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A B S T R A C T   

Mapping standing dead trees, especially, in natural forests is very important for evaluation of the forest’s health 
status, and its capability for storing Carbon, and the conservation of biodiversity. Apparently, natural forests 
have larger areas which renders the classical field surveying method very challenging, time-consuming, labor- 
intensive, and unsustainable. Thus, for effective forest management, there is the need for an automated approach 
that would be cost-effective. With the advent of Machine Learning, Deep Learning has proven to successfully 
achieve excellent results. This study presents an adjusted Mask R-CNN Deep Learning approach for detecting and 
segmenting standing dead trees in a mixed dense forest from CIR aerial imagery using a limited (195 images) 
training dataset. First, transfer learning is considered coupled with the image augmentation technique to 
leverage the limitation of training datasets. Then, we strategically selected hyperparameters to suit appropriately 
our model’s architecture that fits well with our type of data (dead trees in images). Finally, to assess the 
generalization capability of our model’s performance, a test dataset that was not confronted to the deep neural 
network was used for comprehensive evaluation. Our model recorded promising results reaching a mean average 
precision, average recall, and average F1-Score of 0.85, 0.88, and 0.87 respectively, despite our relatively low 
resolution (20 cm) dataset. Consequently, our model could be used for automation in standing dead tree 
detection and segmentation for enhanced forest management. This is equally significant for biodiversity con
servation, and forest Carbon storage estimation.   

1. Introduction 

Forest ecosystems are indispensable for the life of man; naturally, 
physically, and economically (Assessment, 2005). A healthy forest as
sists in providing a clean climate. Economically, wood alone contributes 
more than US $ 400 billion annually (Assessment, 2005; Gamfeldt et al., 
2013). One of the most pressing phenomena that have been the focus of 
societies including renowned agencies like the United Nations (UN) has 
been Carbon storage and its cycles within the ecosystem as well as tree 
decomposition. It is important to note that dead trees have a great effect 
on Carbon storage and sequestration; the worst case of which could mar 
climatic conditions are large scale forest diebacks. Thus, understanding 
the condition of trees in the forest and their variation is imperative for 

effective forest management, healthy living, and prudent ecological 
decisions and policies. This will enable, for example, accurate forest 
carbon estimation and wood carbon fractions (Martin et al., 2021) for 
enhanced management. Consequently, a way to better understand the 
health of a forest is by identifying and quantifying its dead trees. 

For the past few years, researchers have expounded on the causes 
and effects of forest tree health and disturbances. Microorganisms, in
sect infestation, droughts, wildfire, and extreme weather conditions 
have caused forest health deterioration and disturbances leading to 
ecological damages, increase in climate change and global warming 
(Laurance et al., 2000; Gamfeldt et al., 2013; Seidl et al., 2014; Zomer 
et al., 2016; Seibold et al., 2021; Einzmann et al., 2021). Likewise, 
numerous findings on Carbon storage and sequestration within the 
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forest ecosystem both regionally and globally have been reported. For 
example, healthy trees have been reported to play significant roles in 
carbon storage (Paniagua-Ramirez et al., 2021), as increase in tree cover 
resulted in global increase in biomass carbon (Zomer et al., 2016; Duque 
et al., 2021). Nowak and Crane (2002) analyzed the potential role of 
urban forests in reducing carbon dioxide in the atmosphere. Hulvey 
et al. (2013) advised for increase in tree species richness for improved 
carbon storage. Stephenson et al. (2014) analyzed 403 temperate and 
tropical tree species globally and showed that large old trees reserves 
larger amount of carbon compared to smaller trees. Further, Martin et al. 
(2021) showed that carbon fractions vary across forests based on tissue 
type, biomass type, stands and decay classes of dead woods. Also, forest 
age has significant effect on carbon storage and sequestration (Dai et al., 
2021). Both young and old forests play important roles in storing the 
atmospheric carbon content. However, how well the forest can store the 
Carbon depends on the forest’s health and its biodiversity. A healthy old 
forest plays a more significant role due to the magnitude of its biomass 
and canopy volume than a young forest that may contain less biomass 
because of young trees (Stephenson et al., 2014). But because a young 
forest is incorporating lots of carbon in wood that is building up, they 
play an important role in reducing carbon in the atmosphere (Nowak 
and Crane, 2002). On the other hand, in old stands there is a balance 
between building up biomass and the dieback of trees so that their net 
effect is not as big as from young stands. Therefore, avoiding and/or 
controlling disturbances and forest degradation is key for preserving a 
healthy environment and atmosphere. Forest disturbances arise through 
natural and anthropogenic activities. However, almost most of the dis
turbances in the European natural forests, especially in the central part, 
like the Bavarian Forest National Park (BFNP) are caused by insect 
infestation (Lausch et al., 2013; Latifi et al., 2014), which gradually 
spread affecting other healthy trees. Various methods have been used, 
ranging from classical to technological approaches, for dead tree iden
tification and quantification (Senf et al., 2017). Although the classical 
(e.g., field survey) approach enables good observations and results, it is 
time-consuming, labor-intensive, and most importantly unsustainable 
for larger forest areas. Remote sensing techniques coupled with digital 
image analysis have been used to map forest structures and status, 
leveraging cost, time, and space. For example, satellite imagery was used 
to map tree mortality in the forest (Moustakas et al., 2006; Verbesselt 
et al., 2009; Garrity et al., 2013), indicating the effectiveness of satellite 
data in leveraging cost and time. Also, Lopes Queiroz et al. (2019) used 
aerial imagery to classify dead trees with the random forest algorithm. 
Other studies integrated the strength of the Light Detection And Ranging 
(LiDAR) with images to detect, classify and map dead trees (Kamińska 
et al., 2018; Meiforth et al., 2020; Maltamo et al., 2020). Despite these 
achievements from the remote sensing technologies, there is still the 
need for a more robust and efficient approach to dead tree detection and 
mapping, especially for individual trees(Yao et al., 2012). 

With the advancement in computing, Artificial Intelligence (AI) 
through Machine/Deep Learning and Computer Vision (CV) has drasti
cally improved object detection and segmentation with unprecedented 
accuracy (Zhu et al., 2017). Deep learning (DL) techniques have been 
proven to be more efficient in automation and predictions than the 
traditional Machine Learning (ML). Apparently, the need for an auto
mated approach for tree detection in large coverage of land is very 
important because it is cost-effective and more efficient. Consequently, 
for the past few years, some DL models applied remote sensing data in 
tree detection and segmentation (Jiang et al., 2019; Polewski et al., 
2020, 2021). However, to the best of our knowledge, there has been very 
little work done Chiang et al. (2020) in detecting and segmenting in
dividual standing dead trees, especially in clumpy dense natural mixed 
forests. Cognizant of the fact that detecting and mapping dead trees in 
this forest would enable its efficient management, there is the need to 
apply a recent automated approach. This would guide the managers to 
control and keep healthy forests that can store more carbon from the 
atmosphere to mitigate global change. Thus, in this study, we propose a 

Mask Region Convolutional Neural Network (Mask R-CNN) framework 
(He et al., 2017) to detect and segment standing dead trees in the BFNP 
from Aerial Color Infrared (CIR) image. Our investigation seeks to pro
vide answers to the following questions; (1) How well will DL, espe
cially, the Mask R-CNN perform in the instance segmentation of standing 
dead trees in dense mixed forest from aerial imagery?; (2) How can we 
use limited dataset (per DL training custom) to achieve promising re
sults?; (3) What hyperparameters would enhance the training process?, 
and (4) How will our model perform on unseen dataset? Our main ob
jectives, therefore, include:  

1. To adjust the Mask R-CNN for dead tree instance segmentation in 
dense mixed forests using limited training dataset with a relatively 
low resolution (20 cm) CIR aerial imagery  

2. To exploit transfer learning technique and image augmentation in 
the training process to leverage the limitation of training dataset for 
improving the training process  

3. To retrieve suitable hyperparameters for our type of dataset for 
improved model architectural performance  

4. To apply the trained model on selected dead tree plots (test dataset 
that is not seen by the model during training) in clumpy dense mixed 
forest and comprehensively evaluate the results 

Therefore, our adjusted Mask R-CNN model seeks to deal with the 
following challenges: (i) the samples used to train the main Mask R-CNN 
model (the pretrained model) include about 82 different scene features 
(e.g., cars, buildings, sky, human beings) excluding trees, not even urban 
trees. However, our samples (i.e., dead trees in dense forest) used for 
training vary greatly relative to the samples used for training the main 
Mask R-CNN model. Thus, we seek to know how well our model will 
adapt the transfer learning and be able to generalize our model’s per
formance. (ii) In contrast to the required number of training samples 
needed for training deep learning models, we had had only a few (i.e., 
195 images). Thus, in addition to the transfer learning, we seek to 
improve the performance of our model by exploiting the image 
augmentation technique. (iii) how well will our model perform, cogni
zant of the fact that the resolution of our image samples (datasets) is 
relatively low compared to the very high-resolution images (e.g., from 
UAVs and other sensors) used in similar deep learning architecture? (iv) 
Hyperparameters controls the learning process. Thus, we seek to also 
know how well is the performance and the generalization of our model 
as a result of our hyperparameter fine-tuning? 

The remainder of this study is organized as follows: Accounts on 
related studies are presented in Section 2. Section 3 recounts the details 
of the materials used, including a description of the study area, and the 
methodological approach for achieving the results. The results are pre
sented in Section 4 whilst a discussion of the results is elaborated in 
Section 5. Finally, the conclusion is stated in Section 6. 

2. Related studies 

This section accounts briefly for related studies that used Artificial 
Intelligence (AI). Accounts on applications using the traditional ML al
gorithms in contrast to the DL algorithms are provided. Also, brief de
scriptions of the Mask R-CNN model are presented, whiles recounting 
related studies that applied it in previous literature. 

2.1. Traditional Machine Learning applications 

Unlike DL, in traditional ML, computers are made to learn without 
explicit structural coding. Thus, its algorithms are relatively simple and 
less complicated. Some of the frequently used algorithms for classifica
tion in forestry include Random Forest (RF) (Immitzer et al., 2012), 
Support Vector Machine (SVM) (Ye et al., 2021), K-Nearest Neighbor 
(KNN) (Gjertsen, 2007), and Artificial Neural Networks (ANN) (Zhang 
et al., 2021). Recently, these ML algorithms have been applied to either 
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classify tree species or tree health (Ye et al., 2021; DeCastro et al., 2022). 
For example, Furuya et al. (2020) in their effort to map forest vegetation 
in the Riparian Zones compared the performance of four different al
gorithms and proposed the decision tree for that Zone. They used 
Sentinel-2 images. Yu et al. (2021) also applied the random forest to 
detect pine wilt using hyperspectral imagery in Yiwu City, Zhejiang 
Province, China. They used UAV-based data with LiDAR data. Their 
overall accuracy improved from 66.86% to 73.96% when they combined 
their image with LiDAR data. Zhang et al. (2021) after comparing four 
algorithms also reported the prowess of RF in their study for mapping 
dead trees resulting from pinewood nematode outbreaks. They con
ducted this investigation in the Dangyang City, Hubei Province of China, 
using three types of datasets; Geographical Information System (GIS) 
database, Sentinel-2 at 20 m resolution, and Radar derive Digital 
Elevation Model (DEM) and 30m resolution. Furthermore, Liu et al. 
(2021) employed SVM and RF coupled with a deep neural network al
gorithm to map standing dead trees based on a pixel and object-based 
image fusion technique. Just recently, Junttila et al. (2022) mapped 
the decline in tree health due to European spruce bark beetle infestation 
using multispectral imagery and an RF algorithm. They classified, 
healthy, declined, and dead trees with an overall accuracy of 78.2% and 
84.5% for spring and fall respectively. Although these algorithms are 
efficient and produce acceptable accuracies, they are not robust enough 
and less efficient compared to the DL algorithms. For example, unlike 
DL, traditional ML algorithms need to be guided by an expert to extract 
features. Thus, they are not fully automated. Also, traditional ML algo
rithms, compared to DL, produce less accuracy, especially, in classifying 
more complicated features like trees (Arce et al., 2021). Moreover, it 
seems ML algorithms are effective more in detection than segmentation 
(Kattenborn et al., 2021). Consequently, there is the need to consider a 
higher automated approach, especially for large-scale studies like nat
ural forests. 

2.2. Deep learning applications 

DL is a subset of ML. DL uses several hidden layers of neural networks 
that work like the human brain. For some years now, the potential of DL 
to independently learn higher-level features of varying scales in CV tasks 
has rekindled the face of artificial intelligence, especially in handling 
complicated problems in various sciences and engineering fields 
(Najafabadi et al., 2015; Nielsen, 2015; Buduma et al., 2022). Several DL 
techniques have been applied in forestry, geared toward forest man
agement and conservation for a healthy environment. However, DL 
application in these areas is still in its early stage (Hamedianfar et al., 
2022) despite the achievements so far, especially, in determining forest 
damages. Recently, DL algorithms, especially, the Convolutional Neural 
Network (CNN) have been applied to detect and segment dead trees and 
sick trees (Fricker et al., 2019; Khan et al., 2021). It is important to note 
that most of these studies took advantage of very high spatial resolution 
data resulting from the advancements in remote sensing technology. For 
example, Jiang et al. (2019) used a very high-resolution CIR aerial image 
(10 cm) in their Fully Convolutional Network (FCN-DenseNet) archi
tecture to semantically segment dead trees in the BFNP. Briechle et al. 
(2020) used a combination of very high-resolution (8.9 cm) multispec
tral images and UAV-based LiDAR in their deep neural network 
(PointNet++) to classify standing dead trees and some trees species with 
an overall accuracy of 90.2%. Wu et al. (2021) in their study, also used 
very high-resolution UAV-based images (4 cm) in their assessment of 
two CNNs (Faster R-CNN and YOLOv3) for detecting pine wilt disease in 
plants. 

Apparently, CNN has been a breakthrough in remotely sensed image 
object recognition and classification (Hamdi et al., 2019). However, 
following the comprehensive reviews on remotely sensed vegetation 
data by Hamedianfar et al. (2022) and Kattenborn et al. (2021), previous 
investigations have pointed to the fact that one of the key factors for 
CNN to fully exploit features in remotely sensed images is its spatial 

resolution. Analysis of the types of data used in publications from the 
year 2017–2020, on the application of CNN for vegetation in remote 
sensing, shows a sharp increasing trend in the use of UAVs (Kattenborn 
et al., 2021). UAV-based data have been the most frequently used, fol
lowed by terrestrial data, then satellite data, while airborne data rep
resented the least considered. Seemingly, UAVs could have taken the 
lead because of their very high spatial resolution data. Likewise for the 
terrestrial data. However, the spatial resolution of satellite images, in 
general, is less compared to the airborne images; but why were satellite 
images used more frequently than the airborne data? A plausible 
explanation could be that satellite data are often used for large-scale 
studies (e.g., mapping land covers at national levels) with promising 
accuracies. In contrast to satellite data, airborne images are mostly used 
for feature-level studies (e.g., plot-level, or even individual tree level). 
So, it could be that more studies have previously been considered for 
larger scale application like Land Use Land Cover mapping. 

2.3. Mask R-CNN applications 

The instance segmentation-based Mask R-CNN (He et al., 2017) is 
one of the most frequently used state-of-the-art DL architecture that has 
cut across various fields of sciences and engineering (Yekeen et al., 
2020; Zhang et al., 2020; Soloy et al., 2020; Ullo et al., 2021; Zhao et al., 
2021; Gella et al., 2022) due to its ease, flexibility, and unprecedented 
accuracy. Mask R-CNN is a build-up from an earlier object detection FCN 
architecture known as Faster R-CNN (Ren et al., 2015) with an addi
tional arm, in parallel with the existing classification arm, for delin
eating masks based on pixel alignments. 

Despite its successful applications in various fields of sciences and 
engineering, over the past few years, to the best of our knowledge, very 
few studies have considered the Mask R-CNN in vegetation remote 
sensing (Machefer et al., 2020; Lv et al., 2020; Hao et al., 2021; Yu et al., 
2022), especially in forestry, and more so in instance segmentation of 
standing dead trees. The reason for this could fall in line with the 
argument propounded by Kattenborn et al. (2021), that the complexity 
and continuous transition of tree crowns in natural forestry render it not 
applicable for instance segmentation. Notwithstanding, Peculiar to dead 
trees segmentation, Chiang et al. (2020) used aerial imagery with a 
modified Mask R-CNN to detect dead trees in the forest. They reached a 
COCO (Common Object in Context) mean average precision (mAP) of 
54%. Braga et al. (2020) also proposed the use of Mask R-CNN on very 
high-resolution satellite imagery to delineate tree crowns in tropical 
forests with a Precision, Recall, and F1 reaching 0.91, 0.81, and 0.86 
respectively. Zhang et al. (2022) applied the Mask R-CNN on 
high-resolution UAV-based imagery to segment multi-species individual 
trees in a young mixed less dense forest. Their results indicated better 
performance of the Mask R-CNN relative to the U-Net and YOLOv3 in 
segmenting coniferous crowns than deciduous crowns. 

3. Material and methods 

In this section, we give a detailed description of how the materials 
used were acquired for our investigations, as well as our approach to 
adjusting the Mask R-CNN algorithm for promising results. Also, a brief 
description of the study area is presented. 

3.1. Study area 

The area (Fig. 1) we investigated is situated in the BFNP (242.5 
square km), located in the southeastern part of Germany, sharing a 
border with the Czech Republic (49.10◦N, 13.22◦E) (Heurich et al., 
2009). This is the oldest national park in Germany, founded in 1970 with 
the aim of protecting its natural process without human interference 
(Nielsen et al., 2014). The topography of the area is undulating and 
highly elevated, ranging between 600 and 1,453 m. Thus, field 
surveying in this kind of terrain would be a herculean task to 
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accomplish; the more reason why an automated technological approach 
is required, especially, an airborne approach. The mixed forest is dense 
and clumpy with diverse species dominated by the Norway spruce (Picea 
abies) and European beech (Fagus sylvatica). Other species include, 
White fir (Abies alba), Common rowan (Sorbus aucuparia), birches 
(Betula pendula, Betula pubescens), and Sycamore maple (Acer pseudo
platanus) (Cailleret et al., 2014). The forest has witnessed some distur
bances over the years, especially, insect infestation by Norway Spruce 
bark beetle (Ips typographus) (Lausch et al., 2013). Cognizant of the fact 
that the aim of the park was to protect the natural process of the forest, 
which could, in turn, preserve the forest for carbon storage leading to a 
clean environment, there is the need to find a cost-effective way of un
derstanding the forest health and mapping its standing dead trees for 
better management. 

3.2. Data acquisition 

The dataset, CIR images, used for this study was acquired by a DMC 
122 camera onboard a Cessna 207 aircraft. The flight campaign was 
conducted by ILV Remote Sensing GmbH on June 23, 2016, from 09:15 
to 15:10 (with a fuel stop from 12:15 to 14:00) clock over the BFNP at an 
average altitude of 2918 m above Mean Sea Level. The images have 
three spectral bands (Near Infrared, Red, and Green) with a ground 
resolution of 20 cm. The images were radiometrically corrected and 
orthorectified. This was conducted using optimal camera calibration 
observations, transformation parameters and ground control points. 
This was achieved using the Trimble/INPHO company’s program system 

OrthoBox (Orthovista, Orthomaster). Table 1 shows the flight and 
acquisition details. 

3.3. Our methodology 

In this study, we used a very limited training dataset at 20 cm res
olution to detect and delineate standing dead trees with our Mask R-CNN 
model. The following processes were followed to achieve our objectives: 
(i) First, the images were prepared to a specified size (256 by 256 pixels). 

Fig. 1. Map of the study area, the Bavarian Forest National Park (BFNP) in gray to green extent. Insert is a sample CIR image patch (the dead trees in green while 
living trees in reddish to brown) of the 195 images used for the investigation. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 

Table 1 
Flight and data acquisition details.  

Item Details 

Project Bavarian Forest 
Assignment National Park Administration of Bavarian Forest 
Flight date June 23, 2016 
Flight time 09:15–12:15; fuel stop; 14:00–15:10 clock 
Ground resolution 20 cm 
Average altitude 2918 m MSL 
Longitudinal overlap 75% 
Cross coverage 60% 
Camera DMC 122 
Focal length 120 mm 
Camera calibration 2014 
Aircraft Cessna 207 
Exposure Automatic 
Navigation CCNS4, AeroControl 
Flight conduct and processing ILV Remote Sensing GmbH  
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(ii) Then, the dataset (training, validation, and testing sets) was pre
pared. (iii) Next, the standing dead tree crowns were manually anno
tated (labeled) based on the visual inspection due to the spectral 
strength of the CIR images and expert advice. (iv) After that, the anno
tated dataset were used in our Mask R-CNN algorithm for training, 
validation, and testing for standing dead tree detection and delineation. 
In this step, we employed the image augmentation strategy, transfer 
learning, and appropriate hyperparameter definition to fine-tune our 
model. A summary of the framework approach is illustrated in Fig. 2. 

3.3.1. Image preparation 
In order to have an ease in the training process in the DL network, the 

processed image tiles acquired from the DMC 122 camera were further 

resized to patches of 256 by 256 pixels. There were no overlaps between 
the image tiles and patches used for the experiment. This was carried out 
using the IrfanView version 4.57 tool (Skiljan, 2022). 

3.3.2. Dataset preparation 
Before training our model, we randomly grouped 215 images into 

training (150 images), validation (45 images), and testing (20 images) 
sets. These sets were put in different folders. The training and validation 
sets were used for training the DL network, while the testing set did not 
see the network at all. 

3.3.3. Dataset annotation 
In order to train DL models, the network architecture would need the 

ground truth patterns from which it would learn, train and validate the 
predictions. Consequently, we manually annotated all dead tree crowns 
found on each patch of the images, to the best of our ability. At the 
borders of the image patches, we considered trees that were more than 
half of their full size for annotation. The approximate sizes of trees are 
between 7 by 7 pixels and 18 by 18 pixels in the image patches. All 
images in the three contained folders were annotated using the VGG 
Image Annotator (VIA) (Dutta and Zisserman, 2019), an open-source 
web-based image annotator that does not depend on any external li
braries nor requires any installations (see Fig. 3). This tool was devel
oped in such a way that it can be applied offline in some modern web 
browsers like Chrome and Firefox. Our annotated dead tree crowns were 
exported as a JSON file for convenient use in our scripts. The annotated 
images had at least one annotated dead tree and a maximum of 70 
annotations. 

3.3.4. Our mask R-CNN model 
Mask R-CNN (He et al., 2017) builds up from Faster R-CNN (Ren 

et al., 2015) (which was proposed for detection problems) by adding an 
arm in parallel to that of Faster R-CNN for delineating masks. The masks 
are delineated for all areas of interest known as the Region of Interest 
(RoI). In contrast to most semantic segmentation DL architecture, the 
Mask R-CNN has less pooling operation (see Fig. 4). This is in order to 
minimize the possibility of losing some details from the image being 
investigated. With its backbone (ResNet), Mask R-CNN extracts features 
from the input images, whilst using its head to classify the features by 
describing bounding boxes (He et al., 2017). Fig. 4 illustrates the Mask 
R-CNN architectural design. 

This works in two stages. In the first stage, the training image input 
into the network architecture is scanned to propose regions that are 
likely to contain objects. In our case, for instance, this proposed region 
could contain a standing dead tree. The regions are proposed referenced 
to the ground truth annotations. In the second stage, the proposed re
gions are classified by generating bounding boxes and masks for each 
region. Feature maps are extracted from the images with the backbone 
architecture made up of CNN. The Mask R-CNN applies ResNet (ResNet 
50 or ResNet 101) and Feature Pyramid Network (FPN) (Lin et al., 2014) 
as the backbone. As the names sound, ResNet 50 has 50 CNN layers 
whiles ResNet 101 has 101 layers. In our case, we applied the ResNet 
101 together with the FPN. The initial layers start by extracting 
low-level features (e.g., lines, and curves) while succeeding layers 
extract higher-level features until the required dead tree crowns. 
Furthermore, the proposed feature maps are then scanned by the Region 
Proposal Network (RPN) in a sliding window style to effectively deter
mine the targets (e.g., dead trees) in the feature maps. These scans are 
known as ANCHORS. Predictions by the RPN indicate the possibility of 
targets existing in an anchor or not. Thus, bounding anchors with targets 
are further localized and resized based on the ones predicted with the 
highest score to exactly fit the targets (i.e., Region of Interest (ROI)); the 
remaining anchors are then rejected. Next, the ROIs predict the class (in 
our case we have two classes: dead tree or background) and the 
bounding boxes (with refinement). In Mask R-CNN, ROIAlign was 
applied to refine the bounding boxes with bilinear interpolations. 

Fig. 2. Flowchart of our methodology framework for adjusting the Mask R- 
CNN algorithm for instance segmentation of standing dead trees in 
dense forests. 
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Finally, masks are created for predicted ROIs with positive classes.  

(i) Transfer Learning: DL architecture like the Mask R-CNN requires 
a lot of training data to perform well. Previous research suggested 
the use of more than 10,000 well-labeled images for each class for 
attaining sound instance segmentation results (Zlateski et al., 
2018). Due to the limitation of our dataset (195 images), transfer 
learning was employed. The concept of transfer learning is to 
initiate training with an already-trained model that has weights. 
It is expected that the learned model would have enough 
knowledge to transfer to the new model for easy training. Thus, 
we initiated our training with a model pre-trained with the 
Microsoft Common Object in Context (MS COCO) dataset (Lin 
et al., 2014). The MS COCO dataset contains more than 300,000 
images with more than 2 million labeled instances used for 
training with about 90 different classes of natural scenes (e.g., 
human beings, cars, tables, and animals). However, there is no 

representation of our class (dead tree) in the MS COCO dataset. 
Notwithstanding, since the pre-trained model from MS COCO has 
learned about 90 classes within the natural environment, we 
presumed that this knowledge could help in improving the 
training of our limited data as indicated in previous research 
(Zlateski et al., 2018). Thus, we seek to know how well our model 
can adapt to the transfer learning strategy.  

(ii) Image Augmentation: A strategy to artificially increase the 
number of training data is via image augmentation. To do this, we 
exploited the image augmenters (imgaug (Jung et al., 2020)) in 
the Python library. We executed zero to three (0–3) of the five 
given augmenters (they include, horizontally flipping 50% of the 
images; vertically flipping 50% of the images; one of Affine 
rotation at either 90, 180, or 270◦; changing the brightness of 
images between 80 and 150%, and Gaussian blur with sigma 
between 0 and 2). This was done randomly, as augmentation 
applies to the images with their corresponding annotations. Thus, 

Fig. 3. The VGG Image Annotator interface displays a sample of the annotation on a CIR image. The dead trees are shown gray to green with the yellow polygons 
around them indicating the delineation, while the healthy trees are red. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

A. Sani-Mohammed et al.                                                                                                                                                                                                                     



ISPRS Open Journal of Photogrammetry and Remote Sensing 6 (2022) 100024

7

we applied this technique with the goal that it could help in 
leveraging the limitation of our dataset.  

(iii) Hyperparameter fine-tuning: In contrast to traditional ML where 
the machine is allowed to automatically opt for the optimal 
model architecture, in the case of DL, one needs to search for the 
parameters to define the model’s architecture. These parameters 
are known as hyperparameters. Hyperparameter fine-tuning is 
the means of exploring the ideal model architecture (Jordan, 
2017). It is important to understand the difference between 
hyperparameters and model parameters. On one hand, the 
hyperparameters characterize how the model is structured. On 
the other hand, the model parameters describe how to get the 
required output by transforming the input data. In general, in
vestigations are carried out to find what hyperparameters work 
best because there are no specific ways to update hyper
parameters for loss reduction. 

That said, the matterport’s Mask R-CNN (Abdulla, 2017), from which 
our model was adjusted, used a training dataset (MS COCO dataset) that 
had great variations in scale because they had about 90 classes (cars, 
tables, chairs, sky, human beings, and other natural scene objects) in 
their dataset. This differs from ours in that our class consists of only trees 
with fewer variations in scale. Thus, in our case, applying the same 
hyperparameters implemented in the matterports’s Mask R-CNN would 
not lead to good results (see Fig. 6). Thus, to fine-tune our hyper
parameters, we re-scaled the anchors for the RPN (RPN Anchor Scales) 
by reducing the sizes. This was in order to have reasonable anchor sizes 
that could fit the standing dead trees, which are estimated to be 
approximately between 7 by 7 pixels and 18 by 18 pixels in the image 
patches. Furthermore, since our maximum annotated dead trees per 
image was not more than 100, we limited the maximum ground truth 
instances (Max GT Instances) to 100. Additionally, we limited the 
required region of interest necessary to be trained per image (Train ROIs 
Per Image). Equally, we also limited the required number of anchors 
necessary per image for the RPN (RPN Train Anchors Per Image), with 
an anchor stride (RPN Anchor Strides) of two since there is no possibility 
of having more than 60% tree crown overlap. Moreover, we scaled the 
dimensions of our images, (Image Min DIM) and (Image Max DIM), to 
the size of our patches (i.e., 256 by 256 pixels). Further, we increased the 
non-maximum suppression threshold (RPN NMS Threshold) to generate 
more proposals to filter the RPN proposals. Then, we limited the number 
of ROIs (for training (Post NMS ROIs Training) and inference (Post NMS 
ROIs Inference)) that would be kept after the NMS. We use a batch size 
(Batch Size) of eight and maintained all other parameters. Table 2 il
lustrates the details of our hyperparameter fine-tuning. This hyper
parameter fine-tuning suits our dataset, leading to an improvement in 
the training to achieve promising results. 

4. Results 

In this section, we present a comprehensive evaluation of the 
experimental results of our investigations. 

4.1. Training experiment 

Experiments were investigated on the training and validation data
sets. This was conducted on a desktop with 64 GB installed RAM; Intel® 
CoreTM i7-10700 CPU at 2.90 GHz and NVIDIA GeForce RTX 2070. The 
evaluation was not seen by the network and was therefore set aside to 
assess the generalization of our model, pursuant to the use of the transfer 
learning and data augmentation approach. The model was trained for 25 
epochs with 100 steps per epoch for training and 25 steps per epoch for 
validation steps at a learning rate of 0.001. The Adam Optimizer was 
used for optimizing the training. Fig. 5 shows the loss graph. 

Fig. 4. The mask R-CNN architecture.  

Table 2 
The parameters used for our hyperparameter fine-tuning.  

Hyperparameter Modification Description 

Backbone ResNet101 +
FPNa 

The backbone CNN used to extract the 
feature maps 

Batch Size 8 Trained 8 images per GPU 
Backbone Strides [4, 8, 16, 32, 

64] 
Strides based on the resnet 101 
backbone for each layer of the FPN 
pyramid 

RPN Anchor Scale (8, 16, 32, 64, 
128) 

Lengths of the different square anchor 
sides used, in pixel 

RPN Anchor Stride 2 Anchors created for every other cell in 
the feature map 

RPN NMS Threshold 0.8 Non-maximum suppression threshold 
to filter RPN proposals 

Post NMS ROIs 
Training 

1600 Number of ROIs kept after NMS for 
training 

Post NMS ROIs 
Inference 

600 Number of ROIs kept after NMS for 
inference 

Image MIN 
Dimension 

256 Minimum dimension of the images used 
for training,in pixel 

Image MAX 
Dimension 

256 Maximum dimension of the images 
used for training, in pixel 

Train ROIs Per Image 100 Number of ROIs per image to pass to the 
classifier and mask heads 

MAX GT Instances 100 The maximum quantity of ground truth 
instances to consider in one image 

Detection MAX 
Instances 

100 Maximum number of final detections 

Detection MIN 
Confidence 

0.6 The least probable value to accept a 
prediction  

a Same parameters used in main architecture. 
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4.1.1. Loss function 
Whiles in the training process, the general loss function is calculated 

by computing the sum of the classification loss, bounding box regression 
loss, and the mask loss by applying per pixel sigmoid to each feature map 
(Equation (1)). The classification and bounding box loss are the same as 
described in the literature on Faster R-CNN (Ren et al., 2015). The mask 
loss is characterized by a log loss as an average binary cross-entropy loss 
from all the results output (Equation (2)). However, the results are 
considered only for regions with the ground truths (in this case the an
notated dead trees). 

L = lcls + lbox + lmask (1)  

where L is the total loss, lcls is the classification loss of predictions, lbox is 
the bounding box regression loss of the predictions, and lmask is the 
average binary cross-entropy loss. 

lmask = − 1
/

y
∑n

i=1
[y∗i log(p(yi)) − (1 − y∗i )log(1 − p(yi))] (2)  

where y is the pixel number, y∗i is the ground truth where the pixel is 
located, while p(yi) is the probability of the (yi) predicted category 
(Wang et al., 2021). 

4.2. Standing dead tree detection and segmentation 

Fig. 6 shows the predictions obtained from the model without 
hyperparameter fine-tuning. The left side (a) shows the original images 
used for the evaluation, while the right side (b) shows the detections and 
segmentations from the model. All the 20 test images were evaluated. 
However, predictions/instances were seen for only the images (eight) 
displayed in Fig. 6 (labeled with their IDs). Even, most of these images 
show just a couple or three instances (see 1b, 3b, 11b, 16b, 18b and 
20b), while 2b and 10 displayed only one instance each. The remainder 
of the images displayed zero predictions/instances, thus we did not 
provide them in this Fig. 6. This indicates the weakness of the model 
without suitable hyperparameters. Compare this to Fig. 7. 

Despite the challenges with relatively low resolution CIR images 
used, our model produced promising results with very high accuracy, 
exceeding some previous studies in the literature. Fig. 7 displays our 
model’s results for standing dead tree instance segmentation with masks 
for all the 20 evaluated test images. As illustrated in Fig. 7, the left side 
(a) shows the original images used for the evaluation, while the right 
side (b) shows the detections and segmentations from our new model. 
From visual inspection, it could be seen that our model’s performance 
looks promising. Apparently, our new model could detect and segment 
almost 90% and even more of the standing dead trees available in some 

images (See Fig. 7; 1b, 2b, 3b, and 10b). Likewise, in the same figure, for 
evaluated images with IDs 11b, 15b, 16b, 17b, 18b, and 20b. Interest
ingly, also in the remainder of the images, almost all standing dead trees 
available are detected and segmented (see Figs. 7, 4b and 5b, 6b, 7b, 8b, 
9b,12b, 13b, and 14b). This indicates our model’s improved strength in 
detecting and segmenting standing dead trees in the mixed, dense, and 
clumpy Bavarian Forest. Notwithstanding, we had some challenges, 
especially, in annotating samples for training. Despite the expert guide, 
annotation in some images proved quite challenging due to the tree 
patterns coupled with the image resolution. Consequently, some 
standing dead trees were intentionally ignored, thus not obtaining 
ground truth for them. Also, there were areas where the ground’s 
spectral color looks like that of the dead trees (gray to green) due to the 
presence of fallen dead trees. All this could be the reason for seeing low 
Average Precision (AP) and F1 − Score for Images 3b and 6b, as well as 
7b and 9b in Fig. 7 (see Table 3) even though the results are acceptable. 
This may have also influenced the accuracy assessments seen in Table 3, 
despite the tremendous performance displayed in Fig. 7. 

4.3. Accuracy assessment 

We evaluated the performance of our model’s predictions on the 
detection and segmentation of standing dead trees in the BFNP. Thus, we 
measured the Average Precision (AP) for each image and mean Average 
Precision (mAP), Recalls, and F1 − Scores for the entire images. Here, the 
Precision measures our model’s accuracy in correctly classifying the 
standing dead trees in the image. It is expressed as the number of 
correctly classified standing dead trees (True Positive) relative to the 
entire classified trees in an image whether correctly classified or not 
(True Positive + False Positive). The Precision is expressed as in Equation 
(3): 

Precision =
TP

TP + FP
(3)  

where TP is True Positive, and FP is False Positive. The mAP is calculated 
as described in Equation (4); the results are shown in Table 3: 

mAP = 1
/

n
∑ TP

TP + FP
(4)  

where n is the total number of tested images. 
The Recall defines our model’s ability to correctly classify the 

standing dead trees. It is expressed as the number of correctly classified 
standing dead trees (True Positive) relative to the entire number of 
standing dead trees available in an image (True Positive + False Nega
tive). Therefore, if the Recall value is high, it means our model’s ten
dency to correctly detect and classify standing dead trees is very high. 
The Recall is expressed as in Equation (5): 

Recall =
TP

TP + FN
(5)  

where FN is the False Negative. 
F1 − Score is a balance between Precision and Recall. It is also known 

as the harmonic mean of Precision and Recall. Thus, a high F1 − Score 
value means the model’s Precision and Recall are high as well. F1 − Score 
is expressed as in Equation (6): 

F1 = 2
(

Precision ∗ Recall
Precision + Recall

)

(6) 

Table 3 presents results for our model’s entire evaluated dataset. The 
Image IDs, Average Precisions (AP), Recalls, and F1 − Scores for the test 
images are displayed in columns one, two, three, and four respectively. 
Also presented is the overall mAP, mean Recall (mR), mean F1-Score 
(mF1) for the entire images. Each row display results for an image 
whose ID is stated in the first column. The results range between 0 and 1; 
the closer the value is to 1 the better the performance, whereas values 

Fig. 5. The training loss.  
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close to zero indicate weak performance. As indicated in Table 3, about 
90% of the evaluated dataset had a AP greater than 0.7 while 35% 
reaching AP of greater than 0.90. Apparently, 80% of the evaluated 
dataset recorded AP greater than 0.8. Interestingly, our model recorded 
an mAP of 0.85 for the entire evaluated dataset. Further to the promising 
mAP results we have, we also recorded promising Recalls. The least 
recorded Recall was 0.67 for only two evaluated images, while the 
remaining dataset recorded Recall values between 0.7 and 1 with 85% of 
the data recording Recalls greater than 0.8. An (mR) of 0.88 was 
recorded for the entire evaluated dataset. This, therefore, indicates that 
our model’s tendency to correctly detect and classify standing dead trees 
is very high (0.88). Like the promising results recorded for the mAP and 
Recalls, our model equally recorded promising results for the mF1 at 0.87 
for the entire evaluated dataset. However, the model without suitable 
hyperparameters recorded an overall mAP, mR, and mF1 reaching 0.05, 

0.06 and 0.05 respectively (see Fig. 6 for display of its predictions). 

5. Discussion 

In this investigation, we have attempted to detect and segment 
standing dead trees in the mixed, dense, and clumpy BFNP from aerial 
CIR imagery using a DL approach. We adjusted the Mask R-CNN to suit 
our dataset pattern for improved performance (Compare Fig. 6 with 
Fig. 7). Apparently, for a DL architecture to perform very well there is a 
need for tens of thousands of training datasets, which, most often, is 
quite challenging. For a supervised DL technique like ours, it means all 
these datasets must be labeled, thus an additional challenge. Further to 
this, most often, DL requires very high-resolution datasets to be fed into 
the neural networks for robust model performance (Kattenborn et al., 
2021), especially for mapping individual trees. We were challenged with 

Fig. 6. Instance segmentation of standing dead trees (b; right); corresponding tested images (a; left), for model without hyperparameter fine-tuning.  
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Fig. 7. Our new model’s instance segmentation of standing dead trees (b; right); corresponding tested images (a; left).  
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very limited training dataset. Despite this challenge, we employed 
techniques to leverage this limitation, leading to promising results. 

We noted quite a consistent improvement in the training process 

while the epochs increase from 1 through to 25 as the training loss 
decreased (Fig. 5). This corroborates with the results we have seen in our 
evaluation of the test dataset (Table 3). The worst performance was seen 

Fig. 7. (continued). 
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in two images (3b and 6b). The reason for such low performance could 
be due to the challenge in labeling standing dead trees in the images, as 
the trees were very clumpy, making them difficult for manual delinea
tion. Thus, some trees were not labeled, so not having ground truths. 
However, our observations show that our model detected and 
segmented most of the standing dead trees in every image. This could be 
the reason for that low performance, even though the results are 
acceptable. This, therefore, indicates our model’s robustness for 
detecting and segmenting standing dead trees in dense forests. Contrary 
to the overall accuracy performance (0.05, 0.06, and 0.05) of the model 
without suitable hyperparameters, our new model recorded an overall 
mean Average Precision (mAP), mR, and mF1 of 0.85, 0.88, and 0.87 
respectively in detecting and segmenting approximately 561 standing 
dead trees from the test dataset. This is very promising and higher than 
the 0.82 recorded in (Lv et al., 2020). Chiang et al. (2020) also reached a 
COCO mAP of 0.54. This is very significant, especially, in investigations 
relating to mapping standing dead trees in a natural dense forest like the 
Bavarian in Germany. This further indicates that our transfer learning 
and image augmentation approach worked successfully in leveraging 
the limitation in our data. Likewise, our selected hyperparameters have 
suited well the structure of our training dataset even though the COCO 
dataset used for transfer learning were quite different in scale, nature, 
and variation. Our remarkable results also point to the generalization 
capability of our model. Observation of our new model’s training (see 
Fig. 5) indicates that longer training time could have enabled it to reach 
even better results than the ones presented, as the training and valida
tion losses were still lowering. Thus, in our future works we will rather 
implement early stopping criterion in order to let the algorithm decide, 
automatically, when to stop training instead of the fixed approach we 
considered. 

One of the challenges we had, however, was the difficulty in anno
tating the standing dead trees. It was quite challenging trying to delin
eate all the crowns due to uncertainty in knowing exact boundaries in 
some instances. Thus, some few crowns were not annotated. There were, 
also, some areas where the ground’s spectral color and the dead trees 
(gray to green) looks similar due to the presence of fallen dead trees. 
Some of these ground areas (although very few) were predicted by our 
model as dead trees. This may have contributed to the low Average 
Precision (AP) and F1 − Score for Images 3b and 6b, as well as 7b and 9b 
in Fig. 7 (see Table 3) even though the results are acceptable. Also, all 
this is likely to influence the accuracy assessments seen in Table 3, 
despite the tremendous performance displayed in Fig. 7, as the base for 

the assessments are the ground truths. Thus, we argue, that If we had 
attained perfection in our manual annotation, our results could have 
been higher than in Table 3. Another limitation is our inability to find 
dataset from other regions (outside Germany) to equally test our model’s 
performance elsewhere. Thus, we are not very sure how it will perform 
on forests in regions outside Germany. Moving forward, we hope that 
data accessibility would become easy in the future, so that we could 
ascertain this performance in later studies. 

Regarding the instance segmentation of standing dead trees, espe
cially in dense forests using DL, to the best of our knowledge, the study 
we could find in literature that could be compared with our investiga
tion was the work of Chiang et al. (2020). However, we could not have a 
quantitative comparison with their work as they used the COCO mAP 
(reaching COCO mAP of 0.54), which is a bit different metric to ours. 
This was their best out of eight fine-tuned models. It was, however, 
interesting to note that, qualitatively, we observed that our masks 
delineated our tree crowns quite better, depicting a real sense of instance 
segmentation compared to most of their test images as displayed in their 
publication (see their Fig 20). This indicates that, unlike ours, perhaps 
their focus was not really on the individual dead tree instance segmen
tation. Like us, they also used aerial imagery, with synthetic dataset for 
training, in their investigation, without stating the resolution of their 
image. Also, visual inspection of the lower left corners of our Images 1b, 
5b, 6b, 8b, and 9b in Fig. 7, for instance, indicate the segmentation of 
overlapping crowns. There are other few studies that applied DL 
instance segmentation, in vegetation, in general. For instance, Lv et al. 
(2020) modified the Mask R-CNN to delineate and grade crop produc
tion using remote sensing data. They used Landsat 8 OLI and Land Use 
Change vector database for their investigation in the Da’an City, Jilin 
Province of China. They recorded mAP of 0.82 which is a bit low 
compared to ours. It is also important to note that their investigation was 
not focused on individual trees. Machefer et al. (2020), also refitted the 
Mask R-CNN to individually segment plants from RGB UAV imagery 
recording mAP of 0.66 for lettuce. Their datasets were acquired in the 
UK and Australia. Despite their use of very high-resolution (1.7 cm–2 
cm) imagery and a young fine vegetable farm, our model performed 
quite better per the recorded mAP. 

Although we used relatively low-resolution (20 cm) images 
compared to the very high-resolution (5 cm or better) images normally 
from UAVs and other powerful sensors, our model’s results look very 
promising. This unravels the prowess of the Mask R-CNN architecture in 
forestry applications, even with relatively low resolution datasets. 
Additionally, this demonstrates the potential of our model in detecting 
and segmenting standing dead trees in the dense BFNP forest from aerial 
imagery. Consequently, our model could be used for automation in 
standing dead tree detection and segmentation for enhanced forest 
management. In so doing, it would ease forestry assessments relating to 
tree mortality, making it more efficient and cost-effective with less 
manual work even in larger forest areas. Finally, we would like to state 
that these findings could be useful and very significant for accurate 
Carbon storage estimation. 

In future investigations, we hope to look more into which hyper
parameters led to most improvements. It is important to note that the 
applications of DL, despite its recent achievements and growth with 
unprecedented accuracies in solving complex problems, in forestry is 
still young. Moving forward, we would like to recommend more appli
cations of DL in assessing and quantifying forest health, as this would be 
more sustainable and cost-effective for enhanced forest management. A 
combination of different remote sensors (e.g., images and point cloud 
from LiDAR) in DL training is likely to achieve better results. Therefore, 
this sensor combination should be considered. We would also recom
mend that the dataset used in such investigations be published in order 
to reduce the data burden for more research. Especially, due to the fact 
that one of the challenges for training supervised DL models is dataset 
acquisition and preparation. 

Table 3 
Our model’s evaluation performance of the Precision, Recall and F1-Score.  

Image ID Average Precision (AP) Recall F1-Score 

1 0.85 0.83 0.84 
2 0.86 0.86 0.86 
3 0.67 0.67 0.67 
4 0.86 0.96 0.91 
5 0.84 0.90 0.87 
6 0.66 0.67 0.66 
7 0.71 0.77 0.74 
8 0.89 0.91 0.90 
9 0.73 0.84 0.78 
10 0.90 0.90 0.90 
11 1.00 1.00 1.00 
12 0.94 0.95 0.95 
13 0.88 0.96 0.92 
14 0.93 1.00 0.96 
15 0.86 0.87 0.86 
16 0.91 0.92 0.91 
17 0.94 0.93 0.93 
18 0.94 0.96 0.95 
19 0.81 0.87 0.84 
20 0.88 0.88 0.88 

Overall mAP mean Recall (mR) mean F1-Score (mF1)  
0.85 0.88 0.87  
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6. Conclusion 

In this study, we exhibited a DL automation approach by adjusting 
the Mask R-CNN to train a new model for detecting and segmenting 
individual dead tree crowns in a mixed dense forest. With limited 
training dataset, we applied techniques that enabled our model to reach 
promising results, exceeding other studies that used relatively higher 
resolution datasets compared to ours. Our model recorded an overall 
mean Average Precision (mAP), mR, and mF1 of 0.85, 0.88, and 0.87 
respectively. This demonstrates the robustness of our model and a great 
potential to apply it in forestry management, as it would be cost- 
effective and sustainable even for larger forest areas. This study is 
equally significant for forest Carbon storage estimation, having known 
the living tree and their heights, in the sense that how well a forest can 
store Carbon is determined by the forest’s growth and health coupled 
with its biodiversity. Therefore, getting to know the quantity of standing 
dead trees in forests would provide firsthand information to forest 
managers to facilitate the assessment of the general forest health while 
carrying out their routine inventory. This kind of information could as 
well enlighten forest managers to reorient their strategies in keeping the 
forest in a good state; because the healthier and denser the forest, the 
more carbon it can store. This is very important for keeping a clean 
climate and healthy environment. In the future, we intend to investigate 
the decay levels of standing dead trees using a combination of different 
remotely sensed data, like imagery and LiDAR data. 
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