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Abstract
It is well documented that the biopharmaceutical sector has exhibited weak financial returns,
contributing to underinvestment. Innovations in the industry carry high risks; however, an
analysis of systematic risk and return compared to other asset classes is missing. This paper
investigates the time–frequency interconnectedness between stocks in the biotech sector and
ten asset classes using daily cross-country data from 1995 to 2019. We capture investors’
heterogeneous investment horizons by decomposing time series according to frequencies.
Using a maximal overlap discrete wavelet transform (MODWT) and a dynamic conditional
correlation (DCC)-Student-t copula, diversification potentials are revealed, helping investors
to reap the benefits of investing in biotech. Our findings indicate that the underlying assets
exhibit nonlinear asymmetric behavior that strengthens during periods of turmoil.
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1 Introduction

The literature has documented mediocre financial returns in the biopharmaceutical sector
accompanied by high risks due to drug pipelines and economic conditions (Fagnan et al.,
2013; Fernandez et al., 2012; Gopalakrishnan et al., 2008). However, systematic risk and
return compared to other asset classes have not been analyzed, which this paper addresses.
Since Markowitz (1952) laid the foundations for the capital asset pricing model (CAPM)
(Fabozzi & Francis, 1978; Lintner, 1965; Mossin, 1966; Sharpe, 1964), systematic risk, mea-
sured by beta coefficients, has been estimated from the relationship between stock andmarket
returns. A literature has emerged to derive time-varying betas using bivariate t-GARCH,
Markov switching model, and Kalman filters (for an overview, see Mergner & Bulla, 2008).
Limitations such as focusing on a single factor driving risk have been addressed bymultifactor
models (Fama& French, 1993). Other sources of risk stem from shocks in commodity prices,
e.g., oil prices (Boyer & Filion, 2007). In addition, gold serves as an anti-cyclical asset (Baur
& Lucey, 2010). This study includes oil and gold prices, focusing on their interconnectedness
with the biopharmaceutical sector and other asset classes.

Investment horizons differ; hence, we apply a maximal overlap discrete wavelet transform
(MODWT) to decompose short and long-term price movements. This approach is in line with
recent studies byAguiar-Conraria and Soares (2014), Kahraman andUnal (2016), andMestre
(2021).Mestre (2021) estimates a time–frequencymulti-betas model using an AR-EGARCH
with and without wavelets. Aguiar-Conraria and Soares (2014) illustrate wavelet coherency
and phase differences between stockmarket returns and oil prices. In contrast, Kahraman and
Unal (2016) apply Vector Autoregressive Moving Average models to predict metal prices.
Our approach differs in terms of methodology as we apply dynamic conditional correlation
(DCC)-Student-t copulas. In Operations Research, a large body of literature has applied
MODWT to decompose time series. These studies conduct forecasting of financial time
series (Jana et al., 2021), multiresolution analysis (Kilic and Ugur, 2018), risk assessments
for different trading horizons (Tzagkarakis & Maurer, 2020), and multifractal theory (Zhao
et al., 2015) among many other applications. In addition, copulas have been used to study
time-varying asymmetric tail dependence in portfolio selection (Yan et al., 2020) and the risk
exposure to oil price shocks (Shahzad et al., 2021).

Our contribution is twofold. To the best of our knowledge, this is the first study to evaluate
the connectedness of biotech assets with other asset classes. Specifically, we contribute by
examining the potential of various biotech assets (Nasdaq biotech, DJGL US biotech, SP500
pharmaceuticals, and NYSE ARCA Tech) as safe havens in periods of turmoil of major
stock market indices (S&P500 composite, FTSE100, and STOXX Europe), commodities
(crude oil and gold), and the forex market (Euro to USD exchange rate). Our methodologi-
cal contribution refers to evaluating the temporal and spectral interdependence among asset
classes employing a wavelet-based DCC-Student-t copula.We capture heterogeneous invest-
ment preferences of market participants by decomposing time series into frequency horizons.
Applying a wavelet decomposition via an entropy analysis captures heterogeneous invest-
ment preferences, which are not apparent in the scale-dependent information set. In the
context of wavelet analysis, the Shannon entropy might understate the randomness of the
data. Consequently, the Wavelet Entropy is commonly used based on the energy distribution
of wavelet coefficients. We refer to Zou et al. (2015) for further details.
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Market participants have heterogeneous investment and risk preferences, resulting in spe-
cific term objectives and investment horizons. The wavelet transforms analysis decomposes
the time series into signals providing information embedded in the frequency domain. These
signals are attributed to short-,medium-, and long-run components based on their frequencies.
We utilize a time-varying Student-t copula framework to examine the temporal connected-
ness among asset classes. Copulas are flexible and efficient in modeling both average and
extreme joint movements (tail dependence). Hence, the combination of wavelet decomposi-
tion and time-varying Student-t copula provides information that enhances our understanding
of dependence among asset classes in periods of turmoil or stability. These findings are
essential for risk assessment and portfolio management decisions over different investment
horizons.

We use daily data sourced from DataStream from 1995 to 2019. This period includes
several shocks, including the Asian Financial Crisis (1997–1998), the Iraq war (2003), the
Global Financial Crisis (GFC) (2008–2009), the debt crisis in Europe (ESDC) (2010–2012),
and the drop in crude oil prices in 2014. Copula estimates show that the dependence parameter
is high between Nasdaq biotech and other biotech assets for both original and decomposed
(i.e., split between short-medium- and long-term horizon) return series. Furthermore, the
connectedness structure for Nasdaq biotech and financial indices also exhibits a moderate
to strong dependence across all series. In contrast, linkages between Nasdaq biotech, com-
modities, and exchange rates are characterized by weak and negative dependence, indicating
a strong potential to attain diversification benefits over various frequency horizons.

Furthermore,we examine investors’ risk exposures deriving the value-at-risk (VaR),CoVar
and �CoVaR parameters (Adrian & Brunnermeier, 2016). We find that over the pre-2000
period, the VaRs are higher for biotech assets, whereas, over the post-2000 period, the VaRs
have significantly declined with few periods of abrupt changes, especially during the Iraq
war and the GFC, in line with the findings of Thakor et al. (2017). Furthermore, we find
that the VaRs have declined significantly with longer investment horizons, supporting the
mean-reverting behavior of asset prices.

The remainder of the paper is structured as follows. Section 2 discusses the methodology
followedbydata andpreliminary analyses inSect. 3. Section4presents our empirical findings,
followed by portfolio analyses in Sect. 5. Section 6 concludes.

2 Methodology

2.1 Maximal overlap discrete wavelet transforms

Wavelet transform analysis decomposes a series into a set of components, which correspond
to various frequency horizons. Hence, short-, medium-, and long-run movements can be
established. We utilize a maximal overlap discrete wavelet transform (MODWT), which
refers to a modified version of a discrete wavelet transform (DWT). MODWT does not
suffer from shortcomings such as shift-invariance and dyadic length.1 MODWT is known
by various names in the engineering and statistical literature, such as ’stationary DWT’
(Nason & Silverman, 1995), ’translation-invariant DWT’ (Coifman & Donoho, 1995), and
’time-invariant DWT’ (Pesquet et al., 1994). This subsection provides a brief introduction to
MODWT, and the interested readers are referred to Nason and Sachs (1999), Percival and
Walden (2000), and Gençay et al. (2001) for further details.

1 The discussion of drawbacks and advantage of DWT and MODWT is beyond the scope of this paper.
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As we work with financial time series, first-differencing, i.e., return series, results in
stationary series, which we denote as rt with t � 1, 2, . . . , N . We can deconstruct rt into a
set of J frequencies by circularly filtering rt by employing the MODWTwavelet and scaling
filters (1), where, h̃ j,l and g̃ j,l represent the wavelet and scaling filters, respectively, and L j

is the length of the filter. Note that the length of the filter can vary between different levels
of decomposition denoted j.

W̃ j,t �
L j−1∑

l�0

h̃ j,lrt−lmod N (1)

Ṽ j,t �
L j−1∑

l�0

g̃ j,lrt−lmod N

Aswe incorporate theMODWT, the rescaled filters can be accessed from theDWTwavelet
and scaling filters as in (2). Note that J represents the total number of levels of decomposition,
and j is the level of decomposition (Zhu et al., 2014).

h̃ j,l � h j,l

2 j/2 , g̃ j,l � g j,l

2 j/2 , j � 0, . . . , J (2)

By classification, a DWT wavelet filter h j,l with length L j must satisfy the following
properties (3).

L j−1∑

l�0

h j,l � 0,

L j−1∑

l�0

h2j,l � 1,

L j−1∑

l�0

h j,l h j,l+2n � 0,∀n ∈ N
+ (3)

These properties ensure the elimination of redundant information in coefficients and result-
ing components, as "overlapping observations" are padded out, and only one "smooth" is
used, i.e., the one corresponding to the largest scale. Moreover, energy preservation (unit
energy/minimum variance) is achieved vis-a-vis the original series (Gençay et al., 2001; Per-
cival & Walden, 2000). The properties outlined in Eq. (3) are essential as they ensure that
the set of wavelets constitutes an orthonormal basis, i.e., a signal can be decomposed using
this set of wavelets. The DWT scaling filter is specified as the quadrature mirror of DWT
wavelet filter satisfying conditions (4).

h j,l � (−1)l g j,L j−1−l , org j,l � (−1)l+1h j,L j−1−l , l � 0, . . . , L j − 1. (4)

The selection of the wavelet filter is crucial for deconstructing the underlying series to
obtain the wavelet coefficients. We adopt the least asymmetric (LA) filters of Daubechies
(1992) in MODWT to extract wavelet and scaling coefficients. LA filters are suitable to
apprehend the scale and time differences in underlying series. In addition, the financial
literature favors the utilization of LA(8) due to its ability to approximate phase linearity and
near symmetric properties (Percival & Walden, 2000). The linearity of phase indicates that
the sinusoidal components and the events in the wavelet and scaling coefficients are aligned,
across all levels of the decomposed series, to the original series. We determine the optimal
MODWT decomposition level based on entropy specification criteria.

2.2 Marginal distributions

By Sklar’s (1959) Theorem, a joint distribution of random variables can be expressed by their
marginal distributions and the copula. Hence, selecting suitable marginal distributions for our
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time series is essential in estimating the copula.We chose the best-suited models for marginal
distributions from different specifications, including GARCH, GJR-GARCH, and EGARCH
for each decomposed series. Based on theAIC, theARMA(1,0)-GJR-GARCH(1,1) specifica-
tion is the best choice for capturing the dynamics of the underlying series. The GJR-GARCH
is appropriate when negative and positive shocks tend to contribute asymmetrically to con-
ditional volatility (Glosten et al., 1993). Accordingly, the mean-equations for return series rt
are specified as in (5), where μ is the vector of constants, φi and θ j are the autoregressive
(AR) and moving average (MA) components with m and n lags, respectively.

rt � μ +
m∑

i�1

φi rt−i + εt +
n∑

j�1

θ j εt− j (5)

The white noise process εt follows a student-t distribution with v degrees of freedom
and the conditional variance, σ2t . Equation (6) shows the general form of the GJR-GARCH
(P, Q), where, � is the variance intercept, σ2t−i the forecast error variance of the previous
period (the GARCH component), ε2t− j refer to past variances (the ARCH component), γ j

represent the leverage effect, and I is an indicator function taking the value I [x < 0] � 1
and zero otherwise.

σ2t � � +
P∑

i�1

βiσ
2
t−i +

Q∑

j�1

α j ε
2
t− j +

Q∑

j�1

γ j I
[
εt− j < 0

]
ε2t− j , (6)

For stationarity and positivity, � > 0, βi ≥ 0, j ≥ 0, j + γ j ≥ 0, and
∑P

i�1βi +∑Q
j�1 j + 1/2

∑Q
j�1γ j < 1. The GJR model is suitable when negative shocks add more to

the conditional volatility than positive shocks.

2.3 Time-varying copula model

We utilize the bivariate DCC-Student-t copula approach to assess the temporal dependence
between different frequencies and tail dependence. This approach offers flexibility in account-
ing for extreme comovements, which are common in financial data. Using Sklar’s (1959)
theorem, we estimate the joint cumulative distribution function (cdf), FXY (x, y), of two
series, X and Y , in terms of marginal cumulative distribution functions of each variable,
FX (x) and FY (y), and a copula function C shown in (7).

FXY (x, y) � C(FX (x), FY (y)). (7)

The joint probability density function (pdf), fXY (x, y), can be estimated from the uni-
variate marginal distributions of two underlying series, fX (x) and fY (y), and the pdf of the

copula distribution, c(x, y) � ∂2C(x,y)
∂x∂y , as shown in (8). This follows from (7) after taking

partial derivatives with respect to x and y, assuming that all functions are differentiable.

fXY (x, y) � c(x, y) fX (x) fY (y). (8)

Weutilize theStudent-t copula to evaluate extreme comovements in the series. Equation (9)
expresses the multivariate case of a time-varying Student-t copula, where d represents the
degrees of freedom, t−1

d corresponds to the inverse univariate t distribution, and td,ρ charac-
terizes the multivariate t distribution with ρ as the dependence matrix. Note that � refers to
the Gamma function.
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Cd,ρ (u1, . . . , un) � td,R

(
t−1
d (u1) , . . . , t

−1
d (un)

)

�
t−1
d (u1)

∫
−∞

· · ·
t−1
d (un )

∫
−∞

�
( d+n

2

) |ρ|−1/2

�
( d
2

)
(πv)

n
2

(
1 +

1

d
zT ρ−1z

)− d+n
2

dz1 · · · dzn
(9)

We consider the temporal dependence among the underlying assets by replacing the linear
correlation ρ with the dynamic conditional correlation (DCC) coefficient of Engle (2002).
Consequently, the time-varying DCC matrix, Rt , is given by (10), where � � (1 − − β)R,
and β are always positive with their sum being less than 1, and εt represents the standard-
ized returns stemming from the ARMA(1,0)-GJR-GARCH(1,1) specification. The latter is
obtained from fitting models for marginal distributions as outlined in Sects. 2.2 and 4.1.

Rt � diag
(
Q̃t

)−1
Qtdiag

(
Q̃t

)−1
, Qt � � + αεt−1ε

′
t−1 + βQt−1, (10)

2.4 Estimation process

The copula parameters are estimated by utilizing a two-step maximum likelihood technique.
The inference functions for margins (IFM) method is based on Joe (1997). The first step of
this procedure comprises the estimation of univariate GARCH parameters, θ̂1 related to the
marginal distributions as in (11).

θ̂1 � argmaxθ1

T∑

t�1

n∑

j�1

ln f j
(
u jt ; θ1

)
. (11)

Based on θ̂1, we estimate DCC-student-t copula parameter, θ̂2, in the second step (12).

θ̂2 � argmaxθ2

T∑

t�1

ln c
(
F1(u1t ), F2(u2t ), . . . , Fn(unt ); θ2, θ̂1

)
. (12)

The interested readers are referred to Joe (1997) and Patton (2006) for a detailed discussion
of copulas.

3 Data and descriptive analysis

3.1 Sampling and variables

Wecollected daily data from January 2, 1995 to February 7, 2019 of biotech indices, including
the Nasdaq biotechnology index (Nasdaq biotech), the Dow Jones U.S. Biotechnology Index
(DJUSBTUS biotech), and the S&P 500 pharmaceuticals index (SP500 pharma). Other asset
classes refer to the NYSE ARCA Tech index (NYSE ARCA)), commodities (crude oil and
gold), the equity markets of the United States, the UK, and Europe (S&P 500, FTSE 100,
and Stoxx600E), and the Euro to the USD exchange rate.

The Nasdaq biotechnology index comprises 278 companies listed on the NASDAQ. The
top five constituents Amgen, Gilead, Illumina, Vertex, and Moderna, account for about 30%
of the index. In contrast, the Dow Jones U.S. Biotechnology index only represents 17 com-
panies, including the top four companies in the Nasdaq biotechnology index. The S&P 500
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pharmaceuticals index differs in that it uses an equal-weighted market cap method. Hence, it
is less skewed towards large corporations. Moreover, the index is based on 49 constituents,
representing a larger base than the Dow Jones U.S. Biotechnology index. The other asset
classes refer to mostly standard indices. Note that the STOXX Europe 600 is a broad index,
which also contains some UK-listed firms; however, this overlap only refers to about 20%
of the index. The selected data is extracted from DataStream International. The investigation
period covers the Asian financial crisis (1997/1998), the dot.com bubble (2001), the Iraq war
(2003), the GFC, the ESDC, and the deterioration of crude oil prices in 2014.

3.2 Descriptive statistics

For all series, we calculate log-returns defined as ri,t � ln
(
Pi,t/Pi,t−1

)
. Table 1 reports

descriptive statistics, including annualized means, the annualized standard deviation, and
Sharpe ratios (SR). Sharpe ratios, i.e., the reward-to-risk measure, indicate that biotech and
pharmaceutical indices significantly outperform.2 Return distributions for nearly all the assets
are negatively skewed. The values of kurtosis are higher than 3 in all cases. Hence, the return
distributions are skewed negatively and exhibit leptokurtic distributions, indicating asym-
metric and fat tails. The null hypothesis of normality is strongly rejected by the Jarque–Bera
test as expected. The Ljung-Box test-statistics with 15 lags for returns and squared returns are
significant at the 1% threshold level, indicating serial correlation in both series. The test statis-
tics from ARCH-LM with 15 lags strongly reject the null of conditional homoscedasticity,
suggesting the utilization of a GARCH-type specification to model the volatility clustering
and temporal dynamics.

We use a Symlet wavelet and derive the optimal level of decomposition, which is eight
in all cases. The MODWT decomposes the original time series based on eight scales. The
first scale refers to a high-frequency signal, which corresponds to a short period. One could
interpret the first scale as the short-run horizon of investors. Higher scales could be interpreted
as a medium to long-term horizons as they refer to longer periods. Figure 1 illustrates the
decomposition of return series into short-, medium-, and long-run components based on
the Nasdaq Biotech Index. The decomposed series becomes less volatile at lower frequency
levels, i.e., higher scales.

4 Empirical analysis

4.1 Fittingmodels for marginal distribution

The DCC-Student-t copula parameters are estimated by utilizing a two-step procedure. In
the first step, we estimate marginal distributions models as outlined in Sect. 2.2, i.e., uni-
variate GARCH-type models for undecomposed and decomposed series. Table 2 presents
the ARMA(1,0)-GJR-GARCH(1,1) specification parameters for the undecomposed series.
In mean-equations, the first-order autocorrelation coefficient (AR(1)) is insignificant—ex-
cept for gold price changes. This indicates limited predictability of returns due to highly
efficient markets. The parameters (α) and (β), representing ARCH and lagged conditional
variance, are strongly significant at the 1% significance level suggesting that current variance
is affected by lagged squared shocks and persistency in conditional volatility.

2 The risk-free rate in reward-to-risk measure is T-bill rate, which is estimated to be around 1%.
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Fig. 1 The return of the Nasdaq Biotech Index was decomposed using a Symlet wavelet. The optimal level of
decomposition is eight. Scale 1 refers to the highest frequency and shortest period, whereas scale 8 represents
the lowest frequency and longest period. We interpret the first scale as the short-run, scale 5 as the medium,
and scale 8 as the long-term horizon

The parameter capturing the asymmetric impact of good and bad news on conditional
volatility (γ ) is strongly significant at the 1% significance level. Furthermore, the degrees
of freedom parameter (DoF) is strongly significant, with values exceeding two for all assets
indicating a potential for tail dependence. Hence, extreme joint movements and fat tails
characterize all distributions. Diagnostics suggest that an ARMA(1,0)-GJR-GARCH(1,1)
specification together with a Student-t distribution is adequate for modeling stylized facts of
all the assets in our sample. Although the deviation from normality still exists in residuals,
there is no autocorrelation and ARCH effects remaining in nearly all assets, suggesting
stability of the employed models for marginal distributions.

4.2 Estimates of copula functions

Based on GJR-GARCH filtered returns, we evaluate the connectedness dynamics between
the biotech indices and other asset classes by employing a DCC-Student-t copula framework.
Table 3 presents the copula estimates for original and decomposed returns series between
the Nasdaq biotech and other underlying assets. The connectedness parameter is strongly
significant at the 1% threshold level for all assets. The dependence parameter is high between
the Nasdaq biotech and other biotech assets over both undecomposed and decomposed series.

Furthermore, the connectedness structure between the Nasdaq biotech and other financial
indices may also be characterized as moderate to strong dependence across all series. This
shows that biotech indices and financial assets tend to move together. In contrast, the link-
age structure between the Nasdaq biotech and commodities or exchange rates is weak and
negative, indicating diversification benefits over various frequency horizons. The parameters
capturing the asymmetric effect of shocks (α) and persistency in conditional connectedness
(β) are strongly significant at the 1% significance level. The degrees of freedom (DoF) param-
eter is low and strongly significant at the 1% significance level for the undecomposed series
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and the short-run trend. However, the DoF parameter is large for lower frequencies indicating
that over those frequencies, the return distribution converges to standard normal distribution.
The lower and significant estimates of DoF show that the extreme joint movement is highly
likely for the undecomposed and short-run trend. Although the dependence parameter does
not change considerably for biotech indices and the three underlying financial indices, the
direction and intensity of connectedness vary in the case of crude oil, gold, and the Euro to
the USD exchange rate. It is noteworthy that the dependence of the Nasdaq biotech index
with crude oil and gold differs between the undecomposed series (0.072 and−0.029) and the
long-run horizon (−0.053 and −0.116), respectively. However, the connectedness dynamics
between the Nasdaq biotech index and the Euro to USD exchange rate closely follow the
neutrality over the original, short-, and medium-run series. This indicates a strong diversifi-
cation potential over the long run. Similar diversification and risk management benefits may
be achieved by utilizing the Nasdaq biotech index and the Euro to the USD exchange rate in
a portfolio over the original, short-, and medium-run series.

Additional analyses were conducted focusing on the DJGL US biotech, S&P500 pharma-
ceuticals, and the NYSE ARCA Tech indices, which lead to qualitatively similar findings.
In summary, there are pronounced diversification benefits when combining investment in
biotech with foreign exchange markets and commodities. The following section conducts
portfolio analyses to investigate these alleged diversification benefits.

5 Portfolio analyses

5.1 Value-at-risk, CoVaR, and1CoVaR

Value-at-risk (VaR) is the statistical measure of possible losses of investment in an asset,
where losses greater than the VaR are suffered with a specified probability. We quantify the
downside risk of investment in biotech and other asset classes. Let rt be the continuously
compounded return of the underlying asset then the VaRα

1,t is the α th quantile of the return
distribution defined in Eq. (13).

Pr
(
r1,t ≤ VaRα

1,t

) � α (13)

The downside CoVaR is defined as the VaR for an underlying asset conditional on extreme
outcomes of another asset. Given a bivariate time series rt � (

r1,t , r2,t
)
: t � 1, 2, . . . , N

with r2,t representing each of the biotech assets and r1,t representing other underlying assets,3

the downside CoVaR of biotech returns conditional on the extreme downward movements
of other assets, which is expressed in (14), where Pr

(
r2,t ≤ VaRβ

2,t

)
� β with β as the tail

probability distribution of the other assets.

Pr
(
r1,t ≤ CoVaRα

(1|2,t)|r2,t ≤ VaRβ
2,t

)
� α (14)

In addition to the VaR and CoVaR, we estimate the Delta CoVaRs (�CoVaR), which can
be interpreted as the difference between the VaR for other underlying assets conditional on an
extreme movement of biotech assets and the VaR of the underlying asset returns conditional
on the normal state (median values) of the biotech assets, which can be expressed in (15).

3 Other underlying assets corresponds to biotech indices, financial market indices, commodities, and exchange
rates.
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CoVaRα
1|2M,t satisfy that Pr

(
r1,t ≤ CoVaRα

1|2M,t |F(2,t)(r2,t) � 0.5
)

� α

�CoVaRα
1|2,t �

(
CoVaRα

1|2,t − CoVaRα
1|2M,t

)
(15)

Table 4 provides the estimates of VaR of all undecomposed and decomposed return series.
Based on VaR estimates, the Euro to USD exchange rate exhibits the lowest risk as abrupt
changes are rather uncommon. This is followed by gold and the S&P500 composite, exhibit-
ing −1.598% and −1.792%, respectively. The highest estimate of VaR occurs in crude oil,
exhibiting a value of −3.782%, which may be due to its sensitivity to financial, economic,
and political uncertainties. In the case of biotech assets, the S&P500 pharmaceuticals index
provides the lowest values of VaR of −1.854%. However, it is noteworthy that the VaR esti-
mates tend to decline with longer periods (low frequency), which may be attributed to the
lower volatility of asset returns over the long term (Carvalho et al., 2018).

Table 5 shows our results of CoVaRs between the Nasdaq biotech index and other asset
classes. The descriptive statistics ofCoVaR indicate that the downsideVaRandCoVaRexhibit
similar trends in all cases, with only minor differences in magnitude. Furthermore, analogous
to long-run estimates of VaR, the values of CoVaR also decline with lower frequencies.

Regarding �CoVaR, the results indicate that the values are different from the CoVaR
estimates demonstrating extreme uncertainty to risk relative to a normal state (i.e., median
values) as shown in Table 6. However, considering lower frequency dimensions, the values of
�CoVaR for the underlying assets conditional on biotech assets approach zero. This indicates
that, over the long run, there is no difference between the CoVaRs for underlying asset returns
between normal conditions and extreme outcomes in the biotech sector.

5.2 Portfolio designs and hedging

In addition to our VaR and CoVaRs analyses, we estimate temporal and frequential optimal
portfolio weights and hedge ratios between biotech assets and other underlying assets. Fol-
lowing Kroner and Ng (1998), we derive risk-minimizing weights for portfolios consisting
of a biotech and a non-biotech asset. This binary approach is common when comparing
asset classes. As outlined in Kroner and Sultan (1993), a mean–variance optimizing investor
maximizes her expected utility, which consists of the expected return minus her coefficient
of risk aversion times the variance. This can be derived from a CARA (constant absolute
risk aversion) utility function taking logs, i.e., applying a positive monotonic transformation.
Hence, portfolio weights are a function of risk preferences, which limits their use if these
preferences are unknown or heterogeneous among a group of investors. Kroner and Sultan
(1993) assume that futures prices are martingales, i.e., Et (Pt+1) � Pt . This assumption
implies that future expected returns are zero as stated in Kroner and Ng (1998). Based on
this assumption, simplified hedge ratio that do not depend on the degree of risk aversion can
be derived.

Our methodology focuses on estimating the time-varying covariance matrix, which is the
driver of portfolio weights as outlined in Kroner and Ng (1998). As can be seen in Table
2, the mean-equation predicts expected returns close to zero, which is expected in the case
of efficient markets. Hence, the assumption that future expected returns are zero cannot be
rejected empirically.

Optimal weights of the other underlying assets (OA) denoted w
OA,BA
t are derived in (16)

at time t. The conditional variance of biotech assets and other underlying assets refer to hBA
t

and hOA
t respectively, and hOA,BA

t is the conditional covariance of biotech assets with other
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assets. Note that conditional variances and the covariance are conditional with respect to
time, i.e., the information set at time t. In line with Kroner and Ng (1998), portfolios must
be fully investing, and short selling is not permitted. Equation (16) applies these conditions
and derives w̃

OA,BA
t . The weight of biotech assets in the bivariate portfolio is estimated

as1 − w
OA,BA
t .

w
OA,BA
t � hBA

t − hOA,BA
t

hOA
t − 2hOA,BA

t + hBA
t

(16)

w̃
OA,BA
t �

⎧
⎪⎨

⎪⎩

0 if w
OA,BA
t < 0

w
OA,BA
t if 0 ≤ w

OA,BA
t ≤ 1

1 if w
OA,BA
t > 1

This binary approach is common when comparing asset classes. For instance, Arouri
et al. (2011) adopted the same methodology to derive portfolios based on equities (using
stock market indices) and oil prices. Using a multivariate approach requires making further
assumptions such as the optimal number of asset classes, risk preferences, liquidity needs,
and many other factors, which go beyond the scope of the paper.

Table 7 presents an overview of portfolio weights for undecomposed and decomposed
series estimated from our ARMA(1,0)-GJR-GARCH(1,1) specification and a DCC-Student-
t copula. Our analysis indicates that the average portfolio weight of the Euro to USD/Nasdaq
biotech portfolio is 0.868, suggesting that for $1 portfolio, 86.8 cents should be allocated in
the Euro to USD exchange rate and 13.2 (1− 0.868) cents should be invested in the Nasdaq
biotech index. However, with the longer investment horizon, portfolio weights converge to
equally weighted portfolios.

In addition, following Kroner and Sultan (1993), we estimate hedge ratios for bivariate
portfolios, i.e., each of biotech asset and other asset classes. To minimize the uncertainty of
the portfolio that is $1 invested in other assets, the investor should short $β of biotech assets.
We estimate the hedge ratios as in (17).

β
OA,BA
t � hOA,BA

t

hBA
t

(17)

Hedge ratios are significantly higher when considering a biotech index and other financial
indices. For instance, the hedge ratio between the S&P500 composite/the Nasdaq biotech
index is 0.436, which indicates that a $1 long position in the S&P500 composite index can be
hedgedwith a 43.6 cents short position in theNasdaq biotech index. However, it is noteworthy
that the cost of hedging is significantly lower in the case of bivariate portfolios consisting of
biotech assets with commodities and exchange rate, which is in line with VaR estimates. For
instance, in the case of the Nasdaq biotech index and the Euro to the USD exchange rate, a
$1 long position in the Euro to USD exchange rate can be hedged with a 0.2 cents position
in the Nasdaq biotech index. Similarly, in the case of the NYSE ARCA Tech index and gold,
a $1 long position in gold can be hedged with a 1.8 cents long position in NYSE ARCA
Tech. Overall, our findings indicate a significant potential to realize diversification and risk
management benefits by combining biotech assets with other commodities or exchange rates.

6 Conclusions

This study evaluates the temporal and spectral interdependence among biotech assets and
other asset classes by employing wavelet-based DCC-Student-t copulas. Specifically, we
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Table 7 Summary statistics of portfolio weights and hedge ratios (HR)

Returns Short-run trend Medium-run trend Long-run trend

Weight HR Weight HR Weight HR Weight HR

Panel A: Nasdaq Biotech

DJGL US
Biotech

0.696 0.863 0.673 0.854 0.576 0.862 0.502 0.906

SP500
Pharma

0.838 0.396 0.817 0.391 0.621 0.466 0.501 0.518

NYSE ARCA
Tech

0.731 0.621 0.697 0.629 0.593 0.617 0.500 0.777

SP500 comp 0.904 0.436 0.892 0.409 0.656 0.541 0.501 0.659

Crude oil 0.355 0.098 0.367 0.094 0.462 0.114 0.498 −0.053

Gold 0.697 −0.014 0.700 −0.024 0.572 0.046 0.500 −0.116

EURO to
USD

0.868 0.002 0.861 0.007 0.613 −0.013 0.500 0.140

FTSE100 0.717 0.232 0.692 0.153 0.602 0.387 0.500 0.331

STOXX
Europe

0.723 0.249 0.695 0.166 0.597 0.455 0.500 0.375

Panel B: DJGL US Biotech

Nasdaq
Biotech

0.304 0.963 0.327 0.972 0.424 0.920 0.498 0.906

SP500
Pharma

0.807 0.421 0.781 0.421 0.590 0.521 0.501 0.522

NYSE ARCA
Tech

0.649 0.615 0.628 0.635 0.562 0.539 0.499 0.672

SP500 comp 0.875 0.441 0.860 0.422 0.617 0.523 0.500 0.620

Crude oil 0.334 0.087 0.341 0.074 0.450 0.081 0.498 −0.048

Gold 0.679 −0.025 0.678 −0.032 0.557 0.046 0.500 −0.151

EURO to
USD

0.855 0.002 0.847 0.006 0.599 −0.034 0.500 0.196

FTSE100 0.684 0.220 0.658 0.142 0.581 0.362 0.499 0.248

STOXX
Europe

0.692 0.239 0.662 0.158 0.575 0.416 0.500 0.337

Panel C: SP500 Pharma

Nasdaq
Biotech

0.162 0.854 0.183 0.891 0.379 0.592 0.499 0.519

DJGL US
Biotech

0.193 0.818 0.219 0.849 0.410 0.637 0.499 0.523

NYSE ARCA
Tech

0.324 0.611 0.327 0.684 0.445 0.442 0.499 0.313

SP500 comp 0.625 0.611 0.649 0.606 0.532 0.634 0.500 0.437

Crude oil 0.209 0.058 0.218 0.055 0.403 −0.044 0.497 0.029

Gold 0.546 −0.047 0.546 −0.043 0.503 0.015 0.500 −0.123
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Table 7 (continued)

Returns Short-run trend Medium-run trend Long-run trend

Weight HR Weight HR Weight HR Weight HR

EURO to
USD

0.756 −0.017 0.739 −0.009 0.553 −0.044 0.500 0.025

FTSE100 0.480 0.352 0.487 0.225 0.506 0.490 0.499 0.322

STOXX
Europe

0.487 0.375 0.491 0.249 0.498 0.497 0.499 0.273

Panel D: NYSE ARCA Tech

Nasdaq
Biotech

0.269 0.902 0.303 0.912 0.407 0.731 0.500 0.777

DJGL US
Biotech

0.351 0.806 0.372 0.815 0.438 0.610 0.501 0.672

SP500
Pharma

0.676 0.435 0.673 0.454 0.555 0.391 0.501 0.313

SP500 comp 0.895 0.645 0.892 0.606 0.651 0.782 0.502 0.866

Crude oil 0.269 0.196 0.286 0.178 0.412 0.190 0.494 0.132

Gold 0.621 −0.018 0.625 −0.034 0.530 0.021 0.500 0.061

EURO to
USD

0.817 0.000 0.807 0.009 0.581 −0.015 0.500 −0.096

FTSE100 0.610 0.366 0.601 0.238 0.553 0.526 0.500 0.660

STOXX
Europe

0.616 0.397 0.605 0.262 0.554 0.624 0.500 0.704

capture heterogeneous investment preferences by decomposing the original time series into
various frequency bands, establishing short-, medium-, and long-term horizons. The rationale
behind the choice of wavelet decomposition via entropy analysis is to account for hetero-
geneous investment preferences of investors, which are not apparent in the scale-dependent
information set.Market participants have heterogeneous investment and risk preferences and,
therefore, distinctive term objectives and investment horizons. The wavelet transforms anal-
ysis decomposes time series into a set of discrete signals providing evidence related to the
frequency domain of the series. To examine the temporal connectedness among underlying
assets, we utilize a DCC-Student-t copula. The combination of wavelet transform analyses
and time-varying DCC-Student-t copulas provide information that enhances our understand-
ing of dependence among biotech assets and other asset classes in calm and volatile periods
at different frequency horizons. Such information is important for identifying and imple-
menting both risk assessment and portfolio management decisions across various investment
horizons.

Our analyses indicate that biotech assets should be combined with commodities and forex
markets to realize diversification benefits. We also conduct an extended analysis from an
investor’s perspective by examining the value at risk (VaR). We find that over the pre-2000
period, VaRs are higher for biotech assets, whereas over the post-2000 period VaRs have
declined significantly with few periods of abrupt changes, especially during the Iraq war and
the global financial crisis in line with Thakor et al. (2017). Furthermore, we find that VaRs
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decline significantly with an increase in the investment horizon, which suggests the mean-
reverting behavior of assets. Our findings have implications for investors and other capital
market participants to design trading strategies. In summary, our analyses demonstrate that
biotech assets have delivered solid financial returns (see Table 1) and offer diversification
benefits (see Table 7) from 1995 to 2019. These results contradict more pessimistic findings
by Fagnan et al. (2013), Fernandez et al. (2012), and Gopalakrishnan et al. (2008).
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