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Abstract

We construct portfolio strategies consisting of different stocks from four main

energy market sectors, including oil and gas, oil and gas related equipment

and services, multiline utilities and renewable energy. To construct portfolio

strategies, we first forecast assets' returns by using multivariate copula models.

These forecasting frameworks enable us to undertake both symmetric and

asymmetric tail connectedness in simulating from the joint distribution. Sec-

ond, we applied four major risk measures including volatility, mean absolute

deviation, conditional value-at-risk and conditional drawdown-at-Risk. Our

findings indicate that the consideration of homogeneity of oil and gas sector

and oil and gas related equipment and services sector, together with the het-

erogeneity of multiline utilities sector and renewable energy sector should lead

to information decoupling among these sectors, thereby providing portfolio

diversification. The mixed copula model results in better out-of-sample eco-

nomic performance, indicating the advantage obtained from modelling both

symmetric and asymmetric tail dependence. Our analysis of the portfolio

weights, among the energy market sectors, shows that for optimal portfolios,

multiline utilities and renewable energy sectors constitute higher portion of

the invested assets. The study results provide an encouraging guideline for

developing renewable energy sector from the perspective of financial market.
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1 | INTRODUCTION

Over the recent years, large organizations with highly con-
centrated operations and services within oil & gas sector
encounter relentless pressure in substituting their depen-
dence on depleting natural resources, reducing CO2

emissions (Rogelj et al., 2016; UNFCC, 2015; United
Nations, 2018), and in generating profit-oriented operations

to increase the shareholder value. The rapid technological
advancements and geopolitical upheaval have contributed
to significant alteration in oil and gas activities across the
globe. Furthermore, the impact of such advancements is
significantly higher for the larger producers as they need to
amend and replace their existing practises towards more
sustainable short- and long-term operations. Above that,
the environment sustainability issues surrounding the oil
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and gas firms generate uncertainty for the market partici-
pants causing an increase shift in investment from tradi-
tional energy sector to renewables.

Consequently, a large number of oil and gas producers
has started to invest in the clean energy and renewable
sector (Chaiyapa et al., 2018; Mäkitie et al., 2019; Steen &
Weaver, 2017; Zhong & Bazilian, 2018). For example, total
SA pledges an yearly investment of $500 million in renew-
able energy (Blas, 2015), Equinor establishes an in-house
venture capital fund to invest $200 million in renewable
energy (Equinor, 2019), and Shell pledges to invest
between $1 and $2 billion annually in renewable energy
over the period from 2016 to 2020 through its New Ener-
gies division (Shell, 2019). In addition, the business cycle
impacting the oil and gas sector, oil and gas related equip-
ment and services, and multiline utilities is significantly
different from the renewable energy sector. The high reli-
ance of oil and gas sector on the fossil fuels largely impacts
their long-term sustainable operations due to continuous
depletion of available resources. On the contrary, the
renewables are primarily dependent on unlimited natural
resources, resulting in both short- and long-term sustain-
ability of their operations.

Renewable energy sector has received considerable
attention worldwide as a sustainable alternative to tradi-
tional energy sources due to various reasons, for instance
depletion of fossil fuels, growing concern surrounding cli-
mate change, technological revolution, energy security
issues, and uncertain prices of crude oil (Ferrer
et al., 2018). Over the last decade, the renewable energy
sector has experienced an exponential growth with global
investment in renewable energy capacity hitting $272.9

billion (excluding large hydro-electric projects) in 2018,
totalling $2.6 trillion. In terms of individual subsector,
solar has attracted $1.3 trillion, wind secured $1 trillion,
and biomass and waste-to-energy $115 billion (McCrone
et al., 2018; McCrone et al., 2019). Figure 1 provides an
overview of the historical development of new invest-
ments across various renewable sources. Climate risk and
the energy security issues have surfaced as the primary
factors in transforming the landscape of global energy
sector towards clean and renewable energy (Grandell
et al., 2016). In addition, the recent unfavourable situa-
tion with Iran, Libya and other Gulf countries (Iraq,
Qatar) result in uncertain crude oil prices, thereby fur-
ther favouring the shift from traditional energy sector to
the renewable sources of energy.

The firms operating in traditional energy-related sec-
tors behave homogeneously and are largely influenced by
the variations in the crude oil price. Specifically, the
crude oil price uncertainty determines the futures opera-
tions of these firms regarding investment in new plants,
exploration activities, demand shocks and supply disrup-
tions, among others, thereby influencing the stock prices
and the investment allocation decisions.

In this regard, the business cycle linkage for the three
traditional energy sectors is completely different from the
renewables sector. Furthermore, the traditional energy
sector primarily relies on the depleting fossil-fuel, while
the renewables sector depends on unlimited supply of
natural resources (solar, wind, hydropower, geothermal)
to produce energy. Given these circumstances, the mar-
ket participants may accomplish portfolio diversification
and risk management by allocating their investment in

FIGURE 1 New investment in various renewables (IRENA, 2018) [Colour figure can be viewed at wileyonlinelibrary.com]
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the firms operating in the three traditional energy sec-
tors, as well as the renewables sector.

For the above-mentioned concerns, understanding
the connectedness dynamics among the assets becomes
significant importance for both academics and market
participants that are investigating the behaviour of finan-
cial and commodity markets. With the outbreak of the
global financial crisis of 2008 (GFC), the portfolio diversi-
fication, dynamic hedging, and risk management poten-
tial of investing between financial and commodity
markets has weakened (Elie et al., 2019; Rehman
et al., 2019; Uddin et al., 2019). Therefore, both aca-
demics and practitioners have dedicated significant atten-
tion in exploring other assets that may assist in portfolio
diversification and risk management. In this study, the
role of renewable will be investigated.

The connectedness dynamics and safe-haven proper-
ties of crude oil with various assets is widely studied in
the existing literature (Al Janabi et al., 2017; Baffes, 2007;
Dutta et al., 2018; Huang et al., 2016; Ji & Fan, 2012;
Kang et al., 2017; Koirala et al., 2015; Manera et al., 2013;
Mishra et al., 2019; Moreno et al., 2019; Pal &
Mitra, 2017; Pandey & Vipul, 2018; Shahzad et al., 2017;
Silva et al., 2017; Silvennoinen & Thorp, 2016; Yahya
et al., 2019; Zhang & Chen, 2018). Similarly, numerous
studies examine the relationship between crude oil and
clean energy indexes (Dutta, 2017; Elie et al., 2019; Ferrer
et al., 2018; Maghyereh et al., 2019; Troster et al., 2018;
Uddin et al., 2019). Although several studies examine the
portfolio management and safe-haven properties of
energy sector (fossil-fuels and renewables), assessment of
firm-level portfolio diversification and risk management
benefits using oil and gas sector, oil and gas related
equipment and services sector, multiline utilities sector,
the renewables sector has received less attention.

Our study addresses these knowledge gaps by evaluat-
ing the multi-asset portfolio diversification and risk man-
agement potential between four energy sectors, namely
oil and gas sector, oil and gas related equipment and ser-
vices sector, multiline utilities sector, and the renewables
sector by utilizing various symmetric and asymmetric
copula frameworks. The existing literature primarily
revolves around examining the connectedness dynamics
between energy sector with other asset classes. However,
despite heterogeneous operations and nature of firms
operating across oil and gas sector, oil and gas related
equipment and services sector, multiline utilities sector,
and renewables sector, the interconnectedness and portfo-
lio diversification potential between these firms remains
uncharted.

This article fills the pivotal rift in several ways. First,
to the best of our knowledge, this is the first empirical
paper examining the relationship among the above-

mentioned four sectors by utilizing firm-level data. Sev-
eral studies examine the relationship of energy sector
with the renewables, nevertheless, these studies primarily
focus on the aggregate level or sectorial indices. Surpris-
ingly, relatively few studies examine the firm-level rela-
tionship of energy sector (see e.g., Antonakakis
et al., 2018; Bondia et al., 2016; Gupta, 2016; Henriques &
Sadorsky, 2008; Kocaarslan & Soytas, 2019; Madaleno &
Pereira, 2015, among others). However, the above studies
examine the firm-level relationship with the limitation
only within oil and gas sector, or focusing on clean
energy firms and crude oil. It is crucial to emphasize that
the aggregate price data of crude oil might be insufficient
to capture the heterogeneous nature of the firms operat-
ing across these sectors.

Second, unlike previous studies, we evaluate the mul-
tivariate firm-level portfolio diversification potential by
utilizing data of firms operating across four energy sec-
tors. The business cycle encircling these sectors are dis-
tinct due to energy sources, storage capacity, supply and
demand interactions. Furthermore, each firm operating
in these sectors has a broad set of operations and services.
Therefore, the firm-level data from these sectors may
allow us to unveil the potential diversification benefits
due to heterogeneity of firms operating within these
sectors.

Third, in contrast with the literature, we utilized
various symmetric and asymmetric copula frameworks
to estimate multivariate portfolio weights. Copulas, in
general, are preferable over conventional correlations
and multivariate GARCH models to capture the depen-
dence during periods of prosperity and extreme market
conditions. This is due to their capability in modelling,
in particular, non-parametric and asymmetric tail
dependence that has applications in risk management
and portfolio downside risk optimization. The asym-
metric properties of the financial and commodity mar-
kets are well documented in the literature (Elie
et al., 2019; Uddin et al., 2019). Therefore, the asym-
metric copula frameworks will allow us to capture the
connectedness structure both in the mean and tails of
the distributions. In addition, previous studies primar-
ily provide an estimate of portfolio weights and hedge
ratios in the bivariate scenario. However, we empha-
size that the bivariate analysis neglects important
information that may suffice for portfolio managers
and investors in energy sectors who tend to include
various firms in their investment choices. Therefore,
the combination of asymmetric copula frameworks
with multivariate portfolio diversification and risk
management decisions may provide a broader and
comprehensive perspective to the market participants
regarding firm-level investment within energy sectors.

UDDIN ET AL. 3
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Our empirical analysis indicates a strong potential to
attain diversification and risk management benefits by
utilizing disaggregated-level data from the four energy
sectors. Specifically, the heterogeneity of business cycle
surrounding these sectors decouples the connectedness
structure among the firms operating within, thereby lead-
ing to lower dependence among the assets. Our findings
indicate existence of both symmetric and asymmetric tail
dependence among the assets, favouring the utilization of
copula-based frameworks to model interconnectedness.
In terms of connectedness, we find Total (oil and gas sec-
tor) and Eni (oil and gas sector) provide the highest level
of dependence, while PetroChina (oil and gas sector) and
Shanghai Aerospace Automobile Electromechanical
(renewable energy sector) provide the lowest level of
dependence. In terms of out-of-sample portfolio perfor-
mance, our findings indicate that the copula-based port-
folios significantly outperform the benchmark portfolios.
Regarding risk-adjusted performance, we find that the
copula families which are sensitive to asymmetric tail
dependence provide better avenue to reduce the down-
side risks of the energy stocks. The increased out-of-
sample risk-adjusted performance is attributed to the
addition of stocks from multiline utilities sector and
renewables sector together with stocks from oil and gas
sector and oil and gas related equipment and services sec-
tor that improves the out-of-sample risk-adjusted perfor-
mance of the overall portfolio. Whereas, in terms of
Sharpe ratio, the optimal portfolios from mixed copula
outperform other copula families. In terms of out-of-
sample economic performance, the benchmark portfolios
are unable to increase the economic performance. How-
ever, using copula-based forecasting models, the optimal
portfolios outperform the mean-risk strategies. In terms
of out-of-sample portfolio weights, our findings indicate a
higher proportion of wealth to be allocated in multiline
utilities sector and renewable energy sector to attain port-
folio diversification and risk management benefits.

The empirical findings reported in this research are of
significant interest to policymakers, institutional investors,
portfolio managers, and international investors. The asym-
metric dynamic connectedness structure among assets
necessitates the policymakers to develop policies that
decouple the information connectedness and facilitate in
smooth transition from traditional energy sources to
renewables. In regard to institutional investors and portfo-
lio managers, our findings indicate that an assessment of
time-varying symmetric and asymmetric tail-dependence
and connectedness dynamics is crucial in devising and
implementing portfolio allocation and risk management
decisions concerning investment in oil and gas sector, oil
and gas related services sector, multiline utilities sector,
and renewable energy sector. Furthermore, our findings

suggest that the portfolio managers and investors may uti-
lize various active risk minimization and optimal portfolio
allocation strategies to attain out-of-sample diversification
and risk management benefits.

The rest of the article is structured as follows. Section 2
presents the stylized facts surrounding the energy markets
and an overview of employed data. Section 3 presents the
employed methodological framework. Section 4 presents
the empirical findings. Section 5 concludes the study.

2 | STYLIZED FACTS AND DATA

In this section, we first present the stylized facts
surrounding the energy market. Second, we provide an
overview of the employed data along with stochastic
properties.

2.1 | Stylized facts of energy markets

The prices of oil underwent a significant decline during
2014–2016. For instance, the per barrel price of WTI
crude oil declined by around 80% ($106.46 on 27th June
2014 to $26.21 on 11th February 2016). Crude oil has
been widely acknowledged as the most influential com-
modity due to its importance towards economic develop-
ment and prosperity. An increase in crude oil price leads
to an increase in the production cost of goods and ser-
vices, transportation cost, induce uncertainty, increase
inflation and negative impact on economic growth,
among others. Whereas a decline in crude oil price signif-
icantly impacts the firms operating across oil and gas sec-
tor, oil and gas related equipment and services sector,
and multiline utilities sector primarily due to high depen-
dence and reliance on crude oil price. It may impact the
firms operating beyond these sectors; however, evalua-
tion of its impact outside the aforementioned sectors is
beyond the scope of this study.

Given their high reliance on crude oil, the intercon-
nectedness between crude oil and the firms operating in
oil and gas sector is indisputable. The firms operating in
this sector are largely engaged with upstream (explora-
tion and production) and downstream activities (refine-
ment of crude oil and natural gas). The stock prices of
the firms operating in this sector are highly sensitive to
the variations in the crude oil prices. For instance, the
stock price of ConocoPhillips declined by 60% ($73.68 on
27th June 2014 to $29.44 on 11th February 2016). In addi-
tion, the stock price of ConocoPhillips increased ($29.44
on 11th February 2016 to $76.53 on 3rd October 2018)
with the rise in crude oil price ($26.21 on 11th February
2016 to $76.41 on 3rd October 2018). Similar trend is

4 UDDIN ET AL.
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observed for other firms operating in the oil and gas sec-
tor, for instance Eni ($38.57 to $19.43 and from $19.43 to
$35.59) and PetroChina ($108.07 to $50.56 and from
$50.56 to $78.45). This indicates the high reliance of these
firms on the crude oil prices to maintain their current
and prospective exploration activities.

In regard to the firms operating in oil and gas related
equipment and services sector, their operational activities
are highly dependent on the exploration and production
activities of the oil and gas sector. The firms in this sector
may be characterized as midstream (pipeline, oil tankers,
among others) as they assist the oil and gas sector by pro-
viding specialized equipment and services. Similar to the
oil and gas sector, the operations of oil and gas related
equipment and services sector is highly dependent on the
crude oil price. For instance, Halliburton stock price fell
from $63.45 (2014) to $26.56 (2016) and increased from
$26.56 (2016) to $40.35 (2018) with the decline and
incline of crude oil price, respectively. Similarly, the stock
price of National Oilwell Varco has declined from $75.41
to $25.39 and increased again to $44.25. The high depen-
dence of oil and gas related equipment and services sec-
tor on the oil and gas sector may induce an increased
connectedness structure among these two sectors.

The multiline utilities firms often offer a wide range
of products and services to the oil and gas sector, oil and
gas related equipment and services sector, and renewable
energy sector. In addition, these firms provide a wide
range of products and services to other businesses and
consumer market, for instance telecom services, digital
products, environmental services, among others. There-
fore, the business cycle of these firms is heterogeneous
from the oil and gas sector and oil and gas related prod-
ucts and services sector. Furthermore, these firms may
instantaneously change their products and services to
meet the growing demand from one sector to another.
Therefore, their operations may not be significantly
affected by the uncertainty in the crude oil prices. For
instance, the stock price of Sempra exhibits no significant
fluctuation ($89.28 on 27th June 2014 to $84.43 on 11th
February 2016) due to oil price drop. However, the stock
price does increase significantly during the post-2016
period to $111.22 on 3rd October 2018. Similarly, the
price of PPL exhibited an upward price trend from $25.48
in 2014 to $29.90 in 2016 and remain relatively stable
with the increase in crude oil price during post-2016
period. However, similar to firms in oil and gas sector
and oil and gas related equipment and services sector,
MDU Resources exhibited a downward trend with the
decline in crude oil price from $29.29 in 2014 to $14.55 in
2016. Whereas, over the post-2016 period, the price of
MDU Resources increases $24.78 on 3rd October 2018.
This suggests that the firms in the multiline utilities are

of heterogenous nature both within the sector and com-
pared with oil and gas sector and oil and gas related prod-
ucts and services sector.

Renewable's sector has gained significant attention
due to climate change and global warming. Climate
uncertainty intensified by global warming is also
manifesting its importance in the energy portfolio diversi-
fication towards de-carbonization. As per Renewables
Information, the share of renewables and clean energy,
which provided 24% of world's power demand in 2017, is
estimated to increase by 30% by 2023 (Birol, 2018). An
upsurge of investments in renewables to a level of $279.8
billion in 2017 results in cumulative investments in the
sector to $2.6 trillion (McCrone et al., 2018) providing
further thrust to the renewables in the global energy
sector. Figure 2 provides an overview of the reference
and REmap (global roadmap proposed by International
Renewable Energy Agency [IRENA]) case electricity
generation using renewables and non-renewables. Refer-
ring to REmap case, the dependence on non-renewables
as energy source will significantly decline until 2050
(IRENA, 2018). Unlike oil and gas sector, the renewables
rely on natural resources to produce energy, for instance
wind, thermal, solar, among others. Therefore, the busi-
ness cycle impacting the renewables are totally different
from that of oil and gas sector, oil and gas related prod-
ucts and services sector, and multiline utilities. For
instance, the share price of Siemens Gamesa Renewable
Energy has increased by around 45% ($10.84 on 27th
June 2014 to $15.52 on 11th February 2016) with the
decrease in crude oil price. However, with the upsurge in
crude oil price, the price has decreased by around 25% to
$11.85. Similarly, Vestas Windsystems exhibited an
increase of around 60% (DKK253.98 on 27th June 2014 to
DKK 413.52 on 11th February 2016), while it remains
stable at this level during the post-2016 period.

Overall, these observations suggest that the firms
operating across oil and gas sector, oil and gas related
equipment and services sector, multiline utilities sector
and renewable sector are of heterogenous nature and
characterize by different business cycles, indicating
potential to attain portfolio diversification and risk man-
agement benefits by utilizing firm-level data from these
sectors. This study attempts to confirms this, and in
addition explore how to obtain such advantages.

2.2 | Data and stochastic properties

We employ daily stock price data of 28 firms operating
across the four sectors. The sample period spans from
15th May 2003 to 23rd April 2019, resulting in 4158 trad-
ing days. The data utilized in this is collected from

UDDIN ET AL. 5
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Thomson Reuters DataStream. The starting date is dic-
tated primarily due to availability of the data. We choose
the firms based on the following specifications and crite-
rions. First, the confidence of the investors on the firm's
management and its risk profile. This criterion is impor-
tant as it safeguards the investors regarding liquidity of
their investment. Second, the firm needs to be financially
stable, that is the firm is not under financial distress. This
complements the first criterion as investors deem to
move away from the financially distressed firms. Third,
the innovativeness of the firm that is the firm continue to
invest in new technologies in order to increase the share-
holder value. Based on these criterions, we select seven
firms from each sector (Reuters, 2019).

Table 1 provides the descriptive statistics for daily loga-
rithmic returns for each stock. All stocks are categorized
based on four sectors (Panels A–D). Most of the stocks have
positive average return, except for CGG, Weatherford Inter-
national, E.ON SE, RWE, Pacific Ethanol and Solar World.
The highest daily average return (0.063%) is reported for
Vestas, while the lowest daily average return is reported by
Solar World (�0.156%). In general, renewable energy sector
shows higher volatility and lower returns compared to other
sectors, while oil and gas sector and multiline utilities sector
provide the lowest level of volatility. The highest volatility is
reported for Pacific Ethanol (6.448%), while Sempra Energy
shows the lowest volatility of 1.335%. Both minimum and

maximum returns are reported for Solar World (�151.002%
and 50.608%). Most of the firms in the sample exhibit nega-
tively skewed and leptokurtic return distribution. Further-
more, these estimates suggest deviation from normal
distribution. The results from Jarque-Bera normality test
affirms this non-Gaussianity and strongly rejects the null-
hypothesis of normality at the 1% threshold level, indicating
fat tails characterize the distribution. The ARCH test
(Engle, 1982) with one lag rejects the null-hypothesis of
homoscedasticity at the 1% threshold level, indicating the
existence of ARCH effects and volatility clustering for all
series. This advocates the importance and relevance of
GARCH-type framework to model the stylized facts of the
underlying series. Furthermore, the Ljung-Box test with
10 lags is significant for most of the series, indicating rejec-
tion of null-hypothesis of independence.

3 | METHODOLOGY

We model the dependence structure among the assets by
utilizing Rvine copula models to construct different port-
folio strategies for the energy markets. We consider
thresholded and truncated Rvine model, in which, based
on a truncation level, the vine structure is reduced by set-
ting the low-dependence copulas to an independence
one. To capture and compare symmetric and asymmetric

FIGURE 2 Development of electricity generation for various sectors. (IRENA, 2018) [Colour figure can be viewed at

wileyonlinelibrary.com]
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tail dependence, we examine different copula families,
each of which is sensitive to lower, upper or both tails.
Having modelled the tail dependence, we forecast the
conditional distribution of assets and draw simulations

from the joint distribution. Then, we optimize and evalu-
ate the performance of portfolio strategies based on dif-
ferent risk measures. The portfolio optimization methods
are provided in Appendix A.

TABLE 1 Descriptive statistics

Series Mean SD Min Max Skewness Kurtosis JB ARCH
Ljung-
box

Panel A: Oil and gas

ConocoPhillips 0.029 1.867 �14.869 15.365 �0.321 6.473 7341*** 472*** 44***

Eni 0.004 1.801 �12.386 19.113 0.282 11.086 21375*** 87*** 62***

ExxonMobil 0.021 1.421 �15.027 15.863 �0.013 14.365 35791*** 430*** 134***

Hess Corporation 0.035 2.502 �21.265 15.441 �0.607 8.032 11446*** 211*** 33***

PetroChina 0.025 2.215 �14.903 14.415 �0.027 5.817 5871*** 222*** 34***

Royal Dutch Shell 0.009 1.564 �10.78 15.631 0.115 9.258 14877*** 277*** 44***

Total 0.011 1.694 �11.597 15.756 0.131 7.834 10658*** 263*** 53***

Panel B: Oil and gas related equipment and services

CGG �0.062 3.693 �34.962 44.367 0.472 14.428 36263*** 45*** 28***

Halliburton 0.023 2.342 �18.758 21.147 �0.461 7.518 9953*** 165*** 20**

National Oilwell Varco 0.022 2.709 �24.068 21.852 �0.593 10.412 19048*** 413*** 45***

SBM Offshore 0.01 2.468 �28.287 18.838 �0.431 11.248 22074*** 33*** 17*

Schlumberger 0.016 2.075 �20.339 13.902 �0.489 8.665 13190*** 137*** 39***

TransCanada 0.024 1.339 �11.095 9.511 �0.37 6.18 6722*** 348*** 58***

Weatherford International �0.069 3.552 �38.199 32.647 �0.618 14.766 38084*** 118*** 30***

Panel C: Multiline utilities

E.ON SE �0.01 1.986 �14.629 19.983 �0.31 8.723 13267*** 195*** 56***

EVN 0.007 1.611 �10.303 10.899 �0.008 4.024 2811*** 117*** 11

MVV Energie 0.013 1.608 �21.205 9.242 �0.527 10.377 18872*** 92*** 109***

MDU Resources Group 0.015 1.61 �13.668 21.399 �0.017 16.516 47311*** 309*** 53***

PPL 0.013 1.34 �14.138 13.802 �0.594 13.253 30710*** 54*** 55***

RWE �0.004 2.032 �13.385 17.225 �0.079 6.504 7345*** 128*** 30***

Sempra Energy 0.039 1.335 �17.68 14.443 �0.303 20.484 72836*** 128*** 104***

Panel D: Renewable energy

Motech Industries 0.016 3.02 �13.976 12.783 0.052 1.002 176*** 93*** 50***

Pacific Ethanol �0.128 6.448 �58.045 50.349 0.734 11.897 24927*** 210*** 18*

Shanghai Aerospace
Automobile
Electromechanical

0.013 3.196 �12.26 10.697 �0.239 2.366 1011*** 293*** 42***

Siemens Gamesa Renewable
Energy

0.023 2.79 �27.366 22.475 �0.182 8.181 11634*** 22*** 16

SolarWorld �0.156 6.27 �151.002 50.608 �3.4 93.654 1529116*** 70*** 59***

Vestas 0.063 3.319 �29.43 22.217 �0.39 9.943 17254*** 78*** 22**

Xiangtan Electric
Manufacturing

0.018 3.13 �26.236 11.507 �0.26 3.133 1750*** 96*** 16

Note: This table provides descriptive statistics for daily returns of 28 energy market stocks. For each stock, the total number of observations is 4158. The sample
period is from 16 May 2003 to 23 April 2019. JB is the result of Jarque-Bera's normality test. The test statistic for Ljung Box Q (with 10 lag) and ARCH (with 1
lag) tests are reported. ***, **, * denotes significant at 1%, 5% and 10% level, respectively.
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3.1 | Truncated regular vine copula

According to Sklar (1959), for a d-dimensional joint dis-
tribution F, there exists a copula C with univariate mar-
ginal distributions F1,F2,…,Fd such that:

F z1,z2,…,zdð Þ¼C F1 z1ð Þ,F2 z2ð Þ,…,Fd zdð Þð Þ
¼C u1,u2,…,udð Þ,8z�Rd, ð1Þ

where, F is a multivariate distribution function,
such that zn ¼F�1

n unð Þ, un �U 0,1½ �d,8n� 1,2,…,df g. Joe
(1996) introduced pair-copula construction (PCC) by using
distribution functions. However, Bedford and Cooke (2002)
derived graphical representation of PCC in forms of nested
trees, including regular (Rvine), drawable (Dvine) and canoni-
cal (Cvine) structures (see Aas et al., 2009 for further informa-
tion on statistical inference and estimation of vine copulas).

In a vine structure, there are in total d�1 trees and
d d�1ð Þ=2 bivariate copulas to be estimated. Therefore,
increasing the number of assets leads to more complexity
in estimating the vine structures. To overcome this prob-
lem, the vine structure could be simplified or truncated
(see e.g., Brechmann et al., 2012; Nagler et al., 2019). One
approach is to apply truncation to the number of trees in
the vine. Let I � 1,2,…,d�1f g be a specific tree from
which all pair-wise copulas are set to independence cop-
ula. The intuition is that in a vine structure, final trees
and edges generally do not show strong dependence, and
therefore can be simplified. In this case, for a truncated
regular vine copula, the density function is imposed as:

cTruncated uð Þ¼
YI
i¼1

Y
e � Ei

c je ,kejDe
C jejDe

uje juDe

� �
,CkejDe

uke juDeð Þ� �
:

ð2Þ

While the simplification in truncated Rvine copula is
for the number of trees, the thresholded Rvine sets
the irrelevant pair-copulas to independence. Let τe be the
Kendall's τ for the conditional pair-copula c je,kejDe

, by set-
ting E0

i ¼ e�Eij τej j> θ́
� �

for each edge set Ei, the density
of a thresholded Rvine is:

cThresholded uð Þ¼
Yd�1

i¼1

Y
e � E0

i

c je,kejDe
C jejDe

uje juDe

� �
,CkejDe

uke juDeð Þ� �
:

ð3Þ

3.2 | One-step ahead forecasting

Based on the descriptive statistics reported in Table 1, all
the underlying return series exhibit autocorrelation and

ARCH effects, thereby favouring the utilization of a
mean-type framework together with GARCH-types of
modelling approach. Therefore, we utilize an AR(1)-
GARCH(1, 1) specification to capture the stylized facts
embedded in the return series, which may be speci-
fied as:

rnt ¼ μnþ γnrn,t�1þ εnt

εnt ¼ zntσnt, znt ≈ STD 0,1,ξnð Þ
σ2nt ¼ωnþαnε2n,t�1þβnσ

2
n,t�1

:

8><
>: ð4Þ

We utilize a simulation-based approach to construct
portfolio strategies. In the first step, we utilize the AR(1)-
GARCH(1, 1) specification to forecast one-step ahead
conditional mean eμnt and volatility eσnt and estimate the
standardized residuals z. Then, pseudo-observations u
are obtained from probability function of marginal distri-
bution of the standardized residuals. Following that, we
estimate the parameters for truncated and thresholded
copulas in Equations (2) and (3). Based on the copula
parameters and the estimated joint distribution, we apply
the inverse function of marginal distribution to obtain
simulated standardized residuals ez. Finally, one-step
ahead simulated returns are estimated as:

8m� 1,2,…,Mf g :ermnt ¼eμntþeσntezmnt, ð5Þ

where, t¼ 1,2,…,T is the out-of-sample iteration.

4 | EMPIRICAL ANALYSIS

We examine the portfolio diversification potential of
investment allocation across oil and gas, oil and gas
related equipment and services, multiline utilities, and
the renewables sectors. To do so, we focus on firm-level
data of 28 top leading firms from these sectors based on
the ranking approach proposed in the methodology sec-
tion. The heterogeneity nature of operations and services
of these sectors may allow us to attain diversification ben-
efits by allocating portfolio weights across these sectors.
In particular, the oil and gas sector and oil and gas
related services sector behave rather homogeneously,
while the multiline utilities sector and the renewables
sector behave heterogeneously from the prior two sectors.
Furthermore, the business cycles characterizing the oper-
ations of these sectors are significantly different across all
the four sectors. Therefore, we propose that the institu-
tional investors and portfolio managers may attain diver-
sification benefits by utilizing the firm-level data of
multiline utilities and renewables sectors together with
the traditional oil and gas sector. The investigation may

8 UDDIN ET AL.
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provide us with an understanding of each sector's perfor-
mance in a multidimensional portfolio setting. For doing
so, we first perform in-sample investigation, in which we
look at (1) properties and results of conditional mean and
conditional volatility modelling, and (2) tail dependence
between assets. Second, we use out-of-sample back-
testing to analyse and compare the properties of each
portfolio strategy and role of multiline utilities sector and
renewables sector in providing diversification benefits.

Finally, as the robustness check, we evaluate the perfor-
mance of each portfolio in a multi-period setting.

4.1 | GARCH estimation

Table 2 presents the results of marginal distribution
model over the whole sample period. We utilize AR(1)-
GARCH(1, 1) specification to estimate the standardized

TABLE 2 Marginal distribution parameter estimation

μ γ ω α β ξ

Panel A: Oil and gas

ConocoPhillips 0.089*** �0.023 0.027*** 0.070*** 0.923*** 7.833***

Eni 0.065*** �0.038** 0.029*** 0.062*** 0.929*** 6.569***

ExxonMobil 0.049*** �0.054*** 0.023*** 0.070*** 0.919*** 5.963***

Hess Corporation 0.092*** �0.002 0.030*** 0.058*** 0.938*** 7.272***

PetroChina 0.031 �0.028* 0.039*** 0.065*** 0.928*** 6.621***

Royal Dutch Shell 0.056*** 0.026* 0.016** 0.055*** 0.938*** 6.370***

Total 0.066*** �0.028* 0.024** 0.056*** 0.935*** 7.781***

Panel B: Oil and gas related equipment and services

CGG 0.016 0.056*** 0.323*** 0.100*** 0.880*** 4.366***

Halliburton 0.073** 0.025 0.057*** 0.053*** 0.935*** 7.160***

National Oilwell Varco 0.065** �0.006 0.019** 0.042*** 0.956*** 6.206***

SBM Offshore 0.073*** �0.002 0.057*** 0.042*** 0.949*** 3.999***

Schlumberger 0.031 �0.016 0.017*** 0.040*** 0.956*** 6.738***

TransCanada 0.048*** 0.018 0.032*** 0.059*** 0.921*** 7.238***

Weatherford International 0.064* 0.032** 0.070*** 0.056*** 0.937*** 5.692***

Panel C: Multiline utilities

E.ON SE 0.045** �0.005 0.057** 0.060*** 0.924*** 5.413***

EVN 0.025 �0.034** 0.032*** 0.065*** 0.925*** 5.168***

MVV Energy 0.030** �0.167*** 0.182*** 0.121*** 0.816*** 4.282***

MDU Resources Group 0.058*** �0.027** 0.025*** 0.048*** 0.940*** 5.395***

PPL 0.052*** �0.012 0.019** 0.051*** 0.936*** 5.832***

RWE 0.052** 0.029* 0.063* 0.054*** 0.929*** 5.237***

Sempra Energy 0.070*** �0.029* 0.048*** 0.081*** 0.887*** 5.323***

Panel D: Renewable energy

Motech Industries �0.034 0.014 0.097 0.072*** 0.927*** 4.331***

Pacific Ethanol �0.263*** �0.020 2.535*** 0.261*** 0.738*** 3.222***

Shanghai Aerospace Automobile Electromechanical 0.000 0.005 0.000 0.115*** 0.884*** 4.216***

Siemens Gamesa Renewable Energy 0.090*** 0.012 0.086*** 0.075*** 0.917*** 4.723***

SolarWorld �0.083* �0.026 3.495*** 0.468*** 0.531*** 3.229***

Vestas 0.088*** �0.017 0.124 0.062** 0.933*** 3.549***

Xiangtan Electric Manufacturing 0.025 �0.015 0.188** 0.082*** 0.917*** 3.324***

Note: This table provides estimated parameters for AR-GARCH marginal modelling for daily returns of 28 energy market stocks. For each stock, the total number
of observations is 4158. The sample period is from 16 May 2003 to 23 April 2019. μ and γ are the constant term and AR(1) coefficient the mean equation. ω, α and

β are the GARCH (1, 1) parameters. ξ is the shape parameter for Student-t distribution. ***, **, * denotes significant at 1%, 5% and 10% level, respectively.
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residuals. The lagged autoregressive parameter, γ, is sig-
nificant at the 10% significance level in most of the cases
in oil and gas and multiline utilities sectors, indicating
that the past information is instantly diffused in current
returns. The ARCH and GARCH components, α and β,
are significant at the 1% significance level, indicating that
the current conditional volatility is impacted by the
lagged squared shocks and persistence in conditional vol-
atility for all series. In general, the significance of esti-
mated parameters in volatility equation suggests a
standard GARCH model can properly model the condi-
tional volatilities for all firm-level data. The parameter
capturing the movements in the tails of the distribution,
ξ, is strongly significant at the 1% significance level with
values higher than 3, indicating the importance of utiliz-
ing Student-t to capture the potential co-movements in
the tails. The tail-dependence suggests that the standard
means-based models are not suitable to capture the styl-
ized facts embedded in the energy markets. Furthermore,
this indicates that an increase co-movement between
these assets with other assets are highly likely during
periods of financial and economic turmoil.

4.2 | Dependency structure

Based on the standardized residuals from the marginal
distribution frameworks, we estimate the dependence
structure between the 28 firms from all four sectors. Spe-
cifically, we utilize various copula families in this article
to estimate the dependence structure including Student-t,
Clayton, Joe, Frank, and a mixed version selected by

applying mBICV criterion (see Nagler et al., 2019 for fur-
ther information on the modified BIC selection criterion).
In this section, we present the results for the truncate
and threshold mixed Rvine copula.

Figure 3 plots the tree structure of the obtained esti-
mates from the mixed Rvine copula. This figure only
plots the first tree in the vine structure. To estimate the
dependency structure, we first rank the stocks based on
the sum of their correlations with other firms in the sam-
ple. This puts more correlated stocks in the centered
nodes that have more dependence, showed in edges, with
other stocks. In terms of simple correlation, we find that
Total and Xiangtan Electric Manufacturing exhibits the
highest and lowest degrees of connectedness with other
firms in the portfolio, and therefore placed in the first
and last nodes, respectively. As we can see in the figure,
there are 28 nodes representing each stock and 27 edges
representing pair-wise copulas. Each bivariate copula is
selected based on mBICV criterion (panel A). To compare
the dependency between assets, we use Kendall's tau esti-
mated from pair-wise copulas in panel B.

According to panel A, in most cases, Student-t copula
is selected as the pair-wise copula based on the mBICV
criterion. This is primarily due to the conditional distri-
bution in the AR-GARCH framework in which we model
the errors distribution by utilizing Student-t. The joint
multidimensional distribution constructed using this cop-
ula family belongs to symmetric multivariate distribu-
tions. This indicates, for instance between Total and
RWE, there is symmetric tail-dependence. However, in
some of the cases, Clayton and Frank copula families are
selected based on mBICV. This indicates the existence of

FIGURE 3 Dependency structure between 28 energy stocks. This figure illustrates selected copula families (panel A) and estimated

Kendall's taus (panel B) from the truncated mixed Rvine copula model for daily returns of 28 energy market stocks. For each stock, the total

number of observations is 4158. The sample period is from 16 May 2003 to 23 April 2019. Numbers at nodes represent the stocks [Colour

figure can be viewed at wileyonlinelibrary.com]
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both symmetric and asymmetric tail-dependence
between the assets.

From Panel B, the highest Kendall's tau (τ¼ 0:62) is
reported between Total (node 1) and Eni (node 2), which
belong to oil and gas energy sector. This is expected as
the firms operating in the oil and gas sector are homoge-
nous and tends to have same business cycle. In general,
the most dependencies are reported within oil and gas
and oil and gas related equipment and services sectors.
There are also symmetric tail-dependence suggested for
firms from different sectors. For instance, a Kendall's tau
of 0.31 is reported between Exxon Mobil and MDU
Resources Group. This indicates, despite of different
operations, firms from different sectors have also depen-
dency. On the other hand, the lowest Kendall's tau
(τ¼ 0:05) is estimated between PetroChina and Shanghai
Aerospace Automobile Electromechanical, by using
Clayton family. This reflect the heterogenous nature of
the operations and services of the firms operating across
oil and gas sector and the renewables. It is noteworthy
that the firms in renewable sector exhibits relatively
weak dependence with firms in the other three sectors.
In particular, based on the in-sample analysis, these firms
have dependencies with firms from oil and gas sector.
However, these results are based on only first tree in the
vine structure. When applying rolling window estima-
tion, the dependency structure changes over the out-of-
sample period. This indicate that the dependence
dynamics among the assets varies over time and thereby
necessitates the institutional investors and portfolio man-
agers to recursively estimate the employed framework
with the additional observation in the estimation window.

4.3 | Portfolio back-testing

Based on the dependence structure between assets esti-
mated using simplified Rvine copula model, we simulate
from the joint distribution and obtain one-step ahead
simulated assets' returns, ert, using a rolling window esti-
mation of the forecasting models. We use the estimation
window of 1000 days. The empirical output from various
rolling window lengths, such as T¼ 500;750;1250;1500,
are qualitatively similar; thus, for brevity, we only report
for the case of 1000 days. Based on the derived one-day-
ahead returns, we compute the portfolio weights, wt, for
each copula family based on eight different portfolio
strategies from two general methods, namely minimum
variance (Mean–variance, Mean-CVaR, Mean-MAD and
Mean-CDaR) and maximized returns (optimal portfolio)
(Max-SR, Max-STARR, Max Mean/MAD and Max Mean/
CDaR). For mean-risk portfolio strategies, we set the
target return to the average of the conditional means

(μP ¼ 1
d

Pd
n¼1

eμn). For each portfolio strategy, we first esti-

mate the portfolio weights using corresponding optimization
and based on these weights we estimate the realized returns
by utilizing assets' weights with the returns' realizations. It is
noteworthy that we re-estimate the whole procedure for
each day in terms of out-of-sample period and perform the
back-testing for each of the underlying technique to attain
the portfolio returns. We set the out-of-sample period from
March 2007 until April 2019. We evaluate the performance
of copula-based portfolio against the benchmark portfolios
including equally-weighted and portfolios obtained based on
historical data. Four different risk measures are portfolio
variance, MAD, CVaR and CDaR. To provide a comprehen-
sive comparison of the portfolio strategies, we divide
the out-of-sample analysis into (i) descriptive statistics,
(ii) risk-adjusted and (iii) economic performance.

4.4 | Portfolios' out-of-sample descriptive
statistics

Table 3 reports the descriptive statistics for out-of-sample
portfolio returns. Panel A provides the results for the
benchmark portfolios, while panels B–F present the
results for copula-based portfolios.

Regarding the benchmark portfolios, we find that the
average daily returns are negative. Specifically, the average
return for the equally weighted portfolio is �0.039% with
minimum and maximum return ranging from �10.94% to
12.27%, respectively. The average return for historically
based portfolio ranges from �0.003% (mean-CVaR) to
�0.041% (max mean/CDaR). Whereas the volatility of the
historical-based portfolios ranges from 0.928% (mean–
variance) to 1.429% (max mean/MAD), while the volatility
of equally-weighted portfolio is highest (1.447%) among the
benchmark portfolios. Interestingly, mean-CVaR and mean-
CDaR portfolios are unable to outperform the mean–
variance and mean-MAD portfolios in increasing the
minimum returns. All of the optimal portfolios increase the
maximum return at the cost of increased volatility. However,
these portfolios are unable to increase the average return.

For the copula-based portfolios, all of the allocation
methods are able to provide a positive average return,
except for mean–variance. In terms of Student-t copula-
based portfolios, the average return ranges from �0.005%
(mean–variance) to 0.085% (max mean/MAD). Whereas the
minimum and maximum average return is found in mean-
MAD of �32.172% and 18.316%, respectively. Although the
volatility of Student-t copula-based portfolios are higher
than the benchmark portfolios, these portfolios significantly
outperform the benchmark portfolios in terms of returns.

UDDIN ET AL. 11
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TABLE 3 Out-of-sample descriptive statistics

Portfolio strategies Min Max Mean SD Skewness Kurtosis

Panel A: Benchmark portfolios

(i) EQW �10.939 12.269 �0.039 1.447 �0.502 7.957

(ii) Historical-based portfolios

Mean–Variance �8.205 7.465 �0.006 0.928 �0.718 8.614

Mean-CVaR �9.786 7.457 �0.003 0.944 �0.885 10.257

Mean-MAD �7.67 7.692 �0.005 0.929 �0.659 9.027

Mean-CDaR �10.041 6.869 �0.019 1.04 �0.634 8.812

Max-SR �14.321 9.676 �0.04 1.399 �1.004 9.783

Max-STARR �15.008 8.474 �0.039 1.372 �1.032 9.755

Max Mean/MAD �14.323 10.78 �0.039 1.429 �0.993 10.989

Max Mean/CDaR �16.978 13.647 �0.041 1.345 �1.148 19.648

Panel B: Student-t copula-based portfolios

Mean–Variance �16.787 17.402 �0.005 1.076 �0.408 44.353

Mean-CVaR �17.43 13.398 0.025 0.981 �1.307 48.566

Mean-MAD �32.172 18.316 0.016 1.46 �2.485 114.357

Mean-CDaR �17.069 13.417 0.053 1.163 �1.207 26.375

Max-SR �13.533 13.928 0.055 1.598 �0.362 9.935

Max-STARR �15.515 8.652 0.077 1.565 �0.661 9.889

Max Mean/MAD �15.894 10.842 0.085 1.602 �0.603 10.82

Max Mean/CDaR �15.939 8.643 0.057 1.593 �0.994 11.555

Panel C: Clayton copula-based portfolios

Mean–Variance �16.009 7.962 �0.005 1.032 �1.689 24.113

Mean-CVaR �18.356 7.603 0.022 0.974 �2.419 46.452

Mean-MAD �23.442 47.817 0.044 1.772 8.96 246.278

Mean-CDaR �16.214 34.59 0.064 1.352 6.196 174.222

Max-SR �13.776 10.634 0.061 1.509 �0.385 8.451

Max-STARR �11.579 9.844 0.091 1.631 �0.314 7.245

Max Mean/MAD �15.384 9.344 0.079 1.5 �0.713 10.571

Max Mean/CDaR �13.613 10.667 0.07 1.619 �0.738 10.987

Panel D: Joe copula-based portfolios

Mean–Variance �16.051 6.922 �0.009 1.02 �1.89 24.795

Mean-CVaR �18.462 7.489 0.015 0.965 �2.526 48.152

Mean-MAD �37.251 47.817 0.008 1.732 4.197 277.17

Mean-CDaR �16.263 7.721 0.037 1.117 �1.555 21.175

Max-SR �13.627 15.476 0.068 1.545 0.073 12.479

Max-STARR �12.475 9.844 0.083 1.599 �0.376 7.341

Max Mean/MAD �15.492 9.094 0.08 1.469 �0.69 11.207

Max Mean/CDaR �13.592 11.037 0.069 1.564 �0.616 10.671

Panel E: Frank copula-based portfolios

Mean–Variance �15.087 7.188 �0.007 1.018 �1.667 20.692

Mean-CVaR �16.634 7.7 0.023 0.943 �2.242 37.892

Mean-MAD �32.172 43.086 0.028 1.557 4.396 262.624

Mean-CDaR �18.986 7.26 0.046 1.14 �2.053 30.8

12 UDDIN ET AL.
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Similarly, regarding Clayton copula-based portfolios,
the average portfolio returns range from �0.005%
(mean–variance) to 0.085% (max mean/MAD). Analo-
gous to Student-t copula-based portfolios, the minimum
and maximum average portfolio return is reported by
mean-MAD of �23.442% and 47.817%, respectively. In
terms of volatility, mean-CVaR provides the lowest vola-
tility of 0.974%, while mean-MAD provides the highest
volatility of 1.772%. Similar results are reported for Joe
copula- and Frank copula-based portfolios.

The maximum average returns among the copula-
based portfolios are obtained from the mixed copula-
based. The average returns range from 0.001% (mean–
variance) to 0.12% (max mean/MAD). The higher
returns reported by the mixed copula-based strategies are
primarily at the cost of increased volatility. However, the
increased volatility is not significantly higher from the
other copula-based portfolios. Overall, these findings illus-
trate the potential of increased portfolio returns on invest-
ment due to lower dependence among the firms operating
across the four underlying energy sectors by utilizing
copula-based weights.

4.5 | Out-of-sample risk-adjusted
performance

Table 4 presents the results of portfolios' risk-adjusted perfor-
mance. Panel A provides an overview of risk-adjusted

performance of benchmark portfolios, while panels B–F pro-
vide the results from copula-based portfolios.

In regard to benchmark portfolios, the historical-
based portfolio performs relatively better than the equally
weighted portfolio. In terms of risk-adjusted performance
of historical-based portfolio, the lowest and highest MAD
is reported for mean–variance (0.649%) and max mean/
MAD (0.955%), respectively. The CVaR ranges from
3.93% (mean–variance) to 6.66% (max mean/MAD),
while the lowest and highest CDaR is reported for mean-
CVaR (0.38%) and max-STARR (0.68%), respectively.
In terms of Sharpe ratio, the highest value is reported
for mean-CVaR (�0.003) and the lowest value for
max-SR (�0.029).

In terms of copula-based frameworks, the Student-t
copula-based portfolio provides relatively higher values
of MAD than the historical-based portfolios. Further-
more, the VaR and CVaR provide relatively similar out-
puts as those of historical-based copula. However, in
terms of CDaR, the Student-t copula provides signifi-
cantly lower values of deviation. In addition, the SR is
positive for all the portfolios, except for mean–variance,
in the Student-t copula-based portfolios, indicating an
overall better risk adjusted performance in comparison
with the historical-based portfolios. The Clayton-, Joe-,
Frank and mixed copula-based portfolios provide similar
performance over the historical-based copula.

Within the copula-based portfolios, the lowest MAD
(0.631% and 0.639%) and CVaR (4.07% and 4.085%) are

TABLE 3 (Continued)

Portfolio strategies Min Max Mean SD Skewness Kurtosis

Max-SR �14.965 11.972 0.055 1.549 �0.464 10.516

Max-STARR �24.131 10.282 0.06 1.532 �2.161 30.68

Max Mean/MAD �26.892 10.825 0.084 1.674 �2.005 31.452

Max Mean/CDaR �18.355 11.143 0.069 1.542 �1.269 15.327

Panel F: Mixed copula-based portfolios

Mean–Variance �16.466 16.239 0.001 1.065 �0.392 39.254

Mean-CVaR �17.466 7.944 0.023 0.954 �2.235 42.184

Mean-MAD �32.172 18.316 0.019 1.353 �4.056 140.13

Mean-CDaR �18.167 15.362 0.067 1.172 �0.911 31.857

Max-SR �11.564 12.386 0.07 1.54 �0.048 6.899

Max-STARR �15.313 29.672 0.101 1.681 1.453 37.681

Max Mean/MAD �14.524 29.672 0.12 1.742 1.314 33.381

Max Mean/CDaR �14.674 29.672 0.094 1.677 1.473 38.357

Note: This table provides out-of-sample descriptive statistics for portfolio strategies' daily returns consisting of 28 energy market stocks. The results are obtained
by applying rolling window estimation of the forecasting models simulating one-step ahead assets' returns. For each portfolio strategy, realized returns are
calculated by performing the corresponding portfolio optimization and estimating and using the assets' weights with the returns' realizations. The estimation
window includes 1000 days. The out-of-sample period is from March 2007 until April 2019. The benchmark portfolios include the equally-weighted and
portfolios obtained based on historical data. All of the copula-based portfolios are obtained by applying truncated and thresholded Rvine models. The

truncation and thresholding are performed by using mBICV criterion. In the mixed copula model, the copula families are also selected based on mBICV.
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TABLE 4 Out-of-sample risk-adjusted performance

Portfolio strategies MAD VaR CVaR CDaR SR Mean/MAD Mean/VaR STARR Mean/CDaR

Panel A: Benchmark portfolios

(i) EQW 0.993 4.298 6.296 0.602 �0.027 �0.04 �0.009 �0.006 �0.066

(ii) Historical-based portfolios

Mean–Variance 0.649 2.703 3.938 0.397 �0.006 �0.009 �0.002 �0.001 �0.014

Mean-CVaR 0.659 2.742 4.097 0.383 �0.003 �0.004 �0.001 �0.001 �0.007

Mean-MAD 0.642 2.639 4.011 0.411 �0.005 �0.008 �0.002 �0.001 �0.013

Mean-CDaR 0.721 2.968 4.405 0.418 �0.018 �0.026 �0.006 �0.004 �0.045

Max-SR 0.947 4.367 6.345 0.669 �0.029 �0.042 �0.009 �0.006 �0.06

Max-STARR 0.944 4.151 6.007 0.686 �0.028 �0.042 �0.009 �0.007 �0.057

Max Mean/MAD 0.955 4.527 6.661 0.651 �0.027 �0.041 �0.009 �0.006 �0.06

Max Mean/CDaR 0.881 4.011 6.33 0.621 �0.03 �0.046 �0.01 �0.006 �0.066

Panel B: Student-t copula-based portfolios

Mean–Variance 0.71 2.849 4.564 0.369 �0.005 �0.007 �0.002 �0.001 �0.014

Mean-CVaR 0.64 2.46 4.091 0.13 0.025 0.039 0.01 0.006 0.193

Mean-MAD 0.731 3.109 7.094 0.536 0.011 0.022 0.005 0.002 0.031

Mean-CDaR 0.761 3.35 5.366 0.13 0.046 0.069 0.016 0.01 0.406

Max-SR 1.064 4.871 6.746 0.392 0.034 0.052 0.011 0.008 0.14

Max-STARR 1.024 4.93 6.926 0.214 0.049 0.075 0.016 0.011 0.36

Max Mean/MAD 1.047 4.869 7.088 0.166 0.053 0.081 0.017 0.012 0.51

Max Mean/CDaR 1.04 4.766 7.292 0.177 0.036 0.054 0.012 0.008 0.32

Panel C: Clayton copula-based portfolios

Mean–Variance 0.702 2.999 4.558 0.371 �0.005 �0.007 �0.002 �0.001 �0.014

Mean-CVaR 0.649 2.536 4.222 0.219 0.023 0.034 0.009 0.005 0.1

Mean-MAD 0.755 3.128 6.677 0.484 0.025 0.059 0.014 0.007 0.092

Mean-CDaR 0.766 3.25 5.135 0.199 0.047 0.083 0.02 0.012 0.319

Max-SR 1.022 4.456 6.139 0.322 0.04 0.06 0.014 0.01 0.19

Max-STARR 1.071 4.849 6.99 0.204 0.056 0.085 0.019 0.013 0.445

Max Mean/MAD 0.991 4.339 6.47 0.153 0.053 0.08 0.018 0.012 0.517

Max Mean/CDaR 1.043 4.717 7.538 0.301 0.043 0.067 0.015 0.009 0.231

Panel D: Joe copula-based portfolios

Mean–Variance 0.696 2.849 4.579 0.397 �0.009 �0.013 �0.003 �0.002 �0.023

Mean-CVaR 0.645 2.607 4.139 0.397 0.016 0.023 0.006 0.004 0.037

Mean-MAD 0.746 3.298 7.598 0.606 0.005 0.011 0.003 0.001 0.014

Mean-CDaR 0.746 3.165 5 0.161 0.033 0.05 0.012 0.007 0.231

Max-SR 1.022 4.543 6.357 0.249 0.044 0.066 0.015 0.011 0.272

Max-STARR 1.061 4.656 6.749 0.182 0.052 0.078 0.018 0.012 0.456

Max Mean/MAD 0.975 4.135 6.265 0.163 0.054 0.082 0.019 0.013 0.492

Max Mean/CDaR 1.021 4.435 6.99 0.268 0.044 0.067 0.015 0.01 0.256

Panel E: Frank copula-based portfolios

Mean–Variance 0.703 2.806 4.433 0.409 �0.007 �0.009 �0.002 �0.001 �0.016

Mean-CVaR 0.631 2.547 4.07 0.2 0.024 0.036 0.009 0.006 0.113

Mean-MAD 0.729 3.272 6.261 0.48 0.018 0.038 0.009 0.004 0.058

Mean-CDaR 0.753 3.164 5.325 0.166 0.04 0.061 0.014 0.009 0.276
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reported for mean-CVaR portfolios based on Frank and
mixed copula models. This indicates the copula families
which are sensitive to symmetric tail dependence
(e.g., Frank) are more capable to reduce the portfolio
downside risk for the energy stocks. On the other hand,
the minimum CDaR (0.13%) is obtained based on the
Student-t copula-based mean-CDaR portfolio. Regarding
the out-of-sample mean/risk ratios, the mixed copula
based optimal portfolios outperform corresponding port-
folios obtained from other copula families. For instance,
for max-SR portfolios, mixed copula model gives a Sharpe
ratio of 0.045, which is the highest value among all the
max-SR portfolios. However, the highest SR is reported
for max mean/MAD portfolio (0.069%) for the mixed
copula-based portfolio. Furthermore, this portfolio strat-
egy also results in the higher STARR and mean/CDaR
ratios.

The increased out-of-sample risk-adjusted perfor-
mance is attributed to the addition of stocks from multi-
line utilities sector and renewables sector, compared with
stocks from oil and gas sector and oil and gas related
equipment and services sector. Specifically, assessment of
dependence structure among the assets is crucial for esti-
mating portfolio weights. Therefore, the consideration of
heterogeneity of business cycles and idiosyncratic compo-
nents of the firms operating across these four underlying
sectors results in lower degrees of dependence among the

assets, thereby providing the potential to attain portfolio
diversification benefits. The lower dependence among
the four sectors results in higher average return, which
can be seen in Table 5. These findings add to the study of
Antonakakis et al. (2018) and Ma et al. (2019) as they
reported diversification potential between crude oil and
firms operating within oil and gas sector. However, their
study is limited to examination of spillover dynamics
between crude oil and firms operating in oil and gas sec-
tor. In this regard, our paper significantly extends their
study by examining the firm-level data from the perspec-
tive of four different sectors. These findings, in general,
complements the results of Reboredo et al. (2017) as they
reported lower dependence among oil and renewable
indexes over the short-run. However, they utilize the
aggregate data renewable index at sector level and
thereby this study significantly extends the findings
reported therein.

4.6 | Out-of-sample economic
performance

To compare the portfolio strategies based on their eco-
nomic performance, we use accumulation wealth. To
compute the portfolios wealth, we consider daily re-
balancing strategy with $100 initial investment. However,

TABLE 4 (Continued)

Portfolio strategies MAD VaR CVaR CDaR SR Mean/MAD Mean/VaR STARR Mean/CDaR

Max-SR 1.037 4.565 6.488 0.393 0.036 0.053 0.012 0.008 0.14

Max-STARR 0.971 4.41 7.217 0.301 0.039 0.061 0.014 0.008 0.198

Max Mean/MAD 1.055 4.503 7.839 0.26 0.05 0.08 0.019 0.011 0.323

Max Mean/CDaR 0.998 4.59 7.149 0.202 0.045 0.069 0.015 0.01 0.34

Panel F: Mixed copula-based portfolios

Mean–Variance 0.705 2.878 4.402 0.3 0.001 0.001 0 0 0.003

Mean-CVaR 0.639 2.499 4.085 0.186 0.024 0.035 0.009 0.006 0.122

Mean-MAD 0.704 2.661 6.424 0.504 0.014 0.027 0.007 0.003 0.037

Mean-CDaR 0.776 3.268 5.05 0.162 0.057 0.086 0.02 0.013 0.412

Max-SR 1.045 4.55 6.07 0.314 0.045 0.067 0.015 0.012 0.223

Max-STARR 1.048 4.661 6.722 0.296 0.06 0.096 0.022 0.015 0.341

Max Mean/MAD 1.088 5.046 7.098 0.225 0.069 0.111 0.024 0.017 0.535

Max Mean/CDaR 1.05 4.747 6.689 0.205 0.056 0.089 0.02 0.014 0.457

Note: This table provides out-of-sample risk-adjusted performance for portfolio strategies' daily returns consisting of 28 energy market stocks. The results are
obtained by applying rolling window estimation of the forecasting models simulating one-step ahead assets' returns. For each portfolio strategy, realized
returns are calculated by performing the corresponding portfolio optimization and estimating and using the assets' weights with the returns' realizations. The
estimation window includes 1000 days. The out-of-sample period is from March 2007 until April 2019. The benchmark portfolios include the equally-weighted
and portfolios obtained based on historical data. All of the copula-based portfolios are obtained by applying truncated and thresholded Rvine models. The

truncation and thresholding is performed by using mBICV criterion. In the mixed copula model, the copula families are also selected based on mBICV. VaR,
CVaR and CDaR are estimated empirically at 1% confidence level.
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TABLE 5 Out-of-sample economic performance

Portfolio strategies Accumulation wealth
Accumulation wealth
(TC = 1 bp)

Accumulation wealth
(TC = 5 bp) Ave. turnover

Panel A: Benchmark portfolios

(i) EQW 20.604 20.604 20.604 0

(ii) Historical-based portfolios

Mean–Variance 73.396 72.945 71.938 0.011

Mean-CVaR 79.642 79.008 77.276 0.017

Mean-MAD 73.659 73.008 71.13 0.02

Mean-CDaR 46.458 46.257 45.292 0.016

Max-SR 20.582 20.108 18.226 0.077

Max-STARR 21.362 20.767 18.39 0.096

Max Mean/MAD 20.992 20.444 18.311 0.087

Max Mean/CDaR 20.456 19.993 17.975 0.084

Panel B: Student-t copula-based portfolios

Mean–Variance 70.595 59.441 29.785 0.547

Mean-CVaR 189.912 153.323 65.649 0.671

Mean-MAD 118.67 96.894 43.556 0.633

Mean-CDaR 422.794 284.466 57.413 1.266

Max-SR 380.534 245.402 43.342 1.372

Max-STARR 776.958 477.959 68.511 1.537

Max Mean/MAD 967.842 590.976 82.071 1.562

Max Mean/CDaR 396.732 240.59 32.209 1.591

Panel C: Clayton copula-based Portfolios

Mean–Variance 71.608 61.201 32.553 0.499

Mean-CVaR 171.643 135.464 53.5 0.735

Mean-MAD 257.141 211.381 97.37 0.613

Mean-CDaR 568.262 381.841 78.905 1.248

Max-SR 479.362 314.468 58.091 1.336

Max-STARR 1149.823 695.349 93.084 1.591

Max Mean/MAD 845.057 521.29 75.577 1.528

Max Mean/CDaR 592.544 357.629 47.832 1.592

Panel D: Joe copula-based portfolios

Mean–Variance 63.427 54.135 28.64 0.504

Mean-CVaR 137.445 108.221 42.223 0.745

Mean-MAD 81.618 67.131 30.866 0.615

Mean-CDaR 264.393 178.584 37.198 1.242

Max-SR 584.631 382.26 70.45 1.338

Max-STARR 912.015 553.594 74.925 1.583

Max Mean/MAD 887.519 551.63 82.143 1.507

Max Mean/CDaR 592.236 360.101 49.063 1.577

Panel E: Frank copula-based portfolios

Mean–Variance 68.928 58.06 29.135 0.546

Mean-CVaR 176.655 144.357 64.233 0.641

Mean-MAD 166.065 134.064 57.269 0.673
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one has to notice that the daily re-balancing strategy will
increases the transaction costs. To account for the extra
cost, we use proportional (and fixed) transaction costs at
1 and 5 basis points.

Table 5 provides the results for the economic perfor-
mance of the portfolios. Regarding benchmarks, both the
equally-weighted and historical-based portfolios are
unable to increase the economic performance of the

TABLE 5 (Continued)

Portfolio strategies Accumulation wealth
Accumulation wealth
(TC = 1 bp)

Accumulation wealth
(TC = 5 bp) Ave. turnover

Mean-CDaR 345.031 231.934 47.143 1.261

Max-SR 387.963 253.515 46.358 1.344

Max-STARR 448.679 281.19 43.38 1.479

Max Mean/MAD 904.305 549.811 74.655 1.58

Max Mean/CDaR 595.311 363.155 49.159 1.582

Panel F: Mixed copula-based portfolios

Mean–Variance 86.021 72.332 36.048 0.551

Mean-CVaR 176.422 142.404 60.711 0.675

Mean-MAD 133.328 108.906 48.767 0.636

Mean-CDaR 658.371 436.686 85.189 1.293

Max-SR 627.457 406.264 71.656 1.373

Max-STARR 1560.517 951.377 133.695 1.553

Max Mean/MAD 2780.648 1687.133 228.939 1.581

Max Mean/CDaR 1250.953 746.764 96.525 1.619

Note: This table provides out-of-sample economic performance for portfolio strategies' daily returns consisting of 28 energy market stocks. The results are
obtained by applying rolling window estimation of the forecasting models simulating one-step ahead assets' returns. For each portfolio strategy, realized
returns are calculated by performing the corresponding portfolio optimization and estimating and using the assets' weights with the returns' realizations. The

estimation window includes 1000 days. The out-of-sample period is from March 2007 until April 2019. The benchmark portfolios include the equally-weighted
and portfolios obtained based on historical data. All of the copula-based portfolios are obtained by applying truncated and thresholded Rvine models. The
truncation and thresholding is performed by using mBICV criterion. In the mixed copula model, the copula families are also selected based on mBICV. The
first column reports the portfolio wealth without considering the transaction costs. In the second and third column, portfolio wealth is calculated by using 1

and 5 basis points proportional transaction cost. The portfolio wealth is calculate based on daily re-balancing with $100 initial investment.

FIGURE 4 Multiperiod realized

SR. this figure plots terminal values

for annualized SR, with a holding

period of 250 days, for max-SR

portfolios [Colour figure can be

viewed at wileyonlinelibrary.com]
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FIGURE 5 Multiperiod realized

STARR. This figure plots terminal

values for annualized STARR, with a

holding period of 250 days, for max-

STARR portfolios [Colour figure can

be viewed at wileyonlinelibrary.com]

TABLE 6 Out-of-sample optimal weights

Portfolio strategies

Energy market sector

Oil and gas
Oil and gas related
equipment and servs Multiline utilities Renewable energy

Panel A: Benchmark portfolios

(i) EQW 25 25 25 25

(ii) Historical-based portfolios

Mean–Variance 8.57 15.29 62.47 13.67

Mean-CVaR 7.69 15.22 64.41 12.68

Mean-MAD 13.19 14.42 60.47 11.92

Mean-CDaR 11.68 11.38 64.7 12.23

Max-SR 4.21 15.77 48.06 31.96

Max-STARR 3.84 14.42 49.78 31.95

Max Mean/MAD 4.38 15.64 48.43 31.55

Max Mean/CDaR 3.26 15.84 59.69 21.21

Panel B: Student-t copula-based portfolios

Mean–Variance 18.12 21.89 49.23 10.76

Mean-CVaR 16.16 18.81 55.73 9.29

Mean-MAD 16.46 17.13 56.41 10

Mean-CDaR 15.48 18.59 51.63 14.3

Max-SR 16.83 23.15 35.94 24.07

Max-STARR 14.18 20.26 42.14 23.43

Max Mean/MAD 13.57 19.3 43.9 23.23

Max Mean/CDaR 13.81 19.94 41.76 24.49

Panel C: Clayton copula-based portfolios

Mean–Variance 19.1 21.79 47.95 11.16

Mean-CVaR 15.77 18.66 55.67 9.9

Mean-MAD 17.14 17.35 54.37 11.14
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investment. This can be seen from their high out-of-
sample negative skewness and average returns. Further-
more, the highest economic performance appraisal is
reported for mean-CVaR ($79.642).

In regard to copula-based forecasting models, the opti-
mal portfolios outperform the mean-risk strategies. For

mean-risk portfolios, in almost all cases, mean-CDaR strat-
egy gives higher terminal value. In general, STARR, mean/
MAD and mean/CDaR maximizations result in better eco-
nomic performance comparing to SR maximization. Con-
sidering copula families, the mixed copula model results in
higher portfolio accumulation wealth, even with five basis

TABLE 6 (Continued)

Portfolio strategies

Energy market sector

Oil and gas
Oil and gas related
equipment and servs Multiline utilities Renewable energy

Mean-CDaR 16.02 19.2 50.16 14.62

Max-SR 17.31 23.56 35.45 23.68

Max-STARR 14.19 20.29 40.85 24.66

Max Mean/MAD 14.41 20.48 42.92 22.19

Max Mean/CDaR 14.04 20.52 40.38 25.06

Panel D: Joe copula-based portfolios

Mean–Variance 19.19 21.51 47.22 12.08

Mean-CVaR 15.46 18.46 54.61 11.48

Mean-MAD 17.42 17.28 53.45 11.85

Mean-CDaR 15.94 19.32 49.2 15.55

Max-SR 17.51 23.25 35.08 24.15

Max-STARR 14.05 20.08 40.4 25.47

Max Mean/MAD 14.23 20.55 42.82 22.39

Max Mean/CDaR 13.95 20.59 39.78 25.67

Panel E: Frank copula-based portfolios

Mean–Variance 18.8 21.51 49.14 10.55

Mean-CVaR 18.35 18.17 54.6 8.88

Mean-MAD 15.98 17.07 56.67 10.27

Mean-CDaR 16.14 18.88 50.68 14.3

Max-SR 17.25 23.39 35.92 23.43

Max-STARR 15.57 20.5 41.79 22.14

Max Mean/MAD 13.67 19.44 43.86 23.03

Max Mean/CDaR 14.47 20.38 41.05 24.11

Panel F: Mixed copula-based portfolios

Mean–Variance 18.08 21.75 50.61 9.56

Mean-CVaR 16.36 18.8 57.15 7.69

Mean-MAD 16.78 17.03 57.54 8.65

Mean-CDaR 15.65 18.65 52.34 13.36

Max-SR 17 23.55 35.81 23.65

Max-STARR 13.73 20.99 42.67 22.6

Max Mean/MAD 13.3 19.96 43.85 22.89

Max Mean/CDaR 13.35 20.79 42.04 23.82

Note: This table provides relative contribution of each energy market sector in out-of-sample optimal weights for portfolio strategies' daily returns consisting of
28 energy market stocks. The numbers are in percentages and calculated as the ratio of total sum of the weights in each sector over the total sum of the
portfolio weights.
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points transaction costs ($228.939). In terms of average
turnover, which represents volume of assets' trades, opti-
mal portfolios lead to higher turnover. This indicates that
assets' weights have changed considerably during the out-
of-sample period. Figures 4 and 5 show the multiperiod
realized SR and STARR for the max-SR and max-STARR
portfolio strategies using 250 days rolling window. It is
noteworthy that the equally-weighted and the historical-
based portfolios are significantly impact by the oil price

shocks during 2015–2016. However, the copula-based max-
SR, mean/MAD, mean/CDaR, and max-STARR portfolios
seem to be not impacted by the oil price shock.

Table 6 provides the portfolio allocation weights
across each of the portfolio. For instance, in an equally
weighted portfolio, 25% of the portfolio weights should
be invested across the four sectors. It is noteworthy that
all the portfolio strategies are suggesting in allocating a
significantly higher proportion of investment in the

FIGURE 6 Max-STARR optimal weights (oil and gas) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Max-STARR optimal weights (oil and gas related equipment and services) [Colour figure can be viewed at

wileyonlinelibrary.com]
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multiline utilities. This may be due to highly diversified
operations and services of these firms and increased
adaptability due to uncertainty, for instance drop in
crude oil price. Figures 6–9 show the multiperiod
weights for individual firms in each sector based on
max-STARR portfolios.

Overall, these findings reflect the improvement of
out-of-sample economic performance by utilizing stocks
from the four sectors. Specifically, the consideration of
heterogeneity of multiline utilities sector and renewables

compared with the oil and gas sector and oil and gas
related products and services sector results in lower con-
nectedness structure, and thereby generating better out-
of-sample economic performance. In terms of utilized
frameworks, the copula-based portfolio strategies may be
developed due to their ability to undertake both symmet-
ric and asymmetric tail dependence in order to attain
potential portfolio diversification and risk management
benefits by investing in firms operating across the four
underlying sectors.

FIGURE 8 Max-STARR optimal weights (multiline utilities) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Max-STARR optimal weights (renewable energy) [Colour figure can be viewed at wileyonlinelibrary.com]
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5 | CONCLUSION

In this article, we investigate the relationship among four
energy sectors, including the oil and gas sector, oil and
gas related equipment and services sector, multiline utili-
ties sector, and renewables sector, in terms of their firm-
level dependency structure. We further evaluate the
diversification potential gained from multivariate portfo-
lio strategies consisting of several firms operating in the
energy sectors. In doing so, this study includes modelling
dependency structure between the targeted firms, esti-
mating return's conditional distribution, maximizing
investor's utility function for several strategies, and per-
forming portfolio back-testing.

Our results of dependency structure estimation, using
truncated and thresholded Rvine model, show that in
long-term, there exists both symmetric and asymmetric
tail dependence among the energy market firms. In gen-
eral, oil and gas and oil and gas related equipment and
services sectors have the highest level of dependency.
However, firms within the multiline utilities sector and
renewable energy sector show lowest dependency with
those from other sectors.

The result of portfolio back-testing indicate advan-
tages obtained by constructing portfolio strategies using
firm-level data from the energy markets. We found the
potential of higher portfolio returns on investment in the
four energy sectors by utilizing copula-based forecasting
models. This indicates the importance of the dependency
level among the four energy market sectors when con-
structing portfolio strategies. Furthermore, the results of
out-of-sample risk-adjusted performance show improve-
ments from mixed copula-based portfolios. In accordance
with the results of dependency structure estimation, this
unveils the existence of both symmetric and asymmetric
tail dependence among energy sectors.

The outcomes of this article are of promising interest to
policymakers, large oil and gas producers, portfolio man-
agers and investors. The increasing investment in renew-
ables reflects a manifestation of growing awareness
concerning climate change. Global oil and gas producers
and influential financial players are undertaking the issue
of climate change by increasing or diverting their invest-
ments from traditional fossil fuel markets to the renewables.
Although the cost of long-term energy transition is esti-
mated to be $1.7 trillion annually, the economic cost-saving
from this investment is $6 trillion (IRENA, 2018). In this
regard, the time-varying dependence among the four sectors
requires policymakers to develop and formulate policies
that further decouples the impact of interconnectedness
between the four sectors. Policymakers and regulators may
devise a ‘road map’ based on the symmetric and asymmet-
ric tail-dependence that facilitate the firms operating in oil

and gas sector in easier transition towards the more sustain-
able renewable energy sector. Therefore, understanding the
disaggregated-level stock market relationship is fundamen-
tal for policymakers in distinguishing between systemic and
idiosyncratic information prevailing the firms operating
across these four sectors. In regard to portfolio managers
and international investors, assessing the connectedness
structure among the underlying assets is crucial to formu-
late portfolio optimization and risk management decisions.
Furthermore, it is essential to model tail-dependence and
joint extreme movement among the underlying assets for
devising portfolio allocation, risk management, and asset
pricing decisions. Our findings also have important implica-
tions for impact investing, where the investor seeks to cre-
ate social, commercial and environmental value. First, the
current study provides the impact investors with an under-
standing of the performance of firms in renewable energy,
in terms of portfolio diversification, relative to those in
other energy sector markets. Second, as we find low levels
of tail dependency, the renewable energy sector can pro-
vide not only environmental added-values but also hedge
and insurance strategies. Overall, this article has signifi-
cant implications for portfolio managers and investors
aiming to manage the portfolio uncertainty, and also for
policymakers targeting at lowering the dependence on fos-
sil fuels and promoting the development of renewables.

For future research, we suggest investigating portfolio
strategies based on each energy sector and evaluate possible
gains for investors, also in terms of hedge and safe haven
properties of these types of portfolios. In the current study,
the main intuition for including all the energy sectors is to
evaluate the renewable energy sector relative to others, with
a view on both dependence structure and proportion of
investment based on different portfolio strategies. Further-
more, the portfolio strategies in the current study are based
on the assumption of rational investors. However, it is
widely argued that investors can show irrational behaviour
and are exposed to various biases. As in the current study,
the portfolio strategies are purely based on utility function
maximization, it would be difficult to extend our findings to
irrational investments. This requires including irrational
behaviours, for example, asymmetric risk-taking, probability
weighting, and loss-aversion, and asymmetric risk-taking
when defining the portfolio problem. Therefore, as another
suggestion for future research, these different behaviours
could be investigated concerning investment in energy mar-
ket sectors.

ENDNOTES
1 Note that ert is an M�d matrix of simulated returns.
2 Note the notation t is still for the out-of-sample iteration. Due to
our simulation approach, we use m as the time path in the origi-
nal formula.
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APPENDIX A

A d-dimensional portfolio consists of asset returns ert ¼er1t ,er2t ,…,erMt� �
,ermt ¼ erm1t,erm2t ,…:,ermdt� �

and asset weights
wt ¼ w1t,w2t,…,wdtð Þ.1 Considering the mean vector eμt ¼eμ1,eμ2,…,eμdð Þ and d�d positive-definite covariance
matrix eHt ¼ cov ertð Þ, the first (expected return) and second
(variance) moments of the portfolio returns are w >

t eμt
and w >

t
eHtwt . Note that the mean vector eμt includes the

conditional mean vector from the AR-GARCH model
and the covariance matrix eHt is calculated from the simu-
lated returns ert . By doing this, one can preserve the
dependency structure estimated in the copula modelling
and the general conditional (joint) distribution in the
optimization system. Therefore, not only the classical risk
measure (variance) but also the tail risk measures can be
used in the asset allocation.
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Markowitz (1952) suggested the portfolio variance as
a valid measure of uncertainty in a scenario-based alloca-
tion. The Markowitz's mean–variance portfolio allows
the investor to reduce the risk given a certain
(or minimum) level of reward. This minimization of port-
folio variance in its quadratic form can be expressed as:

minimize

wt

wT
t
eHtwt

Subject to : wT
t eμt ≥ μP

wT
t 1¼ 1

8n� 1,2,…,df g :wnt ≥ 0

, ðA1Þ

where, μP is theminimumportfolio reward (expected return)
requested by the investor. The second and third linear con-
straints impose full investment and long only position.

In an extension of the Markowitz's mean–variance
spectrum, Konno and Yamazaki (1991) suggested the
absolute deviation as an alternative to variance. The min-
imization problem is originally nonlinear; however,
Konno and Yamazaki (1991) derived the linear form of
the mean-MAD optimization by introducing auxiliary
variables I¼ I1,I2,…,IM

� �
representing the absolute

deviation of portfolio returns from the expected portfolio
mean. Given a minimum level of reward (μP), the linear-
ized form of the mean-absolute deviation is:

minimize

wt,ℑ
ℑ

Subject to : 8m� 1,2,…,Mf g :wT
t a

m ≤ ℑm

8m� 1,2,…,Mf g :wT
t a

m ≥ �ℑm

wT
t eμt ≥ μP

wT
t 1¼ 1

8n� 1,2,…,df g :wnt ≥ 0

, ðA2Þ

where, I¼ 1
M

PM
m¼1

Im, and am ¼ am1 ,a
m
2 ,…,amd

� �
denotes a

vector of asset's returns deviation from their
mean (amn ¼ermnt�eμnt).

Conditional value-at-risk (CVaR) is another risk mea-
sure that has superiority to variance or even the well-
known VaR (see e.g., Embrechts et al. (1999); Rockafellar
and Uryasev (2002). CVaR is defined as the probability of
losses exceeding the VaR. Let Γ ert,wtð Þ and P ert,wtð Þ be
the loss and probability functions for the portfolio
returns. Denoting υα as the α-level VaR, the α-level CVaR
in its integral form is:

CVaRα ¼ υαþ 1
1�α

Z υα

Γ ert ,wtð Þ
Γ ert,wtð ÞP ert,wtð Þdert, ðA3Þ

where, α� 0,1½ �. Rockafellar and Uryasev (2000)
suggested a linearized form for minimization of CVaR, in
which auxiliary variables H¼ H1,H2,…,HM

� �
, rep-

resenting the deviation below the VaR, are added to the
objective function. The linearized mean-CVaR portfolio
optimization can be posed as:

minimize

wt,ℌ,vα
vαþ1= 1�αð ÞM

Xm
m¼1

ℌm

Subject to : 8m� 1,2,…,Mf g :wT
t ertmþ vα ≥ �ℌm

8m� 1,2,…,Mf g :ℌm ≥ 0

wT
t eμt ≥ μP

wT
t 1¼ 1

8n� 1,2,…,df g :wnt ≥ 0

: ðA4Þ

Chekhlov et al. (2005) suggested another risk measure
incorporating the portfolio drawdown, which is defined
as the drop in the uncompounded value of the portfolio
comparing to the maximum portfolio value obtained at a
previous time point over a sample period. Let

Φ ert,wt,mð Þ¼ max
0≤ κ≤m

eϑκ wtð Þ
n o

�eϑm wtð Þ and P ert,wt,mð Þ
be the function and probability distribution for the port-
folio drawdowns.2 Denoting ηα as the α-level threshold,
the α-level CDaR in its integral form is:

CDaRα ¼ ηαþ
1

1�α

Z ηα

Φ ert ,wt ,mð Þ
Φ ert,wt,mð ÞP ert,wt,mð Þdm,

ðA5Þ
where, eϑmðwtÞ¼

Pd
n¼1

ð1þPm
s¼1

ersntÞwnt is the

uncompounded portfolio value at time m and α� 0,1½ �.
Following Chekhlov et al. (2004); Chekhlov et al. (2005),
the linearization of mean-CDaR portfolio can be obtained

by introducing auxiliary variables Z¼ Z1,Z2,…,ZM� �
and

U¼ U1,U2,…,UM
� �

denoting conditional drawdowns and

cumulative returns, respectively. The linearized mean-CDaR
portfolio optimization may be posed as:

minimize

wt,ℨ,U,ηα
ηαþ1= 1�αð ÞM

XM
m¼1

ℨm

Subject to : 8m� 1,2,…,Mf g :ℨm ≥Um�ηα
8m� 1,2,…,Mf g :wT

t ermt þUm ≥Um�1

8m� 1,2,…,Mf g :ℨm ≥ 0,Um ≥ 0

U0 ¼ 0

wT
t eμt ≥ μP

wT
t 1¼ 1

8n� 1,2,…,df g :wnt ≥ 0

: ðA6Þ
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Due to the fact that all of the risk measures consid-
ered above are convex and positive homogeneous, frac-
tional programming can be applied to obtain maximum
reward–risk optimization. Let Θrisk bwt,ertð Þ, Θreward bwt,ertð Þ
be the general risk and reward functions, the reward–risk
maximization can be formulated using the fractional pro-
gramming as (Ghalanos, 2016):

minimize

bwt,F
θrisk bwt,ertð Þ

θreward bwt,ertð Þ≥ 1

bwT
t 1¼F

FL≤Abwt ≤FU

Subject to : F>0

, ðA7Þ

where, bwt ¼Fwt is a vector of unconstrained weights,
F denotes an auxiliary scaling variable, with A, L, U con-
sist of linear constraints, lower and upper boundaries,
respectively.
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