex HPX-87P column (Bio-Rad Laboratories AB, Solna, Sweden) operating
at 80 ◦C. The eluent was ultrapure water at a flow rate of 0.6 mL/min. Quantitation was
carried out using an external calibration curve covering the interval 0.5–30 g/L for glucose,
xylose, mannose, galactose, and arabinose.

Protein in the cultivation samples was determined by the Bradford method [22] using
bovine serum albumin as standard, and reading the absorbance at 540 nm.

2.6. Isolation and Purification of the EPS

The produced EPS were isolated and purified using a protocol based on methodologies
typically used for EPS of bacterial origin [23]. At the end of the cultivation, the bacterial cells
were removed from the culture by centrifugation (Eppendorf 5810 R, Hamburg, Germany)
at 13,400 × g, 10 min, and 4 ◦C. EPS was isolated from the supernatant by cold ethanol
precipitation, which was carried out by adding three volumes of 96% ethanol, and letting
the mixture stand at 4 ◦C overnight. The precipitated EPS was separated by centrifugation
at 13,400× g, 15 min, and 4 ◦C using an Avanti J-26 XP high-speed centrifuge (Beckman
Coulter, Palo Alto, CA, USA). The pellet was suspended in ultrapure water, and it was
dialyzed against ultrapure water using a 50 kDa molecular-weight-cutoff membrane for
24 h and magnetic stirring (500 rpm). Water was changed twice during the dialysis period.
The retentate was freeze-dried for 36 h at −106 ◦C with a CoolSafe 110-4 freeze-drier
(ScanVac-LaboGene, Allerød, Denmark).

The freeze-dried EPS was mixed with 15 mL of 10% (w/v) trichloroacetic acid (TCA),
and the mixture was let to stand during 30 min at 4 ◦C for inducing protein precipitation.
The precipitated protein was separated by centrifugation at 3400× g, 10 min, and 4 ◦C. The
protein-free supernatant was mixed with one volume of ultrapure water so that the TCA
concentration was reduced to 5%, and then dialysis and freeze-drying were applied under
the conditions described above. Freeze-dried material was weighed, and the EPS yield
was calculated.

For a number of samples, the first dialysis and freeze-drying step was omitted, and the
TCA-induced protein precipitation was performed directly after the cold ethanol precipitation.
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2.7. EPS Characterization
2.7.1. Determination of the Monosaccharide Composition

The analytical acid hydrolysis method reported by Sardari et al. [24] was used for
determination of the sugar composition of the EPS. Briefly, 30-mg aliquots of freeze-dried
EPS were mixed with 300 µL 72% sulfuric acid and the mixture was held at 30 ◦C with
periodical stirring for 30 min. Then it was diluted with water and held at 100 ◦C for
3 h. After that, the hydrolysate was centrifuged, and the sugars in the supernatants were
quantified by high-performance anion-exchange chromatography (HPAEC) with pulsed
amperometric detection using a Dionex ICS-5000 (Dionex, Sunnyvale, CA, USA) system. A
3 × 30 mm guard column and a 3 × 150 mm separation column (CarboPac PA20, Dionex)
were used. Elution was performed with a 2 mM aqueous solution of NaOH for 25 min. This
was followed by regeneration with a solution consisting of a mixture of 200 mM NaOH
and 68 mM sodium acetate for 5 min, addition of a solution of 200 mM NaOH for 5 min,
and equilibration with a 2 mM solution of NaOH for 25 min. The flow rate was always
0.4 mL/min. PAD (pulsed amperometric detection) was performed on a Gold Standard
PAD waveform with Ag/AgCl as the reference electrode.

2.7.2. High-Performance Size Exclusion Chromatography (HPSEC)

The weight-average molecular weight (Mw) and number-average molecular weight
(Mn) of the EPS were determined by high-performance size exclusion chromatography
(HPSEC) using a Polymer Laboratories PL-GPC 50 Plus instrument (Agilent, Santa Clara,
CA, USA) equipped with two Aquagel-OH 60 columns in series and an Aquagel guard
column (Agilent). EPS was detected using a refractive index (RI), low-angle laser scattering
(LALS), and right-angle laser light scattering (RALS) detectors. The mobile phase was a
0.2 M acetate buffer (pH 5.1), which was eluted at a flow rate of 0.6 mL/min. The samples
for HPSEC were prepared by dissolving 2 mg of each EPS in 3 mL ultrapure water and
filtering the solutions through 0.2 µm filters before injection. The temperature was 30 ◦C.

2.7.3. Fourier-Transform Infrared (FTIR) Spectroscopy

Approximately 20 mg of each sample were mixed with ca. 380 mg of IR spectroscopy-
grade potassium bromide (Merck, Darmstadt, Germany). The mixture was finely ground
in an agate mortar before measurements. The spectra were recorded under vacuum
(4 mbar), using a Bruker IFS 66 v/S spectrometer (Bruker Optik GmbH, Ettlingen, Ger-
many) equipped with a diffuse reflectance 16-sample holder carousel accessory (Harrick
Scientific Products, Pleasantville, NY, USA). Pure potassium bromide was used as back-
ground, recorded with the same parameters in the same carousel round. The spectra were
collected with 128 scans at a resolution of 4 cm−1 in the region 400–5200 cm−1. Spec-
tra were converted to data point tables using OPUS software (version 5.5, Bruker Optik
GmbH) and processed by the free, MATLAB-based open source GUI available from the
Vibrational Spectroscopy Core Facility (https://www.umu.se/en/research/infrastructure/
visp/downloads/, accessed on 20 December 2021). Baseline correction was performed
by asymmetrical least squares (AsLS) fitting, where the parameters λ and p were set to
106 and 10−3, respectively. Spectra were total area normalized over the 470–1870 cm−1

spectral range.

2.7.4. Two-Dimensional 1H-13C Heteronuclear Single-Quantum Coherence (HSQC)
Nuclear Magnetic Resonance (NMR) Spectroscopy

1H-13C HSQC NMR spectroscopy was used for comparing EPS and elucidating sim-
ilarities or differences in the composition of sugar units and anomeric configuration of
different samples. Spectra were recorded using an 850 MHz Bruker Avance III HD spec-
trometer equipped with a 5 mm inverse-detected cryoprobe. Aliquots of 20 mg of samples
were solubilized in D2O, and spectra were recorded at 298 K. Sweep-widths of 12 and
165 ppm were used for 1H and 13C, respectively. Sixteen scans were recorded for each of
the 256 t1 increments. A 90-degree shifted squared sine function was applied in both di-

https://www.umu.se/en/research/infrastructure/visp/downloads/
https://www.umu.se/en/research/infrastructure/visp/downloads/
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mensions prior to Fourier transform. Spectra were processed and visualized using TopSpin
3.6 (Bruker Biospin, Rheinstetten, Germany).

2.7.5. Scanning Electron Microscopy (SEM)

Surface morphology of the freeze-dried EPS was observed using SEM at an accelerating
voltage of 5 kV. The samples were dispersed onto carbon adhesive tape, mounted on an
aluminum stub, and coated with a thin layer of platinum (2 nm). Imaging was performed
using a field-emission scanning electron microscope equipped with an in-chamber (ETD)
secondary electron detector (Carl Zeiss Merlin GmbH, Jena, Germany).

2.7.6. X-ray Diffraction (XRD)

Powder X-ray diffraction was performed with a Bruker AXS D8 Advance instrument
(Bruker BioSpin GmbH, Karlsruhe, Germany) with a Våntec-1 detector, using CuKα radia-
tion and a Ni-filter on the detector side, operated in 2θ mode. The samples were mounted
on a Si single crystal low-background sample holder and set in rotation mode during data
collection. Continuous scans were applied within the 2θ angle range of 10–70 degrees. The
data collection time for each sample was at least 5 h.

2.7.7. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis of the EPS samples was performed using a TGA Q5000IR
analyzer (TA Instruments, New Castle, DE, USA). The TGA was calibrated with the 5-point
method based on the Curie-point standard calibration materials. Approximately 10 mg
of EPS sample was loaded into a platinum pan and heated to 920 ◦C at a heating rate of
10 ◦C/min under nitrogen atmosphere. TGA and DTG (negative time derivate of the mass
loss) curves were used for analyzing the decomposition characteristics of the EPS samples.

3. Results and Discussion
3.1. Characterization of the Bacterial Isolate

SEM imaging showed rod-shaped bacterial cells covered in EPS (Figure 1a). The EPS
attached neighboring bacteria to each other (Figure 1a) but also formed longer strands
(Figure 1b) allowing formation of a three-dimensional biofilm.

Further characterization was performed by applying next-generation DNA sequenc-
ing and bioinformatics. The genome assembly using SPAdes generated a genome with
92 contigs longer than 500 bp, a genome size of 4,172,770 bp, an N50 value of 276,569 bp,
and an average GC content of 43.2%.

The phylogenetic codon tree analysis revealed that the assembled genome is closely
related to Bacillus atrophaeus strain 1942 NC_014639 and B. atrophaeus subsp. globigii strain
BSS CP0076401 (Figure 1c). This close genetic relationship was confirmed by taxonomic
classification and genome comparisons using principally different bioinformatic method-
ology based on genome-aggregate Average Nucleotide Identity and Amino Acid Iden-
tity (ANI/AAI) (Table 1). These analyses showed that the genome likely belongs to the
species Bacillus atrophaeus (p-value: 0.045) and that the closest available genomes are B.
atrophaeus NZ CP021500 (97.01% ANI), B. atrophaeus NZ CP024051 (96.96% ANI), and B.
atrophaeus 1942 NC 014639 (96.91% ANI). Furthermore, it was found that the genome most
likely belongs to a subspecies not represented in the database (p-value: 0.0024). All se-
quence data associated with BU4 have been submitted under BioSample accession number
SAMN24256866.
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Figure 1. Characterization of the bacterial isolate: SEM images showing the BU4 isolate (a) at 15,000×
and (b) 30,000× magnification. Arrows indicate (a) EPS covering and connecting bacteria, and (b) EPS
strands connecting clusters of bacteria. Phylogenetic tree (c) based on single-copy genes identified
by next-generation sequencing. Support values calculated by RAxML using 100 rounds of “Rapid
bootstrapping” are provided.

Table 1. Average sequence identities to the reference datasets 1.

Dataset AAI (%) ANI (%) Fraction of Genome Shared (%)

B. atrophaeus NZ CP021500 95 97.01 91.85
B. atrophaeus NZ CP024051 95 96.96 90.96

B. atrophaeus 1942 NC 014639 95 96.91 90.89
1 Standard deviations for AAI% and ANI% values were <0.10.
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3.2. Production of Exopolysaccharides

The bacterial strain was cultivated in both synthetic media and quinoa stalk hy-
drolysates for producing exopolysaccharides. The synthetic media were based on ei-
ther glucose or xylose, and the hydrolysates were produced from either hemicelluloses
or cellulose.

3.2.1. Cultivation in Synthetic Media

The initial concentrations of the carbon sources in the synthetic media were based on
the sugar concentrations in the hydrolysates. The cellulosic hydrolysate contained 48 g/L
glucose and 4.9 g/L xylose, while the hemicellulosic hydrolysate contained 16.3 g/L xylose
along with low concentrations of mannose, glucose, galactose, and arabinose (Table 2). The
hemicellulosic hydrolysate also contained furan aldehydes and aliphatic acids, which are
known to be inhibitory to fermenting microorganisms [25]. Three glucose-based and two
xylose-based media were used (Table 3). For each sugar, one of the used media had an
initial sugar concentration in the range of the concentration in the hydrolysate, namely,
45 g/L glucose and 16 g/L xylose. Media with 30 and 15 g/L glucose and with 8 g/L
xylose were also assayed.

Table 2. Concentrations of sugars, furan aldehydes, and aliphatic acids in hydrolysates (g/L, mean
values of triplicates). Standard deviations are shown in parentheses.

Cellulosic Hydrolysate Hemicellulosic Hydrolysate

Glucose 48.0 (1.3) 1.5 (0.1)
Xylose 4.9 (0.5) 16.3 (0.7)

Mannose 0.9 (<0.1) 2.4 (0.1)
Galactose 0.4 (<0.1) 1.5 (<0.1)
Arabinose 0.3 (<0.1) 1.1 (<0.1)
Furfural N.D. 1 4.7 (0.1)

HMF N.D. 1 0.5 (<0.1)
Acetic acid 1.0 (<0.1) 5.6 (0.1)
Formic acid N.D. 1 1.4 (<0.1)

Levulinic acid N.D. 1 1.1 (0.1)
1 Not detected.

Table 3. Summary of the used media and achieved EPS yield in the cultivations.

Medium Carbon Source/Initial
Concentration, g/L Nomenclature YInit

1, g/g YCons.
2

, g/g

Glucose-based synthetic medium Glucose/45, xylose/5 SM-G45 0.018 3 0.104 3

Glucose-based synthetic medium Glucose/30 SM-G30 0.033 3 0.097 3

Glucose-based synthetic medium Glucose/15 SM-G15 0.064 0.075
Xylose-based synthetic medium Xylose/16 SM-X16 0.022 0.135
Xylose-based synthetic medium Xylose/8 SM-X8 0.047 0.126

Cellulosic hydrolysate Glucose/45, xylose/5 CH-G45 0.018 0.043
Cellulosic hydrolysate Glucose/30 CH-G30 0.031 3 0.111 3

Hemicellulosic hydrolysate Xylose/16 HcH-X16 - -
Hemicellulosic hydrolysate Xylose/8 HcH-X8 - -

1 EPS yield based on initial sugar; 2 EPS yield based on consumed sugar; 3 Subjected to TCA directly after cold
ethanol precipitation.

In the glucose-based synthetic medium with the highest initial concentration (45 g/L,
SM-G45), the fraction of consumed sugar was low. Only 22% of the initial sugar was
consumed after 96 h (Figure 2a). A rather similar picture was observed for the medium
with 30 g/L initial glucose (SM-G30), which resulted in 30% sugar consumption after 72 h
(Figure 2b). SM-G45 also contained some xylose, which was consumed only to a minor ex-
tent. The cell growth was slightly slower for SM-G45 (Figure 2c) than for SM-30 (Figure 2d),
as revealed by the monitoring of the OD reading during cultivation. On the other hand, in
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the medium with the lowest initial glucose concentration (15 g/L, SM-G15) the fraction
of glucose consumed was higher. Around 50% of the initial glucose was consumed after
54 h, and 72% at the end of the cultivation. Cell growth and protein consumption were also
higher for SM-G15 than for the media with higher initial concentrations of glucose.

Figure 2. Dynamics of the cultivation of B. atrophaeus BU4 in glucose-based synthetic media:
(a) consumption of glucose (circles) and xylose (triangles) in SM-G45; (b) OD (squares) and protein
(rhombs) consumption in SM-G45; (c) glucose consumption in SM-G30 (filled circles) and SM-G15
(empty circles); (d) OD (squares) and protein consumption (rhombs) in SM-G30 (filled symbols) and
SM-G15 (empty symbols).

In xylose-based synthetic media, as in those based on glucose, more dynamic cultiva-
tions were observed in the experiments with lower initial sugar concentration. Only 17%
of the initial xylose was consumed in the cultivation in SM-X16, while around 50% was
consumed in that in SM-X8 (Figure 3a). Even the highest xylose consumption achieved was,
however, lower than glucose consumption in SM-G15 medium. Cell growth and protein
consumption were comparable for both xylose-based media (Figure 3b), and both of them
were lower than the values observed for all cultivations in glucose-based synthetic media
(Figure 2c,d).

The EPS yield on consumed sugar was higher for media with higher initial glucose
concentrations. For instance, it was 0.104 g/g for SM-G45 medium compared to 0.075 g/g
in SM-G15 medium (Table 3). However, since not so much sugar was consumed, the
actual amount of produced EPS was lower, and the yield on initial sugar was lower
(0.018 g/g) than for SM-G15 (0.064 g/g). Even though the EPS yield on consumed sugar
(0.126–0.135 g/g) was relatively high for xylose-based synthetic media, the EPS production
was low due to weak sugar consumption. A high initial xylose concentration (15 g/L)
resulted in a higher EPS yield on consumed sugar, but the yield on initial sugar was better
for cultivations with lower initial concentration of xylose (8 g/L).
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Figure 3. Sugar consumption (a) and cell growth and protein consumption (b) during cultivation of
B. atrophaeus BU4 in synthetic media containing 16 g/L (filled symbols) or 8 g/L (empty symbols)
initial xylose. Xylose, triangles; OD, squares; protein, rhombs.

3.2.2. Cultivation in Hydrolysates

For the hydrolysate containing 15 g/L glucose (CH-G15), 82% of initial glucose was
consumed after 72 h (Figure 4a), while for those with 30 and 45 g/L glucose (CH-G30 and
CH-G45), a longer cultivation time was required and even after 96 h sugar consumption
was only around 50% (Figure 4b,c). Thus, with regard to the fraction of sugar consumed,
cultivation in cellulosic hydrolysates exhibited a similar trend as observed for glucose-based
synthetic media, namely, that the fraction of sugar consumed was low for a medium with a
high initial sugar concentration. In contrast, the amount of sugar consumed was highest
for a medium with a high initial sugar concentration (Figure 4). Xylose consumption was
very low in all cellulosic hydrolysates, and cell growth was similar regardless of the initial
amount of sugar.

No growth was observed in any of the hemicellulosic hydrolysates (data not shown).
This phenomenon might be attributed to the presence of relatively high concentrations of
microbial inhibitors, such as furan aldehydes and aliphatic acids (Table 2). The formation
of inhibitors is a known phenomenon associated with pretreatment of lignocellulosic hy-
drolysates, and formation of carbohydrate-derived inhibitors, such as furans and aliphatic
acids, is especially relevant for acid-based methods, as the one used in this study [25]. In
further attempts to cultivate B. atrophaeus BU4 in hemicellulosic hydrolysates produced by
sulfuric-acid-catalyzed hydrothermal pretreatment, detoxification strategies for removing
the inhibitors should be considered.

Figure 4. Cont.
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Figure 4. Sugar consumption and cell growth during cultivation of B. atrophaeus BU4 in cellulosic
hydrolysates containing 15 (a), 30 (b), or 45 (c) g/L glucose. Glucose, circles; xylose, triangles;
OD, squares.

As in the cultivation in synthetic media, the EPS yield on initial sugar decreased
with an increasing initial sugar concentration in the cellulosic hydrolysate. In the most
concentrated hydrolysate, the yield was 0.018 g/g, while in the most diluted one, it was
0.052 g/g (Table 3). The EPS yields, both on initial sugar and on consumed sugar, were
comparable in the hydrolysates and in the synthetic media. For both synthetic media
and hydrolysates, a high initial sugar concentration resulted in inefficient conversion to
EPS, and large amounts of sugars remained unused in the media. Therefore, for future
experiments it is reasonable to limit the initial sugar content in the media to up to 15 g/L
glucose or 8 g/L xylose.

3.3. EPS Characterization

The EPS preparations were characterized by using different techniques. The results for
three representative EPS preparations, namely, one resulting from cultivation in glucose-
based synthetic medium, one from xylose-based synthetic medium, and one from cellulosic
hydrolysate, are presented in this section.

3.3.1. Determination of the Monosaccharide Composition

HPAEC of hydrolysates obtained by analytical acid hydrolysis of purified EPS showed
that all three EPS preparations were heteropolysaccharides. Independently of the carbon
source used in the cultivation, the EPS preparations displayed rather similar composition
(Table 4). Glucose and mannose were the main sugars in hydrolyzed EPS, as they accounted
for more than 80% of the identified sugars. The two EPS preparations from cultivations
in synthetic media contained more glucose than mannose units (around 1.2–1.4 glucose
units per each mannose unit), while the EPS produced in hydrolysate contained almost
equimolar fractions of glucose and mannose units. Galactose, with a share between 8.2
and 10.7%, was the third most abundant sugar for all EPS preparations. Only low fractions
(≤6.5%) of the pentoses xylose and arabinose were found.
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Table 4. Relative ratio of monosaccharide units in the EPS produced by cultivation of B. atrophaeus
BU4 in xylose- (SM-X8) and glucose-based (SM-G15) synthetic media and in a quinoa stalk cellu-
losic hydrolysate (CH-G45). Values are mass fractions in percent based on the total mass of the
identified sugars.

EPS Preparation Glucose Mannose Galactose Arabinose Xylose

SM-G15 49.6 (1.0) 35.5 (0.9) 8.2 (0.1) 4.6 (<0.1) 2.0 (0.1)
SM-X8 42.9 (4.5) 36.2 (2.7) 10.7 (1.2) 6.5 (0.5) 3.6 (0.3)

CH-G45 41.4 (<0.1) 40.2 (0.4) 9.9 (<0.1) 3.8 (0.2) 4.7 (0.2)

Although the high share of hexoses is in accordance with previous reports on bacterial
EPS, the exact composition is rather different for EPS produced by different bacteria. For
instance, Paenibacillus spp. grown in a glucose-based defined medium produced an EPS
composed of glucose and mannose units at a 1:1.4 mass ratio, which is comparable with
this study, but with no other monosaccharides [26]. EPS containing only mannose and
glucose units was produced also by B. amyloliquefaciens, but mannose, which represented
between 65 and 97% of the total monosaccharides, was predominant [27]. On the other
hand, in EPS resulting from cultivation of the halophilic thermotolerant bacteria Halomonas
nitroreducens in a saline medium, mannose, with a 44–64% mass share, was the main
sugar unit, followed by glucose (19–28%) and galactose (6–14%) [28]. Furthermore, EPS
produced by a B. atrophaeus strain isolated from a mangrove system and grown in LB
medium consisted mainly of glucose units (84%), with some minor fractions of other sugar
units [29].

In this study, arabinose was the main pentose unit in EPS produced in synthetic media,
while xylose units were more abundant in the EPS resulting from cultivation in cellulosic
hydrolysate. Arabinose units have been reported to be present in small amounts in other
bacterial EPS preparations [28,29], while xylose units are less common.

3.3.2. High-Performance Size Exclusion Chromatography (HPSEC)

HPSEC revealed two peaks for EPS produced by cultivation in the glucose-based
synthetic medium (SM-G15), and three peaks for EPS from the xylose-based medium (SM-
X8) (Table 5). This means that B. atrophaeus BU4 simultaneously produced two different
polysaccharides when grown on glucose, and three types when grown on xylose.

Table 5. Molecular weight of the EPS produced by cultivation of B. atrophaeus BU4 in xylose- (SM-X8)
and glucose-based (SM-G15) synthetic media and in a quinoa stalk cellulosic hydrolysate (CH-G15).

Peak 1 Peak 2 Peak 3

Mw, g/mol Mn, g/mol PDI 1 Mw, g/mol Mn, g/mol PDI 1 Mw, g/mol Mn, g/mol PDI 1

SM-G15
9.1 × 105 8.9 × 105 1.0 4.7 × 104 4.4 × 104 1.1
9.2 × 105 8.2 × 105 1.1 6.1 × 104 4.7 × 104 1.3

SM-X8 8.7 × 105 7.9 × 104 1.1 6.1 × 104 4.9 × 104 1.2 2.2 × 104 2.2 × 104 1.0
CH-G15 4.7×105 4.1×105 1.2

1 PDI, polydispersity index, calculated as the ratio Mw/Mn.

For both carbon sources, the first peak corresponded to a polymer of molecular weight
averages one order of magnitude higher than the second peak. The molecular weight
averages of the polymer corresponding to the third peak of the product resulting from the
cultivation on xylose were three times lower than the ones corresponding to the second
peak. The molecular weight averages of the first peak were slightly higher for the EPS
produced from glucose than for the one produced from xylose.

Although the polydispersity index (PDI) of the second peak was slightly higher than
that corresponding to the first peak, in general all peaks display a narrow molecular weight
distribution considering that the PDI was always close to 1.
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The occurrence of more than one peak has previously been reported for other bacterial
EPS. H. nitroreducens EPS displayed three peaks with a size distribution of 106, 104, and
103 g/mol, respectively, for the first, second, and third peak [28], which is comparable with
that of the current study.

For the EPS produced by cultivation in a cellulosic hydrolysate, SEC revealed only one
peak. Its molecular weight distribution corresponded to approximately half of the value of
the EPS resulting from the glucose-based synthetic medium.

3.3.3. FTIR Spectra

The FTIR spectra of three samples (two EPS preparations produced by bacterial
cultivation in synthetic media and one from cultivation in a cellulosic hydrolysate) are
shown in Figure 5. The 1800–480 cm−1 region covering the fingerprint area useful for
characterizing different polysaccharides [30] shows that all the spectra had in common
clear strong peaks at 1675 cm−1 and 1065–1050 cm−1, a broad band in the 780–480 cm−1

range, a weak peak at 840 cm−1, as well as a shoulder at 1545 cm−1.

Figure 5. Total area-normalized FTIR spectra in the 1800–480 cm−1 region of EPS produced by
cultivation of B. atrophaeus BU4 in glucose- (SM-G15) and xylose-based (SM-X8) synthetic media and
in a quinoa stalk cellulosic hydrolysate (CH-G45). Black arrows indicate peaks that are common for
all EPS preparations, and red arrows indicate peaks that are specific for some samples.

The FTIR bands were assigned and interpreted based on existing knowledge on use
of vibrational spectroscopy for studying biological materials [31]. The most likely cause
of the band at 1675 cm−1 is a -C=O functionality in the samples, but the origin of this
functionality is unclear. It is possible it originates from carboxylic acids (free or esterified)
but a contribution of proteins (i.e., amide I band) cannot be fully excluded. If an amide I
contribution is assumed, the 1545 cm−1 band could in turn be assigned to amide II of the
same peptide bond. Even if we assume peptide bond contributions, it is clear, however,
that the sample CH-G45 has a much lower proteinic contribution: not only is the 1545 cm−1

band virtually absent, the 1675 cm−1 band ratio and shape is markedly different, too. Thus,
the most likely source for the -C=O function in this sample is a carbonyl moiety of either of
carboxylic acids (including ester forms) or ketones/aldehydes.

The broad features centered around 1065–1050 cm−1 most likely originated from
the ring breathing motions of various carbohydrate units. A polysaccharidic contribution
cannot be excluded, although the recognition is hindered by particularities of the IR analysis
of carbohydrates. Unlike other biomolecules, the carbohydrates lack prominent IR-active
functional groups with heteroatoms and multiple bonds. The predominance of C–C and
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C–O bonds and their similarities across different compounds result in broad absorption
bands as it happens in these spectra. Although mono- or oligosaccharides can give clear IR
spectra, complex polysaccharides often require algorithms for pattern recognition [31].

The band around 1235 cm−1 is likely from a –C–O vibration, and based on its position
and relative intensity towards the 1675 and 1545 cm−1 bands, its origin is probably peptidic
(amide III band) [31]. Thus, samples SM-G15 and SM-X8 likely contain substantial amounts
of peptides/proteins, while sample CH-G45 does not. The origin of the 1330 cm−1 band
(uniquely observable in sample CH-G45) is unclear. It is likely due to a –C–Hx functionality,
but the spectra do not allow more specific assignments.

Likewise, while there are clear differences between sample CH-G45 and the other two
in the bands below 900 cm−1, assigning these bands to specific compounds is impossible.
This region of the FTIR spectra is dominated by composite vibrations, which can be useful
for fingerprinting but makes assignments challenging without clear references. What is
clear, however, is that the broad features in this region are a consequence of merging several,
overlapping bands, which further complicates assignments.

In short, the analyzed EPS preparations are all complex in composition, with clear
differences between those produced in synthetic media and the one produced in cellulosic
hydrolysate. In particular, EPS from synthetic media probably still contain relatively high
concentrations of peptidic components, despite the protein removal steps applied to them.
EPS from synthetic media also displayed a more pronounced signal at 1715 cm−1, which
can be assigned to –C=O vibrations of a different origin (including but not limited to
ketones). This band appears to be largely absent in the hydrolysate-EPS.

On the other hand, the band at 840 cm−1, as well as another small one at 675 cm−1,
were better defined in the spectrum of the hydrolysate-EPS than in that of the syn-
thetic media-samples, even though these differences are harder to translate into struc-
tural/compositional clues.

It also worth noting that the 1065–1050 cm−1 region (assigned to carbohydrate ring
breathing motions) had largely similar intensities for the EPS produced in the hydrolysate
and in the xylose-based synthetic medium, while in the spectrum of the EPS from the
glucose-based synthetic medium it was considerably weaker. Thus, the proportion of car-
bohydrates is similar in the samples SM-X8 and CH-G45, and lower in SM-G15. However,
the maximum of the band is shifted for hydrolysate, indicating that either the integration
of the carbohydrates into the chemical matrix of the EPS is different, and/or the carbo-
hydrate composition/anomeric structure differs. Interestingly, the sugar composition of
the xylose-based and hydrolysate-based EPS contained comparable relative amounts of
glucose and galactose units. What might set the hydrolysate-based EPS apart in terms of
monosaccharide composition is the close to 1:1 glucose:mannose ratio, which is ca. 6:5 for
the xylose-based and 7:5 for the glucose-based one (Table 4), and may (at least partially)
explain the shift of maxima observed in the FTIR spectra.

3.3.4. 2D 1H-13C HSQC NMR Spectra

The 2D 1H-13C HSQC NMR spectra recorded for EPS cultivated in a glucose-based
synthetic medium (SM-G15), a xylose-based synthetic medium (SM-X8), and a quinoa
stalk cellulosic hydrolysate (CH-G45) are shown in Figure 6. The anomeric region revealed
a common subset of peaks for all three samples, which indicates a similar carbohydrate
composition, and confirms the previously discussed results on the monosaccharides con-
tained in EPS produced under different conditions. Chemical shifts of the anomeric peaks
indicate that a majority of the monosaccharide units are linked through α-glycosidic bonds,
with 1H chemical shifts in the 4.8–5.3 ppm range compared to 4.2–4.8 normally observed
for β-pyranosides [32]. Chemical shifts for the C1 carbons corresponding to the peaks
with 1H shifts of 4.8–5.4 ppm are also shifted slightly upfield, which usually is the case
for α-glycosidic bonds compared to the β-form [33]. The anomeric peaks at 5.18/109.3,
5.02/107.7, and 5.1/106.9 ppm are very likely originating from α-L-arabinofuranoside
(α-L-Araf ) units with chemical shifts similar to the α-Araf units found in arabinogalactan
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type II [34,35]. The fact that three different arabinose peaks and 11 other anomeric peaks
are observed (not counting peaks from the reducing end) indicate a polysaccharide with
several branching-points. The two anomeric peaks with the lowest 13C shifts, 96.2 and
96 ppm, respectively, corresponds most likely to the α- and β-form of a reducing end
pyranose unit [35].

Figure 6. Anomeric region of 2D 1H-13C HSQC NMR spectra of EPS produced by cultivation of B.
atrophaeus BU4 in glucose- (SM-G15) and xylose-based (SM-X8) synthetic media and in a quinoa stalk
cellulosic hydrolysate (CH-G45).

EPS preparations from cultivation on glucose-based synthetic medium (SM-G15) and
xylose-based synthetic medium (SM-X8) are very similar with the same set of anomeric
peaks with very similar relative peak integrals. The exception is the reducing end peaks, but
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those are affected by impurities as the HPAEC analysis shows similar molecular weights
for the EPS preparations.

The anomeric region for CH-G45 also contain many of the same peaks observed
for SM-G15 and SM-X8 but the three peaks tentatively assigned to α-L-Araf are shifted
and have significantly lower intensities, as expected from the HPAEC results (Table 5).
Two peaks only observed in this sample are located at 4.9/97.9 and at 5.34/92.3, marked
with boxes in Figure 6. The former corresponds to a reducing end of an α-anomeric sugar.

Considering that the types of monosaccharides detected in the different EPS samples
are the same, these additional peaks must derive from a slightly different branching pattern
of EPS from CH-G45 compared to the other samples.

3.3.5. SEM Imaging

SEM imaging revealed morphological differences between EPS from different culti-
vations. SM-G15, which was produced in a glucose-based synthetic medium, displayed
a smooth surface with large, thin, flaky-like structures (Figure 7a). SM-X8, which was
produced in a xylose-based synthetic medium, showed a rather uneven surface with ag-
gregates of a small globular structure, enveloped by thin, sheet-like features (Figure 7b).
Hydrolysate-derived EPS (denoted as CH-G45) appears to be more voluminous, with
large, random-shaped particles with flat surfaces and sharp edges (Figure 7c). Over-
all, EPS produced in hydrolysate seems to have more robust features than its synthetic
media counterparts.

Figure 7. Cont.
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Figure 7. SEM images of EPS produced by cultivation of B. atrophaeus BU4 in glucose- (SM-
G15) (a) and xylose-based (SM-X8) (b) synthetic media, and in a quinoa stalk cellulosic hydrolysate
(CH-G45) (c). Magnification 5000× for (a) and (c), and 10,000× for (b).

3.3.6. X-ray Diffraction

X-ray diffraction is a useful technique for evaluation of the amorphous and crystalline
nature of biopolymers [36]. The XRD pattern of the EPS sample SM-G15 is displayed in
Figure 8. A single broad peak with the center at 2θ around 19.5◦ indicates the domination of
the non-crystalline phases in the EPS. At around 22.5◦, peaks from a crystalline biopolymer
phase typically would be observed. A closer view reveals the absence of peaks in that
area (insert in Figure 8). From the lack of peaks one can conclude that the XRD analysis
revealed the amorphous nature of the produced EPS, which is typical for many microbial
EPS preparations, although the crystalline forms of EPS are also common [37]. Crystalline
forms of EPS exhibit different degrees of crystallinity [38]. EPS preparations produced by a
thermophilic strain of B. licheniformis grown in tryptic soy broth with glucose as a carbon
source [39] and by Rhizobium tropici grown on sucrose [40] were amorphous, whereas
partial crystallinity was observed for EPS produced by Bacillus tequilensis cultivated on
sucrose [41].

Figure 8. X-ray diffraction pattern of EPS produced by cultivation of B. atrophaeus BU4 in a glucose-
based synthetic medium (SM-G15). The insert shows a magnification of the area around the
peak center.
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3.3.7. TGA

TGA analysis of the EPS preparations revealed a first weight loss between 100 and
160 ◦C (Figure 9), which was more remarkable (around 8%) for the EPS preparations from
the xylose-based synthetic medium (SM-X8) and from hydrolysate (CH-G45) than for
EPS from the glucose-based medium (SM-G15) (around 3%). The degradation peak was
reached at 135 ◦C for SM-X8 and CH-G45, and at 142 ◦C for SM-G15. That weight loss
can be explained by water desorption because of the dissociation of the hydrogen bonds.
Previously, a similar peak has been related to the presence of carboxyl groups and has
been interpreted as an indication of the water-retention capacity by the EPS produced by
Rhodococcus erythropolis [42]. The lower degradation peak of SM-G15 compared to the other
samples might indicate a lower water-retention capacity.
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Figure 9. Thermogravimetric (solid lines) and derivative thermogravimetric (dashed lines) curves
resulting from the TGA analysis of EPS produced by cultivation of B. atrophaeus BU4 in glucose- (SM-
G15) and xylose-based (SM-X8) synthetic media, and in a quinoa stalk cellulosic hydrolysate (CH-G45).

The second major weight loss, around 43%, was between 160 ◦C and around 410–460 ◦C.
The largest weight loss rate was observed at 248 ◦C for SM-X8 and CH-G45, and at 252 ◦C
for sample SM-G15. Since the highest degradation rate of the SM-G15 sample was achieved
at a higher temperature than those of the other samples, one can infer that SM-G15 had
higher thermal stability. At 290 ◦C, another degradation peak was observed for SM-X8
and CH-G45 samples, whereas SM-G15 remained rather stable at that point. Instead,
the SM-G45 sample displayed a peak at 332 ◦C. After 410 ◦C for SM-X8 and CH-G45,
and after 460 ◦C for SM-G15, no major changes were observed, and the sample weight
remained rather stable. The weight losses in this second phase (between ~150 and ~450 ◦C)
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are related to charring reactions, as has been reported for EPS produced by Pediococcus
damnosus 2.6 [43].

Thermal stability is an important property of EPS that are intended for commercial
application, e.g., in the food industry. Although the EPS preparations from B. atrophaeus
BU4 (this work) had lower thermal stability than structural polysaccharides such as hemi-
celluloses and cellulose [44], they are still thermally stable compared to previously reported
bacterial EPS. For example, EPS produced by B. tequilensis exhibited a degradation tempera-
ture of 239 ◦C, and a 58% weight loss was observed at 300 ◦C [41]. EPS from B. licheniformis
was degraded at 240 ◦C and lost 50% of the initial weight at 260 ◦C [37]. In comparison, the
highest thermal degradation rate for the samples from BU4 was observed at 248–252 ◦C,
and the weight loss up to 275 ◦C was 27% for SM-G15 and 36% for the other samples.
SM-G15 was more stable than the other two samples, and that was especially remarkable
in the temperature range up to 300 ◦C. The thermal stability of the SM-G15 sample is in
agreement with the results previously reported by us for an EPS produced by the same
bacterial strain cultivated in a similar glucose-based synthetic medium [13]. The only
difference is some dephasing of the degradation peaks. For instance, the peaks observed
here at 142, 217, and 252 ◦C were detected at 152, 209, and 244 ◦C in that study, and the
peak at 332 ◦C was stronger in the current work. The difference can be attributed to the use
of different instruments in both studies. The precision of the values that we are reporting
now is backed by the high calibration accuracy of the instrument used in the current study.

4. Conclusions

A halotolerant bacterium isolated from a high-salinity habitat was identified as Bacillus
atrophaeus, and its ability to grow and produce EPS on glucose and xylose was demonstrated.
Remarkable differences in the growth of the bacterial strain in cellulosic and hemicellulosic
hydrolysates of quinoa stalks were demonstrated.

SEC, FTIR, NMR, and SEM revealed similarities between EPS from glucose- and xylose-
based synthetic media, while the EPS from cellulosic hydrolysate was slightly different.
The sugar unit composition of the EPS produced were comparable regardless of cultivation
media differences. EPS from B. atrophaeus BU4 exhibit good thermal stability, an amorphous
nature, and water-retention capacity, which are useful features for applications in the food
and pharmaceutical industries.
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