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ABSTRACT
In this article, we consider a panel stochastic frontier model in which the composite error term εit has four
components, that is, εit = τi − ηi + vit − uit , where ηi and uit are persistent and transient inefficiency
components, τi consists of the random firm effects and vit is the random noise. Two distinguishing features
of the proposed model are (i) the inputs are allowed to be correlated with one or more of the error
components in the production function; (ii) time-invariant and time-varying components, that is, (τi − ηi)
and (vit − uit), are allowed to be correlated. To keep the formulation general, we do not specify whether this
correlation comes from the correlations between (i) ηi and uit , (ii) τi and uit , (iii) τi and vit , (iv) ηi and vit , or
some other combination of them. Further, we also consider the case when the correlation in the composite
error arises from the time dependence of εit . To estimate the model parameters and predict (in)efficiency, we
propose a two-step procedure. In the first step, either the within or the first difference transformation that
eliminates the time-invariant components is proposed. We then use either the 2SLS or the GMM approach
to obtain unbiased and consistent estimators of the parameters in the frontier function, except for the
intercept. In the second step, the maximum simulated likelihood method is used to estimate the parameters
associated with the distributions of τi and vit , ηi and uit as well as the intercept. The copula approach is used
in this step to model the dependence between the time-varying and time-invariant components. Formulas
to predict transient and persistent (in)efficiency are also derived. Finally, results from both simulated and
real data are provided.
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1. Introduction

Endogeneity of inputs in a production function estimation is not
new. It goes back to Marschak and Andrews (1944). This issue
has since then been raised in different forms in different models.
In a panel data setup, Mundlak (1961) argued that the unob-
served time-invariant management is likely to be correlated
with the inputs. Consequently, the OLS estimators ignoring
unobserved firm-specific management are inconsistent. More
recent work in the productivity literature pioneered by Olley
and Pakes (1996), Levinsohn and Petrin (2003), and many
others decompose the error term in the production function
into an observed/predicted (by the firms) productivity shock
and an unobserved random shock. None of these shocks is
observed by the analysts. There is correlation between the pro-
ductivity term (which is firm specific and time variant) and
the variable inputs, and ignoring it gives inconsistent estimates
of production function parameters. However, in this litera-
ture, the random shock is assumed to be uncorrelated with
the inputs, which is a departure from the textbook discussion
of the endogeneity issue where the error term is assumed to
be correlated with one or more of the regressors. Since the
unobserved time-invariant shocks are not introduced in this
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framework, the endogeneity problem arises due to the cor-
relation between the observed/predicted (by the firms) pro-
ductivity shocks and input use. Thus, although the modeling
approaches are different, the fundamental issue in the estima-
tion of a production function is endogeneity of the variable
inputs with the error components (either the time-invariant
firm effects in Mundlak (1961) or the firm- and time-variant
productivity term in Olley and Pakes (1996), Levinsohn and
Petrin (2003), and many other articles that follow them). In this
article, we allow this correlation to arise from more than one
error component.

In a typical cross-sectional stochastic frontier (SF) model, the
error term (ε) consists of a noise (v) and an inefficiency (u)
component (which can be viewed as the productivity shock).
Since the inception of the SF model (Aigner, Lovell, and Schmidt
1977; Meeusen and van den Broeck 1977), most of the SF
models assume the composite error term to be uncorrelated
with the inputs (x). However, this issue has attracted increas-
ing attention in the recent years. Since there are two compo-
nents in the composite error term ε, endogeneity can arise
when x is correlated with u, v or both v and u (Amsler,
and Schmidt, and Prokhorov 2016; Tran and Tsionas 2015).
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However, most of the articles consider correlation between x
and v (Kutlu 2010; Tran and Tsionas 2013; Karakaplan and Kutlu
2017).

In a panel data framework, firm effects (τ ) are often added to
the model to exploit heterogeneity (Chen, Schmidt, and Wang
2014; Greene 2005, and others). If these effects are treated as
fixed parameters, which can be a part of the regression (fron-
tier), then the error term can still have two components (noise
and inefficiency, which are firm specific and time varying). In
this model, endogeneity is similar to the cross-sectional model
mentioned above. On the other hand, if the firm effects (τ )
are treated as random, then the error term will have three
components (firm effects, noise, and inefficiency), as in Greene
(2005). In this setup, one can discuss endogeneity by considering
correlations between (i) x and τ , (ii) x and v, (iii) x and u, or (iv)
x with all three components.

In this article, we consider the four-component panel
stochastic frontier (4CSF) model, which was introduced almost
simultaneously in Colombi et al. (2014), Kumbhakar et al. (2014,
KLH), and Tsionas and Kumbhakar (2014, TK). The composite
error term in the 4CSF model is defined as εit = τi − ηi +
vit − uit , where uit and ηi are persistent and transient (time-
varying) inefficiency components, τi consists of random firm
effects and vit is random noise. In the original model, these error
components are assumed to be distributed independently and
identically and also independent of each other. In particular,
the distributional assumptions on each of the error components
are τi ∼ iidN(0, σ 2

τ ), vit ∼ iidN(0, σ 2
v ), and the nonnegative

components are half-normal, that is, ηi ∼ iid N+(0, σ 2
η )

and uit ∼ iid N+(0, σ 2
u ). The distributional assumptions are

necessary to identify various error components in the original
model. More importantly, no endogeneity is considered in these
models. That is, each and every error component is assumed to
be uncorrelated with the input variables.

In a 4CSF model, endogeneity can arise due to the corre-
lation between xit and τi, xit and ηi, xit and vit , xit and uit ,
or some combination of them. That is, some or all of the
xit variables can be correlated with one or more of the error
components. In this article, we allow the xit variables to be
correlated with every error component. Furthermore, we allow
the time-invariant components (τi − ηi) to be correlated with
the time-varying components (vit − uit). In order to deal with
the endogeneity problem, most of the previous studies make
the assumption that the endogenous variables are linear func-
tions of some instrumental variables, barring Tran and Tsionas
(2015) who used a copula approach to capture the depen-
dence in a cross-sectional model between the inputs and the
composite error term. Lai and Kumbhakar (2018a) addressed
endogeneity in a 4CSF model that has all the panel features
built in. They allow correlation between inputs and persistent
inefficiency as well as time-invariant firm effects. Griffiths and
Hajargasht (2016) considered a panel data model with only
persistent inefficiency which is assumed to be correlated with
the inputs. They also consider a model with only transient
inefficiency, which is correlated with the inputs. Thus, they
do not consider a model with both persistent and transient
inefficiency.

In this article, we generalize the 4CSF model in LK (Lai and
Kumbhakar 2018a,b) by assuming that inputs can be correlated

with every error component—not only with the time-invariant
components as in Lai and Kumbhakar (2018a). Furthermore,
instead of assuming the four components to be independent
of one another (as assumed in the original 4CSF model and
its recent extensions), we allow correlation between the time-
invariant and time-varying components, that is, (τi − ηi) and
(vit − uit). This correlation can arise in various ways, for exam-
ple, due to the dependence between (i) the long- and short-
run inefficiency components (ηi and uit), while other com-
ponents are uncorrelated among themselves; (ii) firm effects
(τi) with short-run inefficiency (uit), assuming that the noise
term (vit) is independent of the other three components. The
other possibilities are correlation between (iii) τi and vit , or
(iv) ηi and vit , while other components are uncorrelated. We
do not examine the exact sources of the correlation, but there
are many possible reasons why the time-invariant and time-
varying components are correlated. The correlation between
ηi and uit allows for the possibility of a tradeoff between
the long- and short-run inefficiency. If there are factors that
affect them and these factors are correlated, then ηi and uit
will be correlated. Similarly, the correlation between τi and
uit allows for the possibility that firm effects (say manage-
ment) can influence short-run inefficiency. We keep the for-
mulation very general and do not specify whether the correla-
tion between the time-invariant and time-varying effects comes
from (i) to (iv) or some other combination. We also consider
a generalization in which correlation in the composite error
term can arise due to time dependence of the time-varying
components.

We propose a two-step procedure to estimate the model. In
the first step, we use either the within or the first difference trans-
formation to eliminate the time-invariant random components
and estimate the slope parameters. The two-stage least square
or the method of moments is then used to obtain unbiased and
consistent estimators of the parameters in the frontier function
part, except for the intercept. In the second step, first, we use the
copula approach to model the dependence between the time-
varying random components (vit and uit) and time-invariant
(τi and ηi) random components. Note that since we are mak-
ing distributional assumptions on the error components, it is
easier to introduce dependence through the copula approach
instead of assuming bivariate and/or multivariate distributions
on the errors. The ML method is then used in the copula
approach to estimate the remaining parameters. Finally, we use
the estimated parameters to predict both persistent and tran-
sient (in)efficiency.

Smith (2008) and Tran and Tsionas (2015) proposed models
to introduce correlation in the error components in a cross-
sectional setup. Therefore, the question is: Can their approach
be generalized to a panel in a straightforward fashion? It would
be the case if the panel model simply adds a time subscript and
the composite error is εit = vit − uit where uit and vit are
assumed to be iid over i and t. However, our panel model is
much more general and the correlation in the composite error
term can arise from many sources—not just from the noise and
inefficiency.

Another skeptical view about the correlation in the cross-
sectional model is that “while some readers are comfortable
with the idea of the aforementioned correlation (between ui
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and vi), others are adamant that correlation between noise and
inefficiency collides very adversely with the whole philosophy
of the SF model” (comment made by an associate editor). Even
if there is no correlation between noise and inefficiency, one
would expect that (τi − ηi) and (vit − uit) can be correlated,
because there are additional sources for this correlation. In other
words, because of the panel structure of the model, correlation
between τi − ηi and vit − uit is not the same as the correlation
between ui and vi as in Smith (2008) and Tran and Tsionas
(2015). Therefore, one cannot generalize the approach used by
Smith (2008) and Tran and Tsionas (2015) to a panel model
with both τi and ηi correlated with either uit or both uit and vit ,
especially if one argues that inefficiency is not correlated with
noise.

Similarly, Tran and Tsionas (2015) used a cross-sectional
model and accommodated endogenous regressors. Note that
our approach of handling endogeneity of regressors has nothing
in common with the approach used by Tran and Tsionas (2015).
Also, it is not obvious how one can extend their approach to a
panel data setup like ours. In view of these, we argue that our
model has something new to offer beyond the cross-sectional
models in Smith as well as Tran and Tsionas (2015).

Although our main focus is to model correlation between the
time-invariant and time-varying component error components,
we also consider a version of the model that allows dependence
(correlation) in the time-varying components. This is certainly
new in a panel setup of our model, and one cannot glean any
information about this model from any of the existing cross-
sectional models.

The rest of the article is organized as follows. The model
is introduced in Section 2. Estimation of the parameters using
the two-step procedure is discussed in Section 3. Predictions
of (in)efficiency are discussed in Section 4. In Section 5, we
discuss modeling and estimation of the 4CSF model under the
different assumptions of (i) the distribution of the time-varying
inefficiency uit being heteroscedastic and (ii) allowance of time
dependence of the composite error ξ2,it . Section 6 considers
simulations to check the robustness of our first- and second-step
results. In the second-step estimation, we consider 3 different
copulas to model dependence. The empirical model and results
are presented in Section 7. Section 8 concludes the article.

2. The Model

We consider the following panel data 4CSF model:
yit = α + x�

it β + w�
it γ + τi − ηi + vit − uit , (1)

where yit is log output for firm i at time t (i = 1, . . . , N and
t = 1, . . . , T), xit is a k × 1 vector of endogenous log inputs,
wit is an h × 1 vector of exogenous control variables (quasi-
fixed/facilitating inputs), τi consists of random firm effects, ηi ≥
0 is persistent inefficiency, uit ≥ 0 is transient inefficiency, and
vit is the noise term. Define the composite error term εit =
τi − ηi + vit − uit . We make the following assumptions.

[A1]: xit is endogenous, which means it is correlated with εit .
[A2]: The two time-varying random components have the

following distributions: vit ∼ N
(
0, σ 2

v
)

and uit ∼
N+ (

0, σ 2
u
)
. Furthermore, vit and uit are independent to

each other across i and t.

[A3]: The two time-invariant random components have the
following distributions: τi ∼ N+(0, σ 2

τ ) and ηi ∼ N+
(0, σ 2

η ). τi and ηi are independent to each other for all i.
[A4]: The time-invariant and time-varying effects, that is, (τi −

ηi) and (vit − uit), are correlated.

Let ξ1,i = τi − ηi and ξ2,it = vit − uit . Then the implication
of [A4] is that the time-invariant composite error ξ1,i and the
time-varying composite error ξ2,it are correlated.

The above assumptions imply that the true fixed-effect SF
model of Greene (2005) can be considered as a special case of
our model when ηi = 0 and xit is exogenous. Although on the
surface of it the above model looks similar to Lai and Kumbhaka
(2018a), it is more general than Lai and Kumbhaka (2018a) in
two aspects. First, we allow xit to be correlated with εit , but
Lai and Kumbhaka (2018a) assumed xit to be uncorrelated with
both vit and uit . Second, Lai and Kumbhaka (2018a) assumed
that all four error components are independent of each other,
which is in contrast to our assumption [A4]. Our model can be
further generalized to allow the variance σ 2

η to be heteroscedas-
tic. Without loss of generality, we assume it to be constant and
keep our notation simple in the following analysis.

Let 
T be a T ×1 vector of ones and xi. be a T ×k matrix that
stacks x�

it , t = 1, ..., T. Similarly, yi. denotes the T × 1 vector
that stacks yit in a column. The remaining vectors, vi. and ui.,
are defined in a similar fashion. The vector form of the model
in (1) is

yi. = α
T + xi.β + wi.γ + (τi − ηi)
T + vi. − ui.. (2)

3. Estimation

3.1. Step 1: Estimation of the Parameters β and γ in the
Frontier Part

Similar to Lai and Kumbhaka (2018a), we apply the first differ-
ence/within transformation to the model in (1) to eliminate the
time-invariant random components. The model in (1) becomes

ỹit = x̃�
it β + w̃�

it γ + ε̃it , (3)
where the “tilde” transformation refers to the first differ-
ence/within transformation of a variable and ε̃it = ṽit − ũit . To
write the model in vector form, let J be a T × T matrix defined
as J = (

IT − 1
T 

�)

, which makes the within transformation.
Then we can define q̃i. = Jqi.. Using this, the model in (2) can
be represented as follows:

ỹi. = x̃i.β + w̃i.γ + ε̃i., (4)
where ε̃i. = ṽi. − ũi. = J(vi. − ui.). It is worth noting that x̃i. and
ε̃i. are correlated, but w̃i. and ε̃i. are uncorrelated. Moreover, the
error term ε̃i. has zero mean under assumption [A2].

Lai and Kumbhaka (2018a) derived the joint distribution (in
Theorem 1) of ε̃i. and estimated the parameter (β , σ 2

v , σ 2
u ) by the

maximum likelihood (ML) method. Since x̃i. and ε̃i. are corre-
lated, the ML estimator in Lai and Kumbhaka (2018a) cannot
be used because it will be biased. We propose the following two-
step procedure to estimate the model in (4).

Under Assumption [A2], estimation of β and γ in (3) can be
viewed as a pooled linear regression with endogenous regres-
sors. We apply the approach of Lewbel (2012) to generate inter-
nal instruments and then use the IV regression to obtain a
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consistent estimator of β . We explain the main idea of this
procedure below. Given the exogeneity of wit , one can use w̃it as
an instrument and use it to generate extra instruments to meet
the identification conditions.

By applying the linear projection of x̃it on the space spanned
by w̃it , we may represent the endogenous variable x̃it as follows:

x̃it = �w̃it + sit , (5)

where � is the matrix of coefficients and sit is defined as follows:
sit := x̃it−E(̃xit|w̃it), which by construction is orthogonal to w̃it.
Under the exogeneity of w̃it , we have

E (w̃it̃εit) = Odim(w) and E(w̃its�it ) = Odim(w)×dim(s),

where Odim(w) denotes a zero vector whose dimension is the
same as the dimension of w̃it and dim(x) = dim(s). The extra
assumptions, we add here are

[A5]: E(w̃itw̃�
it ) is nonsingular,

[A6]: Cov(w̃it , sit̃εit) = Odim(w)×dim(x).

Assumption [A5] guarantees the existence of the ordinary
least-square estimator �̂. It is worth mentioning that assump-
tion [A6] implies E(w̃its�it ε̃it) = Odim(w)×dim(x). Let g =
dim(w)×dim(x), define qit as a g×1 vector obtained by stacking
each column of

(
w̃its�it

)
. Thus, [A6] suggests qit is a valid instru-

ment and it is the main condition we use to obtain a consistent
estimator of the IV regression. The moment conditions

E (w̃it̃εit) = Odim(w) (6)

and

E(w̃its�it ε̃it) = Odim(w)×dim(x) (7)

provide k = (dim(w) + dim(w) × dim(x)) identification con-
ditions for estimating parameters β and γ . Since the number of
moment conditions contained in (6) and (7) is greater than or
equal to the dimensions of β and γ the model is identified. It is
not necessary to seek extra instruments.

Now we use w̃i. and qit as the instruments. Let b =
(β�, γ �)� denote the vector of parameters in the frontier part
and reconsider the model in (4). For this we rewrite, the model
as

ỹit = (
x̃�

it w̃�
it

) ( β

γ

)
+ ε̃i..

By premultiplying the vector of instruments, we have(
w̃it
qit

)
ỹit =

(
w̃it
qit

) (
x̃�

it w̃�
it

) ( β

γ

)
+

(
w̃it
qit

)
ε̃it .

LetFit = (̃yit , x̃it , w̃it , qit) denote the information set. Therefore,
the moment conditions used for solving b are

m(b|Fit) = E

(
w̃it̃εit
qit̃εit

)
= Ok×1 (8)

and the objective function is

min
b̂

⎡⎣∑
i,t

m(̂b|Fit)

⎤⎦�
W

⎡⎣∑
i,t

m(̂b|Fit)

⎤⎦ , (9)

where W is any symmetric positive definite k×k matrix. Define
the matrices

�wq = E

[(
w̃it
qit

)(
x̃it
w̃it

)�]
and

�qq = E

[(
w̃it
qit

)(
w̃it
qit

)�]
,

then

b =
(

β

γ

)
=

(
��

wqW�wq
)−1

��
wqWE

[(
w̃it
qit

)
ỹit

]
. (10)

Replacing the expectation in (10) by its sample counterpart,
we obtain the IV estimator b̂ of b. Moreover, if we let W = �−1

qq ,
then the estimator corresponds to the two-stage least-square
estimator (see Lewbel 2012 for more discussion on the choice
of W).

3.2. Step 2: Estimation of the Remaining Parameters

Given the estimate of b̂ = (β̂�, γ̂ �)�—the parameters of the
frontier function from the first step—we plug them in (4) and
then estimate the remaining parameters. For this we maximize
the joint probability density function (pdf) of εi. and obtain the
ML estimators of the remaining parameters. The main idea of
this procedure is somewhat similar to Fan et al. (1996), where
a nonparametric kernel estimator of the frontier function was
plugged into the model and the remaining parameters were
estimated by the maximum likelihood (ML) method. Since b̂
from the IV regression is a consistent estimator of b and has
been plugged into the pdf of εi., the endogeneity of xi. does not
cause any problem in this step. In fact, the endogeneity problem
disappears, because input variables (xit) do not appear in the
second step, which is described below.

Let ρ denote the dependence parameter that captures
the correlation between ξ1,i and ξ2,it . We use θ =
(α, σ 2

v , σ 2
u , σ 2

τ , σ 2
η , ρ)� to denote the vector of the remaining

parameters of the model in (2).
Suppose the parameter vector b is known. We can then

rewrite the model as follows:

rit = yit − x�
it β − w�

it γ (11a)
= α + εit (11b)
= α + ξ1,i + ξ2,it , (11c)

where τi − ηi + vit − uit ≡ ξ1,i + ξ2,it = εit . The main
issue in estimating (11c) is that the correlation between ξ1,i and
ξ2,it is unknown. To implement the ML estimation of (2), the
information about how ξ1,i and ξ2,it are correlated should be
incorporated into the specification of the probability distribu-
tion of εit .

Under assumptions [A2]–[A4], we know that the marginal
distributions of both ξ1,i and ξ2,it are closed skew normal (CSN).
The model in (11c) has two error components, ξ1,i and ξ2,it ,
which are correlated in an unknown form. Therefore, we use the
copula approach to formulate the distribution of the composite
error term, εit . Note that Smith (2008) used a cross-sectional
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SF model to correlate noise and inefficiency (v and u) using the
copula approach to construct the pdf of the composite error εi =
vi − ui. Because of the panel nature of the model, the channel
through which the correlation is introduced in our model is
different from Smith (2008). In (11c), εit = ξ1,i+ξ2,it . Its pdf can
be derived once the correlation between ξ1,i and ξ2,it is modeled
via the copula approach.

To begin with, note that the εit ’s are correlated for a fixed i due
to their common time-invariant random component ξ1,i. Thus,
we can represent the joint pdf of (εi1, ..., εiT) as follows:

fεi.(εi1, ..., εiT) =
∫

fεi.|ξ1(εi1, εi2, ..., εiT |ξ1,i)fξ1

(
ξ1,i

)
dξ1,i,

where fεi.|ξ1(εi1, εi2, ..., εiT |ξ1,i) =
∏T

t=1
fεit |ξ1,i(εit|ξ1,i). This

equality follows from assumptions [A2]-[A4], which imply that
ξ1,i is the only source of the cross-period dependence between
εit ’s. Therefore, εi1, εi2, ..., εiT are conditionally independent
given ξ1,i. Thus, the joint pdf of (εi1, ..., εiT) can be represented
as follows:

fεi.(εi1, ..., εiT) =
∫

fξ1

(
ξ1,i

) ×
∏T

t=1
fεit |ξ1,i(εit|ξ1,i)dξ1,i. (12)

It remains to find fε|ξ1(εit|ξ1,i), and we discuss how to find the
conditional probability density below.

Note that the joint pdf of εit and ξ1,i, denoted as g
(
εit , ξ1,i

)
,

is

gε,ξ1

(
εit , ξ1,i

) = fξ1,ξ2

(
ξ1,i, εit − ξ1,i

)
and the conditional probability of εit given ξ1,i can be written as
follows:

fεit |ξ1(εit|ξ1,i) = gε,ξ1

(
εit , ξ1,i

)
fξ1

(
ξ1,i

) . (13)

Given that εit = ξ1,i + ξ2,it , the joint pdf of εit and ξ1,i in (13)
will be known once we know the joint pdf of ξ1,i and ξ2,it , and
vice versa.

According to the Sklar theorem (Sklar, 1959), the joint pdf
of ξ1,i and ξ2,it , denoted as fξ1,ξ2

(
ξ1,i, ξ2,it

)
, can be written as

follows:

fξ1,ξ2

(
ξ1,i, ξ2,it

) = fξ1

(
ξ1,i

)
fξ2

(
ξ2,it

)
c
(
Fε1

(
ξ1,i

)
, Fε2

(
ξ2,it

))
,

(14)
where Fξ1(·) and Fξ2(·) are the cdfs of ξ1 and ξ2 and c(·) is the
copula density that captures the dependence between ξ1,i and
ξ2,it . Thus,

fεit |ξ1(εit|ξ1,i) = gε,ξ1

(
εit , ξ1,i

)
fξ1

(
ξ1,i

)
= fξ1,ξ2

(
ξ1,i, εit − ξ1,i

)
fξ1

(
ξ1,i

)
= fξ2

(
εit − ξ1,i

)
c
(
Fξ1

(
ξ1,i

)
, Fξ2

(
εit − ξ1,i

))
.

Under assumptions [A2] and [A3], we obtain the pdfs and
cdfs of ξ1,i and ξ2,it , that is, fξ1

(
ξ1,i

)
, fξ2

(
ξ2,it

)
, Fξ1

(
ξ1,i

)
, and

Fξ2

(
ξ2,it

)
. We summarize the main results below:

fξ1

(
ξ1,i

) = 2√
σ 2

τ + σ 2
η

·φ1

(
ξ1,i

σ 2
τ + σ 2

η

)
·�

⎛⎜⎝−ση

στ

ξ1,i√
σ 2

τ + σ 2
η

⎞⎟⎠ ;

(15)

Fξ1

(
ξ1,i

) = 2�2

((
ξ1,i
0

)
;
(

0
0

)
,
(

σ 2
τ + σ 2

η ση

ση 1

))
;

(16)

fξ2

(
ξ2,it

) = 2√
σ 2

v + σ 2
u

·φ1

(
ξ2,it√

σ 2
v + σ 2

u

)
·�

(
−σu

σv

ξ2,it√
σ 2

v + σ 2
u

)
;

(17)
and

Fξ2

(
ξ2,it

) = 2�2

((
ξ2,it

0

)
;
(

0
0

)
,
(

σ 2
v + σ 2

u σu
σu 1

))
.

(18)
Below, we list some bivariate copula densities that are used to

model dependence. The idea of using more than one copula
is to check the sensitivity of predicted (in)efficiency results in
empirical models.

(I) The independent copula:

C
(
ζ1,i, ζ2,it

) = ζ1,i ζ2,it , (19)

where ζ1,i = Fξ1

(
ξ1,i

)
, ζ2,it = Fξ2

(
ξ2,it

)
. The corresponding

copula density is

c
(
ζ1,i, ζ2,it

) = 1. (20)

It follows from (14) that the joint pdf of ξ1,i and ξ2,it can
be represented as the product of their marginal pdfs, that is,
fξ1,ξ2

(
ξ1,i, ξ2,it

) = fξ1

(
ξ1,i

)
fξ2

(
ξ2,it

)
. Therefore, ξ1,i and ξ2,it

are independent under the independent copula.
(II) The Gaussian copula:

C
(
Fξ1

(
ξ1,i

)
, Fξ2

(
ξ2,it

)
; ρ

)
(21)

= �
(
�−1 (

Fξ1

(
ξ1,i

))
, �−1 (

Fξ2

(
ξ2,it

))
; ρ

)
,

where ζ1,i = �−1 (
Fξ1

(
ξ1,i

))
, ζ2,it = �−1 (

Fξ2

(
ξ2,it

))
and

−1 ≤ ρ ≤ 1. The corresponding Gaussian copula density is

c
(
ζ1,i, ς2,it ; ρ

) = 1√
1 − ρ2

(22)

exp

(
ζ 2

1,i + ζ 2
2,it

2
+ 2ρζ1,iζ2,it − ζ 2

1,i − ζ 2
2,it

2
(
1 − ρ2

) )
.

The Spearman’s ρ, denoted by ρs, can be obtained from the
ρ parameter in the Gaussian copula using the formula ρs =
6
π

arcsin(ρ/2).
(III) The FGM (Farlie–Gumbel–Morgenstern) copula:

CFGM(ζ1,i, ζ2,it ; κ) = ζ1,tζ2,it
[
1 + κ(1 − ζ1,i)(1 − ζ2,it)

]
,

(23)
where ζ1,i = Fξ1

(
ξ1,i

)
, ζ2,it = Fξ2

(
ξ2,it

)
and −1 ≤ κ ≤

1 is the copula parameter. The corresponding FGM copula
density is

cFGM(ζ1,i, ζ2,it ; κ) = 1 + κ(1 − 2ζ1)(1 − 2ζ2). (24)

The Spearman’s ρs from the FGM copula is κ/3, which ranges
between −1/3 and 1/3.
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It follows from (12) that f (εi1, ..., εiT), the joint density of
εi1, ..., εiT , can be written as follows:

fε (εi.) =
∫

fξ1

(
ξ1,i

) ×
∏T

t=1
fεit |ξ1(εit|ξ1,i)dξ1,i (25)

=
∫

fξ1

(
ξ1,i

) ×
∏T

t=1
fξ2

(
εit − ξ1,i

)
c
(
Fξ1

(
ξ1,i

)
,

Fξ2

(
εit − ξ1,i

))
dξ1,i (26)

= Eξ1

[∏T

t=1
fξ2

(
εit − ξ1,i

)
c
(
Fξ1

(
ξ1,i

)
, Fξ2

(
εit − ξ1,i

))]
,

(27)

which suggests that f (εi.) can be evaluated via the simulation
approach using

f s
ε (εi.) = 1

R

R∑
r=1

[∏T

t=1
fξ2

(
εit − ξ r

1,i
)

c
(
Fξ1

(
ξ r

1,i
)

, Fξ2

(
εit − ξ r

1,i
))]

,

(28)
where ξ r

1,i denotes the rth draw from the distribution of ξ1,i.
The time-invariant random component ξ r

1,i can be drawn in the
following way. For each i, we draw two uniform sequences, say
Ur

1,i and Ur
2,i, where r = 1, ...R and R is the number of draws.

Once the two uniform sequences are generated, they are fixed
in the estimation. Here, we use the Halton sequence to generate
Ur

1,i and Ur
2,i. Given Ur

1,i and Ur
2,i, we obtain ξ r

1,i = τ r
i −ηr

i , where
τ r

i = στ�
−1(Ur

1,i), ηr
i = ση|�−1(Ur

2,i)| and �−1(·) denotes the
inverse of a standard normal cdf.

Therefore, the parameter θ can be estimated by maximizing
the simulated pseudo-likelihood function

ln L (θ |b) � ln L (θ |b)s (29a)

=
N∑

i=1
ln f s

ε (εi.) (29b)

=
N∑

i=1
ln

(
1
R

R∑
r=1

[∏T

t=1
fξ2

(
εit − ξ r

1,i
)

c
(
Fξ1

(
ξ r

1,i
)

,

Fξ2

(
εit − ξ r

1,i
))])

. (29c)

Thus, the maximum simulated pseudo-likelihood (MSPL) esti-
mator of θ is defined as follows:

θ̂ = arg max
θ∈�

ln Ls (θ |b) . (30)

For an empirical application, one needs to specify one of the
copula densities listed earlier to derive the MSPL estimator.

It is worth mentioning that the sandwich formula for the
MSPL estimator is recommended for computing the standard
errors. Although we use a two-step estimation procedure, there
is no need to take into account the standard error of the first-
stage estimator during the second-step estimation as long as T
increases with N. Here, we assume that T increases with N but at
a slower rate. See also Arellano (2003), Hahn and Newey (2014),
and Hahn and Kuersteiner (2011) for a similar assumption.

To see this, suppose that all the regularity conditions (see
Bierens 1994, sec. 4.5) for the maximum likelihood estimation
hold in our following discussion. Consider the first-order con-
dition of the second-step estimation from (30)

∂ ln Ls(θ̂ |̂b)

∂θ
= 0, (31)

where ln Ls(θ̂ |̂b) = ∑N
i=1 ln Ls

i(θ̂ |̂b), ln Ls
i(θ̂ |̂b) = ln f s

ε (εi.) and
f s
ε (εi.) is defined in (28). The first-order Taylor expansion of (31)

around (θ�, b�)� gives
N∑

i=1

∂ ln Ls
i(θ̂ |̂b)

∂θ
=

N∑
i=1

∂ ln Ls
i(θ |b)

∂θ
+

N∑
i=1

∂2Ls
i(θ |b)

∂θ∂θ� (θ̂ − θ)

+
N∑

i=1

∂2 ln Ls
i(θ |b)

∂θ∂b� (̂b − b) + op(1). (32)

By rearranging (32), we obtain
√

N(θ̂ − θ)

=
(

− 1
N

N∑
i=1

∂2 ln Ls
i(θ |b)

∂θ∂θ�

)−1
1√
N

N∑
i=1

∂ ln Ls
i(θ |b)

∂θ
(33)

+
(

− 1
N

N∑
i=1

∂2 ln Ls
i(θ |b)

∂θ∂θ�

)−1 (
1
N

N∑
i=1

∂2 ln Ls
i(θ |b)

∂θ∂b�

)
√

N (̂b − b) + op(1). (34)

Let us start with the part in (33) and define H22(θ |b) =
E

[
∂2 ln Ls

i (θ |b)

∂θ∂θ�
]

, which is the Hessian matrix of the second-
step estimation. Then the law of large numbers implies
1
N

N∑
i=1

∂2 ln Ls
i (θ |b)

∂θ∂θ�
p→ H22(θ |b) as N → ∞. Moreover, by the

central limit theorem, we have

1√
N

N∑
i=1

∂ ln Ls
i(θ |b)

∂θ

d→ N(0, V2) asN → ∞, (35)

where V2(θ |b) = E

[(
∂ ln Ls

i (θ |b)

∂θ

) (
∂ ln Ls

i (θ |b)

∂θ

)�]
. Therefore, it

follows that the part in (33) has the asymptotic distribution(
− 1

N

N∑
i=1

∂2 ln Ls
i(θ |b)

∂θ∂θ�

)−1
1√
N

N∑
i=1

∂ ln Ls
i(θ |b)

∂θ

d→ N
(
0, H−1

22 V2H−1
22

)
, (36)

where H−1
22 V2H−1

22 is the sandwich formula of the asymptotic
variance of the second-step estimator.

Now we discuss the estimation effect of b̂ on the second-step
estimator θ̂ by focusing on part (34). Define

H21(θ |b) = E

[
∂2 ln Ls

i(θ |b)

∂θ∂b�

]
, (37)

then by the law of large numbers 1
N

N∑
i=1

∂2 ln Ls
i (θ |b)

∂θ∂b� in (34) con-

verges to the nonrandom matrix H21(θ |b) as N → ∞. From the
first-step estimation, one can obtain the asymptotic distribution
of b̂, say

√
NT(̂b − b) ∼ N(0, V1). (38)

The asymptotic distribution of the term in (34) depends on
whether T increases with N or not. To see this, let T = cNa,
where c > 0 is a constant and a is the rate that represents
how fast T increases with N. For instance, a ∈ (0, 1) implies T
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increases with N but at a slower rate. When a = 1, T increases
with N at the same rate. Thus, a > 0 means T increases with N;
while a = 0 means T is fixed and thus T

N → 0. Consequently,
the asymptotic distribution of (33) depends on whether a > 0
or a = 0.

For the case a > 0, (38) implies that
√

N (̂b − b)
d→

N
(
0, 1

T V2
)
, where lim

N→∞
1
T V2 = lim

N→∞
1
c N−aV2 = 0. Thus,

b̂ converges to b at a faster rate than
√

N and therefore the
estimation effect of b̂ on the second-step estimator θ̂ will vanish
eventually. Consequently, it follows from (33), (34), and (36) that
the asymptotic distribution of θ̂ is

√
N(θ̂ − θ)

d→ N
(
0, H−1

22 V2H−1
22

)
. (39)

Replacing H22 and V2 by their sample counterparts, we then
obtain the variance estimator of θ̂ . However, if a = 0, then T is
fixed and

√
N (̂b − b)

d→ N
(
0, 1

c V2
)
. The terms in (33) and (34)

have the same rate of convergence. When T is fixed, (34) will
not vanish as N → ∞. One may then follow the discussion of
Murphy and Topel (1985) to compute the adjusted the standard
error of θ̂ .

4. Prediction of Inefficiency

In this section, we discuss how to predict transient and persis-
tent inefficiency components.

4.1. The Transient Inefficiency

We first consider the prediction of the transient inefficiency.
Recall that

εi. = τi
T − ηi
T + vi. − ui.

= ξ1,i
T + ξ2,i. ,

where ξ1,i = τi − ηi and ξ2,i. = vi. − ui.. Our objective here is to
find the conditional expectation E (uit|εi.) . Using the definition
of conditional expectation,

E (uit|εi.) =
∫

uit
fu,ε(uit , εi.)

fε(εi.)
duit (40a)

=
∫

uit

∫
fu,ε,ξ1(uit , εi., ξ1,i)dξ1,i

fε(εi.)
duit (40b)

=
∫

uit

∫
fu|ε,ξ1

(
uit|εi., ξ1,i

)
fξ1,ε(ξ1,i, εi.)dξ1,i

fε(εi.)
duit .

(40c)

By changing the order of integration in (40c) and using the
definition fξ1|ε(ξ1,i|εi.) = fξ1,ε(ξ1,i, εi.)/fε(εi.), one may rewrite
E (uit|εi.) as

E (uit|εi.) =
∫ [∫

uitfu|ε,ξ1

(
uit|εi., ξ1,i

)
duit

]
fξ1|ε(ξ1,i|εi.)dξ1,i

(41a)

=
∫

E
(
uit|εi., ξ1,i

)
fξ1|ε(ξ1,i|εi.)dξ1,i (41b)

= Eξ1

[
E

(
uit|εi., ξ1,i

) |εi.
]

. (41c)

Therefore, we obtain

E (uit|εi.) = Eξ1

[
E

(
uit|εi., ξ1,i

) |εi.
]

, (42)

which is the result of the law of iteration. Moreover, it is worth
mentioning that

E
(
uit|εi., ξ1,i

) = E
(
uit|ξ2,i.

) = E
(
uit|ξ2,it

)
. (43)

The first equality is due to the reason that once we know εi.
and ξ1,i, then we know ξ2,i.. The second equality is due to
assumptions [A2] and [A3], which imply that ξ2,it and ξ2,is, for
t �= s, are independent across time.

Moreover, by applying the Bayes rule to the conditional pdf
fξ1|ε(ξ1,i|εi.), we can rewrite it as

fξ1|ε(ξ1,i|εi.) = fε|ξ1(εi.|ξ1,i)fξ1(ξ1,i)∫
fε|ξ1(εi.|ξ1,i)fξ1(ξ1,i)dξ1,i

. (44)

Substituting (43) and (44) into (41b) gives

E (uit|εi.) =
∫

E
(
uit|εit − ξ1,i

)
(45)[

fε|ξ1(εi.|ξ1,i)fξ1(ξ1,i)∫
fε|ξ1(εi.|ξ1,i)fξ1(ξ1,i)dξ1,i

]
dξ1,i,

where

fε|ξ1(εi.|ξ1,i) =
∏T

t=1
fεit |ξ1,i(εit|ξ1,i) (46a)

=
∏T

t=1
fξ2

(
εit − ξ1,i

)
c
(
Fξ1

(
ξ1,i

)
, Fξ2

(
εit − ξ1,i

))
(46b)

and

E
(
uit|εit − ξ1,i

) = E
(
uit|ξ2,it

)
(47)

= μ̃it + σ̃

[
φ (−μ̃it/σ̃ )

1 − �(−μ̃it/σ̃ )

]
.

The pdf fξ2

(
εit − ξ1,i

)
and cdfs Fξ1

(
ξ1,i

)
and Fξ2

(
εit − ξ1,i

)
involved in (46b) are given in (16) to (18) . μ̃it and σ̃ 2 in
(47) are defined as μ̃it = −ξ2,itσ 2

u /
(
σ 2

u + σ 2
v
)

and σ̃ 2 =
σ 2

u σ 2
v /

(
σ 2

u + σ 2
v
)

.
Equation (41b) suggests that E (uit|εi.) can be represented

as the weighted average of E
(
uit|εi., ξ1,i

)
with the weight

fξ1|ε(ξ1,i|εi.). Moreover, (45) suggests that E (uit|εi.) can be
approximated by

E
s (uit|εi.) =

R∑
r=1

E
(
uit|εi. − ξ r

1,i
T
) fε|ξ1(εi.|ξ r

1,i)∑R
r=1 fε|ξ1(εi.|ξ r

1,i)
(48a)

=
R∑

r=1
E

(
uit|ξ r

2,it
)

Wr
i , (48b)

where

ξ r
2,it = εi. − ξ r

1,i (49)

and

Wr
i =

∏T

t=1
fξ2

(
εit − ξ r

1,i
)

c
(
Fξ1

(
ξ r

1,i
)

, Fξ2

(
εit − ξ r

1,i
))

∑R
r=1

[∏T

t=1
fξ2

(
εit − ξ r

1,i
)

c
(
Fξ1

(
ξ r

1,i
)

, Fξ2

(
εit − ξ r

1,i
))]
(50)
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is the weight generated from the simulated draws. The simulated
pdf fε|ξ1(εi.|ξ r

1,i) also appears in the log-likelihood function in
(29b), so there is no need to make extra efforts to compute the
weights. Following the same procedure, one can also estimate
the technical efficiency E

(
e−uit |εi.

)
using the simulated estima-

tor. We summarize the main results in Proposition 1.

Proposition 1. Given εit = ξ1,i + ξ2,it and assumptions [A1]–
[A4], the conditional expectation of E

(
uit|ξ2,it

)
is

E
(
uit|ξ2,it

) = μ̃it + σ̃

[
φ (−μ̃it/σ̃ )

1 − �(−μ̃it/σ̃ )

]
,

where ξ1,i = τi −ηi, ξ2,it = vit −uit , μ̃it = −ξ2,itσ 2
u /

(
σ 2

u + σ 2
v
)

and σ̃ 2 = σ 2
u σ 2

v /
(
σ 2

u + σ 2
v
)

. The corresponding simulated
estimator of E (uit|εi.) is

E
s (uit|εi.) =

R∑
r=1

{
μ̃r

it + σ̃

[
φ

(−μ̃r
it/σ̃

)
1 − �

(−μ̃r
it/σ̃

)]}
Wr

i , (51)

where μ̃r
it = − ξ r

2,itσ
2
u /

(
σ 2

u + σ 2
v
)

andWr
i is defined in

(50). Moreover, the conditional expectation of E
(
e−uit |ξ2,it

)
is

E
(
e−uit |ξ2,it

) = 1 − � (̃σ − μ̃it/σ̃ )

1 − �(−μ̃it/σ̃ )
exp

{
−μ̃it + 1

2
σ̃ 2

}
and the corresponding simulated estimator is

E
s (e−uit |εi.

) = 1
R

R∑
r=1

{
1 − �

(
σ̃ − μ̃r

it/σ̃
)

1 − �
(−μ̃r

it/σ̃
) exp

{
−μ̃r

it + 1
2
σ̃ 2

}}
Wr

i .

(52)

Replacing the parameters in (51) by their estimates gives
the predicted transient inefficiencies. The confidence intervals
of these predicted transient inefficiencies can be obtained by
applying the delta method (see Wooldridge 2010, pp. 46–47).
Suppose

√
N(θ̂ − θ) ∼ N(0, Vθ ) and let ait(θ̂) denote the

predicted transient inefficiency E
s (uit|εi.), which is a function

of the parameter vector θ given the sample observation. Then√
N(ait(θ̂) − ait(θ)) ∼ N(0, Ait(θ)Vθ Ait(θ)ᵀ), where Ait(θ) =

∂ait(θ)/∂θ .

4.2. The Persistent Inefficiency

The prediction of the persistent inefficiency is obtained from
E (ηi|εi.) = ∫

ηifη|ε(ηi|εi.)dηi. Under our assumptions [A2]-
[A4], only ξ1,i and ξ2,it are correlated, but how ηi is correlated
with εi. or ξ2,it is not specified. Therefore, we cannot directly find
E (ηi|εi.) since fη,ε(ηi, εi.) is unknown. So, instead of working
on the joint distribution of ηi and εi., we propose the following
procedure to predict the persistent inefficiency.

Under assumption [A3], it can be shown that

E
(
ηi|ξ1,i

) = μ∗
i + σ ∗

i

[
φ

(−μ∗
i /σ

∗
i
)

1 − �
(−μ∗

i /σ
∗
i
)] ,

where ξ1,i = τi −ηi, ξ2,it = vit −uit , μ∗
i = − ξ1,iσ 2

η /
(
σ 2

η + σ 2
τ

)
and σ ∗2 = σ 2

η σ 2
τ /

(
σ 2

η + σ 2
τ

)
. Since E

(
ηi|ξ1,i

)
is a nonlinear

function of ξ1,i, we write E
(
ηi|ξ1,i

) = g(ξ1,i). Now, we consider

prediction of the nonlinear function g(ξ1,i) given εi., that is,
E

(
g(ξ1,i)|εi.

)
, which can be represented as follows:

E
(
g(ξ1,i)|εi.

) =
∫

g(ξ1,i)fξ1|ε(ξ1,i|εi.)dξ1,i,

=
∫

g(ξ1,i)
fε|ξ1(εi.|ξ1,i)fξ1(ξ1,i)∫

fε|ξ1(εi.|ξ∗
1,i)fξ1(ξ

∗
1,i)dξ∗

1,i
dξ1,i.

(53)

Similar to (45), it follows that (53) can be evaluated by the
simulated conditional expectation

E
s (g(ξ1,i)|εi.

) =
R∑

r=1
g(ξ r

1,i)Wr
i ,

where Wr
i is defined as in (44). Note that the above result holds

for an arbitrary function of ξ1,i. Based on the above discussion,
we summarize the simulated estimator for the persistent ineffi-
ciency and TE in Proposition 2.

Proposition 2. Given εit = ξ1,i + ξ2,it and assumptions [A1]-
[A4], the conditional expectation ofE

(
ηi|ξ1,i

)
is

E
(
ηi|ξ1,i

) = μ∗
i + σ ∗

i

[
φ

(−μ∗
i /σ

∗
i
)

1 − �
(−μ∗

i /σ
∗
i
)] , (54)

where ξ1,i = τi −ηi, ξ2,it = vit −uit , μ∗
i = − ξ1,iσ 2

η /
(
σ 2

η + σ 2
τ

)
and σ ∗2 = σ 2

η σ 2
τ /

(
σ 2

η + σ 2
τ

)
. The simulated estimator for the

persistent inefficiency is

E
s (ηi|εi.) = 1

R

R∑
r=1

{
μ∗r

i + σ ∗
[

φ
(−μ∗r

i /σ ∗)
1 − �

(−μ∗r
i /σ ∗)

]}
Wr

i ,

(55)
where Wr

i is defined in (50) and μ∗r
i = −ξ r

1,iσ
2
η /

(
σ 2

η + σ 2
τ

)
.

Moreover, the conditional expectation of E
(
e−ηi |ξ1,i

)
is

E
(
e−ηi |ξ1,i

) = 1 − �
(
σ ∗

i − μ∗
i /σ

∗
i
)

1 − �
(−μ∗

i /σ
∗
i
) exp

(
−μ∗

i + 1
2
σ ∗2

i

)
,

(56)
and the simulated estimator for the persistent technical effi-
ciency index can be evaluated as

E
s (e−ηi |εi.

) = 1
R

R∑
r=1

{
1 − �

(
σ ∗

i − μ∗r
i /σ ∗

i
)

1 − �
(−μ∗r

i /σ ∗
i
)

exp
(

−μ∗r
i + 1

2
σ ∗2

i

)}
Wr

i . (57)

Similar to (51), the predicted persistent inefficiencies are
obtained by plugging the estimated parameters and their con-
fidence intervals can be obtained using the delta method.

5. An Alternative Version of the 4CSF Model

In this section, we discuss modeling and estimation of the 4CSF
model under the different assumptions of (i) the distribution of
the time-varying inefficiency uit being heteroscedastic and (ii)
allowance of time dependence of the composite error ξ2,it .
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5.1. Heteroscedasticity of the Time-Varying Inefficiency

We first consider a generalization of assumption [A2] by allow-
ing uit to have a heteroscedastic variance. We modify assump-
tion [A2] to [A2]′.
[A2]′: The two time-varying random components have the

following distributions: vit ∼ N
(
0, σ 2

v
)

and uit ∼
N+ (

0, σ 2
uit

)
, where σuit = exp(z�

it δ) is a parametric
function of some exogenous variable zit . Furthermore, vit
and uit are independent of each other across i and t.

Under the half-normal assumption of uit , it is known that
E(uit) =

√
2
π
σuit =

√
2
π

exp(z�
it δ) and var(uit) = (1 − 2

π
)σ 2

uit .
The conditional mean of the model in (1) is a nonlinear function
due to the heteroscedasticity of uit . For this case, we suggest
using the difference transformation to make it easier to deal with
the nonlinear conditional mean function of the transformed uit
in the model. Let “�” denote the first difference transformation
of a variable. Then the difference transformed model (1) is

�yit = �x�
it β + �w�

it γ + �vit − �uit . (58)

The time-invariant components τi and ηi are eliminated as in
the within transformation. Under assumption [A2]′, it is known
that E (�uit|zit , zit−1) =

√
2
π

(
exp(z�

it δ) − exp(z�
it−1δ)

)
and

�uit = E (�uit|zit , zit−1) + �u∗
it , where �u∗

it = �uit −
E (�uit|zit , zit−1) and �u∗

it has a zero mean. E (�uit|zit , zit−1)
and �u∗

it are orthogonal, and both of them are independent of
�vit by assumption [A2]′. (58) can be rewritten as

�yit = �x�
it β+�w�

it γ−
√

2
π

(
exp(z�

it δ) − exp(z�
it−1δ)

)
+�eit ,

(59)
where �eit = �vit − �u∗

it . For simplicity, let us define git =
g (zit) =

√
2
π

exp(z�
it δ), so (59) can be rewritten as

�yit = �x�
it β + �w�

it γ − �git + �eit . (60)

Since �eit contains �u∗
it and �vit , it can be concluded that �xit

and �eit are correlated and �xit is endogenous. On the other
hand, �wit and �eit are uncorrelated due to the exogeneity of
wit . Given that �uit and �vit are independent to each other
across i and t by assumption [A2]′, we can conclude that zit
and zit−1 are also uncorrelated with �vit . Since the error term
�eit has a zero mean, (60) can be treated as a pooled nonlinear
regression with endogenous regressors. In addition to the above
orthogonal moment conditions, Assumption [A2]′ also implies

var (�eit|zit , zit−1) = 2σ 2
v + (1 − 2

π
)
(
σ 2

uit + σ 2
uit−1

)
(61)

for the second moment of �eit .
Let b = (β�, γ �, δ�, σ 2

v )� denote the vector of parameters
to be estimated in the first step. Compared with the within
transformed model (3) discussed in Section 3.1, the model in
(59) contains the extra parameters δ and σ 2

v in the first step, and
thus the remaining parameters to be estimated in the second
step are α, σ 2

τ , σ 2
η and the copula parameter.

Let hit = (
�w�

it , z�
it , z�

it−1
)� denote the vector of instrumen-

tal variables and consider the linear projection

�xit = �hit + sit , (62)

where � and sit are defined in the same manner as in Section 3.1.
In order to guarantee the existence of the linear estimator of �,
we modify Assumption [A5] as follows:

[A5]′: E(hith�
it ) is nonsingular.

Let �̂xit denote the prediction of �xit from (62), and we use
it as the instrument for �xit in the moment estimation of (59).
Moreover, the nonlinear terms git and git−1 are also uncorrelated
with �eit , and thus they provide two extra nonlinear moment
conditions. Below, we summarize the moment conditions:

E(�eit) = 0, E(�eit · �wit) = 0, E(�eit · git) = 0,
E(�eit · git−1) = 0, (63)
E(�eit · �̂xit) = 0, (64)

E

[
(�eit)

2 −
(

2σ 2
v + (1 − 2

π
)
(
σ 2

uit + σ 2
uit−1

))]
= 0.

Therefore, we have enough identification conditions for b. In
Experiment II of Section 6, we also investigate the finite sample
performance of this estimator.

5.2. A Formulation of Time Dependence

By modifying some of the assumptions, our estimation strategy
can be applied to a model with time dependence in ξ2,it (thanks
to an anonymous referee for this) that may come from the time
dependence in vit or uit or both. Here, we leave it unspecified, for
generality. We reconsider the model in (1) and keep the assump-
tions [A1], [A3], [A5], and [A6] unchanged. Assumptions [A2]
and [A4] are modified in the following way to allow for the time
dependence in ξ2,it :

[A2]′′: The two time-varying random components have the
following distributions: vit ∼ N

(
0, σ 2

v
)

and uit ∼
N+ (

0, σ 2
u
)
. Furthermore, vit and uit are independent of

each other for all i. However, vit and vis are correlated
over time, when t �= s for all i. Similar is the case with
uit .

[A4]′′: The time-invariant and time-varying effects, that is, (τi−
ηi) and (vit − uit), are independent of each other across
i and t.

Assumption [A2]′′ suggests that the time-varying random
components ξ2,it and ξ2,is are correlated over time and [A4]′′
assumes that ξ1,i and ξ2,it are independent across i and t (for
simplicity). Therefore, the copula function can be used to model
the dependence of ξ2,it over time. Under the modified assump-
tions, the panel 4CSF model can be estimated in a similar way
as discussed in Section 3, with slight modification of the likeli-
hood function in the second step. Since the first-step estimation
follows the same procedure as we discussed in Section 3.1, now
we focus our discussion on the second-step estimation. Recall
that the joint pdf of εi. can be written as follows:

fεi.(εi1, ..., εiT) =
∫

fεi.|ξ1(εi1, εi2, ..., εiT |ξ1,i)fξ1

(
ξ1,i

)
dξ1,i,

where fεi.|ξ1(εi1, εi2, ..., εiT |ξ1,i) = fξ2(εi1 − ξ1,i, ..., εiT − ξ1,i).
Since ξ2,it ’s are correlated over time, we can use the Sklar the-
orem to obtain
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fξ2(εi1 − ξ1,i, ..., εiT − ξ1,i) = c
(
Fξ2

(
εi1 − ξ1,i

)
, ...,

Fξ2

(
εiT − ξ1,i

)) T∏
t=1

fξ2

(
εit − ξ1,i

)
.

The above result suggests that the simulated joint pdf of εi. is

f s
εi.(εi.) = 1

R

R∑
r=1

[
c
(
Fξ2

(
εi1 − ξ r

1,i
)

, ..., Fξ2

(
εiT − ξ r

1,i
))

T∏
t=1

fξ2

(
εit − ξ r

1,i
) ]

. (65)

The objective function is defined similarly as in (29c), but
the simulated joint pdf in (28) is replaced by (65). The loga-
rithm of the simulated pseudo-likelihood function is defined as
ln L (θ |b)s = ∑N

i=1 ln f s
ε (εi.) .

6. Simulation

Given the model assumptions, both the time-invariant compos-
ite error ξ1,i and the time-varying composite error ξ2,it have skew
normal (SN) distributions, which are not independent of each
other. In order to generate two correlated SN random variables,
we introduce their correlation via the copula function. Our main
objective in this experiment is to examine the finite sample
performance of our two-step estimators. In particular, we focus
on the following: (i) the performance of the IV estimator when
the instruments generated from the linear projection using (5)
are used; (ii) the performance of the MSPL estimator when the
correlation between ξ1,i and ξ2,it is accommodated (ignored);
and (iii) the performance of the MSPL estimator when the
copula is misspecified. We consider two experiments, labeled
as Experiment I and Experiment II. In Experiment I, we focus
on examining the performance of the estimator discussed in
Section 3, where σu is homoscedastic. In Experiment II, we
consider the model discussed in Section 5.1, where the time-
varying inefficiency u has a heteroscedastic variance.

In Experiment I, we consider the following data-generating
process (DGP) in our four-component panel SF model:

yit = β0 + β1xit + β2wit + β3t + ξ1,i + ξ2,it ,

where ξ1,i = τi −ηi and ξ2,it = vit −uit . The true parameters are
set as β0 = 1, β1 = 0.75, β2 = 0.5, β3 = 0.01, σv = 0.1, σu =
0.15, στ = 0.1 and ση = 0.15. The exogenous variables include
wit , where wit ∼ iidN(0, 4), and the time trend variable t =
1, · · · , T. Moreover, we generate ξ1,i and ξ2,it and introduce their
correlation using the Gaussian copula via the following steps:

Step 1: Draw independent random variables: Z1i ∼ iidN(0, 1)

and Z2it ∼ iidN(0, 1), where Z1i is time invariant and Z2it is
time varying.

Step 2: Generate Z3it = Z1iρ + Z2it
√

1 − ρ2, then
(

Z1i
Z3it

)
∼

N2

((
0
0

)
,
(

1 ρ

ρ 1

))
.

Step 3: Let r1,i = �(Z1i) and r2,it = �(Z3it), then
ξ 1,i =F−1

ξ1

(
r1,i

)
and ξ 2,it =F−1

ξ2

(
r2,it

)
.

Step 4: Let εit = ξ1,i + ξ2,it . The endogenous variable is then
generated as xit = exp(3εit + Z4it), where Z4it ∼ iid N(0, 1).
Therefore, xit is correlated with both ξ1,i and ξ2,it .

Steps 2 and 3 generate the correlation between ξ1,i and ξ2,it
from the Gaussian copula, and their correlation coefficient ρ is
set as ρ = 0.5. We consider different combinations of N and T,
viz., N = {50, 100} and T = {5, 10}. In Step 4, the correlation
coefficients of the generated xit and εit under different sample
sizes range between 0.38 and 0.46. Therefore, xit is endogenous,
and the remaining regressors wit and t are exogenous. The total
number of replications is 1000 in our simulations.

We follow the procedure discussed in Section 3 to esti-
mate the model and summarize both the biases and root mean
squared errors (RMSE) in Table 1. We use three different cop-
ulas, namely the independent copula, the Gaussian copula and
the FGM copula, to construct the joint pdf of ξ1,i and ξ2,it and
formulate the simulated pseudo-likelihood function. Since the
parameter κ of the FGM copula is not directly comparable to the
Gaussian copula parameter ρ, the biases and RMSEs of κ̂ are not
reported in the table. In the first-step estimation, we estimate the
parameters β1, β2, and β3. We use β̂OLS

j , for j = 1, 2, 3, to denote
the ordinary least squares (OLS) estimator, which ignores the
endogeneity of xit . We use β̂IV

j to denote the IV regression
estimator given in (10), where the within transformed w and t
and the product of the transformed variables and the projection
error sit defined in (5) are used as instruments. Here, we have
three parameters and five moment conditions, so the model is
identified. As we can see from the left-hand side of Panel A,
the biases of β̂OLS

1 for all combinations of N and T range from
0.0635 to 0.0518, which are much larger than the biases of β̂IV

1
that range from 0.0053 to 0.0098. The bias of β̂OLS

1 due to the
endogeneity of xit does not vanish as we increase either N or T.
Thus, our result indicates that the IV regression estimator can
effectively reduce the estimation bias due to the endogeneity.
The right-hand side of Panel A summarizes the RMSEs of β̂OLS

j
and β̂IV

j , and all the RMSEs decreases consistently as we increase
either N or T .

In the second step, we estimate the remaining parameters
θ = (σv, σu, στ , ση, β0, ρ) using the untransformed model in
(11c). We plug in the β̂IV

j ’s obtained from the first step and
then estimate θ using the MSPL approach, where the simulated
pseudo-likelihood function is given in (29c). We summarized
the estimated results under the Gaussian, independent and
FGM copulas in Panels (B.I), (B.II), and (B.III). As expected,
the estimator using the Gaussian copula performs better than
the other two estimators in terms of biases, and most of the
biases decrease as we increase N or T. Thus, we conclude that
using a misspecified copula may result in a biased estimator (as
expected).

Further, the right part of Panel B of Table 1 summarizes
the RMSEs of the three MSPL estimators. As expected, all the
RMSEs decrease as we increase either N or T. However, it can
be seen that most of the RMSEs from the independent copula
are slightly smaller than those from the other two copulas. One
possible reason is that the independent copula has fewer param-
eters than the other two copulas. Furthermore, the likelihood
function based on the Gaussian copula is more complicated than
the other two. Comparing (20), (22), and (24), it is clear that
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Table 1. Bias and RMSE of the two-step estimator (Experiment I).

Bias RMSE

N = 50 N = 100 N = 50 N = 100

T = 5 T = 10 T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

Panel A. The first-step estimation:
(A.I) OLS without considering endogeneity
β̂OLS

1 0.0635 0.0586 0.0534 0.0518 0.0211 0.0158 0.0146 0.0117
β̂OLS

2 −0.0001 0.0001 −0.0001 0.0003 0.0069 0.0048 0.0048 0.0034
β̂ IV

3 0.0002 0.0001 0.0001 0.0000 0.0058 0.0019 0.0041 0.0014

(A.II) IV Regression
β̂ IV

1 0.0098 0.0086 0.0086 0.0053 0.0282 0.0184 0.0281 0.0236
β̂ IV

2 0.0001 0.0002 −0.0002 0.0001 0.0043 0.0028 0.0031 0.0020
β̂ IV

3 −0.0001 0.0000 0.0001 0.0000 0.0052 0.0018 0.0038 0.0013

Panel B. The second-step ML estimation: (Given the estimate β̂ IV)
(B.I) Gaussian copula
σ̂v 0.0073 0.0025 0.0041 0.0027 0.0447 0.0240 0.0356 0.0295
σ̂u −0.0007 0.0007 0.0046 −0.0016 0.0713 0.0474 0.0539 0.0389
σ̂τ 0.0234 0.0075 −0.0042 −0.0010 0.0761 0.0504 0.0609 0.0470
σ̂η −0.0164 −0.0401 −0.0107 −0.0259 0.0860 0.0608 0.0767 0.0535
b̂0 −0.0438 −0.0621 −0.0124 −0.0257 0.0644 0.0429 0.0518 0.0393
ρ̂ −0.2558 −0.1320 −0.1673 −0.1055 0.4360 0.3113 0.3665 0.2776

(B.II) Independent copula
σ̂v −0.0109 −0.0112 −0.0125 −0.0102 0.0252 0.0135 0.0251 0.0238
σ̂u −0.0334 −0.0286 −0.0256 −0.0279 0.0491 0.0323 0.0369 0.0273
σ̂τ 0.0538 0.0535 0.0347 0.0436 0.0308 0.0250 0.0302 0.0240
σ̂η 0.0260 0.0105 0.0459 0.0271 0.0588 0.0559 0.0512 0.0454
b̂0 −0.0368 −0.0450 0.0088 −0.0038 0.0583 0.0487 0.0515 0.0428

(B.III) FGM copula
σ̂v −0.0107 −0.0111 −0.0122 −0.0103 0.0266 0.0143 0.0255 0.0245
σ̂u −0.0313 −0.0257 −0.0235 −0.0248 0.0546 0.0357 0.0403 0.0298
σ̂τ 0.0545 0.0495 0.0336 0.0391 0.0364 0.0286 0.0354 0.0299
σ̂η 0.0235 0.0033 0.0415 0.0227 0.0600 0.0547 0.0515 0.0433
b̂0 −0.0376 −0.0498 0.0063 −0.0067 0.0603 0.0487 0.0492 0.0406

NOTE: The total number of replication is 1000.

the Gaussian copula density is the most complicated among the
three and may have a larger numerical approximation error than
the others, especially on the inverse of the normal cdf on the tails
(see Equation (21)). We conjecture that these reasons could be
why the RMSEs under the Gaussian copula are slightly larger
than the RMSEs under the FGM copula. This is not the case in
Experiment II where, as shown below, the independent copula
results are much worse. The efficiency loss of the Gaussian
copula is relatively minor in Experiment II, because we only
need to estimate the parameters contained in τi and ηi, the
dependence parameter and the intercept. On the contrary, in
Experiment I, we have to estimate the parameters contained in
all the random components (including vit , uit τi, and ηi), the
dependence parameter and also the intercept, and thus there is
more efficiency loss.

In the DGP of Experiment II, we follow the same procedure
to generate the data and set the values of the parameters the same
as in Experiment I, except for the parameters contained in the
heteroscedastic σuit = exp(δ0+δ1zit). The parameters in σuit are
set as δ0 = −1 and δ1 = −0.02, and the exogenous determinant
zit is drawn from iid N(0, 1). Furthermore, all variables are also
generated in the same way, except the endogenous variable xit .
In order to make sure there exists a strong correlation between
xit and εit , we generate xit as xit = 3εit + ε2

it+Z4it , where Z4it ∼
iidN(0, 1). The correlation coefficients of the generated xit and
εit under different sample sizes range between −0.63 and −0.58.
We summarize the results in Table 2.

Our first-step estimation follows the procedure discussed
in Section 5.1. In this step, we estimate the parameter b =
(β1, β2, β3, δ0, δ1, σ 2

v ) using the moment conditions in (63) and
(64). Thus, the model is just identified. For comparison, we also
estimate the model without considering the endogeneity and
label the estimator with a superscript NLS. As shown in Panel
A of Table 2, both β̂NLS

1 and β̂NLS
2 are seriously biased when

the endogeneity of �xit is ignored in the estimation. On the
other hand, both β̂IV

1 and β̂IV
2 have much smaller biases. For

the estimators of the variance parameters, δ̂NLS
0 and δ̂NLS

1 also
perform much worse than δ̂IV

0 and δ̂IV
1 . This finding indicates

that the biases due to endogeneity have been alleviated by the
IVs. Compared with the NLS estimators, almost all biases of the
IV estimators are of a much smaller magnitude and their RMSEs
consistently decrease as either N or T increases. Thus, we can
conclude that the IV estimators perform quite well in the first-
step estimation.

Since the parameters contained in vit and uit have been
estimated in the first step, we can plug these estimates into
the simulated pseudo-likelihood function in the second step.
Here, we have fewer parameters, so the computational burden
is not as heavy as in Experiment I. We summarize the results
from the Gaussian, independent and FGM copulas in Panel B
of Table 2. The pattern of the biases under the three copulas is
quite similar to what we have found from Table 1. It is clear
that the RMSEs under the Gaussian copula are consistently
smaller than the RMSEs under the independent copula. For
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Table 2. Bias and RMSE of the two-step estimator (Experiment II).

Bias RMSE

N = 50 N = 100 N = 50 N = 100

T = 5 T = 10 T = 5 T = 10 T = 5 T = 10 T = 5 T = 10

Panel A. The first-step estimation:
(A.I) NLS without considering endogeneity
β̂NLS

1 −0.0830 −0.0832 −0.0779 −0.0776 0.0092 0.0062 0.0072 0.0051
β̂NLS

2 0.1670 0.1668 0.1721 0.1724 0.0092 0.0062 0.0072 0.0051
β̂NLS

3 −0.0006 −0.0001 −0.0001 0.0000 0.0091 0.0039 0.0064 0.0029
δ̂NLS

1 −0.1176 0.0198 −0.0265 0.0046 1.0359 0.3888 0.3824 0.0608
δ̂NLS

0 −0.3732 −0.0488 −0.1244 −0.0237 2.8345 0.9877 1.0347 0.1892

(A.II) Method of moment with IV
β̂ IV

1 0.0078 0.0196 0.0300 0.0324 0.0492 0.0275 0.0225 0.0121
β̂ IV

2 0.0004 −0.0001 −0.0001 −0.0001 0.0100 0.0071 0.0074 0.0049
β̂ IV

3 −0.0003 0.0001 0.0001 0.0000 0.0119 0.0052 0.0087 0.0038
δIV

1 −0.0032 −0.0054 −0.0038 −0.0035 0.0758 0.0517 0.0525 0.0349
δIV

0 −0.0605 0.0235 −0.0251 0.0134 0.1268 0.0723 0.0698 0.0291
σ IV

v −0.0017 −0.0006 −0.0007 −0.0004 0.0038 0.0020 0.0018 0.0013

Panel B. The second-step ML estimation: (Given the estimate β̂ IV)
(B.I) Gaussian copula
σ̂τ 0.0499 0.0280 0.0132 0.0111 0.0502 0.0323 0.0514 0.0329
σ̂η 0.0097 −0.0107 −0.0097 −0.0374 0.0719 0.0658 0.0973 0.0708
b̂0 −0.0265 −0.0319 0.0061 −0.0164 0.0838 0.0721 0.1123 0.0810
ρ̂ −0.2394 −0.1526 −0.1325 −0.1017 0.2242 0.1247 0.1075 0.0436

(B.II) Independent copula
σ̂τ 0.0911 0.0912 0.0788 0.0982 0.0396 0.0329 0.0573 0.0375
σ̂η 0.0694 0.0629 0.0508 0.0207 0.1033 0.0877 0.1366 0.0974
b̂0 −0.0265 −0.0319 0.0061 −0.0164 0.0838 0.0721 0.1123 0.0810

(B.III) FGM copula
σ̂τ 0.0746 0.0634 0.0440 0.0520 0.0408 0.0275 0.0381 0.0273
σ̂η 0.0254 0.0212 0.0037 −0.0142 0.0813 0.0749 0.1038 0.0858
b̂0 −0.0265 −0.0319 0.0061 −0.0164 0.0838 0.0721 0.1123 0.0810

NOTE: The total number of replication is 1000.

the small sample size, the estimator under the Gaussian copula
performs better than the estimator under the FGM copula in
terms of bias, but the pattern is not so clear for the large sample.
Moreover, the estimators under the Gaussian and FGM copulas
perform better than the estimator under independent copula,
which suggests that taking into account the correlation between
ξ1,i and ξ2,it is helpful in reducing the estimation bias. Overall,
our estimators in the above two experiments provide quite satis-
factory results. Thus, we conclude that the two-step estimation
procedure provides an effective way to estimate the parameters
of the four-component panel SF model with correlated random
components, especially in the heteroscedastic case which is quite
common in practice, because the variables in the heteroscedastic
function are, in fact, determinants of inefficiency.

7. Empirical Application

We now illustrate the working of our model using real data
on electricity distribution. In the application, instead of using
a production function formulation, we use an input distance
function (IDF) formulation because of the nature of the appli-
cation (multiple exogenous outputs). This is discussed in detail
in Section 7.2.

7.1. Data

The dataset used in this study is an unbalanced panel of 149
Norwegian electricity distribution firms observed over the years

2000 to 2016. The data are compiled by the Norwegian regulator,
NVE. We used three inputs and two outputs. The input variables
are capital, labor and materials (denoted by X1, X2, and X3).
Capital is the aggregate book value of all assets owned by the firm
in 10,000 NOK (Norwegian Kroner). Labor is the total number
of man-days, and materials is the cost of everything else (in 1000
NOK), which is obtained as the total cost minus costs of capital,
labor and lost load. The outputs are the size of the network (Y1),
defined as the total length of the high-voltage power lines (in
1000 kilometers), and the total number of customers (in ten
thousands) (Y2). In addition to these inputs and outputs, we also
include an environmental variable which is the proportion of
underground cables (z). The mean of it by firm is denoted by
mz. We also include the time trend t variable to accommodate
shifts in the production technology (technical change (TC)). t
is defined as the difference between the year and 1999 so that
for year 2000, t = 1, and t = 18 for the year 2017. Summary
statistics of these variables are given in Table 3. The dataset is
similar to the one used in Musau et al. (2021).

7.2. Transition From the Production Function to the Input
Distance Function

Our discussion so far was based on a production function
formulation. However, there are problems in applying the
production function tool in the presence of multiple outputs
if the outputs are exogenous to the producers. For example,
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Table 3. Summary statistics of the data.

Mean S.D. Q25 Q50 Q75

ln Y1 −0.9967 1.0778 −1.7203 −1.1744 −0.2971
ln Y2 −0.4078 1.4122 −1.1845 −0.5018 0.2510
ln X1 2.6957 1.1598 1.9612 2.5556 3.3307
ln X2 0.1896 0.5988 0.0098 0.3001 0.5498
ln X3 −0.1407 0.5042 −0.4390 −0.1533 0.1395
mz 0.3177 0.1949 0.1812 0.2739 0.4026
t 8.9465 4.8093 5 9 13

NOTE: Total number of observations is 2114.

in a service industry (water, electricity, health care, banking,
etc.) outputs are exogenously given because services are demand
determined and cannot be stored. Because of this, either a cost
function (CF) or an IDF is used to represent the technology.
Since the CF depends on input prices that are either difficult to
get or do not have enough variability in them, the use of the IDF
is preferred. The IDF does not require price information and is
dual to the CF. Using the duality results, we can derive all the
features of the technology, such as input elasticities with respect
to outputs and inputs, returns to scale (RTS) and TC, technical
(in)efficiency, etc., after estimating the IDF. Inefficiency in a pro-
duction function framework is output oriented (measures the
shortfall of output from the maximum possible output), whereas
it is input oriented in a CF and an IDF. That is, inefficiency
in a CF/IDF measures the percentage increase in cost over the
minimum cost (the cost frontier), ceteris paribus. Consequently,
the sign on the inefficiency terms will be positive in a CF/IDF
framework.

If there are multiple outputs, that is, Y is a vector of outputs,
and multiple inputs (X), then the technology can be speci-
fied in terms of the transformation function f (Y , X, t) = A.
Using the identifying assumption that an IDF is homogeneous
of degree 1 in X, we can write A/X1 = f (X̃, Y , t), where
X̃ = X2/X1, X3/X1, . . .. The term ln A includes inefficiency
and noise. Adding the i and t subscripts in ln A and writing it
as ln Ait = αi + uo

i + uit + vit gives the 4CSF model in the
IDF formulation. Thus, the IDF in logarithmic form is −x1it =

ln f (X̃it , Yit) − ln Ait ⇒ x1it = − ln f (X̃it , Yit , t) + ln Ait .
Assuming a Cobb-Douglas (CD) form for f (·), the IDF is written
as follows:

yit = x�
it β + βtt + τi + ηi + vit + uit , (66)

where the y variable in (66) is the log of capital and the x vari-
ables are logs of {(labor/capital), (materials/capital), kilometers
of network, number of customers}, respectively. In this model,
the two output variables are exogenous and the two input ratios
are endogenous. Note that in (66) the dependent variable (yit)
is now changed from x1it (log of capital) and the independent
variables (input variables) are replaced by logarithms of input
ratios (X2it/X1it) and outputs. Another way of looking at it is to
disregard the variables’ names we used earlier and just start from
the IDF in (66). Thus, from now on we will be using the new
names for the y and x variables (without changing the notations
used in the production function model in (1)) to fit them into the
IDF. Mathematically speaking, it is simply renaming the left- and
right-hand side variables and changing signs on the inefficiency
components.

7.3. Discussion of the Results

The coefficients of the IDF (reported in Table 4) from Step 1
are all statistically significant, except for two. The coefficients
associated with the log input ratios are negative, as required by
the production theory. These coefficients show the percentage
change in capital (X1) when the ratios of labor to capital and
energy to capital are increased by 1%. Thus, for example, when
the ratio of labor to capital is increased, a producer will be
using less (more) capital (labor) to produce a given level of
output, ceteris paribus. This can easily be seen in an isoquant
graph (with two inputs) for a given level of output. We can,
however, express these in terms of the standard input elasticities
(∂ ln X1/∂ ln Xj = εj) for easier interpretation. If we denote
∂ ln X1/∂ ln(X2/X1) by E2 and ∂ ln X1/∂ ln(X3/X1) by E3, then
εj = 1 + 1/Ej, j = 2, 3. Since Ej < 0, εj ≶ 0 when Ej ≶ −1. A

Table 4. Empirical results.

The first-step estimation:a
Within OLS estimation: IV Regression:

Coeff. s.e. Coeff. s.e. Coeff. s.e.

x2 −0.1563 0.0151∗∗∗b −0.2924 0.0995∗∗∗
x3 −0.1890 0.0145∗∗∗ −0.2670 0.1868
y1 0.2246 0.0858∗∗∗ 0.2391 0.0817∗∗
y2 0.1349 0.0536∗∗ 0.1200 0.0526∗∗
t −0.0003 0.0010 −0.0010 0.0030

The second-step estimationc

I. Independent copula II. Gaussian Copula III. FGMCopula
σv 0.0890 0.0011∗∗∗c 0.3458 0.0211∗∗∗c 0.0891 0.0012∗∗∗
σu 0.1723 0.0020∗∗∗ 0.4696 0.0244∗∗∗ 0.1742 0.0020∗∗∗
στ 0.6923 0.0005∗∗∗ 0.2872 0.0268∗∗∗ 0.7013 0.0008∗∗∗
ση = exp(δ0 + δ1mz) :
δ1 0.8175 0.0077∗∗∗ 1.3202 0.0199∗∗∗ 0.8082 0.0072∗∗∗
δ0 −1.4649 0.0059∗∗∗ −2.7874 0.1002∗∗∗ −1.4445 0.0056∗∗∗
ρ (or κ) N/Ad 0.9518 0.0029∗∗∗ −0.2803 0.0287∗∗∗
Const 2.6944 0.0029∗∗∗ 2.6187 0.0133∗∗∗ 2.6856 0.0030∗∗∗
ln L 800.3693 807.4656 801.6799

NOTE: a Robust standard errors are reported for the first-step regression. b ∗∗∗ , ∗∗ and ∗ denote 1%, 5%, and 10% levels of significance. c Plug in the IV estimates. All the
reported standard errors are computed using the sandwich formula. d N/A denotes “not applicable.”
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Figure 1. Kernel densities of the transient and persistent inefficiencies from the independent, Gaussian, and FGM copulas.

Table 5. Predicted Transient and Persistent (in)efficiencies.

Mean s.d. Q25 Q50 Q75

Transient inefficiencies
E(uI

it|εi.) 0.1804 0.0684 0.1401 0.1636 0.1999
E(uG

it |εi.) 0.4207 0.1591 0.3168 0.3780 0.4690
E(uF

it|εi.) 0.1381 0.0839 0.0828 0.1149 0.1665
Transient TEs

E(e−uI
it |εi.) 0.8419 0.0518 0.8245 0.8542 0.8736

E(e−uG
it |εi.) 0.6865 0.0891 0.6516 0.7076 0.7475

E(e−uF
it |εi.) 0.8758 0.0671 0.8492 0.8935 0.9920

Persistent inefficiencies
E(ηI

i |εi.) 0.1255 0.0879 0.0705 0.0940 0.1446
E(ηG

i |εi.) 0.0340 0.0345 0.0150 0.0209 0.0357
E(ηF

i |εi.) 0.2445 0.0760 0.1957 0.2199 0.2690
Persistent TEs

E(e−ηI
i |εi.) 0.8885 0.0674 0.8692 0.9123 0.9335

E(e−ηG
i |εi.) 0.9675 0.0313 0.9651 0.9795 0.9852

E(e−ηG
i |εi.) 0.7971 0.0507 0.7775 0.8127 0.8312

Overall TEs

E(e−uI
it × e−ηI

i |εi.) 0.7484 0.0750 0.7251 0.7653 0.7969

E(e−uG
it × e−ηG

i |εi.) 0.6659 0.0978 0.6306 0.6900 0.7331

E(e−uF
it × e−ηF

i |εi.) 0.6982 0.0694 0.6692 0.7122 0.7456

NOTE: The superscript “I”denotes independent copula, “G”denotes Gaussian copula
and “F” denotes FGM copula.

negative (positive) value of εj means that inputs 1 and j are sub-
stitutes (complements), using the definition that two inputs are

substitutes (complements) if an increase in the use of one leads
to a decrease (increase) in the use of the other, which means a
negative (positive) value of ε. Thus, capital is a substitute input
for both labor and energy since E2 = −0.2924 and E3 =
−0.2670, which means ε2 and ε3 are both negative. The output
elasticities (∂ ln X1/∂ ln Ym, m = 1, 2) are 0.2391 and 0.1200.
These elasticities have a cost interpretation, namely percentage
increase in cost for a 1% increase in each output, ceteris paribus.
The reason for this is that if use of all the inputs is increased by
say a% (so that input ratios are constant), cost will also go up
by a%, ceteris paribus. In the present case, cost is increased by
about 0.24% for a 1% increase in the network size. Similarly, for
a 1% increase in the number of customers the increase in cost
is 0.12%. Thus, for a simultaneous increase in both network size
and customers by 1%, there is a 0.36% increase in cost. That is,
there are scale economies to be exploited from expansion of out-
puts (which are exogenous). Finally, the coefficient of t is inter-
preted as TC. That is, a negative (positive) value of it indicates
a decrease (increase) in cost, given everything else. Technical
progress (regress) means cost diminution (augmentation), given
everything else. We find a negative coefficient of t (−0.001)
in the IV regression, which indicates technical progress (at
the rate of 0.1% per year, ceteris paribus). It is quite small
and insignificant.

In the second step, we estimate σu and σv and find they are
both significant. In this step, we also estimate the parameters
στ , ση, and ρ (or κ). ρ (κ) is the dependence parameter of the
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Figure 2. Kernel densities of the transient, persistent and overall TEs from the independent, Gaussian, and FGM copulas.

Gaussian (FGM) copula and captures the correlation between
the time-invariant and time-varying error components. Com-
pared with the independent copula, both the Gaussian and FGM
copulas have one extra parameter. The log-likelihood values
for the independent, Gaussian and FGM copulas are 800.3693,
807.4656, and 801.6799, respectively, and this suggests that the
Gaussian copula has a better fit for these data. The dependence
parameter from both the Gaussian and FGM copulas shows that
the dependence is significant. The estimate of the dependence
parameter from the Gaussian copula is ρ̂ = 0.9518, which can
be transformed to the Spearman’s ρ, denoted by ρs, using the
formula provided in Section 3.2. We obtained ρ̂s = 0.9473
for the Gaussian copula. Similarly, we can also transform the
dependence parameter κ in the FGM copula to ρs and obtain
ρ̂s = −0.0968, which is quite small. This shows that results from
the Gaussian copula are likely to be different from the other two
(for which ρ is either 0 or close to 0), which was shown in the
second-step estimation results in Table 2.

We find that the z variable (percent of underground cables)
is statistically significant in all three cases. Since δ1 is found
to be positive, the cost of persistent inefficiency is higher with
a higher percentage of underground cables. This might seem
counterintuitive. One explanation for this is the relative diffi-
culty in doing repairs and maintenance on underground cables,
relative to cables in the open air and sea. However, it should
also be noted that the choice between underground cables and
other distribution infrastructure depends to some extent on

the environment in which the firm is operating. For example,
the proportion of underground cables is 74% in the highly
urbanized Oslo region, compared to slightly below 20% for
either the Western region or the Northern region. Thus, if the
choice depends on the environment in which the firm operates,
then one can attribute persistent inefficiency to the environ-
ment and not the proportion of underground cables per se.
Nevertheless, previous studies on efficiency in the electricity
distribution industry have found a positive association between
the proportion of underground cables and technical inefficiency
(e.g., Musau et al. 2021 using Norwegian data and Kuosmanen
2012 using Finnish data).

Finally, we report estimates of (in)efficiencies from all three
copulas. The mean transient inefficiencies from the indepen-
dent, Gaussian, and FGM copulas are 0.1804, 0.4207, and
0.1381, respectively. The corresponding efficiency measures are
0.8419, 0.6865, and 0.8758, respectively. Thus, the electricity
distribution companies have scope of improvement as far as
transient efficiency is concerned. The means of persistent inef-
ficiency are 0.1255, 0.0340, and 0.2455, respectively, for the
independent, Gaussian, and FGM copulas. The corresponding
persistent efficiencies are 0.8885, 0.9675, and 0.7971. Thus, for
the FGM copula the mean persistent efficiency is about 17%
lower. The means of overall efficiency are 0.7484, 0.6659, and
0.6982 for the independent, Gaussian, and FGM copulas. Since
the overall efficiency is the product of persistent and transient
efficiency, its mean is affected by the presence of a few firms
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Figure 3. The predicted inefficiencies, TEs and their 95% confidence intervals from the Gaussian copula.

that are highly inefficient, which is indeed the case for the FGM
copula, especially for persistent (in)efficiency.

We also plot the distributions of transient and persistent
inefficiency measures obtained from the independent, Gaussian,
and FGM copulas in Figure 1. These figures give a better idea
about their distributions—not just the means (which can be
affected by a few extreme values). It can be seen from the long
tails of persistent inefficiency, especially for the independent
and FGM copulas, that there are a few firms that are operat-
ing with low levels of persistent inefficiency. On the contrary,
the Gaussian copula shows long tails for transient inefficiency.
Thus, the shapes and locations of both transient and persistent
inefficiency distributions for the Gaussian copula are different
from the other two. The distributions of transient, persistent,
and overall efficiency measures for the copulas are plotted in
Figure 2. The distributions of efficiency measures are mirror
images of their inefficiency counterparts. Similar to inefficiency,
efficiency distributions of persistent and transient efficiency for
the Gaussian copula are somewhat different from the other two.
However, the distributions of overall efficiency for all three are
quite similar. Note that they differ enough in terms of transient
and persistent efficiency. Since the overall efficiency is the prod-
uct of persistent and transient efficiency, a high (low) value of
persistent efficiency is compensated by a low (high) value of
transient efficiency. Thus, simply looking at the overall efficiency
might give misleading conclusions because low persistent effi-
ciency means that a firm cannot adjust its efficiency without a
major structural change. This is because persistent inefficiency
is something that is time invariant. On the other hand, transient
inefficiency can be changed over time. Since the Gaussian copula

is considered to be the one that best fits the data (as indicated by
the value of the log-likelihood function and also evidenced by
the simulation results), we advocate for it. Based on the results
from the Gaussian copula, we argue that there is potential for
substantial improvement in transient efficiency for most of the
distribution companies. We find that ignoring correlation gives
higher overall efficiency estimates.

In Figure 3, we include the graphs of the 95% con-
fidence intervals of the predicted transient and persistent
(in)efficiencies. In the graphs, we have a 45◦ line in which both
the x- and y-axes indicate the same predicted transient and
persistent inefficiencies and TEs from the Gaussian copula. The
points on the 45◦ line in each graph are the predicted transient
and persistent inefficiencies (efficiencies). Graphs in the first
(second) panel report predicted transient and persistent ineffi-
ciencies (TEs). The points above (below) the 45◦ line give the
upper (lower) bound of the 95% confidence intervals, which are
predicted using the delta method. It can be seen that the confi-
dence intervals for both transient and persistent (in)efficiencies
are quite tight, except when there are sparse points.

8. Conclusion

In this article, we consider a 4CSF model that includes persis-
tent and transient inefficiency (τi and uit). The distinguishing
features of the model are as follows. (i) The inputs (some or
all) are allowed to be correlated with one or more of the error
components in the production (input distance) function. (ii)
The model allows for correlation between the time-invariant
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and time-varying error components, that is, between (τi − ηi)
and (vit−uit), without specifying whether this correlation comes
from correlations between (i) ηi and uit , (ii) τi and uit , (iii) τi and
vit , (iv) ηi and vit , or some other combination of them. (3) The
copula approach is used to model the dependence between the
time-varying and time-invariant components.

We propose a two-step procedure to estimate the model. In
the first step, we use either the within or the first difference
transformation to eliminate the time-invariant components. We
then use either the 2SLS or the GMM approach to obtain
unbiased and consistent estimators of the parameters in the
frontier function, except for the intercept. This takes care of the
endogeneity associated with uit and/or vit . There is no need to
make distributional assumptions for this. In the second step,
we use the maximum simulated pseudo-likelihood method to
estimate the remaining parameters using distributional assump-
tions associated with τi, vit , ηi, and uit . Three copula functions
are used to allow correlation between time-invariant and time-
varying random components. The estimated parameters are
then used to predict both (in)efficiency components. Formulas
to predict transient and persistent (in)efficiency are derived
using the conditional means. Finally, to showcase the working
of our model, we provide results from both simulated and real
data. The simulation results show small bias and declining root
mean square errors as N and/or T increase. The empirical
results also satisfy all the theoretical properties of an IDF, which
is used to represent the technology of electricity distribution
firms. Overall efficiency results from all three copulas are found
to be quite similar, although persistent efficiency scores from
the Gaussian copula are found to be different from the other
two. Based on the data and simulation results, we recommend
using the Gaussian copula, which predicts much lower (higher)
persistent (transient) inefficiency compared to the other two
copulas. We find that ignoring correlation gives higher overall
efficiency estimates.
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