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Bayesian inference is limited in scope because it cannot be applied in idealized contexts where
none of the hypotheses under consideration is true and because it is committed to always using
the likelihood as a measure of evidential favouring, even when that is inappropriate. The pur-
pose of this article is to study inductive inference in a very general settingwherefinding the truth
is not necessarily the goal and where the measure of evidential favouring is not necessarily the
likelihood. I use an accuracy argument to argue for probabilism and I develop a new kind of
argument to argue for two general updating rules, both of which are reasonable in different con-
texts. One of the updating rules has standard Bayesian updating, Bissiri et al.’s ([2016]) general
Bayesian updating, Douven’s ([2016]) IBE-based updating, and my (Vassend ([forthcoming])
quasi-Bayesian updating as special cases. The other updating rule is novel.
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1. Introduction

Bayesians hold that inductive inference requires two ingredients. First, a prior prob-

ability function defined on the hypotheses under consideration. Second, a likelihood

function, which assigns a probability to the evidence conditional on each hypothesis.

Intuitively, the prior probability assigned to a hypotheses represents how plausible it

is that the hypothesis is true before the evidence has been taken into account. The like-

lihood, on the other hand, is a measure of evidential favouring: if H1’s likelihood on

the evidence is greater than H2’s likelihood on the same evidence, then the evidence

favoursH1 overH2. Given a prior and likelihood, Bayesians hold that the prior prob-

ability of each hypothesis should be updated to a posterior probability through the use

of Bayes’s formula, so that the posterior probability of H is proportional to the prior

probability of H multiplied by its likelihood.

Bayesianism has become the most common formal framework used by philoso-

phers of science to study scientific methodology, and it is also an influential frame-

work for statistical inference. But it rests on an assumption that is often violated in
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scientific practice, namely, that one of the hypotheses under consideration is true.1

Suppose none of the hypotheses under consideration is true, so that the goal is instead

to find the hypothesis that is—in some sense—best. Depending on what is meant by

‘best’, the likelihood may not be an appropriate measure of evidential favouring. For

example, suppose the goal is to identify the hypothesis whose expected maximal pre-

diction error on future data is as low as possible. Then, as I show (Vassend ([forth-

coming]), the likelihood is not an appropriatemeasure of evidential favouring because

the hypothesis that has the best likelihood score on the evidence will in general not be

the hypothesis that has the lowest expected maximal prediction error on future data.

In this context, a more reasonable measure of evidential favouring may be one ac-

cording to which the evidence favours H1 over H2 if and only if H1’s maximal pre-

diction error on the evidence is lower than H2’s maximal prediction error on the

evidence. The fact that Bayesianism is tied to using the likelihood as a measure of

evidential favouring is therefore a limitation of the framework.

The goal of this article is to study inductive inference in a very general setting. Sup-

pose our goal is to identify the best hypothesis H (where ‘best’ does not necessarily

mean ‘true’). Let p be a function that assigns a number between zero and one (inclu-

sive) to each hypothesis, such that p(H) is interpreted as representing a prior judge-

ment of how plausible it is that H is best (in the relevant sense) out of the hypotheses

under consideration. In the rest of the article, I will refer to any such function as a

‘credibility function’. Suppose, moreover, that Ev[EFH ] is an evidential measure that

is sensible given the purpose at hand. Then the questions to consider are as follows:

(1) What norms should p obey? (2) How should p(H ) and Ev[EFH ] be combined in

order to produce a posterior score pE(H ) that represents how plausible it is that H is

best in light of E and the prior information?

As we will see, one of the standard Bayesian arguments for probabilism general-

izes, so that—given widely applicable conditions—p and pE ought to be probability

functions. The more interesting results concern updating. I will show that depending

on what the goal is, the prior probability function and evidential measure should be

combined in one of the following twoways in order to produce a posterior probability:
1 This l
[1980
[1999
Spren
Inferential Updating: Given evidential measure Ev and prior probability func-
tion p, update p to the posterior pE by way of the following formula:

pE(H) 5
Ev½EjH �p(H)

oiEv½EjHi�p(Hi)
:

Predictive Updating: Given evidential measure Ev and prior probability function
p, update p to the posterior pE by way of the following procedure:
imitation is well known, but often ignored. For discussion of the problem, see, for example, (Box
]; Bernardo and Smith [1994]; Forster and Sober [1994]; Forster [1995]; Key, Pericchi and Smith
]; Shaffer [2001]; Sprenger [2009]; Gelman and Shalizi [2013]; Walker [2013]; Vassend [2019];
ger [forthcoming]).
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Step 1: For each i, calculate q(Hi) 5 p(Hi) 1 Ev½EjHi�.
Step 2: Transform q to pE as follows: for each i, pE(Hi) 5 0 or pE(Hi) 5
q(Hi) 1 d, where d is the unique number such that d is minimal and, for all i,
pE(Hi) ≥ 0 and oipE(Hi) 5 1.
The justification for the names of the two updating procedures will become clearer

later. Inferential updating is clearly a generalization of Bayesian updating. Indeed

Bayesian updating is just inferential updating with the likelihood used as the measure

of evidential favouring.2 What separates inferential updating from predictive updat-

ing is the former rule’s commitment to regularity: inferential updating will never as-

sign a probability of zero to any hypothesis, whereas predictive updating typically

will. In Section 4, we’ll see that a commitment to regularity is sometimes reasonable

and sometimes not.

The plan for the rest of the article is as follows: In Section 2, I sketch an argument

for why any credibility function ought to be probabilistic, regardless of whether the

goal is truth or something else. Since the argument is a straightforward adaptation of

Pettigrew’s ([2016]) accuracy argument for probabilism, the section is brief. In Sec-

tion 3, I give characterizations of inferential and predictive updating from a set of

plausible assumptions. The strategy is to divide inductive updating into two steps:

in the first step, the prior plausibility of a hypothesis is combined with the hypoth-

esis’s score on the evidence according to some measure of evidential favouring in or-

der to produce a posterior score. In the second step, the posterior scores are normal-

ized so that they are probabilistic. As we’ll see, the requirement that the combination

step and normalization step commute in certain desirable ways, together with a few

other plausible assumptions, result in the conclusion that the combination step and

normalization step must both be either multiplicative or additive. The characteriza-

tions of inferential and predictive updating are then just a few short steps away. I

end the article with a discussion of inferential and predictive updating, including their

relationship to each other and to other updating rules.

2. Why Credibility Functions Should Be Probabilistic

Before we can show that credibility functions ought to be probabilistic, we need to get

clearer on what this claim amounts to. Let H be a set of hypotheses and suppose the

goal is to identify the hypothesis in H that is best rather than true (where ‘best’ can

mean anythingwe like). One complication that ariseswhen ‘true’ is replaced by ‘best’

is that whereas there is only one true hypotheses, there may be several that are best.3
tive updating, on the other hand, may remind the reader of the alternative to Jeffrey conditionali-
derived by Leitgeb and Pettigrew ([2010]). The two rules do indeed share several features in com-
although they are also importantly different. In fact, it is possible to derive a special case of predic-
pdating by using a proof strategy that resembles the one in (Leitgeb and Pettigrew [2010]). The
b–Pettigrew updating rule has been criticized by Levinstein ([2012]) for having unintuitive fea-
Predictive updating has some of the same features, but in fact I think these features are desirable
ntext in which predictive accuracy is the goal. For more discussion, see (Vassend [unpublished]).
k Reuben Stern for pointing this out to me.
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For example, if ‘best’means ‘having a minimal maximum expected prediction error’,

then there may be several hypotheses that are tied for best. Note, however, that this is

more a theoretical possibility than a practical one, since it is quite unlikely that mul-

tiple hypotheses would have (say) exactly the same predictive accuracy score, espe-

cially if the number of hypotheses is large. I will henceforth assume that at most one

hypothesis out of the hypotheses under consideration is best. Note that if wemake this

assumption, then the hypotheses will also be mutually exclusive in the sense that in

any subset of hypotheses at most one hypothesis can be best.

Another theoretical possibility is that none of the hypotheses under consideration

is best. This can, for example, happen if the hypothesis space is infinite and does not

contain a single best hypothesis, but rather an infinite sequence of hypotheses in as-

cending order of goodness.4 To preclude this possibility, we must also assume that at

least one of the hypotheses under consideration is best.

Provided we make the above assumptions, then there is nothing mathematically

or philosophically that prevents us from treatingH as a sample space. That is,H con-

sists of hypotheses that are exhaustive in the sense that one of the hypotheses is best

and mutually exclusive in the sense that at most one of the hypotheses is best in any

collection of hypotheses. Note also that there is a natural j-algebra onH. More pre-

cisely, union (or disjunction) and intersection (or conjunction) are defined in the nor-

mal way, the identity element for conjunction (that is, the top element of the algebra)

is H, and the complement (negation) of any set A formed through unions and inter-

sections of subsets of H is defined in the following way: :A :5H 2 A. The main

difference from the definition given in most philosophical treatments of Bayesianism

is that the top element is nowH rather than the tautology. This makes a big interpre-

tive difference, but no difference to the mathematics.

Given the above set-up, we can now define what it means for a function on the

algebra, H*, generated by H to be probabilistic in the following way:
4 I than
5 There
Probability Axioms: A function p defined onH* is probabilistic if and only if it
satisfies the following requirements:

(i) p(H) 5 1.
(ii) p(A) ≥ 0 for all subsets A of H*.
(iii) p(A ∨ B) 5 p(A) 1 p(B) 2 p(A&B), for all subsets A and B of H*.
Note that credibility functions automatically satisfy (ii) since we have defined them to

have a range between zero and one, so the real question is whether they ought to sat-

isfy (i) and (iii). One of the standard arguments for why regular credence functions (or

degrees of belief) ought to be probabilistic is the accuracy argument (Joyce [1998],

[2009]; Predd et al. [2009]; Pettigrew [2016]). Briefly, the argument is as follows5:
k a referee for pointing out this possibility.
are several versions of the argument; here, I present a variant of Pettigrew’s ([2016]) version.
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the ideal credence function to have is the function that assigns one to the hypothesis

that is true and zero to all hypotheses that are false. Suppose now that we have a di-

vergence measure (satisfying certain reasonable properties) that quantifies the dis-

tance between the ideal function and any other candidate credence function. It can

then be shown that any credence function that is not probabilistic will be dominated

by some probabilistic function in the sense that the probabilistic functionwill be guar-

anteed to have a smaller divergence from the ideal function. Since it is irrational to

choose an option that is known to be dominated, it follows that it is irrational to

use a non-probabilistic credence function.

An interesting fact about the accuracy argument for probabilism is that it does not

depend for its validity on any specific interpretation of the credence function, nor

does it depend on the assumption that the ideal credibility function is the function

that assigns one to the hypothesis that is true and zero to all hypotheses that are false.

Indeed, nothing in the accuracy argument prevents us from designating the ideal

credibility function otherwise. Hence, we can easily adapt the argument to a context

where the goal is to identify the hypothesis that is best rather than true. In such a

context, the ideal function would clearly be one that assigns one to the hypothesis

that is best and zero to all other hypotheses. We can then formulate the following

version of the accuracy argument:
(P1) The ideal credibility function is the function that assigns one to the hypoth-
esis that is best and zero to all other hypotheses.

(P2) Given any non-probabilistic function, there is a probabilistic function that
is guaranteed to have a smaller divergence from the ideal function (given
that the divergence measure has certain reasonable properties).

(P3) Given any probabilistic function, there does not exist any function that is
guaranteed to have a smaller divergence from the ideal function (given
that the divergence measure has certain reasonable properties).

(P4) If P1–P3, then non-probabilistic credibility functions are irrational.
(C) Non-probabilistic credibility functions are irrational.
P2 and P3 are mathematical theorems (proven by Predd et al. [2009]) that hold re-

gardless of what we choose as the ideal function. P1 and P4, on the other hand, are

intuitively reasonable general rational principles. The main question that may be

raised about the generalized version of the accuracy argument is whether the condi-

tions on the divergence measure are still reasonable when truth is no longer the goal.

For example, P2 and P3 require the assumption that the divergencemeasure belong to

the class of Bregman divergences. Is this a reasonable requirement to make?My only

response to this question is that I do not see how this assumption (and other necessary

mathematical assumptions) are more plausible if truth is the goal than if the goal is to

identify the hypothesis that is best in some other sense. So, at least in my eyes, the

generalized accuracy argument is at least as plausible as the original argument. In any

case, my main goal in this article is not to give a careful analysis of the accuracy argu-

ment. From now on I will assume that any credibility function ought to be probabilistic.
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That is, I will assume that if p is a function that assigns a number between zero and one

to each hypothesis H that represents how plausible it is that H is best (in some sense),

then p ought to be probabilistic. In the next section, I turn to the main question of the

article: given a probability function p and given a piece of evidence E, how should p

be updated in light of E?
3. Deriving the Updating Rules

Suppose we have a credibility function defined on a hypothesis set H that is proba-

bilistic in the sense of the preceding section. Suppose, also, that we have an evidential

measure function Ev[EFH ] defined on the set of evidence and the set of hypotheses

under consideration. Note that we are not assuming that Ev[EFH ] is probabilistic (for

example, oiEv½EjHi� need not sum to one). It is widely accepted that if the goal is to

find the true hypothesis in a partition of hypotheses and the evidential measure is the

likelihood, Ev½EjH � 5 p(EjH ), then any probability function over the hypotheses

ought to be updated through Bayesian updating:
Bayesian Updating: pE(H) 5
p(EjH)p(H)

oi p(EjHi)p(Hi)
:

The natural generalization of Bayesian updating is what I have called inferential

updating in the introduction. However, it is not clear why the prior probability func-

tion and the evidential measure should always be combined in a Bayesian-like man-

ner, regardless of what the evidential measure is and regardless of what the purpose of

updating is. Unfortunately, whereas the accuracy argument for probabilism does not

make any assumptions about how the credibility function is interpreted, the standard

accuracy argument for Bayesian updating (Greaves and Wallace [2006]) relies on

properties that are unique to the likelihood, in particular the fact that the likelihood

forms a joint distribution with the prior. Thus, the standard accuracy argument does

not generalize to cases where the evidential measure is not the likelihood. Other stan-

dard arguments for Bayesian updating have the same limitation (for example, Dutch

book arguments). A different kind of approach is therefore needed.

Bissiri et al. ([2016]) come up with a different approach. They show that provided

that the evidential measure is a function of an additive loss function, L(E, H ), such

that Ev½E1 & E2jH � 5 f (L(E1,H ) 1 L(E2,H )), and given that a few other assump-

tions are met, then the updating procedure must have the following form, where c is

some constant:

pE(H) 5
e2c*L(EjH)p(H)

oie
2c*L(EjHi)p(Hi)

: (1)

Bissiri et al. ([2016]) call the above updating procedure ‘general Bayesian updating’.

General Bayesian updating traces back to (Zhang [2006]) and has been increasingly
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influential in statistics in recent years.6 Although Bissiri et al.’s ([2016]) argument for

general Bayesian updating is interesting, it has several limitations. One problem is that,

as argued in (Vassend [2019]), the probabilities in Equation (1) cannot be interpreted in

the standard Bayesian way as plausibilities of truth. But if the probabilities are not stan-

dard credibility functions, then the decision theoretic framework assumed by Bissiri

et al. ([2016]) would seem to lack justification. The argument also makes certain math-

ematical assumptions that seem hard to justify from a philosophical point of view. In

particular, the authors base their argument in part on the use of statistical divergence

measures, and they assume that the divergence belongs to the class of f -diverences.7

This assumption rules out many standard divergence measures, including all Bregman

divergences aside from the Kullback–Leibler divergence (Amari [2009]).8 A final lim-

itation of Bissiri et al.’s ([2016]) derivation is that there are many reasonable evidential

measures that cannot be written as a function of an additive loss function. Indeed, even

the likelihood will only have such a form if the evidence is independent conditional on

Hi, for all i.
9 Thus, although their argument is interesting, a more general approach that

makes less restrictive and more philosophically defensible assumptions is desirable.

That is the goal of this section. Later we will see that Bissiri et al.’s ([2016]) updating

rule may be derived as a special case.

To start, note that ordinary Bayesian updating can be decomposed into two steps:
6 See (G
lated

7 They
deriva
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9 If p(E
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Combination Step: For each i, calculate p*(Hi) 5 p(EjHi)p(Hi).

Normalization Step: Transform p* to p0 as follows: for each i, p0(Hi) 5
p*(Hi)
p(E) .
In thefirst step, the prior plausibility of the hypothesis is combinedwith the evidential

score (that is, the likelihood) of the hypothesis in order to produce an overall judge-

ment of the hypothesis’s posterior plausibility. In the second step, the posterior plau-

sibility of all the hypotheses are rescaled in such away that they jointly obey the prob-

ability axioms, such that all the posterior plausibility scores fall between zero and one,

inclusive, and jointly sum to one.

Bayesian updating is a special case of a much broader class of updating rules that

decompose into a combination step and a normalization step. The purpose of the re-

mainder of this article will be to study this class of updating rules. The combination
rünwald and van Ommen [2017]) for a thorough discussion of general Bayesian updating and re-
updating rules.
also give an alternative derivation that does not make this assumption. However, the alternative
tion makes other suspect assumptions. In particular, it assumes that the normalization procedure
ltiplicative, which we’ll see later in this article can be put into question.
l that Bregman divergences play a crucial role in the accuracy argument for probabilism. The jus-
ion for the focus on Bregman divergences is their tight connection to strict propriety (see Predd
[2009]).
1, E2jH) 5 p(E1jH )p(E2jH), we can write p(E1, E2jH ) 5 e log p(E1 jH)1 log p(E2 jH) , that is the likelihood is
form required by Bissiri et al. ([2016]). But if p(E1, E2jH) ≠ p(E1jH )p(E2jH ), then we cannot write
elihood in this way.
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step requires a combination function, c, that takes as its input a prior probability,

p(H ) and a set of evidential scores, Ev½E1jH �, Ev½E2jH , E1�, Ev½E3jH , E1, E2�, and
so on, and that assigns a total score to H, taking into consideration both its prior prob-

ability and its performance on the evidence. The normalization step then transforms

those scores into probabilities. In other words, on an abstract level, our purpose will

be to study updating procedures that decompose in the following way:
Combination Step: For each hypothesis,Hi, a set of evidential scores and a prior
probability are combined using some combination function c in order to pro-
duce an overall posterior score for Hi.

Normalization Step: The posterior scores of all the Hi are transformed using
some function N such that they jointly satisfy the probability axioms.
In the next two subsections the combination step and the normalization step are

analysed in detail. The goal is to show that—given reasonable assumptions—the

combination function c and the normalization function N both have a very limited

set of possible functional forms.
3.1. The combination step

Let e1 and e2 represent the evidential scores of a hypothesisH on some evidence, and

let h representH’s prior probability; then there are two candidate forms for the com-

bination function that arguably stand out as being particularly plausible:
Additive Combination: c(e1, e2, h) 5 e1 1 e2 1 h:

Multiplicative Combination: c(e1, e2, h) 5 e1 * e2 * h:
Note that e1 and e2 here may represent either conditional or unconditional evidential

scores. For example, e1 may represent Ev[E1FH ], the unconditional evidential score

ofH on E1, or it may represent Ev½E1jH , E2�, the conditional evidential score ofH on

E1 given that E2 has already been taken into account. Note, also, that to say that the

combination function is additive or multiplicative is not the same as saying that the

evidential measure is additive or multiplicative in the sense that Ev½E1, E2jH � 5
Ev½E1jH � 1 Ev½E2jH � or Ev½E1, E2jH � 5 Ev½E1jH � * Ev½E2jH �. The latter assump-

tions are much stronger, and amount to assuming that E1 and E2 are independent con-

ditional on H (relative to the evidential measure Ev).

If wemake a few reasonable assumptions, we can prove that the combination func-

tion must be multiplicative or additive. First of all, suppose we have evidential scores

e1 and e2, and a prior probability h. Clearly, the order in which we combine the ev-

idential scores and the prior should not matter for the final result we get. That is not to

say that the order in which the evidence is received does not matter; it may. For ex-

ample, if we flip a coin and the outcomes are six heads in a row and then six tails in a

row, then the order of the outcomes strongly suggest that the outcomes are probabi-

listically dependent. Nevertheless, the order inwhichwe evaluate the available pieces
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of evidence in order to produce an overall judgement should not influence the overall

judgement at which we arrive. For that reason, the combination function should be

commutative: c(e1, e2) 5 c(e2, e1). Furthermore, it clearly should not matter whether

we first combine e1 and e2 and then combine the result of that with e3, or whether we

combine e2 with e3 and then combine the result with e1, or whether we combine all

three pieces of evidence at the same time. In other words, c should be associative:

c(e1, c(e2, e3)) 5 c(c(e1, e2), e3) 5 c(e1, e2, e3).

The final reasonable requirement is more quantitative. Clearly, the impact that

e1 has on H’s overall evidential score, after e2 has already been taken into ac-

count, should not depend on the impact that e2 has on H. That is not to say that a

piece of evidence E2 should not influence the impact that a different piece of evi-

dence E1 has on H’s evidential score; it may well, but if it does it should do so

through Ev[E1FH, E2]. A piece of evidence may influence the evidential impact

conferred by another piece of evidence, but the evidential scores themselves should

not influence each other. In other words, the requirement is that the impact that,

for example, e1 5 Ev½E1jH , E2� makes on H’s total evidential score should not de-

pend on the impact that e2 5 Ev½E2jH �makes onH’s total evidential score, nor vice

versa.

Given that we are willing to suppose that the combination function is twice differ-

entiable, the preceding requirement may be naturally formalized as constraints on the

partial derivatives of the combination function. Let c(x, y) be the combination func-

tion as a function of variables x and y. Then the impact that the evidential score e1
makes on H’s total evidential score is plausibly the value of the partial derivative

of c(x, y) with respect to x, when evaluated at x 5 e1. If
∂c(x,y)
∂x c(x 5 e1, y) is a large

number, then that means setting x to e1 makes a large difference to H’s overall evi-

dential score; if it is zero, then e1 makes no difference.

The requirement that the impact that e1 makes should not depend on the impact

that e2 makes, nor vice versa, for any e1 and e2, may then be formalized in terms of

a constraint on the higher-order partial derivatives of c, namely, that for some constant

k the following equation be obeyed:

∂2c(x, y)

∂x∂y
5 k:

The above equation formalizes the idea that the impact that x makes, ∂c
∂x, should not

depend on the impact that ymakes, ∂c
∂y, where x and y represent any possible eviden-

tial scores. We can now show the following (the derivation is in the appendix):
Characterization of the combination function: Suppose the combination func-
tion, c(x, y) satisfies the following requirements:

(1) c is commutative.
(2) c is associative.
(3) c is twice differentiable.
(4) c’s partial derivatives satisfy the following equation, for some number k:
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∂2c(x, y)

∂x∂y
5 k:

Then c must have one of the following two forms:

(1) If k 5 0, then c(x, y) 5 x 1 y.
(2) If k ≠ 0, then c(x, y) 5 xy.
Hence, it follows that the combination function must be additive or multiplicative.

Of course, this conclusion is only as plausible as the assumptions from which it is de-

rived, and some people may be uncomfortable with some of the assumptions that

have been made, in particular the condition on the partial derivatives of the combina-

tion function. As it happens, it’s possible to derive the conclusion from quite different

assumptions. Hence, in order to show the robustness of the conclusion, I provide an

alternative characterization of the combination function in the appendix.
3.2. The normalization step

After the combination function has produced a posterior plausibility score, the posterior

score must be normalized to be a probability. In theory, normalizing a set of numbers

means transforming the numbers in such a way that they are all between zero and one

and jointly sum to one,while at the same time retaining asmuch of their internal structure

as possible. In practice, this means that the most extreme numbers in the set may be

forced to take the value zero,while the remaining numbers in the set are rescaled by some

function, f. In other words, normalization in general takes the following functional form:

N (x) 5
0   given that x is sufficiently low,

f (x)   otherwise:

(
(2)

For example, in the normalization step of standard Bayesian updating, N (x) 5 f (x)

(that is, no non-zero numbers are normalized to zero) and if the set to be normalized

is fa1, a2, ::: , ang, then f (x) 5 1
oiai

. Note that both N and f are relative to the set that

is being normalized; hence, if we need to be precise, we should write NS and fS,

where the subscript indicates the set that is being normalized. Nevertheless, I will

typically leave off the subscripts in order to avoid clutter.

Clearly, f should be a one-to-one function. Indeed, except in the case where x and y

are both normalized to zero, it should be the case that if x < y then f (x) < f (y). Fur-

thermore, it is clear that the function f ought to commute with the combination func-

tion. Suppose we have scores e1, e2, and h. Then we should arrive at the same poste-

rior probability regardless of whether we do either of the following: first we combine

h and e2, normalize, then combine the normalized result with e1 and normalize again;

or we first combine h and e1, normalize, and then combine that normalized result with

e2 before normalizing again. In symbols, we require, for all possible scores x, y, and z,
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that: f (c(x, f (c( y, z)))) 5 f ( f (c(x, y), z)). The justification for this requirement is,

again, that the order in which we evaluate our evidence—which is arbitrary—should

not have an influence on our final judgement. By combining just the preceding two

requirements, we can show the following:
10 Note
the w
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Characterization of the Normalization Procedure: Suppose we have a normali-
zation procedure as in Equation (2) that satisfies the following requirements:

(1) f commutes with the combination function c. For all x, y, and x:
f (c(x, f (c(y, z)))) 5 f ( f (c(x, y), z)).

(2) f is one-to-one: for all x and y, f (x) 5 f (y) if and only if x 5 y.
Then the normalization process must have one of the following forms, for
some constant k that depends on the set, S, of numbers being normalized:

(1) If the combination function is multiplicative, then, for all x in S,
f (x) 5 k * x.

(2) If the combination function is additive, then, for all x in S, f (x) 5 x 1 k.
The proof, which again is straightforward, is in the appendix.
3.3. Characterizations of inferential and predictive updating

The results so far show that any updating procedure needs to have either: (1) A mul-

tiplicative combination step and a multiplicative normalization step, or (2) an addi-

tive combination step and an additive normalization step. Call an updating proce-

dure that satisfies either (1) or (2) a legitimate updating procedure.10

To characterize inferential updating we now introduce the following principle:
Regularity: No hypothesis is ever conclusively ruled out by any evidence unless
the evidence logically refutes the hypothesis; that is, the posterior probability of
any hypothesis is always greater than zero.
We can then show the following (see the appendix):
Characterization of Inferential Updating: The only legitimate updating proce-
dure that satisfies regularity is inferential updating. That is, given evidential
measure Ev and prior probability function p, update p to the posterior pE by
way of the following formula:

pE(H) 5
Ev½EjH �p(H)

oiEv½EjHi�p(Hi)
:

that not every updating rule that has been suggested in the literature is legitimate in this sense of
ord. For example, Douven and Wenmackers ([2017]) consider a rule according to which
) 5 c * ( p(H) * p(EjH) 1 f (E,H )) where c is a normalization constant and f (E, H) is a ‘bonus’
ned to H in case H is the best explanation of E. This updating rule is not legitimate because it is
er purely additive nor purely multiplicative. On the other hand, the class of rules considered in
ven [2016]) are legitimate.
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Inferential updating satisfies regularity; it will never result in any hypothesis having

a posterior probability of zero. On the other hand, in the appendix, I show that an

updating procedure that uses an additive combination function and an additive nor-

malization function must violate regularity; most of the time, an additive updating

rule will assign a posterior probability of zero to some hypotheses. But this does

not mean that such an updating rule should never be used. As we will see in the next

section, sometimes we may want to be able to exclude certain hypotheses from con-

sideration—that is, assign them a posterior probability of zero.

Nevertheless, we do not want to exclude more hypotheses than is warranted by the

data. The updating procedure ought to be conservative and exclude as few hypotheses

as possible at every step. In other words, any updating procedure that violates regu-

larity should plausibly still satisfy the following principle:
Conservativeness: The updating procedure assigns a posterior probability of
zero to as few hypotheses as possible, given the combination function, the
normalization procedure, and the evidence available.
We are now in a position to characterize predictive updating:
Characterization of Predictive Updating: The only legitimate updating procedure
that violates regularity, but satisfies conservativeness, is predictive updating.
That is, given evidential measure Ev and prior probability function p, update p
to the posterior pE by way of the following procedure:

Step 1: For each i, calculate q(Hi) 5 p(Hi) 1 Ev½EjHi�.
Step 2: Transform q to pE as follows: for each i, pE(Hi) 5 0 or pE(Hi) 5
q(Hi) 1 d, where d is the unique number such that d is minimal and, for
all i, pE(Hi) ≥ 0 and oipE(Hi) 5 1.
4. Discussion of Inferential and Predictive Updating

4.1. The difference between inferential updating
and predictive updating

Inferential updating and predictive updating differ in that the former updating rule

obeys regularity while the latter rule does not. Is regularity a reasonable constraint?

In some contexts it is, but in others it is not. Suppose our main priority is to identify

the hypothesis that is true or (if none of the hypotheses is true) the hypothesis that is

closest to the truth according to some appropriate measure of closeness to the truth.

Given this goal, it is reasonable to be risk-averse and open-minded: we do not want to

rule out any hypothesis as potentially being the hypothesis that is true. Even if a lot of

evidence strongly suggests that a hypothesis is false, there is always the possibility

that the evidence is unrepresentative or misleading. And so regularity is a reasonable

constraint in this context.

However, suppose we do not care about which of our hypotheses is true or closest

to the truth; our goal is not inferential, but predictive.Wewish to find, as efficiently as
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possible, the subset of hypotheses that can be expected to be as predictively accurate

as possible. In this context, there is no theoretical justification for requiring that the

updating rule obey regularity; on the contrary, there are good reasons for why we

might want an updating rule that violates regularity. In particular, suppose the poste-

rior distribution will be used in order to make a weighted probabilistic prediction, so

that the goal is for p(DjHi)pE(Hi) to be as accurate on future dataD as possible. In that

case, it would seem inadvisable to assign positive probability to any hypothesis that

has shown itself to be very predictively inaccurate, since the predictionsmade by such

a hypothesis would likely throwoff theweighted prediction. On the other hand,we do

not want to go to the opposite extreme and base the prediction on the single hypoth-

esis that has performed best on the evidence, as that is liable to lead to overfitting (For-

ster and Sober [1994]). Predictive updating enables one to set the probabilities of pre-

dictively inaccurate hypotheses to zero in a principled (and conservative) way.

Let’s consider a specific example.When the hypotheses under considerationsmake

probabilistic predictions and the goal is maximal predictive accuracy, it is natural to

use a strictly proper scoring rule as the measure of evidential favouring (Gneiting and

Raftery [2007]). For various reasons, themost popular scoring rule in applied research

is probably the continuous ranked probability score (CRPS). Supposewe have a set of

competing statisticalmodelsM1,M2, and so on, and for eachmodel, let pMi
be themar-

ginal (cumulative) probability forecast distribution corresponding to Mi. Suppose,

moreover, that pMi
has finite first moment, that X, X1 and X2 are independent and iden-

tically distributed random variables that follow the distribution of pMi
, and that x is the

actual observed outcome. Then the CRPS can be written in the following way (where

the expectations are taken relative to pMi
):

CRPS(pMi
, x) 5 EjX 2 xj 2 1

2
EjX1 2 X2j: (3)

As Equation (3) makes clear, CRPS is a statistical generalization of absolute error. As

Gneiting and Raftery ([2007]) point out, a significant benefit of the CRPS is that it is

easily interpretable, since the outputs of Equation (3) can be reported in the same units

as the measurements. For example, suppose the measurements are in terms of meters.

Then the CRPS score of a model on an observation will be a representation of how

many meters inaccurate the model’s predictions are of that observation, on average

(since the prediction is a probability distribution rather than a single number, the av-

erage is needed).

If we let Ev½xjpMi
� 5 a * CRPS(pMi

, x), where a is some constant, and assign prior

probabilities to all themodels, then predictive updating can be used to assign posterior

probabilities to all the models.11 Importantly, given sufficient evidence (and depending
11 If the models contain parameters, then the probability distributions over those parameters may be up-
dated using either inferential or predictive updating.
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on how the constant a is chosen) many of the models will receive a posterior prob-

ability of zero. These posterior probabilities can then be used for model selection or

for making a weighted prediction using all the models. Of course, it is an empirical

question whether predictive updating is better (for predictive purposes) than inferen-

tial updating (including standardBayesian updating). An empirical evaluating of pre-

dictive updating will have to wait for a different occasion, however. In this section I

have simply tried to suggest one concrete way in which predictive updating may be

implemented.
4.2. The relationship between inferential updating
and other updating procedures

As was already mentioned in the introduction to the article, standard Bayesian updat-

ing is clearly a special case of inferential updating: more precisely, we get Bayesian

updating if and only if Ev½EjH �∝ p(EjH); that is, if and only if the evidential mea-

sure is proportional to the likelihood. What (Vassend ([forthcoming]) calls ‘quasi-

Bayesian updating’ is also a special case of inferential updating; indeed, quasi-Baysian

updating is simply inferential updating with an evidential measure that has been suit-

ably calibrated to a verisimilitude measure. Similarly, Douven’s ([2016]) IBE-based

updating rule is also clearly a kind of inferential updating.

Perhaps more interestingly, Bissiri et al.’s ([2016]) general Bayesian updating is

also a special case of inferential updating. More precisely, we have:
General Bayesian Updating Is a Special Case of Inferential Updating: Suppose
the evidential measure Ev is a strictly decreasing function f of some loss func-
tion, L(E, H), such that for all E1 and E2, Ev satisfies the following conditions:

(1) Ev½E1jH , E2� 5 Ev½E2jH � 5 f (L(E1,H)):
(2) Ev½E1, E2jH � 5 f (L(E1,H) 1 L(E2,H)): Then inferential updating has

the following form:

p(H jE) 5 e2c*L(E,H)p(H)

oi e
2c*L(E,Hi)p(Hi)

,

for some constant c.
A sketch of the proof, which is straightforward, is given in the appendix. Although

general Bayesian updating is a special case of inferential updating, the reverse is not

the case because—as was previously mentioned—many reasonable evidential mea-

sures cannot be written as a function of an additive loss function. Suppose, for ex-

ample, that the hypotheses under consideration are real-valued functions, fi and

that the evidential measure is of the form Ev½(x1, y1), (x2, y2), : : : , (xn, yn)j fi � 5
Minimum(jy1 2 fi (x1)j, jy1 2 fi (x1)j, : : : , jy1 2 fi (x1)j). It is clear in this case that

the evidential measure cannot be written as a function of an additive loss function,

simply because the Minimum operator is not additive.



Justifying the Norms of Inductive Inference 149
A diagram depicting the relationship between inferential updating, predictive up-

dating, and various updating rules that have been suggested in the literature is given in

Figure 1.
5. Conclusion

The primary purpose of this article has been to justify a set of very general synchronic

and diachronic inductive norms. The resulting normative framework can be put to

both philosophical and scientific use. In philosophy of science, a standard way of

analysing scientific methodology is by seeing whether the methodology makes sense

from a Bayesian perspective. For example, in this way, Sober ([2015]) analyses par-

simony inference,12 Dawid, Hartmann and Sprenger ([2015]) analyse no-alternatives

arguments in physics, Schupbach ([2018]) analyses robustness analysis, andMyrvold

([2017]) evaluates the epistemic value of unification. Since the preceding analyses

take place in a Bayesian framework, they inherit the limitations and assumptions of

Bayesianism. In the broader normative framework developed in this article, it’s pos-

sible to check whether the analyses still hold up when those assumptions are lifted.

For example, Myrvold ([2017]) shows that more unifying hypotheses will be more

confirmed by evidence than less unifying hypotheses, other things being equal. Since

his analysis is Bayesian, he implicitly uses the likelihood as his measure of evidential

favouring. A natural question to ask is whether his result still holds if the likelihood

is replaced with an arbitrary measure of evidential favouring. The perhaps surpris-

ing answer is yes, although a proper demonstration of this fact must be reserved for

a different time.

The normative framework developed in this article can also be used for scientific

inference. Indeed, implicitly it already has been—as shown in Section 4.2, the general
Figure 1. Overview of various updating rules.
12 Sober uses a likelihoodist approach, which is Bayesianism without the priors.
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Bayesian updating rule suggested by Bissiri et al. ([2016]) is a special case of infer-

ential updating, and general Bayesian updating is gaining in popularity in the statis-

tical community. But inferential updating is more general than general Bayesian up-

dating, and allows for the use of evidential measures that cannot be represented in

Bissiri et al.’s ([2016]) framework. One example is the phylogenetic parsimony mea-

sure discussed in (Vassend ([forthcoming]). Predictive updating can also be applied in

scientific inference problems, for example through the use of strictly proper scoring

rules as suggested in Section 4.1. Of course, it is ultimately an empirical question

whether predictive updating performs better than inferential updating. An answer

to this question must wait until later; in this article, my goal has been to provide a gen-

eral normative framework for inductive inference that is as flexible as possible while

obeying basic theoretical desiderata.
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Appendix

A1. Characterization of the combination function

The goal of this section is to show the characterization of the combination function in

Section 3.1. There are two cases to consider: k5 0 and k ≠ 0. Since the two cases are

very similar, I will only consider the case where k ≠ 0. So suppose that for some non-

zero k, we have:

∂2c(x, y)

∂x∂y
5 k: (4)

Taking the antiderivative with respect to x, it follows that

∂c(x, y)
∂y

5 kx 1 C(y) 1 D, (5)

where C( y) is a function of y, but not x, and D is some real number. Taking the an-

tiderivative of Equation (5) with respect to y, we get:

c(x, y) 5 kxy 1

ð
C(y)d y 1 Dy 1 G(x) 1 F: (6)
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Where G is a function of x and F is some real number. Moreover, exchanging the

labels x and y in Equation (6) gives us:

c(y, x) 5 kyx 1

ð
C(x)dx 1 Dx 1 G(y) 1 F: (7)

But since c(x, y) 5 c(y, x), Equation (6) and Equation (8) must be equal, which means

that kxy 1
Ð
C(y)dy 1 Dy 1 G(x) 1 F 5 kxy 1

Ð
C(x)dx 1 Dx 1 G(y) 1 F , and

hence
Ð
C(y)dy 1 Dy 1 G(x) 5

Ð
C(x)dx 1 Dx 1 G(y). Rearranging, we get:

G(x) 5

ð
C(x)dx 1 Dx 1 G(y) 2

ð
C(y)dy 2 Dy: (8)

But since G(x) does not depend on y, the only way for Equation (8) to be true is if

G(y) 2
Ð
C(y)dy 2 Dy is equal to some constant number, c. Hence,

Ð
C(y)dy 1

Dy 5 G(y) 2 c. Plugging this back into Equation (6) (and absorbing the constant

c into F ), we get:

c(x, y) 5 kxy 1 G(x) 1 G(y) 1 F: (9)

Without loss of generality, we may assume that G(0) 5 0, because if G(0) 5 A for

some non-zero A, then we can just putG0(x) 5 G(x) 2 A and F 0 5 F 1 2A, and we

get: c(x, y) 5 kxy 1 G0(x) 1 G0(y) 1 F 0, with G0(0) 5 0 (that is, we simply absorb

the constant A into F 0).

Now the fact that c is associative and commutative means that c(c(x, y), z)) 5

c(c(y, z), x), and hence Equation (9) implies that for all x, y, and z:

k(kxy 1 G(x) 1 G(y) 1 F)z 1 G(kxy 1 G(x) 1 G(y) 1 F) 1 G(z) 1 F

5 k(kyz 1 G(y) 1 G(z) 1 F)x 1 G(kyz 1 G(y) 1 G(z) 1 F) 1 G(x) 1 F
(10)

Simplifying, we have:

½G(x) 1 G(y) 1 F �kz 1 G½kxy 1 G(x) 1 G(y) 1 F� 1 G(z)

5 G(y)kx 1 G(z)kx 1 Fkx 1 G½kyz 1 G(y) 1 G(z) 1 F � 1 G(x)
(11)

Note that because c is twice differentiable, so isG. Taking the derivative of each side

of Equation (11) with respect to z gives:

½G(x) 1 G(y) 1 F�k 1
∂G(z)
∂z

5
∂G(z)
∂z

kx 1 G0½kyz 1 G(y) 1 G(z) 1 F� *
∂G(z)
∂z

: (12)

Next, taking the derivative of each side of Equation (12) with respect to x gives:

∂G(x)
∂x

k 5
∂G(z)
∂z

k: (13)

(12)
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Hence, since k ≠ 0, it follows that ∂G(x)
∂x 5 ∂G(z)

∂z . But sinceG(x) does not depend on z

and G(z) does not depend on x, this means that ∂G(x)
∂x must be a constant number,

∂G(x)
∂x 5 a for some constant a. Since we are assuming that G(0) 5 0, it follows that

G(x) 5 ax. Next, the fact that c(x, y, z) 5 c(c(x, y), z) implies:

kxyz 1 ax 1 ay 1 az 1 F 5 k(kxy 1 ax 1 ay 1 F)z

1 a(kxy 1 ax 1 ay 1 F) 1 az 1 F:

(14)

Comparing the terms that contain xyz,13 we see that k 5 1, and hence:

ax 1 ay 5 axz 1 ayz 1 Fz 1 axy 1 a2x 1 a2y 1 Fa: (15)

Comparing the terms that contain z, we see that a(x 1 y) 1 F 5 0 for all x and y. The

only way this can be true is if a 5 F 5 0. Hence we have, finally, that c(x, y) 5 xy.

(14)
A2. Characterization of the normalization step

The goal of this section is to show the characterization of the normalization step in

Section 3.2. Let faig be an arbitrary set of n numbers, S1, with normalization function

fS1
. Consider the set S2 5 f1

ai
g and the set S3 5 f1ig, which consists of n copies of 1.

Then condition (1) implies that for all i, f (c( f (c(1ai
, ai)), 1)) 5 f (c(1ai

, f (c(ai, 1)))),

where the various f ’s are relative to the relevant sets. For example, in f (c(1ai
, ai)), f

is a rescaling function defined on the set fc(1ai
, ai)g. Note that we are abusing notation

here: strictly speaking the various f ’s are not the same function, since they are defined

over different sets. However, to avoid needless clutter, I use f without subscripts.

According to the characterization of the combination function, the combination

function is either multiplicative or additive. Since the derivations are very similar, I

will only show that the normalization function must be multiplicative given that

the combination function is multiplicative. So suppose that the combination function

is c(a, b) 5 ab. Then we get: f ( f (1ai * ai) * 1) 5 f (1ai * f (ai * 1)). Thus, we have:

f ( f (1)) 5 f (1ai * f (ai)), so that f (1ai * f (ai)) is a constant. But since, f is one-to-

one, that means 1
ai * f (ai) must also be a constant. That is, there exists a constant k

such that for all ai in S, 1
ai * f (ai) 5 k. Hence f (ai) 5 k * ai for all ai. Since S was

an arbitrary set, it follows that in general the normalization procedure must be multi-

plicative given that the combination function is multiplicative.

A3. Characterization of inferential updating

The goal in this section is to show that the only legitimate updating rule that satisfies

regularity is inferential updating. According to the results in Sections 3.1 and 3.2, any

legitimate updating rule must either have (1) a multiplicative combination step and
13 Which we can do, as before, by successively differentiating with respect to x, y, and z. This proof method
is sometimes called ‘equating coefficients’ (Tanton [2005], p. 169).
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a multiplicative normalization step, or (2) an additive combination step and an addi-

tive normalization step. It is easy to show that it is possible for an updating rule that

satisfies (1) to satisfy regularity, and that—indeed—the resulting updating rule is in-

ferential updating. In order to show that inferential updating is the only updating rule

that satisfies regularity, it suffices to show that there is no updating rule satisfying (2)

that also satisfies regularity.

Suppose, for the sake of contradiction, that there is some updating rule that satisfies

both (2) and regularity. In order for regularity to be obeyed, it has to be the case that

given any set of non-zero prior probabilities over a set of hypotheses, h1, h2, : : : , hn,

and given any set of evidential scores for the hypotheses, e1, e2, : : : , en, the posteriors

are also all non-zero. Thus, ifN is the normalization function, then the followingmust

be true for all hi:

N (ei 1 hi) > 0: (16)

Since the normalization function is assumed to satisfy (2), Equation (16) implies that

the following is true for all i, where d is an additive normalization constant:

ei 1 hi 1 d > 0: (17)

Since the posterior probabilities must sum to one, we also have:

o
i

(ei 1 hi 1 d ) 5 1: (18)

And therefore, d 5 2 1
noei. And so we have, for all hi:

ei 1 hi 2
1

noei > 0: (19)

But it’s obvious that Equation (19) will not in general be true. For example, suppose

e1 is the smallest ei. Then r 5 ei 2 1
noei < 0. Now suppose it’s also the case that

h1 < 2r. Then we have:

e1 1 h1 2
1

noei 5 r 1 h1 < 0: (20)

Consequently, additive combination and additive normalization jointly violate reg-

ularity. So there can be no updating procedure that satisfies both (2) and regularity.
A4. Characterization of predictive updating

The goal in this section is to show that the only legitimate updating rule that violates

regularity but satisfies conservativeness is predictive updating. It is clear that any

updating rule that satisfies conservativeness but violates regularity must be additive.

This is because anymultiplicative updating rule that satisfies conservativeness clearly

also satisfies regularity.
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So suppose the updating rule is additive and satisfies conservativeness. Then the

goal is to show that the updating rule must be equivalent to predictive updating.

Since the rule is additive, it must have the following form, where pE is the posterior

probability distribution, Hi is a hypothesis, hi is the prior probability of the hypoth-

esis, ei is the evidential score of the hypothesis, and d is a normalization constant:

pE(H) 5
0   given that x is sufficiently low;

hi 1 ei 1 d   otherwise:

(
(21)

If the updating rule is conservative, then as few hypotheses as possible should be as-

signed a posterior probability of zero. It remains to show that this uniquely happens

when d is minimal. Suppose there are n hypotheses. Without loss of generality, sup-

pose the hypotheses are ordered such that 0 ≥ pE(H1) ≥ pE(H2) ≥ : : : ≥ pE(Hn).

Then there is some index m such that pE(Hi) 5 0 for i ≤ m and pE(Hi) > 0 for i >

m. Note that the updating procedure is conservative if and only if m is minimal be-

cause m is minimal if and only if a minimal number of hypotheses have a posterior

probability of zero. In order for the posterior probabilities to be probabilistic, we

must have:

o
i

pE(Hi) 5 o
i>m

(hi 1 ei) 1 (n 2 m)d 5 1: (22)

Now suppose we have a different updating rule resulting in some posterior p0 that is

not conservative, so that there is an indexm0 > m such that p0
E(Hi) 5 0 for i ≤ m0 and

p0
E(Hi) > 0 for i > m0. Then p0 must satisfy the following constraint for some normal-

ization constant d0:

o
i>m0

(hi 1 ei) 1 (n 2 m0)d0 5 1: (23)

Comparing Equation (21) and Equation (23) and remembering that m0 > m, we see

that:

0 < o
m0

i5m

(hi 1 ei) 5 (n 2 m0)d0 2 (n 2 m)d: (24)

And hence,

d <
n 2 m0

n 2 m
d0 < d0: (25)

Hence, d < d0. What the above proof shows is that any conservative updating rule has

a smaller additive normalization constant than any non-conservative updating rule.

To finish the proof, we show that there is just one conservative updating rule. Here

we can use Equation (24) again. If both updating rules are conservative, then we have

m 5 m0, and hence—making the necessary amendments in Equation (24)—we have:

0 5 o
m0

i5m

(hi 1 ei) 5 (n 2 m)d0 2 (n 2 m)d: (26)
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Hence it follows that d0 5 d. But then the two updating rules are equivalent. Hence,

there is only one conservative updating rule, namely, the one that uses a minimal ad-

ditive normalization constant. This is predictive updating.
A5. General Bayesian updating is a special case
of inferential updating

The goal in this section is to show that Bissiri et al.’s ([2016]) general Bayesian up-

dating is a special case of inferential updating. For some normalization constant k, we

have:

p(H jE1, E2) 5 k * Ev½E1jH , E2�Ev½E2jH �p(H)

5 k * f (L(E1,H)) f (L(E2,H))p(H):

(27)

But we also have:

p(H jE1, E2) 5 k * Ev½E1, E2jH �p(H) 5 k * f (L(E1,H) 1 L(E2,H))p(H): (28)

Comparing Equation (27) and Equation (28), we see that f obeys the following

functional equation for all x and y: f (x)f (y) 5 f (x 1 y). Let g(x) 5 log f (x). Then

g(x 1 y) 5 g(x) 1 g(y), which is the well-known Cauchy equation whose solution

is g(x) 5 2cx, for some positive constant c (Aczél [2006], p. 31) (since f, and there-

fore g, is strictly decreasing). Consequently, f (x) 5 e2cx, and hence p(H jE) 5
k * e2c*L(E,H )p(H), which is Bissiri et al.’s ([2016]) general Bayesian updating rule.

(27)
A6. An alternative characterization of the combination step

In both everyday and scientific contexts, it’s common to think of evidence algebrai-

cally: multiple lines of evidence combine in order provide stronger evidence; some

evidence favours a hypothesis, while other evidence goes against it; a piece of evi-

dence here can cancel out a piece of evidence there; and some purported evidence

has no effect at all. In other words, evidential favouring has all the hallmarks of a

mathematical group. Now, suppose—as we have been doing up to now—that we

use real numbers to represent evidential scores. Then the set of all possible evidential

scores, G, together with the combination function plausibly form a mathematical

group. Indeed, they plausibly form an Archimedean group, because intuitively there

is no maximal evidential score. That is, if we use • to denote the combination func-

tion, so that e1 • e2 5 c(e1, e2), then it is plausible that (G, •) satisfies the following

axioms:
Closure: For all possible evidential scores e1 and e2, e1 • e2 is also a possible
evidential score.

Associativity: For all possible evidential scores e1, e2 and e3, (e1 • e2) • e3 5
e1 •(e2 • e3).
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Identity: There exists a possible evidential score i such that for all e, i • e 5
e • i 5 e. That is, there exists a real number that represents evidence that has
no effect (either favourable or unfavourable).

Inverse: For each possible evidential score e, there exists a possible evidential
score e0 such that e • e0 5 e0 • e 5 i. That is, every evidential score could poten-
tially (in principle) be cancelled out by other countervailing evidence.14

Commutativity: For all possible evidential scores e1 and e2, e1 • e2 5 e2 • e1.
That is, the order in which the evidence is considered is irrelevant.

Archimedean Property: For all possible evidential scores e1 and e2, there exists
an integer n such that e1 < e2 • e2 : : : • e2 (n times).
Suppose, in addition, that the set of evidential scores is totally ordered: for all evi-

dential scores e1 and e2, either e1 > e2 or e1 ≤ e2.
15 Then we can use the following

important result from group theory (see p. 33 of Kopytov and Medvedev [1996] for

a proof):
Hölder’s Theorem: EveryArchimedean totally ordered group is order-isomorphic
to a subgroup of the additive group of real numbers with the natural order.
The fact that (G, •) is order-isomorphic to a subgroup of the additive group of real

numbers with the natural order means there exists some subgroup, (S,1) of the real

numbers and a one-to-one function, g, from (G, •) to (S,1) that obeys the following

equation for all e1 and e2 inG: g(e1 • e2) 5 g(e1) 1 g(e2). Since g is one-to-one, it has

an inverse, f. Hence, for all e1 and e2 in G, we can write: e1 • e2 5 f (g(e1) 1 g(e2)).

In the main text, I showed that the normalization procedure must be either additive

or multiplicative, given that the combination function is either multiplicative or addi-

tive. But, arguably, it is not unreasonable to simply assume that the normalization

must be eithermultiplicative or additive. Indeed, all updating rules that have been pro-

posed in the literature have implicitly relied on a normalization procedure that is either

multiplicative or additive. In particular, the normalization procedure implicit in both

standard Bayesian updating and Jeffrey updating (Jeffrey [1983]) is multiplicative,

and the normalization procedure implicit in Leitgeb and Pettigrew’s ([2010]) alterna-

tive to Jeffrey updating is additive.

Finally, it is reasonable to assume—as we did in the main text—that the normali-

zation procedure commuteswith the combination function in the sense that for all a, b,

and c, we have:N (a • N (b)) 5 N (N (a) • b) 5 N (a • b).We can now give the follow-

ing characterization of the combination function:

Alternative Characterization of the Combination Function: Suppose the combina-

tion function, c(x, y) satisfies the following requirements:
14 A referee points out that this is a bit of an idealization, since a piece of evidence and a defeater of that
evidence will not typically cancel each other out precisely.

15 A referee rightly points out that this assumption is also idealized.
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(1) The set of all evidential scores, G, and the combination function c(x, y) 5 x • y
together form a totally ordered Archimedean group.

(2) The combination function commutes with the normalization function N in the
sense that for all a, b, and c: N (a •N (b)) 5 N (N (a) • b) 5 N (a • b). Then c must
have one of the following two forms:

(a) If the normalization function is additive, then c(x, y) 5 x 1 y.

(b) If the normalization function is multiplicative, then c(x, y) 5 xy.
Proof
The fact that the combination function commutes with the normalization func-

tion implies that for every e with inverse e21:

N (e • e21) 5 N (N (e) • e21) 5 N ( f (g(N (e)) 1 g(e21))) : (29)

Therefore, for all e, N ( f (g(N (e)) 1 g(e21))) 5 N (i), where i is the identity

element of the group. Since N is one-to-one, this means that f (g(N (e)) 1

g(e21)) 5 k, for some constant k that does not depend on e. Furthermore,

since f is one-to-one, this in turn implies that g(N (e)) 1 g(e21) 5 k 0, for some

constant k 0 that does not depend on e. For the same reason, Equation (29) also

implies that g(e) 1 g(e21) 5 k 00, for some constant k 00 that does not depend

on e. Hence we have, finally, that g(N (e)) 2 g(e) 5 K, where K 5 k 0 2 k 00.

Hence, g(N (e)) 5 g(e) 1 K.

If the normalization procedure is multiplicative, then for some normaliza-

tion constant a, we have g(ae) 5 g(e) 1 K. Note that a depends on the set to

which e belongs. If feig is the set, then

a 5
1

oei
: (30)

Hence, depending on the other members of the set to which e belongs, a can

be any number in the half-open interval (0, 1eÞ. Thus we have, for all e and all a
in (0, 1eÞ, that g(ae) 5 g(e) 1 K, where K is a constant that may depend on a,

but does not depend on e.

Similarly, we have—for some normalization constant b—that g(bae) 5

g(ae) 1 K 0 5 g(e) 1 K 00. Here, b can be any number in the range (0, 1
aeÞ, or

in other words in (0,∞). But if we let y 5 ab and x 5 e, then the preceding

means that for all x and y in (0,∞) we have:

g(yx) 5 g(x) 1 K 00, (31)

whereK 00 depends on y, but not on x. Interchanging the role of y and x, we also

have:

g(xy) 5 g(y) 1 K 000, (32)
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where K 000 depends on x, but not on y. Comparing the above equations, we see

that g(x) 1 K 00 5 g(y) 1 K 000. This implies the following:

g(xy) 5 g(x) 1 g(y) 1 C, (33)

where C is a constant that depends on neither x nor y. Now note that f (2g(i)) 5

i • i 5 i 5 f (g(i). Since f is one-to-one, this implies that g(i)5 0. Next, Equa-

tion (33) implies that g(i ) 5 g(1 * i) 5 g(1) 1 g(i) 1 C. Thus g(1) 5 2C.

Using Equation (33) again, we have g(1) 5 g(i*
1
iÞ 5 g(i) 1 g 1

i

� �
5 g 1

i

� �
.

But since g is one-to-one, this implies that 1
i 5 1, so that i5 1. Hence 2C 5

g(1) 5 g(i) 5 0, so C 5 0. Finally, then, we have, for all x > 0 and y > 0:

g(xy) 5 g(x) 1 g(y): (34)

Now put r(x) 5 g(ex). Then Equation (34) becomes, for all real x and y:

r(x 1 y) 5 r(x) 1 r(y): (35)

This is the Cauchy functional equation, whose only solution is r(x) 5 cx, for

an arbitrary constant c (Aczél [2006], p. 31). Hence, g(x) 5 r(log x) 5

log xc. Since f is the inverse of g, we have that f (x) 5 ex
1
c . Finally, then,

we have:

x • y 5 f (g(x) 1 g(y)) 5 e(log(x
c)1 log(yc))

1
c

5 e(c* log(xy))
1
c

5 xy: (36)

Thus the combination function is multiplicative, c(x, y) 5 xy. □
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