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Abstract 
 
Animals tend to have predictable activity patterns, based on their ecological and physiological needs, 
alternating between periods of activity and resting. Investigating factors influencing activity patterns 
for different species or populations can convey an understanding of physiology, niche theory, 
community structure and animal behaviour. The study of activity patterns of wild species is often 
challenging in the field, recent developments in technology have led to different methods being 
applied that can vary in the degree of invasiveness towards animal’s welfare and the financial and 
logistical efforts required to operate them. The gold-standard approach for quantifying the detailed 
movements and activity patterns of wildlife is through the use of Global Positioning System (GPS) 
collars and respective activity sensors. Most recently, the development of digital camera traps, 
that allow detection and monitoring of elusive wildlife while being non-intrusive and implementable 
over large areas, have become a new potential tool for estimating activity patterns. Nevertheless, there 
are still few studies that compare activity measurements obtained from camera traps data to those 
obtained from motion sensors/accelerometer data of GPS collars. The present study aims to examine 
the differences that might occur between data from animal mounted activity sensors and data from 
camera traps, assessing the accuracy of camera traps’ activity pattern estimation compared to the 
pattern resulting from GPS collar activity sensors. I therefore compared activity pattern estimation 
and circular datasets obtained from GPS collar accelerometers from 18 Eurasian lynx (8 females and 
10 males) monitored during an 8 year study period (from 2008 to 2015) in the southern part of Norway 
and data from Eurasian lynx detections recorded from more than 300 camera traps distributed in the 
same area during a period of 11 years (from 2010 to 2020). My study results suggest that: 1) 
Accelerometer and activity sensors in GPS collars are a robust method for studying general activity 
pattern of wildlife with the potential of investigating behaviours at a very fine temporal scale; 2) 
Camera traps can be used to estimate overall activity curves with comparable estimations to the ones 
obtained from accelerometers, however, it requires a large number of camera traps and proper camera 
trapping study design while keeping in mind the fundamental differences that occur between data 
collected from these two methodologies; 3) A lower number of camera traps, and consequently a 
lower number of detections, results in a less accurate activity estimation from camera traps. This is 
particularly evident when using less than 65 camera traps and/or working with less than 96 detections. 
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Introduction 
 
Animals tend to have predictable activity patterns, based on their ecological and physiological 
needs, alternating between periods of activity and resting (Rawcliffe et al., 2014). Animal activity is 
affected by a variety of factors, some of them depending on individual characteristics, including 
age, sex, reproductive status, body condition and energy budgets (Podolski et al., 2013, Rawcliffe et 
al., 2014), and others that originate from external sources such as disturbance, predation risk, access 
to food / prey, temperature (Beltran & Delibes 1994), light (Heurich et al., 2014) and season 
(Manfredi et al., 2011; Heurich et al., 2014). Investigating factors influencing activity patterns for 
different species or populations can convey an understanding of physiology, niche theory, 
community structure and animal behaviour (Podolski et al., 2013; Frey et al., 2017; Edwards et al., 
2020). Furthermore, conservation management can benefit from knowledge derived from activity 
studies, for example research has shown that many wildlife species change their activity patterns as 
a consequence of anthropogenic disturbance (Gaynor et al., 2018; Edwards et al., 2020), hunting 
pressure (Van Doormaal et al., 2015; Edwards et al., 2020) and the reintroduction of predators that 
affect prey species’ diel patterns (Tambling et al., 2015; Edwards et al., 2020). 
  
Although, the study of activity patterns of wild species is often challenging in the field, recent 
developments in technology have led to different methods being applied that can vary in the degree 
of invasiveness towards animal’s welfare and the financial and logistical efforts required to operate 
them. The gold-standard approach for quantifying the detailed movements and activity patterns of 
wildlife is through the use of Global Positioning System (GPS) collars (Cagnacci et al., 2010; Kays 
et al., 2015). Many modern GPS collars are equipped with a motion sensor or accelerometer that 
constantly monitors animal activity at fine temporal scales independently from its spatial data 
(Lottker et al., 2009; Podolski et al., 2013; Edwards et al., 2020). These sensors record neck and 
upper body movement, providing the opportunity to remotely categorize animal behaviour in 
addition to overall activity (Lottker et al., 2009; Wang et al., 2015; Roberts et al., 2016). The most 
advanced sensors store three different values differentiated as vertical and horizontal motion and tilt 
angle, less complex models record only vertical and horizontal motion, or simply any forceful 
motion (Wang et al., 2015; Roberts et al., 2016). Motion sensors and accelerometers record 
behaviour at high temporal resolution, and some studies have already demonstrated that the 
estimations made from these tools is comparable to direct continuous observation (Gervasi et al., 
2006; Gonzales et al., 2014; Roberts et al., 2016; Edwards et al., 2020). This method of studying 
wildlife behaviour is particularly relevant for elusive, mainly night active, forest living species that 
are difficult to observe directly, such as the Eurasian lynx Lynx lynx (Podolski et al., 2013). This 
species has indeed already been investigated through the lens of accelerometer data: a study 
conducted by Heurich et al. (2014), as well as one conducted by Podolski et al. (2013), 
demonstrated that collar activity sensors allow the identification of factors that modulate lynx 
activity. 

Most recently, the development of digital camera traps, that allow detection and monitoring of 
elusive wildlife while being non-intrusive and implementable over large areas (Kelly & Holub, 
2008; Sollmann et al., 2011), have become a new potential tool for estimating activity patterns 
(Edwards et al., 2020). Timestamps on camera trap images reflect wildlife occurrences captured in 
points in space and time, hence producing fine-scale temporal data (Sollmann 2018; Edwards et al., 
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2020). However, until recently there have been some challenges with the statistical analysis of 
camera derived activity data. Temporal data (i.e. date, hour, minute), that repeat cyclically, can be 
described as occurring around a circle and therefore transformed in radians format from 0 to π2 in 
order to make them analysable, resulting in so-called circular data (Lee, 2010). Thereby, advances 
in analytical studies and, specifically, in analyses of circular data recorded by camera traps 
(Meredith & Ridout, 2021; Rowcliffe et al., 2014; Edwards et al., 2020) allows researchers to 
extract more details of activity of the animals detected (Edwards et al., 2020). Following on from 
these innovations in the analytical field of circular data, a variety of studies has been made trying to 
estimate wildlife activity patterns from camera trap detection data. A wide range of species have 
already been studied using these novel activity estimation methods, including 6 different species of 
Asian wild cat in Thailand (Lynam et al., 2013), 13 species of mammal in Barro Colorado Island 
(Rawcliffe et al., 2014), coyote Canis latrans, fox squirrel Sciurus niger, wild turkey Melleagris 
gallopavo and while-tailed deer Odocoileus virginianus in North Carolina (Lashley et al., 2018), 
grey wolf Canis lupus in Canada (Frey et al., 2017) and brown hyaena Hyaena brunnea in Namibia 
(Edwards et al., 2020).  

These two methods for remotely estimating wildlife activity patterns are certainly both challenging 
and promising, nevertheless there are still few studies that compare activity measurements obtained 
from camera traps data to those obtained from motion sensors/accelerometer data (Frey et al., 2017; 
but see Lashley et al., 2018 and Edwards et al., 2020). 
Camera traps have the clear advantage that they do not require live-capturing wild animals and 
equipping them with collars which requires considerable time, cost, technical capacity, the 
involvement of veterinarians and often complex research animal ethics permitting processes in 
addition to the associated animal welfare considerations. However, it is important to remember the 
difference in quantity and the nature of the data obtained from the two methods: accelerometers 
provide a continuous records of activity (with very short interval that can be set as low as a few 
seconds), recording a wide range of behaviours (running, walking, resting, grooming, etc) (Heurich 
et al., 2014). On the other hand, camera traps capture single points in space and time exclusively 
when the animal is moving, which is a subset of the overall activity of an animal (Edwards et al., 
2020). 
Keeping in mind these considerations, the present study aims to examine the differences that might 
occur between data from animal mounted activity sensors and data from camera traps, assessing the 
accuracy of camera traps’ activity pattern estimation compared to the pattern resulting from GPS 
collar activity sensors. I therefore compared activity pattern estimation and circular datasets 
obtained from GPS collar accelerometers from 18 Eurasian lynx (8 females and 10 males) 
monitored during an 8 year study period (from 2008 to 2015) in the southern part of Norway and 
data from Eurasian lynx detections recorded from more than 300 camera traps distributed in the 
same area during a period of 11 years (from 2010 to 2020). With the aim of assessing activity 
estimation from the two sampling methods shown, I investigated the following questions: 

- Looking at accelerometer data, which factors explain variation in Eurasian lynx activity 
pattern? 

- Are camera traps reliable for estimating Eurasian lynx activity pattern and variation within it 
compared to accelerometer estimations? 

- What is the effort, in terms of number of camera traps, required for obtaining reliable 
activity estimations? 
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Materials  
 
Study area  
 
This study was conducted in 5 south-eastern counties of Norway (61°N, 12°E): Innlandet, Viken, 
Oslo, Vestfold og Telemark, and Agder (~ 111.019 km2 area), in the boreal zone (Fig. 1). The 
north-western part of the study area is characterized by a wide range of gradient from valleys to 
hills/mountains that can reach 1000m a.s.l. and relatively low human population densities. This area 
is associated with boreal forests with Norway spruce Picea abies and Scots pine Pinus sylvestris. 
On the other hand, the south-eastern side of the area has shorter gradients of altitude and higher 
human population densities; here there are mainly patches of mixed coniferous deciduous forests 
alternated with cultivate lands. In the study area there are 4 large carnivores species present: brown 
bear Ursus arctos, grey wolf Canis lupus, Eurasian lynx and wolverine Gulo gulo. Moreover, there 
are several other species that function as prey or mesopredators present including moose Alces 
alces, red deer Cervus elaphus, roe deer Capreolus capreolus, badger Meles meles, red fox Vulpes 
vulpes, pine marten Martes martes and mountain hare Lepus timidus. Eurasian lynx are widespread 
throughout the study site after having recolonized the area during the last 20 years of the 20th 
century. From the last Scandinavian inventory of lynx, in the study area it has been estimated the 
presence of 33 family groups and number of individuals between 165 and 198; with quota regulated 
hunting being used to stabilise the population at politically determined levels (Frank & Tomvo, 
2021). 
 

 
 

Fig.1 : Map with location of the study area. 
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Accelerometer data 
 
Accelerometer data were obtained from 18 lynx (8 females and 10 males) live-captured between 
2006 and 2011 under the auspices of the SCANDLYNX project and monitored using Global 
Positioning System (GPS) collars equipped with accelerometers (GPS plus mini, Vectronic 
Aerospace GmbH, Berlin, Germany). Lynx were captured using a combination of methods 
including walk-through box-traps and foot snares following the procedures described in greater 
detail by Gervasi et al. (2014) and Arnemo et al. (2011). All procedures were approved by the 
Norwegian Experimental Animal Authority and the Norwegian Environment Agency. 
Accelerometer sensors recorded an activity value every 8 seconds which were averaged over 5 
minute intervals. Overall, data from the accelerometers covered an 8 year period, from 2008 to 
2015, resulting in 1.5 million data recordings of activity. 
 
Camera traps data  
 
Camera trap detections of lynx were obtained from 327 camera traps (Reconyx HC500, PC900 & 
HP2X,  Holmen, Wisconsint, USA) distributed in the study area within the frames of the 
SCANDCAM project. Camera traps were placed in order to maximize lynx encounters on locations 
where lynx were expected to travel. They were active year-round with SD cards and batteries 
changed every couple of months; more details on camera traps placement and period of activity can 
be found in Hofmeester et al. (2021) and in viltkamera.nina.no. Images were processed using an 
Artificial Intelligence system utilized within the SCANDCAM project; images of people were 
automatically deleted, and species were identifying firstly by the network and later checked by staff 
and students from the Norwegian Institute for Nature Research (NINA). Data used in this study 
resulted from 11 years of monitoring, from November 2010 to December 2020, for a total of 2292 
independent detections of lynx.  
 

Methods 
 
The activity pattern of lynx has been shown to vary in amount and distribution during the day due 
to the impact of different factors (Heurich et al., 2014); I explored the major factors that affect 
activity by modelling accelerometer data only. In this way, only the most impactful variables on 
lynx activity pattern found in accelerometer models were used as parameters for making the 
comparison between accelerometer and camera trap datasets. 
Firstly, some variables were added to both datasets: mean air temperature per hour, mean wind 
speed per hour, hours of daylight per day (hours of light from now on), moon phases per day and 
light phase per observation (with 4 levels: dawn, daylight, dusk and night).  
The first two weather variables were obtained from 6 meteorological stations distributed across the 
study area (Trysil vegstasjon, Dombas – Nordigard, Gulsvik II, Oslo – Blindern, Hoydalsmo II and 
Nelaug), data are all from the Norwegian Climate Centre’s website (https://seklima.met.no). These 
specific 6 meteorological stations have been selected after having done a screening of all the data 
collected by ~ 200 stations present in the study area. The aim of the selection was to find 
meteorological stations that have recorded weather data continuously, and with a time resolution of 
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hours, throughout a total period of 12 years (i.e. interval of time when accelerometer and camera 
traps data were collected). After the selection of meteorological stations has been done, the weather 
data have been adapted to both accelerometer and camera traps data, attributing to each 
observations the weather data from the spatially closest meteorological station. 
The light variables were calculated using the Suncalc package version 0.5.0. (Thieurmel & 
Elmarhraoui, 2019) in R 1.4.1717. The Suncalc package uses date, time and coordinates of data for 
extrapolating respective times of daylight changes and moon phases. Therefore, each light variable 
is geo-referred and accounts for change in daylight over the year. In this study, getSunlightTimes 
function has been used for obtaining datetime of sunrise, sunset, dusk and dawn from which the 
variables hours of light per day and light phase per observation were calculated; 
getMoonIllumination has been used for obtaining the continuous variable of moon phase (as 
circular data ranging from 0 to 1, where 0 = new moon and 1 = full moon). For the accelerometer 
data the coordinates used refer to the location of each lynx’s initial capture; for the camera trap data 
the coordinates refer to each camera’s location. All the analyses used Central European Time 
(CET/UTM+1). Distribution and locations of camera traps, lynx captures, and meteorological 
stations selected can be found in Fig. 2.  
 

 
 
Fig.2 : Map with distribution of camera traps, lynx captures and meteorological stations selected over the study 
area. 
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Accelerometer models 
 
The accelerometers on our collars measured acceleration in two axis: forward/backward motion 
(axis x) and sideward/rotary motion (axis y) (Heurich et al., 2014). The values recorded range from 
0 (no activity) to 255 (± 2G) and they were determined based on the average values across 5 
minutes. Only x-activity values were analysed in this study since the two axis are highly correlated 
(Heurich et al., 2014). Based on previous studies using identical equipment from the same 
manufacturer (Heurich et al., 2014; Podolski et al., 2013) all values from 0 to 27 were considered as 
“inactive” while all the values that range from 28 until 255 were considered as “active”. Therefore, 
x-activity values were utilized to assess two different measurements of activity: amount of activity 
time per day (i.e. percentage of time the lynx spent active per day) and distribution of activity 
throughout the day as a binomial variable where 0 = recordings of inactivity (value <= 27) and 1 = 
recordings of activity (value > 27). The measurements were therefore used as response variables in 
two different General Mixed Effect Model TMBs (GLMMTMB) (Model 1 – Model 2). This type of 
model accounts for random effects as well as temporal correlation within the data. In both models, 
the individual ID of each lynx was set as a random effect for taking into account possible random 
variation in activity pattern between individuals. Moreover, ar1() covariance structure 
(autoregressive order-1, homogeneous variance) was applied to date random effects since activity 
pattern of lynx show a cyclical trend that is repeated every day and data that are recorded 
continuously (like accelerometer data) are expected to be temporally correlated. 
The two models with the mentioned response variables and respective exploratory variables are 
shown in Table 1. 
 

 
 
Table 1: Model 1, Model 2 and respective variables. 
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Activity estimation overlap between accelerometer and camera traps 
 
From the accelerometer models results, the variables that affected significantly amount and/or 
distribution of activity per day have been identified. Therefore, these variables have been 
considered as the main factors affecting variation in daily activity of lynx and hence used as 
parameters for the comparison between accelerometer and camera traps data. 
 
In order to compare activity pattern estimations from accelerometers and camera traps, temporal 
overlap analysis was conducted. Overlap analyses were conducted in R 1.4.1717 using package 
Overlap version 0.3.4 (Meredith & Ridout 2021). This package calculates a non-parametric 
estimation of temporal overlap between the two datasets, using Kernel density estimation. The 
coefficient of overlap is a continuous variable that ranges from 0 to 1, where 0 equals no overlap 
and 1 implies total overlap. The coefficient is defined by different Δ estimators that account for 
different sample sizes respectively. In this case, a Δ4 estimator was chosen for each overlap 
analysis as advised by Meredith & Ridout (2021) for large sample (> 75). Moreover, this package 
plots a probability function of the distribution of the data, resulting in a visual representation of the 
two activity pattern estimations and the respective areas overlapped (Edward et al., 2020). 
Confidence intervals for each analysis were calculated using 1000 bootstrap, basic0 values were 
selected. 
 
Determining how many camera traps are needed to produce reliable estimates 
of activity pattern 
 
In order to define the number of camera traps needed to produce reliable estimates of activity 
pattern, I down-sampled the camera trap dataset and repeated the overlap analyses with the 
accelerometer dataset. 
For down-sampling the dataset, I randomly selected one time 50%, 40%, 30%, 20%, 10% and 5% 
of the total number of camera trap from the main dataset. Hence, overlap analyses were repeated 
between each down-sampled camera trap dataset and the full accelerometer dataset following the 
same methodology as used in the previous. These overlap analyses have been made taking into 
consideration the same parameters used for the comparison in the previous overlap analysis.  
 

Results 
 
Models with accelerometer data 
 
Amount of activity per day 
 
The percentage of activity per day for all the individuals was 39.4% collectively, with a pronounced 
difference between the sexes (F = 36%; M = 41.5%).  Taking into consideration seasonal changes, 
in fall lynx showed the highest percentage of daily activity (43.1%), followed by winter recordings 
(39.4%) and summer recordings (38.5%); lowest percentage of activity was recorded in spring 
(37.2%). 
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The candidate set of 15 GLMMTMB models with the response variable Percentage of activity per 
day were ranked using the Akaike Information Criterion (AIC), from the lowest to the highest AIC 
value (Tab. 2). The best model (Model 1 from now on) was selected as the one with the lowest AIC 
value. Model 1 shows that the variance of total amount of daily activity is affected by the predictors 
Hours of light per day (p < 0.01) and Season (fall: p < 0.01; winter: p > 0.05; spring: p > 0.05; 
summer: p > 0.05); it includes as random factors the Individual ID and the temporal correlation 
factor (ar1) on Date (Corr = 0.36).  With regards to Model 1 predicted values, percentage of daily 
activity is predicted to decrease with the increase of hours of light per day (Fig. 3) and fall is 
predicted as the season with highest percentages of daily activity. 
 

 
Fig. 3: Model 1 predicted values taking into consideration increase of number of hours of light per day.  
 
Distribution of activity during the day 
 
On average, the number of total recordings of activity (5 minute interval values > 27) per day were 
113.5, while the number of total recordings of inactivity (5 minute interval values <= 27) per day 
were 172.6, out of 288 recordings each day. Looking into the different phases of the daily cycle, the 
highest percentage of activity values was recorded during dusk (55%), followed by night (48.8%), 
dawn (39%) and daylight (31.5%). The candidate set of 15 GLMMTMB models with the binomial 
response variable Activity/Inactivity (1-0) have been ranked and selected following the method 
used in the previous model “Amount of activity per day” (Tab. 3). The best model (Model 1 from 
now on) was selected as the one with the lowest AIC value. Model 1 has the explanatory variables: 
Hour of the day (Hour Sin and Hour Cos: p > 0.05), Phase of the day (called Lightfactor in the 
model, has dawn: p > 0.05; daylight: p > 0.05; dusk: p > 0.05; night: p > 0.05) and Mean Wind 
Speed (p > 0.05); it also includes the Individual ID and the temporal correlation factor (ar1) on Date 
(Corr = 0.39) as random factors. With regards to Model 1, predicted values and the different phases 
of a day, lynx were predicted to be more active during dusk, closely followed by night, while dawn 
and daylight were the two daily times where lynx were less active. Furthermore, the number of 
activity recordings (fix value > 27) was generally predicted to increase by each hour of the day 
starting from midnight. The same increasing trend in activity is seen following an increase of mean 
wind speed per hour . 
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Overlap analyses 
 
Light, and the distribution of it during the day, was identified as the main factor affecting variation 
in daily activity of lynx (Fig.4). This result is in line with previous studies (see Heurich et al., 
2014). For this reason, the overlap analyses between camera and collar data were made while 
accounting for seasonal changes in the distribution of daylight during the year, and the subsequent 
change in activity pattern. Hence, 3 subsets of the accelerometer dataset and 3 subsets of the camera 
trap dataset were made, as well as 3 different overlap analyses, considering: from 5 to 7 hours of 
light per day (Fig. 5a), from 11 to 13 hours of light per day (Fig. 5b) and from 17 to 19 hours of 
light per day (Fig. 5c). The analyses of data within the interval from 5 to 7 hours of light per day 
gave an estimate of overlap of 0.90 (CI 95%: 0.87 - 0.93). While the analyses of data from 11 to 13 
hours of light per day had an estimate of overlap of 0.95 (CI 95%: 0.92 - 0.97). Finally, the analyses 
of data from 17 to 19 hours of light per day had an estimate of overlap of 0.96 (CI 95%: 0.93 - 
0.99). 
 
 

 
Fig. 4: Using accelerometer dataset: plot of activity X values over the day (averaged across all individuals) in 
relation with hours of light per day. 
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5a.

5b.

5c. 
 
Fig. 5: Overlap analyses between accelerometer and camera traps data within the interval: from 5 to 7 hours of 
light per day (5a), from 11 to 13 hours of light per day (5b) and from 17 to 19 hours of light per day (5c). 
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Determining how many camera traps are needed to produce reliable estimates 
of activity pattern 
 
When considering the full camera trap dataset and the down-sampled camera traps datasets with 
50%, 40%, 30% and 20% of camera traps used, estimates of overlap showed a general stable trend, 
ranging from 0.88 to 0.96. On the other hand, the overlap estimates decreased consistently using 
10% and 5% of camera traps from the original dataset (i.e. 33 and 16 total number of camera traps 
used respectively), ending with the lowest estimate of 0.73 within the interval 17 to 19 hours of 
light (Tab. 4 and Fig. 6). All the overlap graphs results can be found in Appendix I.   
 

 
 
Tab. 4: Summary of overlap analyses on full camera trap dataset and using reduced camera trap datasets.  
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Fig. 6: Graph of overlap estimates with full camera trap dataset and reduced camera trap datasets. 
 

Discussion 
 
Studying the activity pattern of lynx using accelerometer data 

Accelerometer recordings open a world of opportunities for remotely studying behaviors of hard-to-
observe cryptic wildlife in detail (Kays et al., 2015; Brown et al., 2013; Gervasi et al., 2006). 
Differentiating fine scaled behavioural activities using activity sensor data requires a training 
dataset (i.e. direct observations) that can be used to calibrate the interpretation of the sensor values 
(Gonzales et al., 2014). A recently published paper on Canadian lynx Lynx canadensis presents a 
first study that attempts to classify four major behavioural activities (chewing, not moving, 
grooming and walking) from accelerometer data based on direct observations of the animals in the 
wild (Studd et al., 2021). For Eurasian lynx, an observational study involving accelerometer has 
still not been published, however a study made by Podolski et al. mentions an unpublished 
preliminary study with a captive lynx that allowed the definition of a threshold to discriminate 
between activity and resting values (Podolski et al., 2013). In this l study, accelerometer values 
were divided in two main categories: values from 0 to 27 as inactive behaviour, values from 28 to 
255 as active behaviour. This preliminary differentiation took into account the sensitivity of the 
accelerometer and the fact that some light head shakings or movement of the collars were recorded 
with values above 0. Thanks to the threshold defined by Podolski et al., it is possible to model 
accelerometer values for obtaining an overview of factors that influence this species diel activity 
(Krop-Benesch et al., 2013). 
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In this study, two models have been developed for analyzing factors that affect firstly the amount of 
daily activity and secondly the distribution of the activity over the day of Eurasian lynx in 
southeastern Norway. 

The first model assessed the impact of some variables on the change of the amount of activity per 
day. The explanatory variables considered were: hours of light per day, moon phases, season, mean 
air temperature, mean wind speed. With regards to the weather variables, it is challenging to find 
weather data uninterruptedly collected over long period, such as the period of GPS collars data 
collection in this study (8 total years), with a temporal resolution of days or hours and good 
accuracy. However, it might be interesting for future studies to investigate more potential weather 
factors, than the ones considered here, affecting daily amount of lynx activity. 
Nevertheless, from my best model I have obtained results that are in line with previous studies 
identifying the duration of daylight as an important factor impacting lynx activity (Heurich et al., 
2014; Podolski et al., 2013). My analyses showed that activity changed following the duration of 
daylight: the amount of daily activity has been previously predicted to decrease with the increase of 
hours of light. Lynx have a fundamental nocturnal and crepuscular activity rhythm (Heurich et al., 
2014; Schimdt, 1999) so that an increase of the duration of daylight leads to shorter periods of 
darkness and hence results in a limitation of their potential activity time.  According to the best 
model, seasonality was also a factor influencing the change in amount of activity, which is not 
surprising since it co-varies with change in duration of daylight. However, season also embraces 
other changes such as the presence of snow, changes in availability and distribution of prey, and the 
life-cycle of lynx. Moreover, fall was the season that recorded highest percentages of daily activity. 
This result is in line with a previous study conducted by Heurich et al., where they hypothesized 
that the increase of activity related to fall was due to a higher hunting effort (Heurich et al., 2014). 
In fact, despite the fact that lynx are expected to increase their activity in the mating season (from 
February to March), dispersion of prey might have a bigger impact on daily movements and activity 
of this species in northern Europe (Heurich et al., 2014). In winter, snow can be an obstacle to prey 
movements which leads to their clustering around supplementary feeding stations, or patches of 
dense forest with less snow, hence being more easily found by lynx (Heurich et al., 2014). 
However, more studies are needed for a deeper investigation of how lynx movements and daily 
activity are related to snow depth and prey movements.  

The second model studied the distribution of lynx activity across the day, using a more 
fragmentated response variable where each record from the accelerometer was considered as an 
inactivity or activity value (0-1). An alternative way of formulating the response variable could 
have been aggregating or averaging the record values. Although, this would have implied the loss of 
the extraordinary temporal resolution provided by the accelerometer (a recording of activity value 
every 5 minute). As in the previous model, the explanatory variables used (phase of the day, hour of 
the day, mean air temperature and mean wind speed) were limited compared to the total number of 
factors that might affect the distribution of lynx activity during the day.  

For example, factors like gender differences, reproductive season, reproductive status, predation 
events and human disturbances could significantly impact the time the lynx is active during the day 
(Heurich et al., 2014; Podolski et al., 2013; Schmidt et al., 1999). Some major differences between 
sex could occur during the mating season, when males cover larger areas and travel longer, hence 
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being active for longer periods over the day compared to females (Heurich et al., 2014; Schimdt, 
1999). It has also already been shown that reproductive females with kittens are less nocturnal than 
adult males (Heurich et al., 2014; Schimdt, 1999). Furthermore, the reproductive status affects the 
amount and distribution of activity over the day. Females with kittens are active for longer time 
over the days from May to August compared to females without kittens (Schimdt, 1999). Also 
predation events could impact lynx activity during the day as shown by Podolski et al.: lynx are less 
active in days with kills compared to days without kills (Podolski et al., 2013). Finally, lynx might 
show different activity patterns if closer to humans, this could be explained as an avoidance 
behaviour carried out by lynx (Podolski et al., 2013). In a study that screened nocturnal activity of 
62 wildlife mammal species (including 10 wild feline species) from 6 different continents, it has 
been shown how human disturbance generally increases wildlife nocturnality (Gaynor et al., 2018).  

Therefore, the results of the model need to be considered as a first exploration of some of the 
factors that can potentially influence the timing of lynx activity and resting over the day. The best 
model included the explanatory variables “phase of the day”, “hour of the day” and “mean wind 
speed”. Phase of the day is a variable based on the change of light during the day (with the 
categories: dawn, daylight, dusk and night), suggesting that lynx activity pattern is modulated 
depending on light and specifically that lynx are more active during dusk and night time. This result 
is again in line with previous studies (Heurich et al., 2014; Podolski et al., 2013; Schmidt et al., 
1999). The reason why lynx are mainly active during dusk is related mostly to the activity pattern of 
their main prey species in Europe, the roe deer, which are most active during crepuscular hours 
(Podolski et al., 2013). Nocturnal activity is characteristic for feline species, that have highly 
developed sense of sight, smell and hearing and they can take advantage of prey vulnerability 
during this time of the day (Podolski et al., 2013; Schimdt, 1999). In addition, Schimdt (1999) 
discussed in his study how lynx activity does not simply vary according to when the prey is active, 
it also depends on the type of activity the prey is displaying (Schimdt, 1999). The fact that in my 
model the distribution of daily activity depends on the hour of the day was expected since each hour 
of the day has different degrees of light and hence the lynx display different levels of activity 
depending on being during day time, twilight or night hours. On the other hand, taking into account 
mean wind speed variable, it is possible that the presence of this variable in the best model 
happened to be independent from biologically effects. Indeed, this specific variable, used in both 
this and the previous activity model, has values recorded from each meteorological station but wind 
speed has actually very localized change of speed depending for example from presence or absence 
of natural barriers or presence or absence of open spaces. For this reason, the influence of this 
variable is hard to assess properly. Further studies should find a more locally precise wind variable 
and investigate in greater detail how this environmental variable could have a direct or indirect 
effect on lynx behaviour. In fact, wind speed might influence lynx activity since it affects its main 
prey’s movements and activity: for example, roe deer flee at longer distances when walking down 
wind compared to when they walk up wind or with calm wind (Boer et al., 2004).  

Another important variable which influences lynx activity but needs to be carefully interpreted is 
the temperature. In this study, temperature was included in both models but it did not seem to have 
a major effect on either the amount or the distribution of lynx daily activity. Despite my results, 
temperature is often mentioned in the literature as a contributor in changing lynx activity pattern 
(Heurich et al., 2014; Podolski et al., 2013; Rockhill et al., 2013). A study made in 2013 found that 
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with an increase of 10°C of mean air temperature per day, lynx decrease their time of daily activity 
by 30 minutes, this might be due indirectly to the impact that temperature has on roe deer activity 
and directly being a strategy that lynx adopt for decreasing energetic cost of movements in periods 
of very warm weather (Podolski et al., 2013). Temperature may also influence the way in which 
prey scent is carried, which may influence their detectability by lynx (Eriksen et al., 2011). 

In summary, the models derived in this study have not found or investigated new factors affecting 
lynx activity compared to literature. However, they closely confirm what other studies had already 
found: that the duration and timing of daylight periods have a major impact on daily activity of 
Eurasian lynx in northern Europe (Heurich et al., 2014; Podolski et al., 2013; Schmidt et al., 1999).  

Comparison of activity estimations from accelerometer and from camera traps 

For the study of activity patterns, accelerometer data can be used as control data in a comparison 
with camera traps data since they record activity continuously with an averaged value every 5 
minute, which allows the production of a reasonably accurate estimate of diel activity curve (Kays 
et al., 2015; Brown et al., 2013; Gervasi et al., 2006). Seeing the nature of accelerometer data, and 
the remarkable amount of them available for this study, it has been possible to investigate change in 
lynx daily activity throughout the year. Particularly, in period with longer daylight (from 17 to 19 
hours of light) the activity curve appeared more attenuated, with a peak of activity occurring at 2-3 
am (dawn) and 9-10 pm (dusk). Instead, in periods with lower duration of daylight (from to 5 to 7 
hours of light) the activity curve displayed shorter intervals of low activity limited to a few central 
hours of the day and a longer period of activity coinciding with longer nights. Moreover, during this 
low light period, the change of activity (from resting to being active) is more accentuated and peaks 
of activity are around 5-6 am (slightly before dawn) and 3-4 pm (dusk).  

Camera trap estimations produced very similar activity curves compared to those estimated from 
accelerometer data. For each of the three overlap analyses made considering change of daylight, 
camera traps detections followed the patterns estimated by accelerometers with high coefficients of 
overlap: 0.90 (from 5 to 7 hours of light), 0.95 (from 11 to 13 hours of light) and 0.96 (from 17 to 
19 hours of light). It is crucial to remember that in this study we had an abundance of camera traps 
placed (327 total camera traps) from which we obtained more than 2200 detections of lynx over a 
long period of time (11 years). In wildlife studies it is not always affordable to place that many 
camera traps as well as monitor them regularly (for example considering personnel required for 
changing batteries and downloading / classification of pictures) over long periods and large areas. 
In addition, taking into consideration camera traps placement, it is important to assess the design of 
camera trapping studies since it affects the reliability of activity estimations (Lashley et al., 2018). 
Previous studies that tested the activity estimations obtained from camera traps, claimed that it 
would be preferable to randomly place camera traps for estimating activity curves, however, in 
wildlife studies it is common to choose specific camera traps location in order to maximize the 
detection probability of elusive species, such as Eurasian lynx (Lashley et al., 2018; Rowcliffe et 
al., 2014) because random placement will result in too few detections to analyse.  
 
Despite the practical issues related to conducting camera trapping studies (i.e. number of camera 
traps, camera traps placement, length of the study, effort required for checking and placing camera 
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traps and classifying images), the data obtained have major differences compared to collar activity 
sensor data, and these differences need to be discussed in detail. First of all, camera traps aim to 
detect all the individuals present in a specific area, in this way averaging activity pattern estimations 
over a population (Edward et al., 2020; Lashley et al., 2018; Frey et al., 2017). GPS collars, and 
relative activity sensors, record data on a specific individual, throughout its whole home range, 
resulting in a more comprehensive and location independent picture of activity from a sub-sample 
of individuals (Edward et al., 2020; Lashley et al., 2018; Frey et al., 2017). Secondly, some camera 
traps may capture animals only when outside of cover and/or moving close to the camera trap, this 
results in a bias since animals that are active in areas where the camera traps are not placed cannot 
be sampled (Lashely et al., 2018; Rowcliffe et al., 2014). Moreover, while camera traps can 
potentially collect data of activity over a population, they cannot easily track individual differences 
in activity pattern, as GPS collars do. In fact, if the target species do not allow for individual 
identification, variation within individuals cannot be taken into account in activity estimations 
obtained from camera traps. Some Eurasian lynx individuals photographed by camera traps can be 
identified thanks to specific spot pattern that varies between individuals, although, the identification 
is often challenging due to blurry photographs (especially when using infra-red flash) and 
incomplete detections (Avgan et al., 2014). Even when individual identification is possible, 
determination of other individual traits such as sex, age and reproductive status, are not always 
feasible (Avgan et al., 2014). Another important difference that occurs in activity estimation 
obtained from camera traps or from GPS collars, relies on the type of activity recorded from these 
two methodologies: accelerometers continuously record data resulting in a value from 0 to 255 for 
all 5 minutes interval, while camera traps exclusively record the animal when it is moving. Hence, 
camera traps mostly detect activity associated with a few specific behaviours such as walking or 
running, cutting out a wide range of activities that the animals perform on a daily basis (resting, 
grooming, eating, etc). Furthermore, the way camera traps collect data on activity (i.e. only 
detecting the animal while it is moving) do not easily allow for more challenging analysis of the 
activity pattern through, for example, statistical modelling that accounts for factors of impact. As a 
matter of fact, the data obtained from camera traps do not give any information on the activity 
displayed when the animal is not captured, which means: you only get data of a subset of activity 
(i.e. activities such as walking or running) but you do not get any data on other type of activities, 
but most important, you do not have data from periods of non-activity. For this reason, defining 
parameters such as amount or distribution of daily activity from camera traps detection, and how 
some environmental variables impact them, becomes difficult.  

 
How many camera traps do you need to produce reliable estimates? 
 
The choice of down sampling the number of camera traps used instead of down sampling the 
number of detections has been made taking into consideration the fact that randomly reducing the 
number of detections implies losing the pattern describe by the distribution of the detections over 
the day. Furthermore, defining the number of camera traps needed for obtaining reliable activity 
estimations might be a more useful information from a practical point of view when planning 
budgets and field logistics. 
It is important to know how the activity estimations might change due to the number of detections 
used and therefore assess the accuracy of the estimations evaluating this aspect as well. Related to 
this, another key element to consider is how the probability of detection can vary and the fact that 
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this affects the number of detections overall (Lashley et al., 2018). Activity pattern estimations 
from camera traps depend on the number of detections you are working with, indeed a bigger 
number of detections increase your probability of getting more accurate activity curves. The 
probability of detecting an animal through camera traps relies on several factors: the most important 
being an appropriate camera trapping technique that accounts for the ecology and status of the 
target species (Lashley et al., 2018).  
 
In this study, the comparison between accelerometer estimations and down sampled camera trap 
datasets estimations was made taking into account the change in activity that occurs with the change 
of light during the year, i.e. when there are from 5 to 7 hours of daylight or from 11 to 13 hours of 
daylight or from 17 to 19 hours of daylight. The number of detections varied too between these 
latter three categories, the interval from 17 to 19 hours of daylight (falling within the summer 
season) has generally fewer detections compared to the other daylight categories. The reason why 
lynx are less captured by camera traps during the summer season might be related to seasonal 
variation in this species’ activity. For example, between May and August, females with kittens are 
more active but move over smaller territories because they become entra-place foragers when 
kittens are so small as to have reduced mobility (Schimdt, 1999). As previously mentioned, males 
generally move over larger territories during the mating season compared to the rest of the year.  
 
Overall, activity estimations from camera traps showed high coefficients of overlap with 
accelerometer estimations using at least 65 camera traps (20% of the original number of camera 
traps). With 65 camera traps the overlap estimates were: 0.90 (from 5 to 7 hours of daylight), 0.92 
(from 11 to 13 hours of daylight) and 0.91 (from 17 to 19 hours of daylight) with numbers of 
detections ranging from 96 to 141. Instead, using the down sampled datasets with 33 (10% of the 
original number of camera traps) and 16 (5% of the original number of camera traps) camera traps 
showed a prominent decrease in values of overlap, ranging from 0.83 to 0.91 in the first case and 
from 0.77 to 0.84 in the second case. The number of detections using 33 total camera traps ranged 
from 35 to 67, while the number of detections using 16 total camera traps ranged from 11 to 24. The 
confidence intervals also dropped consistently from using 65 camera traps (CI 95%: 0.76 – 0.92; 
0.81 – 0.98; 0.70 – 0.94) to  33 camera traps (CI 95%: 0.62 – 0.90; 0.72 – 0.94; 0.48 – 0.92). For 
this reason, using less than 65 camera traps and/or working with less than 96 detections is 
discouraged because it might led to inaccurate activity pattern estimations from camera traps. This 
result, only with regards to the number of the detections, is similar to what Lashley et al. found 
from the comparison between activity pattern estimations obtained from active and passive camera 
traps and GPS collars positions (Lashley et al., 2018). Although, another important aspect that has 
to be considered when assessing activity estimation is the shape that the activity curve displays. In 
matter of fact, even in the case where coefficients of overlap with accelerometer estimations were 
remarkably high, some relevant differences between the shape of the two curves occurred. See for 
example the difference in activity curve estimations obtained from 130 (40% of the original number 
of camera traps) and from 98 (30% of the original number of camera traps) total camera traps 
during the frame from 17 to 19 hours of light, the peaks of activity have different intensities and the 
curve that describes the activity during the day shows two slightly different patterns.  
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Conclusion 
 

- New statistical methods have produced robust ways to compare different estimates of 
activity patterns derived from different field techniques that vary greatly in the degree of 
invasiveness and their impact on animal welfare; 

- Accelerometer and activity sensors in GPS collars are a robust method for studying general 
activity pattern of wildlife with the potential of investigating behaviours at a very fine 
temporal scale; 

- Camera traps can be used to estimate overall activity curves with comparable estimations to 
the ones obtained from accelerometers, however, it requires a large number of camera traps 
and proper camera trapping study design while keeping in mind the fundamental differences 
that occur between data collected from these two methodologies; 

- A lower number of camera traps, and consequently a lower number of detections, results in 
a less accurate activity estimation from camera traps. This is particularly evident when using 
less than 65 camera traps and/or working with less than 96 detections. 
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Appendix I 
 

1a.

1b.

1c. 
 
Fig. 1: Overlap analyses between accelerometer and 50% camera traps data (162 total number of camera traps 
used) within the interval: from 5 to 7 hours of light per day (1a), from 11 to 13 hours of light per day (1b) and 
from 17 to 19 hours of light per day (1c). 



 28 

2a.

2b.

2c. 
 
 
Fig. 2: Overlap analyses between accelerometer and 40% camera traps data (130 total number of camera traps 
used) within the interval: from 5 to 7 hours of light per day (2a), from 11 to 13 hours of light per day (2b) and 
from 17 to 19 hours of light per day (2c). 
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3a.

3b.

3c. 
 
 
Fig. 3: Overlap analyses between accelerometer and 30% camera traps data (98 total number of camera traps 
used) within the interval: from 5 to 7 hours of light per day (3a), from 11 to 13 hours of light per day (3b) and 
from 17 to 19 hours of light per day (3c). 
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4a.

4b.

4c. 
 
Fig. 4: Overlap analyses between accelerometer and 20% camera traps data (65 total number of camera traps 
used) within the interval: from 5 to 7 hours of light per day (4a), from 11 to 13 hours of light per day (4b) and 
from 17 to 19 hours of light per day (4c). 
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5a.

5b.

5c. 
 
Fig. 5: Overlap analyses between accelerometer and 10% camera traps data (33 total number of camera traps 
used) within the interval: from 5 to 7 hours of light per day (5a), from 11 to 13 hours of light per day (5b) and 
from 17 to 19 hours of light per day (5c). 
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6a.

6b.

6c. 
 
Fig. 6: Overlap analyses between accelerometer and 5% camera traps data (16 total number of camera traps used) 
within the interval: from 5 to 7 hours of light per day (6a), from 11 to 13 hours of light per day (6b) and from 17 
to 19 hours of light per day (6c). 
 
 
 


