
Energy Economics 115 (2022) 106324

A
0

Contents lists available at ScienceDirect

Energy Economics

journal homepage: www.elsevier.com/locate/eneeco

Trading time seasonality in commodity futures: An opportunity for arbitrage
in the natural gas and crude oil markets?
Christian-Oliver Ewald a,b,∗,1, Erik Haugom b,1, Gudbrand Lien b,1, Ståle Størdal b,1,
Yuexiang Wu c,1

a Adam Smith Business School - Economics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
b Department of Economics, Inland Norway University of Applied Sciences, Lillehammer, Norway
c Rayliant Kingston, 2705, East Tower, Raffles City, Dongdaming Road, Hongkou District, Shanghai, China

A R T I C L E I N F O

JEL classification:
Q49
Q41
G12
G13

Keywords:
Futures
Crude oil
Natural gas
Seasonality
Arbitrage

A B S T R A C T

In this paper we investigate energy futures contracts and the presence of a type of seasonality, that has been
given very little to no attention in the literature —- we call it trading time seasonality. Such seasonality is
exposed through the futures trading time, not its maturity time, nor the underlying spot price. As we show,
it can be linked to seasonality in the pricing kernel, but the latter cannot explain it fully. Its relationship to
arbitrage and CAPM violation is investigated, and its presence is confirmed for natural gas and crude oil futures
markets using descriptive analysis, Kruskal–Wallis testing and CAPM methodology. We provide an informal
discussion around possible reasons for the effect and identify seasonal hedging pressure and market sentiments
as such.
1. Introduction

Seasonality in commodity prices refers to periodical fluctuations in
the distribution of spot or futures prices. This most commonly results
from seasonal shifts in demand and supply but can also be the result
of seasonal shifts in preferences. A large body of academic literature is
dedicated to the topic of seasonality in commodities. Some of the early
work includes Fama and French (1987), who confirm that seasonality
exists in the convenience yield, which is closely related to the inventory
level of the specific commodity, which in turn is usually subject to
seasonal changes of demand and supply. Kramer (1994) studies the
January effect in the stock market and argues that its source could
be seasonality relating to the macro-economy. More recently, Sørensen
(2002) extended the Schwartz (1997) and Schwartz and Smith (2000)
model by adding a deterministic seasonal factor, governed by a lin-
ear combination of trigonometric functions, and evaluated the new
model using agricultural commodity futures prices. Elsewhere, Lucia
and Schwartz (2002) and Cartea and Figueroa (2005), among oth-
ers, endeavour to describe spot and forward prices in the electricity
market, where seasonality plays a crucial role. In other work, Lucia
and Schwartz (2002) propose one-factor and two-factor models with
seasonal components, while Cartea and Figueroa (2005) introduce a
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mean-reverting model with jump diffusion. Finally, a large body of
literature specifically focuses on energy commodities. For example, Mi-
rantes et al. (2012, 2013) propose a number of pricing models including
seasonality in the form of a stochastic factor, while Borovkova and
Geman (2006) examine the seasonal pattern in the forward curves of
commodity prices. All these studies focus on seasonality in the spot
price, which then naturally transcends to seasonal patterns in futures
prices.

In addition to the above literature, studies such as Suenaga and
Smith (2011), Back et al. (2013), Koekebakker and Lien (2004), Aris-
mendi et al. (2016) and Ewald and Zou (2021) attempt to model
seasonality in the volatility of commodity prices. With risk aversion,
this can lead to time varying and in fact seasonal risk premia. Shao
et al. (2015) develop a model that includes time-varying and seasonal
risk premia in the US natural gas market.

In this paper, we focus on natural gas and crude oil spot markets
and their respective futures markets. All aforementioned papers, with
the exception of Shao et al. (2015) and to some extent also Koekebakker
and Lien (2004) and Ewald and Zou (2021), argue that seasonality in
futures prices primarily relates to the maturity dates of the relevant
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futures contracts and that the likely cause of seasonality in the futures
prices is the seasonality in the spot prices. In this paper, however, we
emphasize other forms of seasonality which are present in commodity
futures markets, particularly in natural gas and crude oil. These are
exhibited through the trading time of futures contracts, not their ma-
turities. We show that within an arbitrage-free framework, seasonality
in the spot price is strongly tied to seasonality in the forward curves
leaving the so called backward curves unaffected, while seasonality
in preferences is tied to seasonality in both backward and forward
curves, and these two cannot be uncoupled. In conclusion, it appears
impossible within an arbitrage free framework to have seasonality in
the backward curves only, without having seasonality in the forward
curves.

In our analysis of futures prices of Henry Hub natural gas and West
Texas Intermediate (WTI) crude oil, we find that in both cases futures
prices reveal evidence to suggest that the trading time of the contracts
influences the prices in a seasonal manner, independent of the maturity
dates. More specifically, we obtain statistical evidence showing that the
futures prices of natural gas, irrespective of the maturity time, reach
their annual peak when traded in June, and bottom out when traded in
February. Conversely, the highest and lowest futures prices for crude oil
futures irrespective of the time of maturity usually occur with contracts
traded in July and December, respectively. This is compelling evidence
for seasonality in the preferences and supports the findings in Shao
et al. (2015). However, we also find that the seasonal patterns in the
backward curves are far more pronounced than in the forward curve,
with crude oil featuring almost no seasonal patterns in the spot price
and forward curves at all. This suggests the possible presence of an
arbitrage.

In detail, we argue that there may exist an arbitrage opportunity
in the market through exploiting this seasonal pattern by trading
long/short the relevant futures contracts. Note that unlike in the spot
market, futures do not carry a convenience yield, so there is no cost
of storage. We design a simple trading strategy of the type ‘‘buy
low sell high’’ to exploit this opportunity and find that the identified
strategy produces excessive profits with very low risk. To benchmark
this strategy in a more scientific manner, we asses its returns in the
context of the capital asset pricing model (CAPM). We use the S&P
500 stock index over the same period as the market benchmark and
investigate whether our trading strategy can produce significant and
positive alphas for both commodities, which indeed it does. This part
of our analysis is related to interesting work by Han et al. (2016) who
assess whether a simple moving average strategy is able to generate su-
perior performance when applied to a range of commodities. However,
they only consider the Sharpe ratio, which is an inferior performance
measure as compared with the CAPM alpha.

Finally, we provide a discussion about the possible origins of trading
time seasonality. We identify seasonal changes in hedging pressure,
seasonal risk aversion, market sentiments and natural factors as such.
We discuss the role of the put–call ratio, which is connected to both
hedging pressure and sentiments in more detail and provide an empir-
ical analysis. Our discussion of the other factors remains informal, a
detailed analysis would be beyond the scope of this paper, but will be
included in a future research.

The remainder of the paper is organized as follows. Section 2
discusses in more detail the issue of seasonality in futures prices and
the two channels through which it is created. In Section 3 we briefly
describe the data, while in Section 4 we present our primary empirical
findings related to trading time seasonality, including graphic and
statistical evidence for trading time seasonality for both of the two
commodities. We then introduce a suitable long/short strategy seeking
to exploit the seasonal patterns in the backward curve in Section 5.
We investigate the design, execution and profitability from this trading
strategy. In particular we investigate the question as to whether our
trading strategy can produce significant and positive alphas in the
context of the CAPM. In Section 6 we investigate possible reasons
for the effect of trading time seasonality. Our main conclusions are
2

summarized in Section 7.
2. The two channels for seasonality

Following the no-arbitrage principle, futures prices are determined
through

𝐹 (𝑡, 𝑇 ) = EQ
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the interval [𝑡, 𝑇 ]. The expectations EQ
𝑡 and EP

𝑡 are the conditional
xpectations under the respective measures and 𝑃 (𝑇 ) denotes the spot
rice at time of maturity 𝑇 .

The classical notion of seasonality is reflected in the functions
↦ 𝐹 (𝑡, 𝑇 ) for fixed 𝑡, also called the forward curves. In this paper,

owever, we focus on a different type of seasonality, as reflected
n seasonal statistical patterns in the realizations of the stochastic
rocesses 𝑡 ↦ 𝐹 (𝑡, 𝑇 ), the backward curves.

We refer to this form of seasonality as trading time seasonality. To
he best of our knowledge, there is no literature which systematically
tudies trading time seasonality.

Looking at the right hand side of Eq. (1) we can immediately
dentify the two main channels that create seasonality: The spot price
(𝑇 ) and the pricing kernel 𝑑Q

𝑑P
|

|

|𝑡,𝑇
.

𝑃 (𝑇 ) only depends on 𝑇 and any seasonal patterns in the spot price
irectly transcends into seasonal patterns in the forward curves. The
ricing kernel on the other hand depends on both 𝑡 and 𝑇 and can
herefore cause seasonal patterns in both the forward and backward
urves, in fact it connects the two. Further, while the spot price is
ot explicitly affected by the pricing kernel, its convenience yield is,
ee Casassus and Collin-Dufresne (2005). Hence seasonal patterns in
he pricing kernel can be linked to the spot price as well.

Both economic and asset pricing theory suggest that in equilibrium
he pricing kernel 𝑑Q

𝑑P
|

|

|𝑡,𝑇
is determined through the marginal utilities

of the agents. It is therefore accounting for current and future risk
preferences, and it makes sense to connect this expression to concepts
such as hedging pressure and market sentiments. However, this con-
nection has so far not been established in a formal theoretical model,
even though Hirshleifer (1990) has provided an important contribution
toward reaching this goal. We leave this as future research.

3. The data

We use daily futures prices for two energy commodities,3 namely
Henry Hub natural gas and WTI crude oil. Since our focus is on annual
seasonality in terms of monthly price changes, we take the average
price for each month of all daily observed prices within this month
as the monthly price. These prices are used in this paper unless stated
otherwise. This removes any short-term patterns and abnormalities and
does not affect the reliability of our results. The notation for the futures
contracts in most of the paper follows the classical literature, i.e., F1,
F2, F3, . . . , where F1 indicates future contracts that mature in the
next month, F2 in two months, and so on. In the case of natural gas,
we have data from 1997 to 2020. However, from 1997 until 2002,
only shorter-term futures contracts with maturity dates expanding for
the next 36 months from trading dates (F1∼F36) were traded. Since
2002, F37∼F72 have been added. In conclusion, we divide the natural
gas data into two groups accordingly. The first group includes all
futures prices F1∼F36 from April 1997 till July 2020. The second group

2 We do not assume market completeness at this point. If the market is
ncomplete, we assume that the risk neutral measure is chosen by the market,
hich is why we refer to this measure as risk-neutral pricing measure.
3 We refer to the closing price one day ahead as the spot price.
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Table 1
Average prices and standard deviations of selected contracts.

Commodity F1 F4 F10 F18 F30 F42 F60

Natural gas, Group 1
(4/1997∼7/2020)

4.2810
(2.2808)

4.5039
(2.3324)

4.6309
(2.3191)

4.6320
(2.2937)

4.5763
(2.1684)

Natural gas, Group 2
(1/2002∼7/2020)

4.5849
(2.3174)

4.8642
(2.4247)

5.0490
(2.3733)

5.0739
(2.3409)

5.0213
(2.1922)

4.9930
(2.0703)

4.9948
(1.8815)

Crude oil, Group 1
(9/1995∼7/2020)

53.9105
(28.7582)

54.3511
(28.9701)

54.1549
(29.1098)

53.5834
(28.9392)

52.9350
(28.5990)

Crude oil, Group 2
(3/2006∼7/2020)

71.7816
(23.1105)

72.9415
(22.0872)

73.4422
(21.0016)

73.1917
(20.0166)

72.7226
(19.0791)

72.5273
(18.5915)

72.7690
(18.2789)

Numbers in parenthesis refer to the observation period in the first column, and the standard deviation in the remaining
columns.
a

#

onsists of futures contracts from January 2002 until July 2020, with
aturity dates expanding for the next 60 months.4 For the crude oil

contracts, we use data from 1995 to 2020. Between 1995 and 2006 only
futures contracts with maturity dates expanding for the next 32 months
(F1∼F32) were traded. Therefore we divided the sample in two groups.
The first group includes all futures prices F1∼F32 from September 1995
till July 2020. The second group consists of futures contracts from
March 2006 until July 2020, with maturity dates up to 60 months
ahead. Table 1 provides a brief statistical summary of the data set.
For the technical analysis, programming, and the interpretation of the
results in the following section, it is good to think of all the data as
being arranged in four-dimensional arrays of the type 𝐹 (𝑖, 𝑗, 𝑘, 𝑙), with
(𝑖, 𝑗) the trading month and year and (𝑘, 𝑙) the maturity month and year,
with monthly averaging as discussed.5

4. Empirical findings using statistical analysis

In this section, we present our first set of empirical findings. Initially
this involves a descriptive analysis that helps us to identify the presence
of a seasonal pattern relating to trading time in addition to the classical
seasonal pattern relating to maturity dates. We then formally confirm
these findings in the second part of this section using statistical testing,
specifically the Kruskal–Wallis test (Kruskal and Wallis, 1952). Our
results complement the empirical findings obtained in Shao et al.
(2015) for natural gas.

4.1. Preliminary findings

Fig. 1 plots the average 𝐹𝑚𝑎𝑡(𝑘) over all futures prices in the relevant
data set for futures maturing in a particular month 𝑘 (left)6 as well as
the average 𝐹𝑡𝑟𝑑 (𝑖) over all futures prices traded in a particular month
(right).7 Averaging across years eliminates any long-term trends and
emphasizes any systematic seasonal patterns.

Mathematically we have

𝐹𝑚𝑎𝑡(𝑘) = avg{𝐹 (𝑖, 𝑗, 𝑘, 𝑙) ∥ 𝑖, 𝑗, 𝑙 s.t. 𝐹 (𝑖, 𝑗, 𝑘, 𝑙) is not void} (2)
𝐹𝑡𝑟𝑑 (𝑖) = avg{𝐹 (𝑖, 𝑗, 𝑘, 𝑙) ∥ 𝑗, 𝑘, 𝑙 s.t. 𝐹 (𝑖, 𝑗, 𝑘, 𝑙) is not void}. (3)

It is easy to observe from Fig. 1 that the futures prices for natural
gas for both groups 1 and 2 tend to be higher when maturing during
wintertime as in December and January, and remain relatively low
during the rest of the year. This is the classical pattern of seasonality
with respect to the maturity month and consistent with the main

4 We do not include F61∼F72 owing to a large amount of missing data for
hese longer-term contracts early in the period.

5 Entries in the array where there are no corresponding futures prices are
et void and ignored in all algebraic operations.

6 Here the average is taken over all trading months for contracts maturing
n that particular month (but possibly different years).

7 Here the average is taken for a particular trading month over all contracts
3

raded in that month (but possibly in different years) for all maturities.
Table 2
Results of Kruskal–Wallis test.

Commodity Chi-Square (P-value) Sample size (N)

Natural gas, Group 1 116.897 (0.0001)∗∗∗ 18 740
Natural gas, Group 2 597.267 (0.0001)∗∗∗ 29 570
Crude oil, Group 1 441.301 (0.001)∗∗∗ 16 160
Crude oil, Group 2 610.434 (0.001)∗∗∗ 19 380

Degrees of freedom: 11
10% significance *, 5% significance **, 1% significance ***.

literature on seasonality. Looking at the right-hand side of Fig. 1,
however, we also notice an effect associated with the trading month.
Irrespective of maturity, the prices of natural gas futures reach their
annual peak when traded around summertime in May and June and
bottom out when traded at the beginning of a calendar year.

The most interesting case here seems to be that of crude oil, which
according to conventional theory, entails no seasonality. The graphs in
the two bottom left panels of Fig. 1 are in line with this hypothesis. The
curves are almost completely flat, indicating practically no differences
in prices across the different maturity months. The two bottom right
graphs of Fig. 1 reveal a different story however. Clearly, crude oil
futures display a very similar seasonal pattern as natural gas with
respect to the trading time, with the highest prices occurring when
traded in the summer, and the lowest prices during the winter months.

We now perform the Kruskal–Wallis test to formalize our earlier
results and provide a statistical foundation for the analysis to follow.
We first investigate the raw data of daily observations before averaging
monthly. The Kruskal–Wallis test involves a nonparametric one-way
analysis of variance (ANOVA) for testing two or more groups of data if
they are statistically different. Given there are 12 months in a year, our
samples are split into 12 groups, with a degree of freedom of 11. The
null hypothesis is that there is no seasonality relating to trading dates
in our sample. The results of the Kruskal–Wallis test are presented in
Table 2. The null hypothesis is clearly rejected for natural gas groups
1 and 2 and crude oil groups 1 and 2.

The observed seasonality patterns can be emphasized in the fol-
lowing way. In each year, there are 12 months, and in each month,
contracts can be either traded or they mature. Hence, there is a ma-
turity month and a trading month for every year for every contract
where the highest price of the year and, respectively, the lowest price is
obtained, both for trading date and maturity. We count how many times
each maturity has the highest or lowest price over all trading months,
and similarly, how many times each trading month has the highest or
lowest price over all maturities. Mathematically, the max and min price
counts #𝑚𝑎𝑥𝑚𝑎𝑡 (𝑘) resp. #𝑚𝑖𝑛𝑚𝑎𝑡(𝑘) for a particular maturity month 𝑘 are given
s
𝑚𝑎𝑥
𝑚𝑎𝑡 (𝑘) = card{(𝑖, 𝑗, 𝑙)|𝐹 (𝑖, 𝑗, �̃�, 𝑙) ≠ ‘‘void’’ for all �̃� ∈ {1,… , 12} and

𝐹 (𝑖, 𝑗, 𝑘, 𝑙) = max
�̃�∈{1,…,12}

𝐹 (𝑖, 𝑗, �̃�, 𝑙)}

#𝑚𝑖𝑛𝑚𝑎𝑡(𝑘) = card{(𝑖, 𝑗, 𝑙)|𝐹 (𝑖, 𝑗, �̃�, 𝑙) ≠ ‘‘void’’ for all �̃� ∈ {1,… , 12} and
𝐹 (𝑖, 𝑗, 𝑘, 𝑙) = min 𝐹 (𝑖, 𝑗, �̃�, 𝑙)}
�̃�∈{1,…,12}
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Fig. 1. Average monthly price vs. Maturity and trading months.
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nd by analogy, the max and min counts #𝑚𝑎𝑥𝑡𝑟𝑑 (𝑖), respectively, #𝑚𝑖𝑛𝑡𝑟𝑑 (𝑖)
or a particular trading month 𝑖 are given as

𝑚𝑎𝑥
𝑡𝑟𝑑 (𝑖) = card{(𝑗, 𝑘, 𝑙)|𝐹 (𝑖, 𝑗, 𝑘, 𝑙) ≠ ‘‘void’’ for all 𝑖 ∈ {1,… , 12} and

𝐹 (𝑖, 𝑗, 𝑘, 𝑙) = max
𝑖∈{1,…,12}

𝐹 (𝑖, 𝑗, 𝑘, 𝑙)}

#𝑚𝑖𝑛𝑚𝑎𝑡(𝑖) = card{(𝑗, 𝑘, 𝑙)|𝐹 (𝑖, 𝑗, 𝑘, 𝑙) ≠ ‘‘void’’ for all 𝑖 ∈ {1,… , 12} and

𝐹 (𝑖, 𝑗, 𝑘, 𝑙) = min 𝐹 (𝑖, 𝑗, 𝑘, 𝑙)}
4

𝑖∈{1,…,12} b
Here, the mathematical operator 𝑐𝑎𝑟𝑑 denotes the cardinality of the
et, i.e. the number of elements. The definition of the respective sets for
he max and min counts guarantees that there will be an equal number
f contracts considered for all maturities and trading dates. The values
re illustrated in Figs. 2 to 5. We first look at the two groups of natural
as contracts. The upper left graphs in Figs. 2 and 3 show that almost
ll of the maximum prices appear when the contracts mature in the
intertime (December or January), consistent with the conventional
elief that natural gas prices are higher in the winter. However, the



Energy Economics 115 (2022) 106324C.-O. Ewald et al.
Fig. 2. Number of counts by maturity and trading month, natural gas, group 1 (F1∼F36, 1997∼2020).
upper right graphs in all three figures suggest that the minimum prices
with respect to the maturity months frequently occur in April as well
as in October, instead of May and June as we would conventionally
expect. In fact, the summer months of July and August usually do not
produce the smallest prices of the year, which may be due to increased
energy use for cooling.

When it comes to trading months, the evidence is less clear, as no
single month seems to have a dominant number to produce the highest
prices of that year, as illustrated in the lower left graphs of Figs. 2 and 3.
Nevertheless, it is obvious from the lower right graph that the contracts
traded in January and December often have the lowest price of that
year over all maturities for both natural gas groups. This is slightly
inconsistent with our observations in Fig. 1, where the lowest average
prices for contracts usually occur when traded in February. However,
this effect is merely the result of the different ways of accounting for
seasonality, i.e., averaging vs. counting.

The case of crude oil is more interesting. From the upper panels of
Figs. 4 and 5, it seems that these contracts do not exhibit any seasonal
patterns over maturity months. For the trading months, there appears to
be no discernible pattern for max prices, as shown by the lower panels
of these Figs. 4 and 5 while the pattern for min prices is present, but
less prominent.

4.2. The forward and backward curves

To look for further evidence of trading-date seasonality for the
two energy commodities, we adopt the idea of forward and backward
5

curves. The forward curve is a classical concept and has been used
for a long time in the literature in order to describe the evolution
of the expected future spot price, see Borovkova and Geman (2006).
Denoting with 𝐹 (𝑡𝑖, 𝑇𝑗 ), the futures price that is traded at time 𝑡𝑖 and
matures at time 𝑇𝑗 , a forward curve depicts the function 𝐹 (𝑡∗, 𝑇𝑗 ),
where 𝑡∗ indicates a fixed date of trade, and 𝑇1, 𝑇2,… , 𝑇𝑁 the various
maturity dates after 𝑡∗, with 𝑗 = 1 being the closest to 𝑡∗, 𝑗 = 2 the
second closest, and so on. In other words, a forward curve includes all
contracts with different maturity dates traded on the same date, and
(at least under the no-arbitrage assumption) shows the expected spot
prices under the risk-neutral market measure at the futures maturity
dates. If the underlying asset possesses any seasonality that relates to
the maturity dates, the forward curve should in principle present a
noticeable periodic pattern. Figs. 6 and 7 illustrate two examples of
forward curves for some randomly selected trading months for either
of our two commodities. One can easily observe an annual seasonal
pattern for natural gas and a lack of a seasonal pattern for crude oil.

Nevertheless, forward curves are unable to capture seasonality re-
lating to trading dates, at least explicitly, and we therefore introduce
what we call backward curves. The only technical difference between
the forward and backward curves is that now the maturity is fixed and
the trading time varies, i.e., the backward curve includes all contracts
traded on different dates in the past that mature on the same date. To
be more specific, the series of contracts that appear in the backward
curve can be identified as 𝐹 (𝑡𝑖, 𝑇 ∗), where 𝑡1, 𝑡2,… , 𝑡𝑁 indicates the
different trading dates prior to the fixed maturity date 𝑇 ∗, with 𝑖 = 1
being the closest to the maturity date, 𝑖 = 2 the second closest, and
so on. The statistics of the backward curve thus illustrates a backward-
looking view of the prices of those future contracts traded in different
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Fig. 3. Number of counts by maturity and trading month, natural gas, group 2 (F1∼F60, 2002∼2020).
months but maturing on the same date. If there is seasonality relating
to the trading date, the backward curve should capture any and show
a periodic statistical pattern.

Although the preliminary findings in the last subsection have shown
evidence of trading time seasonality in the two energy commodities,
individual (single realizations of) backward curves appear to fail to
present any discernible seasonal pattern as volatility and the natural
fluctuations in the prices obscure any such pattern. To reduce noise, we
average for each maturity month and time to maturity over all maturity
years. Mathematically, denoting with 𝐹 (𝜏, 𝑘, 𝑙) the futures price for a
contract maturing in month 𝑘 of year 𝑙 with a time to maturity 𝜏, the
average backward curve for month 𝑘 is provided by

𝜏 ↦ 𝐹 (𝜏, 𝑘) = 1
𝑁

𝑁
∑

𝑙=1
𝐹 (𝜏, 𝑘, 𝑙), (4)

where 𝑁 denotes the number of years considered in the respective data
set.8

Figs. 8 to 9 plot the aggregated backward curves for the two
commodities. Each figure consists of six graphs, indicating 6 of the 12
months in a year. We chose 𝑘 = 1, 3, 5, 7, 9, 11 for convenience. The fig-
ures present strong visual evidence of trading time seasonality in most
of the cases, including crude oil, previously believed a nonseasonal
commodity. In all the cases, the seasonal pattern repeats itself on an
annual basis, and the peaks and bottoms coincide with our observations
in Fig. 1.

8 Years are conveniently numbered as l = 1, . . . ,N.
6

5. A possible arbitrage opportunity in the future market

If trading time seasonality exists and future contracts with the
same maturity are being traded systematically at higher prices in some
specific months of the year and at lower prices in some others, then this
pattern may be exploited to create an arbitrage-like trading strategy of
the ‘‘buy low sell high’’ type, which can produce excessive returns.

We have demonstrated in Section 2 that under the physical measure
trading time seasonality can only arise from seasonal changes in pref-
erences and that this affects both, backward and forward curves, in a
comparable manner. However, at least for crude oil, we see a much
stronger seasonal effect in the backward curve than in the forward
curve.

As a consequence, the trading time seasonality discovered in this
paper in the context of natural gas and crude oil provides evidence of
the existence of possible arbitrage, and in this section, we attempt to
formally identify a possible arbitrage strategy and assess it in terms of
the capital asset pricing model (CAPM). Our strategy follows a very
simple approach, inspired by the naive idea of ‘‘buy low sell high’’ in
exploiting the newly identified seasonal pattern. Nonetheless, we show
that our strategy can produce consistent and significant positive alphas,
the gold standard in the hedge fund literature. Nevertheless, we would
like to point out that the main aim of this section is to present further
evidence for trading time seasonality, reflected by a positive alpha,
rather than creating a money-making machine.

Although the CAPM has been criticized in the past for many good
reasons, the majority of hedge fund operators still consider the ability
of a trading strategy to produce a positive alpha as the industry gold
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Fig. 4. Number of counts by maturity and trading month, crude oil, group 1 (F1∼F32, 1995∼2020).
standard. In consequence, our paper does not aim to defend the CAPM,
and nor do we want to provide evidence of any CAPM violation; rather,
our rationale is simply to show how trading time seasonality is reflected
in the existence of a trading strategy that produces significantly posi-
tive alphas and that our strategy therefore meets the investment gold
standard.9

5.1. A simple trading strategy, ‘‘buy low sell high’’

The implementation of the strategy is purposefully simplified, in
particular we assume abundant liquidity for all contracts in the market
and no regulatory obstacles against any trading attempts. Our strategy
is based on the unique annual trading time seasonality pattern in our
two commodities. First, to simplify the strategy further, we decide to
trade in only two months of each calendar year. We buy in the month
of the lowest price and sell short in the month of the highest price,
according to the identified seasonal pattern in each year. As a result,
we view one year as a single period during which we conduct two
transactions in opposite directions. For natural gas groups 1 and 2,
we buy in February and then sell in June. For crude oil groups 1 and
2, we short first in July, and then take a corresponding long position
in December. These choices obviously reflect our observations in the
previous section.

9 Aiming to explain abnormal returns by including additional factors, such
s in Fama and French (1992), would be an interesting avenue for future
esearch. However this would also distract from the original question to
enchmark our strategy, which is why we defer from this here.
7

Table 3
Details of trades in each period.

First trading month Second trading month

Position Month Contracts Position Month Contracts

Natural gas group 1 Long Feb. F5∼F36 Short June F1∼F32
Natural gas group 2 Long Feb. F5∼F60 Short June F1∼F56
Crude oil group 1 Short July F6∼F32 Long Dec. F1∼F27
Crude oil group 2 Short July F6∼F60 Long Dec. F1∼F55

Second, each contract traded in the first trading month must match
another in the second trading month with the same maturity date so
that the initial position can be perfectly hedged. In other words, the
contracts we trade in the first trading month must not mature before
their position can be closed in the second trading month of the same
year. Table 3 lists the details of the traded contracts for each commodity
in one period.

Entering a futures contract is per se costless, i.e., it does not require
an initial investment to set up a position in futures contracts other
than a relatively small amount of money. This amount is usually
proportional to the value of the open position and to be deposited at
the beginning of each trade in the margin account (as collateral to
settle any gain or loss when the position is marked to market on a
daily basis). This complicates the computation of relative returns of any
futures strategy and formulae which are typically expressed in relative
returns, such as CAPM, which need to be adjusted accordingly, as we
show later.

We assume for illustration that the initial value of the contracts
that we buy or sell in the first trading month of each year will be 1
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Fig. 5. Number of counts by maturity and trading month, crude oil, group 2 (F1∼F60, 2006∼2020).
Fig. 6. Forward curve for two specific dates, natural gas.
million dollars. As for the transaction costs, we divide these into two
parts according to the usual conventions for some trading outlets such
as the CME Group. The first part involves the bid–offer spread, 𝑆, and
the contract units, 𝑈 . The cost per contract per transaction will be
calculated as 𝐶 = 𝑆 ∗ 𝑈 . For natural gas, 𝑆 = $0.005 per million
British thermal units (MMBtu), and 𝑈 = 10,000 MMBtu per contract.
In the case of crude oil, 𝑆 = $0.02 per barrel, and 𝑈 = 1000 barrels
8

per contract. The second part of the transaction cost consists of the
exchange fee, which is set at $1.5 per contract per transaction for both
commodities.10

Fig. 10 illustrates the pay-off of our trading strategy by year of oper-
ation for the two commodities. First, we can see that the strategy does

10 We assume that the investor has enough money to settle all margin calls,
and in consequence we abstract from any form of margin risk. An assessment
of this assumption is presented further below.
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Fig. 7. Forward curve for two specific dates, crude oil.

Fig. 8. Aggregated backward curves 𝜏 ↦ 𝐹 (𝜏, 𝑘) for months 𝑘 = 1, 3, 5, 7, 9, 11, natural gas, group 2 (F1∼F60, 2002∼2020).
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Fig. 9. Aggregated backward curves 𝜏 ↦ 𝐹 (𝜏, 𝑘) for months 𝑘 = 1, 3, 5, 7, 9, 11, crude oil, group 2 (F1∼F60, 2006∼2020).
not perform positively in every year during our observation period. It
appears to generate excessive profits more consistently for natural gas,
but less so for crude oil. Nevertheless, the total pay-off of the entire
operation period for both commodities results in profits, as shown in
the right panels of Fig. 10, which means that the earnings from the
profitable years more than compensate for all the losses in the losing
years.

Second, it is worth noting that the annual pay-off of both commodi-
ties seems to fluctuate significantly. The most profitable year for all four
groups is 2008, when the profits dwarf any other periods, contributing
to a sizeable percentage of the total pay-off at the end of the observed
period, especially for crude oil. However, even if we were to exclude
2008 as an exceptional year, profits would still be high.

Next, we calculate the average profit generated from the different
contracts over the entire observation period. The results are illustrated
in Fig. 11, where the 𝑥-axis represents time to maturity since the second
trade of every year. First, it is easy to see that some contracts tend
to generate more profits than others. In both groups of natural gas
contracts, the contracts with around 8 to 20 months to maturity tend
10
to generate higher profits than the other contracts. In the case of crude
oil, on the other hand, the contracts with the shortest time to maturity
significantly yield more profit than the others. Accordingly, in practice
a trader can build a more efficient strategy at lower cost by only trading
those contracts generating the highest overall profits.11

11 In addition to studying the profitability of our strategy, it would be
appropriate to account for its risks. One noticeable feature of our strategy is
that the two opposing trades do not take place at the same time, but several
months apart in every year. This may imply a certain level of risk, as for a short
window of time (4 months for natural gas, and 5 months for crude oil), our
initial positions after the first trading month are not hedged by any trade in the
opposite direction. Given the unique feature of the futures market that each
position is marked to market everyday, we also assessed the net fluctuation
of the margin account during the risky period. The main finding is that even
the largest floating losses we would ever have to bear during the risky months
are relatively small, compared with the pay-off reported in Fig. 10. Detailed
results are available from the authors upon request. Nevertheless, our CAPM
analysis in the next subsection takes full account of market risk.
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5.2. Our strategy in the context of the CAPM

Let us now benchmark our trading strategy within the framework
of the CAPM. In order to do this, it is important to briefly review some
issues around the applicability of CAPM in the context of commodity
futures, which are due to net-zero supply and issues in computing
returns for commodity futures, see Dusak (1973).

According to the CAPM, assuming there exists a market portfolio
that can represent the performance of the entire market paying returns
of 𝑅𝑚 and denoting the risk-free rate as 𝑟𝑓 , the expected return of a
risky asset 𝑅𝑖 satisfies

E(𝑅𝑖) − 𝑟𝑓 = 𝛽𝑖(E(𝑅𝑚) − 𝑟𝑓 ) , (5)

here

𝑖 =
𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑚)
𝜎2(𝑅𝑚)

epresents the measure of exposure to market risk and E denotes
he expectation operator. Hence, the term on the right-hand side of
quation (5) represents the risk premium that asset 𝑖 should earn over

the risk-free rate, based on its sensitivity to market performance.
As discussed above, the unique feature of trading futures contracts

presents a challenge when applying the CAPM, as buying and selling
future contracts does not actually require any initial investment. When
a position is opened, the buyer and the seller sign a contract with a
broker, in which the buyer promises to purchase an amount of the
underlying asset from the seller at a future date for a pre-arranged price
that both parties will honour by depositing a certain amount of money
in the margin account as collateral and settling any fluctuation in the
11
value of the position with cash on a daily basis. Therefore, the value of
the contract when opened is zero, and its fluctuations afterward are
marked to market on a daily basis until the position is closed. This
makes calculating the returns on investments in the futures market
more difficult. It is also worth noting that unlike stocks, commodity
futures contracts are not explicitly included in the market portfolio as
they are in net-zero supply. For each long position of a futures contract,
there must be a respective short position. Therefore, the overall net
position of all futures contracts for the same commodity must equal
zero.12

In light of this complication, we decide to follow the classic ap-
proach in Black (1976) and Baxter et al. (1985), who argue that
although the relative return on the futures contract investment cannot
be calculated given the initial value is zero, we can use the change in
the value of the open position. Specifically, if E(𝑅𝑖) =

E(𝑃 1
𝑖 )−𝑃

0
𝑖

𝑃 0
𝑖

, where
𝑃 𝑖
0 and 𝑃 𝑖

1 are the values of the asset 𝑖 at times 0 and 1, the CAPM
equilibrium condition can be transformed into the following form:

E(𝑃 1
𝑖 ) − 𝑃 0

𝑖 = 𝑟𝑓𝑃
0
𝑖 + 𝛽∗𝑖 (E(𝑅𝑚) − 𝑟𝑓 ) , (6)

here 𝛽∗𝑖 =
𝑐𝑜𝑣(𝑃 1

𝑖 −𝑃
0
𝑖 ,𝑅𝑚)

𝜎2(𝑅𝑚)
. As no initial investment is required, we have

that 𝑃 0
𝑖 is zero, while 𝑃 1

𝑖 can be calculated as the change in the futures
rices over the period, denoted as 𝛥𝑝𝑖. Hence,

(𝛥𝑝𝑖) = 𝛽∗𝑖 (E(𝑅𝑚) − 𝑟𝑓 ) , (7)

12 However commodities are implicitly included in the market portfolio
through various companies whose earnings reflect commodity prices.
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Fig. 11. Results of the trading strategy by contract.
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and 𝛽∗𝑖 = 𝑐𝑜𝑣(𝛥𝑝𝑖 ,𝑅𝑚)
𝜎2(𝑅𝑚)

. In other words, the expectation of the price change
f a futures contract is equivalent to the product of the expected market
eturn over the risk-free rate and the specific 𝛽∗𝑖 that measures the
ensitivity of the futures prices change to the market portfolio.

The empirical model reflecting the adaptation of the CAPM to the
utures market is as follows:
𝑡
𝑖 = 𝛼∗𝑖 + 𝛽∗𝑖 (𝑟

𝑡
𝑚 − 𝑟𝑡𝑓 ) + 𝜖𝑡𝑖 , (8)

here 𝑟𝑡𝑖 captures the change in the futures price during a discrete time
nterval starting at 𝑡. The expression 𝑟𝑡𝑚 is the return of the market
ortfolio over the same period, and 𝛼𝑖 captures the excessive return
hat trading a specific futures contract can generate. If there exists an
rbitrage opportunity that can be exploited by a trading strategy, the
rades should in theory generate a positive and statistically significant
𝑖. According to our trading strategy, commodity 𝑖 corresponds to one
f the three groups of the two commodities, and the time period covers
he time between the two trades we conduct in each year. We select the
&P 500 index as our proxy for the market portfolio and the 10 year
S Treasury bond yield as the risk-free rate, 𝑟𝑡𝑓 .

The data used within our CAPM framework are divided into dif-
erent panels according to their time to maturity. This takes account of
ur previous observation that contracts with different terms of maturity
ppear to carry different levels of profitability, see Fig. 10, and we
ould like to gather further evidence of such disparity in profitability

n the context of the CAPM. For natural gas group 1, we split the
ata into three panels. The first panel includes the three contracts
ith the shortest times to maturity, or F1∼F3 of the second trade (or
12

5∼F7 if referring to the first trade), the second F16∼F18, and the
ast one F30∼F32. In the case of natural gas group 2, the first panel
ncludes F1∼F3, the second one F19∼F21, the third F37∼F39, and the

last F54∼F56. For crude oil group 1, the first panel includes F1∼F3, the
second F16∼F18, and the third F25∼F27. For crude oil group 2, the
first panel includes F1∼F3, the second F18∼F20, the third F35∼F37,
and the last F53∼F55. For all panels, we enter a given position on all
possible trading dates in the first trading month and close it out on the
corresponding trading dates in the second trading month.

The results for the OLS regression of the CAPM are presented in
Table 4. If we look at the two natural gas groups, it is easy to observe
that although 𝛽∗𝑖 is never significant (except for group 2, panel 3) in our
tests, 𝛼𝑖 in most cases is. This is especially true when trading contracts
with longer times to maturity. The results for crude oil show significant
𝛼𝑖’s and 𝛽∗𝑖 ’s in all four panels, for both groups.

To illustrate the development in the markets over time, we also
run recursive estimations of the CAPM and report the 𝛼𝑖’s with 95%
confidence bands in Fig. 12. For expository purposes, we only report the
results for the groups with shortest (left panel) and longest (right panel)
time to maturity. The first estimation results in all these figures are
based on historical data up until the given date on the 𝑥-axis. Then the
models are re-run including one more observation at a time. For natural
gas futures, the general pattern is that the 𝛼𝑖’s have slowly declined
as the market has matured. For crude oil group 1, the strategy does
not create any positive significant alphas until about 2008. After that
however, the alpha’s are highly significant and mainly increasing until
2020. For group 2 the alphas are highly significant over the observed
period. At this point, one may question whether the positive alpha’s for
crude oil are possibly created by a single cataclysmic event such as the

2008 Global Financial Crisis. However, this is not the case. The Fig. 13
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Table 4
CAPM regression parameters.

Panel Natural gas group 1 Natural gas group 2 Crude oil group 1 Crude oil group 2

𝛼∗
𝑖 𝛽∗𝑖 𝛼∗

𝑖 𝛽∗𝑖 𝛼∗
𝑖 𝛽∗𝑖 𝛼∗

𝑖 𝛽∗𝑖
1 0.10 −0.42 0.19∗∗ 1.66∗ 6.86∗∗∗ −138.62∗∗∗ 11.63∗∗ −163.88∗∗∗

(0.08) (0.91) (0.08) (0.91) (0.93) (13.98) (1.30) (12.37)
2 0.30∗∗∗ 0.15 0.39∗∗∗ 0.66 5.36∗∗∗ −116.42∗∗∗ 8.89∗∗∗ −136.96∗∗∗

(0.05) (0.56) (0.05) (0.54) (0.72) (11.16) (0.95) (9.35)
3 0.22∗∗∗ −0.63 0.17∗∗ −1.09∗∗ 4.80∗∗∗ −106.58∗∗∗ 8.18∗∗∗ −120.35∗∗∗

(0.04) (0.48) (0.04) (0.44) (0.67) (10.51) (0.82) (8.31)
4 0.24∗∗∗ −0.68 7.72∗∗∗ −109.93∗∗∗

(0.04) (0.44) (0.79) (8.09)

Number of observations in each panel: Natural gas group 1(2) 323(266) ; Crude oil group 1(2) 386(224).
The symbols *, **, and *** denote significance at the 10%, 5%, and 1% levels.
Robust standard errors in parenthesis.
hows the alpha’s obtained through a recursive regression in the same
ay as before, but this time for a period starting after the financial

risis. The alphas shown are still highly significant.13

These findings indicate that our trading strategy is able to generate
ignificant alphas and therefore ‘‘beat the market’’, even though some
f this ability has declined in natural gas as the market has matured,
hile for crude oil it has become more pronounced. Yet, in the context
f the CAPM, we can confirm the profitability of the proposed trading
trategy. Positive and significant alphas are a strong indicator for the
xistence of arbitrage, or at least some form of market anomaly.

. What are the potential factors that create trading time season-
lity

Candidates are in principle all factors that have been shown to affect
isk premia. Our analysis will focus on the most important ones and
hose where we believe time varying and seasonal patterns are most
ikely to be found. These are: hedging pressure, ESG indicators and
atural factors. All three can be tied to sentiment indicators.

.1. Hedging pressure

A futures price above the expected spot price indicates that the long-
osition (buyer) is willing to pay a premium for hedging the spot, on
he other hand a futures price below the expected spot price indicates
hat the short position (seller) is willing to pay a premium for hedging
he spot. As actual futures prices reflect supply and demand the ques-
ion of whether risk premia in futures markets are positive or negative
epends on what in the literature is referred to as hedging pressure,
he relative difference between (reported) short hedge positions and
reported) long hedge positions in the futures market, see De Roon
t al. (2000) and Hirshleifer (1990).14 Systematic hedging pressure is

found to be a significant determinant of commodity futures risk premia,
see also Basu and Miffre (2013). This literature argues that supply and
demand and, hence, futures prices are determined through hedgers’ and
speculators’ preferences, the size of inventories, access to hedging, and
possibilities for diversification.

In difference to De Roon et al. (2000) we argue that risk is much
better reflected in options contracts than futures contracts and that
therefore hedging pressure originating from the aim to eliminate risk
may be better reflected in the so called put–call ratio.

13 This specific result might point toward a regime shift in the crude oil
utures market at the time of the Global Financial Crisis. Such a shift has also
een reported by Nikitopoulos et al. (2017).
14 For futures there is of course one long position for every short position and

he positions need to be classified as short hedge or long hedge by other means
nd different authors have proceeded differently. This problem is alleviated by
onsidering the put–call ratio as a measure for hedging pressure, but this has
13

imitations as well.
The put–call ratio is the relative difference between volume of
traded put options vs. the volume of traded call options.15 Intuitively,
someone buying a put (sell) option is to hedge the price risk when
selling an asset (specifically when she/he believes that the asset-price
may decrease) while someone buying a call (buy) option is to hedge the
price risk when buying an asset (specifically when she/he believes that
the asset-price may increase). Put–call ratios therefore contains relevant
information as to whether the market believes prices are likely to go
down or up and have been investigated in the past for their potential
use as sentiment indicators, see for example Pan and Poteshman (2006)
and Bathia and Bredin (2013). More recently put–call ratios have even
gained more prominence by being included in a key sentiment indica-
tor, the so called Market Sentiment Meter published by the CME Group,
see Kownatzki et al. (2022) and Putnam (2020) for details. Considering
someone who is buying a put as a short hedger and someone buying
a call as a long hedger the put–call ratio can also be used as a proxy
for hedging pressure. Fig. 14 shows the put–call ratios for crude oil and
natural gas reflecting volume (left) and open interest (right) aggregated
over each month and years 2012–2021.16 Volume corresponds to daily
trading volume first averaged for each month of each year, and then
averaged for each month over the years, 2012–2021, the same process
as applied for Fig. 1. Open interest corresponds to the total number of
option positions held at a day, then averaging is done in the same way
as for volume. One can argue that as volume reflects trading at a given
day, it is a better indicator for hedging pressure and hence the risk
premia on that day and month. However, put–call ratios based on open
interest have been considered in the literature, e.g. Pan and Poteshman
(2006), so we include both.

As can be seen from the upper part of Fig. 14, the put–call ratios for
crude oil are very stable over the calendar year and hence cannot be
linked to the observed trading time seasonality of crude oil, evidenced
in Fig. 1 lower right. For natural gas, the lower left part of Fig. 14
seems to indicate that the put–call ratio (volume) is slightly higher in
the summer months from June till August and lowest in the winter
months from November till January. Dunn’s test for pairwise compar-
ison confirms this and shows that the difference is indeed statistically
significant, see Table 5. We therefore conclude that there is a seasonal
periodic pattern in put–call ratios for natural gas.17 Furthermore, the

15 Some authors, e.g. Pan and Poteshman (2006) and Bathia and Bredin
(2013) instead use the ratio of put volume to the total option volume (put
and calls) as put–call ratio, but this is not consistent with the name giving and
most major markets, including the CME and CBOE, indeed report the put–call
ratio in the way as we use it, i.e. volume of puts to volume of calls.

16 We gratefully acknowledge support from the CME Group, providing us
with an extensive data set of key market parameters including volumes of put
and call options for the relevant commodities. Our analysis in this section is
based on this data-set.

17 For open interest the same holds, but to a lesser degree. However, as noted
above we consider put–call ratios based on volume as the more appropriate
ratio.
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Fig. 12. Alpha for the shortest (F1–F3) and longest Contracts of natural gas (groups 1 and 2) and crude oil (groups 1 and 2).
iming of the seasonal pattern is consistent with the observed trading
ime seasonality in natural gas, Fig. 1 bottom right as well as our results
n Sections 4.1 and 4.2. However, with the interpretation of the put–
all ratio as a measure for hedging pressure presented as above, the two
ffects actually oppose each other. A high put–call ratio in the summer
onths would mean a higher demand in protecting sales, which should

hift the risk premium to the sell side and hence cause lower futures
rices in the summer months. Similarly, a relatively low put–call ratio
14
in the winter months should lead to higher futures prices in the winter
months. However, this just shows that the interpretation of the put–call
ratio as a proxy for hedging pressure in such simple manner is flawed.
As for futures contracts, one has to recognize for each long put there is
a short put, and for each long call there is short call. It is reasonable to
assume that the long positions are held predominantly by hedgers while
most of the short positions are held by speculators. In terms of risk
premia, short positions are obviously inversely affected as compared to
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Fig. 13. Alpha for F1–F3, F25–F27 and F53–F55 contracts of crude oil for the period 2009–2019.
Table 5
Pairwise comparisons of put–call ratio (volume) for natural gas.

Mean Period: Jun.–Aug. Period: Nov.–Jan.

Period: Jun.–Aug. 1.167

Period: Nov.–Jan. 0.955 39.400
(0.000)

Period: Other months 1.097 −0.0001 31.583
(0.000) (0.000)

Dunn’s test (Dunn, 1964): Pairwise 𝑧-test statistics with 𝑝-values in parentheses.

the corresponding long positions.18 If one now assumes that speculators
are more affected by seasonal sentiments than hedgers, then Fig. 14
can indeed contribute to explaining trading time seasonality in natural
gas as observed in (1). In fact, there is literature that supports this
argument: Deeney et al. (2015) report a negative loading for the put–
call ratio within there WTI crude oil sentiment indicator (equations
(2.1), (3.1) and Table (5)). In any case, the observation of a seasonal
pattern in the put–call ratio in natural gas is highly interesting in itself.
There is scope for future research in this field.

18 A short position in a call is effectively a bet on the underlying to go down
nd ideally stay below the strike and similarly a short position in a put is a
et for the underlying to go up and ideally stay above the strike.
15
6.2. ESG risk

Avramov et al. (2022) investigate how ESG rating uncertainty af-
fects risk premia in the context of the CAPM and Cao et al. (2022)
use company share options in order to reflect on ESG premia (not
necessarily risk related). Preferences for good ESG ratings may well
vary in a seasonal manner and in fact Pavlova et al. (2022) provide
evidence for this hypothesis, but it is highly unclear how this cascades
down to risk premia and more specifically to energy futures contracts.
A possible avenue of investigation is to look at ESG index futures and
options that have been introduced to various international exchanges
since 2020. ISDA (2021) has recently published an overview about ESG
related derivatives products. Investigating this further is beyond the
scope of the current article and is left for future research.

6.3. Natural factors

Huisman and Kilic (2012) found that electricity futures prices in
markets in which electricity is predominantly produced with perfectly
storable fuels contained time varying risk premia. This applies in partic-
ular to the Nordic countries, and in fact Haugom et al. (2018) measured
the effect of water inflow on the risk premium in electricity futures
(among other things). While the two commodities considered in our
paper are not directly affected by hydro levels, there is some evidence
of cross-over. We argue that knowledge about hydro conditions is far
lower during the first quarter than in the third quarter because of
uncertainty about for example water content in the reservoirs and
how snow melting will develop during the spring. Thus, risk-averse
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Fig. 14. Put–Call ratios for crude oil and natural gas reflecting volume (left) and open interest (right) aggregated over each month and years 2012–2021.
producers might be more inclined toward hedging during the first
quarter and less so in the other quarters. This pattern corresponds with
our observations of trading time seasonality in natural gas and crude
oil. A detailed empirical analysis is left for future research.

7. Conclusions

In this paper, we present our findings on a new seasonal pattern
reflected in futures’ price paths with trading time, for futures contracts
with fixed maturities. We investigate two commodities in particular,
natural gas and crude oil. A preliminary study suggests that the futures
prices for different trading times (in months) differ significantly during
the year, but with some regularity. The concept of backward curves
is introduced, which reveals that on average, the futures prices of both
commodities present an obvious seasonal pattern that is both consistent
with the preliminary findings and supplies further support to the pos-
sible existence of trading time seasonality. This type of seasonality is
distinct from seasonal patterns in the spot prices. The latter are also
reflected in futures prices, but in the corresponding forward curves;
they depend on the time of maturity.

On the basis of empirical evidence, we argue that the no-arbitrage
principal which lays the foundation of classic futures pricing mod-
els may be violated by potential arbitrage opportunities generated
through trading time seasonality. We further emphasize our findings
by constructing a relatively simple trading strategy of the ‘‘buy low sell
high’’ type. Our results demonstrate a positive expected final payoff
at the end of the operational period, with very low risk exposure.
16

Formalizing this further, we test our trading strategy in the context of
the CAPM and we obtain positive and statistically significant alphas
for both commodities. A theoretical discussion of the possible sources
of both types of seasonality is provided and market sentiments linked
to hedging pressure, ESG risk and natural factor are identified.

Our analysis is not without its limits. The precise source of trading
time seasonality remains unknown to us, and while candidates have
been identified, a more rigorous empirical analysis would go beyond
the scope of the current paper and is therefore left for future research.
However, we identify a seasonal pattern in the put–call ratio of natural
gas by statistical means and are able to link it at least intuitively
to the observed pattern of trading time seasonality. On the other
hand, our theoretical discussion shows clearly how seasonal preference
structures reflected in a seasonal pricing kernel can simultaneously
generate seasonal patterns in the forward and backward curves, but not
independent of each other. This contradicts our observation for crude
oil, where there is no seasonal pattern in the forward curve but an
exposed seasonal pattern in the backward curve, indicating some form
of market anomaly.
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