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A B S T R A C T   

The outlook of crude oil prices has sparsely been empirically examined especially from the critical perspectives of 
energy expenditure per household, retail electricity prices, and environmental indicators. Given the enormous 
macroeconomic and socioeconomic effects of crude oil price amidst the fundamentals, this study examines the 
dynamics of the oil price outlook amidst energy demand (measured by energy expenditure per household), retail 
electricity price i.e., substitute price, and carbon dioxide (CO2) emissions in the United States of America (USA) 
over the period 1970 to 2040. This study offers two main innovations: first, it extends the bivariate nonpara
metric Quantile-on-Quantile Regression (QQR) to the multivariate case. Second, the analysis incorporates pro
jected data series, which provides useful policy insights. The empirical results show evidence of time-varying 
effects of energy expenditure per household, retail electricity price, and CO2 emissions across the quantiles of 
crude energy prices. The results further show that the effect of energy demand through household energy ex
penditures is positive and stronger at the lower quantiles of crude oil price, which corresponds to periods of low 
crude oil prices. Furthermore, the effects of retail electricity price and CO2 emissions are negative and stronger in 
the mid-quantiles of crude oil price. This suggests that retail electricity prices and environmental indicator 
dampen crude oil prices during periods of low crude oil prices. These findings are robust to multivariate Quantile 
regression and Kernel-based Regularized Least Squares (KRLS) estimates. Therefore, our study suggests time- 
varying policies to dampen the effects of energy demand, retail electricity price, and environmental indicator 
on crude oil prices in the USA.   

1. Introduction 

The decades of increasing development and expansion of alternative 
and clean energy sources in response to the global challenge of climate 
change and other environmental-related issues are yet to reduce the 
significance of crude oil and other fossil fuel sources. As a vital economic 
agent, energy sources, especially the crude oil market have remained an 
important determinant of economic buoyancy. This accounts for the 
evidence of a strong synchronization between the energy market vis- 
à-vis the global crude oil price and sector-wide economic, macroeco
nomic, and financial activities, thus explaining the vulnerability of the 
global economy amidst crude oil price fluctuations (Sadorsky, 1999; 
Shahbaz et al., 2017; Hammoudeh and Reboredo, 2018). Specifically, 

extant studies have explained the nexus between crude oil price dy
namics and underlying fundamentals such as the macroeconomic in
dicators (Tvedt, 2002; Mallick et al., 2018; Balcilar et al., 2021a, 
2021b), financial indicators (Wang and Li, 2021; Yang et al., 2021; 
Balcilar et al., 2022), energy aspects (Hassouneh et al., 2012; Kassouri 
et al., 2021; Alola, 2021 & Alola, 2022), and even the socioeconomic 
aspects (Dodson and Sipe, 2007; Akbari and Nurul Habib, 2014). 
Importantly, the dynamics of global crude oil price is not only explained 
by the above-mentioned factors but there is also increasing attention on 
other potential fundamentals such as energy access (Sinha et al., 2022). 

Consequently, the curiosity to further uncover the significance of 
other underlying fundamentals of crude oil price is the main motivation 
and a major research question the current study seeks to answer. Given 
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the potential fundamentals that are being scrutinized in this investiga
tion, the revealing results ought to provide more assuring answers to 
some critical questions. For instance, and in a more practical term, how 
much of the 21st century’s household-centered drivers of environmental 
sustainability and energy efficiency are impacting the global crude oil 
price? Additionally, how has or will the pursuit of the global goal such as 
the carbon neutral ambition (say net zero by 2050) influence the global 
crude oil price? Therefore, toward providing further revelation along
side answering the above-mentioned questions, the current study is 
objectively fashioned accordingly. Importantly, the roles of environ
mental indicator (measured by the level of CO2 emissions and price of 
retail electricity (a proxy for crude oil price substitute) are both 
considered toward achieving the novel objective of further revealing the 
crude oil price effect of environmental and energy efficiency drive. 
Additionally, with the overarching objective of providing more answers 
about the role of carbon-neutral ambition, an extensive dataset covering 
until 2040 is utilized for the investigation. Moreover, the case of the 
United States of America (USA) is considered given both the country’s 
carbon dioxide (CO2) emissions and energy utilization profile i.e., the 
USA is a world‑leading energy consuming and second highest carbon 
emitting economy in the world (United States Energy Information 
Administration, 2021). Interestingly, as an additional novelty, the study 
extends the bivariate nonparametric Quantile-on-Quantile Regression 
(QQR) while also utilizing energy expenditure per household as a proxy 
for energy demand. Given the justifications for considering the case of 
the USA, this potentially makes the results of the investigation a suitable 
template for policy recommendation and adoption across the globe. 

Then, the other parts of the study are structured such that relevant 
previous studies are briefly discussed in section 2. In section 3, the 
dataset is described alongside the empirical methodology. While the 
results of the estimations are discussed in section 4, the conclusion 
alongside relevant policy insight is presented in section 5. 

2. Theoretical consideration 

The seminal work of Baily et al. (1978) is one of the studies that 
provide information about the dynamics of crude oil prices with 
respect to changes in economic activities. Therefore, economic, and 
macroeconomic indicators expectedly exert a causative effect on crude 
oil prices. Moreover, given that the global oil market is the central 
trading space for crude oil (a tradable good), macroeconomic in
dicators such as the exchange rate could directly impact crude oil 
prices (Blomberg and Harris, 1995). This reality as suggested by the 
relevant law of single price for tradable goods offer the intuitive 
background to suggest that economic fundamentals such as energy 
demand, electricity price, and other related factors potentially drive 
the dynamics of crude oil price. 

2.1. Empirical literature: a synopsis 

In the literature, the is empirical evidence affirming that crude oil 
price is associated with electricity price and energy consumption 
(Mohammadi, 2009; Nakajima and Hamori, 2012; Bernal et al., 2019). 
For instance, Mohammadi (2009) considered the case of the USA while 
investigating the relationship between electricity prices and three fossil 
fuel prices (coal, natural gas, and crude oil). By employing the dataset 
that spread over 1960–2007, the investigation only revealed a statisti
cally significant relationship between coal prices and electricity prices. 
Specifically, coal prices and real electricity prices are found to exhibit a 
stable long-run association, and as well both exhibits long-run bi- 
directional causality. Moreover, the study also failed to establish 
asymmetric evidence between electricity prices and fossil fuel prices. 
Similarly, Bernal et al. (2019) adopted the approach of Mohammadi 
(2009) for the case of Mexico over the period of January 2006 to 
January 2016. Contrarily, the result from Bernal et al. (2019) revealed 
that all the fossil fuel prices (coal, natural gas, and crude oil) showed a 

significant and positive association with domestic electricity price rates, 
especially in the short-run. For the industrial and commercial electricity 
price rates, both relationships with crude oil and natural gas prices are 
also found to be significantly positive. Additionally, the study of Naka
jima and Hamori (2012) used the case of Japan to investigate the nexus 
of electricity price and crude oil price alongside the role of the exchange 
rate vis-à-vis the yen-to-US-dollar exchange rate. The study employed 
the novel causality-in-mean and causality-in-variance through the 
approach of the cross-correlation function. Importantly, Nakajima and 
Hamori (2012)’s study found no evidence of both Granger-causality-in- 
mean and Granger-causality-in-variance between the electricity and 
crude oil markets. Contrarily, through the Granger-causality-in- 
variance, the result established that there is a combined effect of the 
yen-to-US-dollar exchange rate and crude oil price on electricity prices 
in the examined country. 

Though still not widely covered in the literature, crude oil prices are 
now being increasingly linked with carbon emission and environmental- 
related factors (Payne, 2012; Kassouri et al., 2022; Umar et al., 2022; 
Wei et al., 2022). The recent study by Kassouri et al. (2022) imple
mented a wavelet-based approach to examine the relationship between 
oil price shock and carbon emission in the USA over the period of 
February 1975 to July 2018. The study utilized disaggregated demand 
and supply oil price shocks to provide interesting insight into the oil 
price shock and carbon emission nexus. Interestingly, the result revealed 
that neither the shock in oil demand (due to high energy demand) nor 
the shock in oil supply is able to trigger a decline in carbon emission. 
From a different perspective, Wei et al. (2022) employed the economic 
input-output life cycle method (EIO-LCA) approach to investigate the 
interlinkage between crude oil price uncertainty and corporate carbon 
emission (from 1089 Chinese companies). Desirably, the investigation 
found that corporate carbon emissions in the examined companies could 
be mitigated when there is an experience of high uncertainty in inter
national crude oil prices. However, the result further implies that an 
increase in carbon emission intensity triggers global oil market uncer
tainty while causing a decline in different frequency bands of oil in
ventory. Meanwhile, Payne (2012) employed the Toda-Yamamoto 
approach to examine the Granger causality between real oil prices, 
carbon emission, gross domestic product, and renewable energy con
sumption. By using the dataset that spread over 1949–2009, the study 
failed to establish significant Granger causality between carbon emis
sion and oil price. 

While the above-reviewed studies explain the dynamics of oil prices 
from the perspectives of energy consumption, electricity prices, and 
carbon emission, the role of household energy expenditures remained 
unexplored in the literature. Moreover, the dataset covering the period 
1970–2040 is employed in this study by also extending the bivariate 
nonparametric Quantile-on-Quantile Regression (QQR) to the multi
variate case. 

3. Econometric model, data, and methodology 

This section provides information on the dataset under investigation 
alongside the procedures and justification for the novel empirical 
approach being implemented. 

3.1. Econometric model and data 

To investigate the dynamics of crude oil prices in the USA from the 
perspective of household energy expenditure, substitute energy price, 
and environmental factors, the deployed econometric approach has an 
underlying economic model written as: 

COP = f (ED,Z) (1)  

where COP represents crude oil prices, ED is energy demand, and Z 
stands for other factors such as prices of other goods (retail electricity 
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price, denoted as REP) and environmental factors (CO2 emission). In this 
context, this study employs 71 years of time-series data covering 
1970–2040. Annual crude oil price is measured as 2018 USA dollars per 
barrel (bbl). Additionally, energy expenditures per household (2018 
USA dollars) are employed as a proxy for energy demand. Furthermore, 
the prices of other (substitute) goods which are represented by retail 
electricity prices and measured in 2018 USA cents per kilowatt hour 
(kWh) are also added as a variable of interest. Finally, for an environ
mental factor, energy-related CO2 emissions per capita measured in 
metric tons are also employed. The entire data was freely retrieved from 
the Global Energy Institute of the United States Chamber of Commerce 
(Global Energy Institute, 2020). 

The annual values of the variables during the sample period can be 
seen in Fig. 1. By following the study of Hassan et al. (2023), variables 
are first transformed into their logarithm to ensure homoscedasticity 
and data smoothening. The annual frequency logarithmic series are 
converted to the quarterly frequency via the quadratic match-sum 
method in order to obtain a sufficient number of observations in the 

empirical analysis as in the studies of Liguo et al. (2022), Razzaq et al. 
(2022), and Shahbaz et al. (2022). 

3.2. Methodology 

Sim and Zhou (2015) stated that the relationship between two var
iables may change at different points in their respective distributions, 
and therefore, they proposed a nonparametric approach, namely 
quantile-on-quantile regression (QQR), to assess the relationship be
tween the quantile of a dependent variable and the quantile of an in
dependent variable. Assuming x is the independent variable and y the 
dependent variable, the QQR model for the relationship between the 
quantile of y and quantile of x can be written as follows: 

yt = β0(θ,Φ) + β1(θ,Φ)(xt − xΦ) + ∝θyt− 1 +
θ
t⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

*

(2)  

where θ and Φ represent the quantiles (0,05-0,95) of the dependent and 
independent variables, respectively, and ϵt

θ is the error term with a zero 
θ–quantile. Additionally, part (*) of Eq. (1) captures the overall depen
dence structure between y and x through the dependence between their 
respective distributions.1 

As can be seen from the above-mentioned information, the QQR is a 
single-variate-based technique. This leads to the ignoring of other 
important factors that may have effects on the dependent variable in the 
analysis performed with this technique. Therefore, we have modified the 
QQR method to include more than one independent variable. Our novel 
nonparametric multivariate QQR method can assess the relationship 
between the quantile of the dependent variable and the quantiles of any 
number of independent variables, thus allowing us to see the pure effect 
of each variable adjusted for the effects of other variables. 

Assuming x1, x2…xn are the independent variables and y the 
dependent variable, our multivariate QQR model for the relationship 
between y and x′s across various quantiles (0,05-0,95) can be written as 
follows:  

where Φ1, Φ2, …, Φn represent the quantiles of x1, x2…xn, respectively, θ 
indicates the quantile of y. Furthermore, the shaded area captures the 
relationship between the quantile of the dependent variable and the 
quantiles of the independent variables. However, since the QQR method 
requires the bandwidth size to be determined optimally, we set the 
bandwidth to 0.05 for our multivariate QQR method. This process fol
lows the study of Sim and Zhou (2015). 

4. Empirical results 

In this part of the study, the results of the empirical analysis, the steps 
of which are shown in Fig. 2, are reported and discussed. 

yt = β0(θ,Φ1,Φ2…Φn)+ β1(θ,Φ1)(x1t − xΦ1
1 )+ β2(θ,Φ2)(x2t − xΦ2

2 )+ + βn(θ,Φn)
(
xnt − xΦn

n

)
+∝θyt− 1 + ϵθ

t (3)   

Fig. 1. Annual values of the variables from 1970 to 2040.  

1 For more details, please see Sim and Zhou (2015). 
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4.1. Stationarity tests 

In the first stage of the empirical analysis, we try to determine the 
stationarity levels of the variables. To obtain robust results, we apply 
four different unit root tests, namely Augmented Dickey-Fuller (ADF), 
Phillips-Perron (PP), Dickey-Fuller Generalized Least Squares (GLS), and 
Elliott-Rothenberg-Stock (ELS). The results of all unit root tests reported 
in Table 1 show that the null hypothesis cannot be rejected for the level 
series but rejected at the 1% significance level for the first difference 
series. This unveils that each variable has a unit root at level; however, 
these variables turn stationary at the first difference. Considering these 
results, the other stages of the empirical analysis will be carried out on 
the first difference series. 

4.2. Descriptive statistics 

After determining the stationarity properties of the variables, we 
start to examine the statistical properties of the variables through 

descriptive statistics. Table 2 exhibits the descriptive statistics of the first 
difference series. From the table, it is seen that the average of quarterly 
CO2 values in the sample period is negative, while that of other variables 
is positive. Standard deviation values indicate that crude oil has the most 
volatility during the sample period. The results of the D’Agostino test 
demonstrate that all variables except CO2 are statistically skewed. 
Moreover, the Anscombe and Glynn test results indicate that all vari
ables have excess kurtosis. The results of the Jarque-Bera test also sup
port the results of skewness and excess kurtosis; that is, study variables 
are non-normally distributed. Finally, the values of the Ljung-Box Q test 
of order 10 indicate that autocorrelation does not exist in either the first 
difference or squared first difference series. 

4.3. (Non)linearity test 

The use of non-linear models on the linear series or linear models on 
the non-linear series can produce misleading results. In this regard, we 
employ the Broock-Dechert-Scheinkman [BDS] (Broock et al., 1996) test 
to investigate (non)linearity characteristics of the variables by following 
the studies of Dergiades et al. (2013), Galadima and Aminu (2020), Baz 
et al. (2021), Kassouri et al. (2021), Lahiani et al. (2021), Alola (2022), 
Oryani et al. (2022), and Wang et al. (2023). The results of the BDS test 
in Table 3 divulge that the null hypothesis is rejected at the 1% signif
icance level for all variables in all embedded dimensions. This indicates 
that the study variables exhibit non-linearity. In terms of variable 
characteristics, it can be concluded that our nonparametric multivariate 

Fig. 2. Empirical analysis steps.  

Table 1 
Results of the unit root tests.   

Variables  

COP ED REP CO2 

Tests L △ L △ L △ L △ 

ADF − 2.740⁕ − 4.650⁕⁕⁕ − 2.859⁕ − 3.810⁕⁕⁕ − 3.389⁕⁕ − 3.253⁕⁕ − 0.101 − 4.003⁕⁕⁕ 

PP − 2.524 − 8.290⁕⁕⁕ − 2.657⁕ − 8.238⁕⁕⁕ − 2.527 − 6.857⁕⁕⁕ 0.245 − 8.244⁕⁕⁕ 

GLS − 0.332 − 4.641⁕⁕⁕ − 0.767 − 3.802⁕⁕⁕ − 1.063 − 3.236⁕⁕⁕ 0.956 − 3.070⁕⁕⁕ 

ERS 20.250 0.398⁕⁕⁕ 9.384 0.677⁕⁕⁕ 8.150 1.285⁕⁕⁕ 87.865 0.652⁕⁕⁕ 

Note: ADF, PP, GLS, and ERS symbolize the t-statistics of the Augmented Dickey-Fuller (Dickey and Fuller, 1979), adjusted t-statistics of the Phillips-Perron (Phillips 
and Perron, 1988), t-statistics of the Dickey-Fuller Generalized Least Squares (Elliott et al., 1996), and P-statistics of the Elliott-Rothenberg-Stock point-optimal (Elliott 
et al., 1996) unit root tests, respectively. L and △ represent the level and first difference, respectively. ⁕⁕⁕, ⁕⁕, and ⁕ indicate the rejection of the null hypothesis that 
the relevant series has a unit root at 1%, 5%, and 10% levels, respectively.  

Table 2 
Descriptive statistics of the first difference series.   

COP ED REP CO2 

Observation 283 283 283 283 
Mean 0.002 0.000 0.000 − 0.000 
Std. Dev. 0.019 0.006 0.002 0.002 
Skewness − 0.884⁕⁕⁕ − 1.381⁕⁕⁕ 2.252⁕⁕⁕ − 0.071 
ρ value 0.000 0.000 0.000 0.620 
Ex. Kurtosis 8.358⁕⁕⁕ 16.093⁕⁕⁕ 13.493⁕⁕⁕ 7.022⁕⁕⁕ 

ρ value 0.000 0.000 0.000 0.000 
J-B 860.565⁕⁕⁕ 3143.843⁕⁕⁕ 2385.867⁕⁕⁕ 581.715⁕⁕⁕ 

ρ value 0.000 0.000 0.000 0.000 
Q(10) 163.792⁕⁕⁕ 158.961⁕⁕⁕ 277.855⁕⁕⁕ 187.899⁕⁕⁕ 

ρ value 0.000 0.000 0.000 0.000 
Q2(10) 44.854⁕⁕⁕ 28.008⁕⁕⁕ 46.682⁕⁕⁕ 55.382⁕⁕⁕  

0.000 0.000 0.000 0.000 

Notes: Skewness represents the D’Agostino (1970) test, Ex. Kurtosis indicates 
the Anscombe and Glynn (1983) test, J-B stands for the Jarque and Bera (1980) 
normality test, and Q(10) and Q2(10) demonstrate the Ljung and Box (1978) 
serial autocorrelation test. ⁕⁕⁕, ⁕⁕, and ⁕ stand for significance at 1%, 5%, and 
10% levels, respectively. 

Table 3 
The results of the BDS test.  

Variables M = 2 M = 3 M = 4 M = 5 M = 6 

COP 10.301⁕⁕⁕ 9.395⁕⁕⁕ 8.933⁕⁕⁕ 10.599⁕⁕⁕ 11.810⁕⁕⁕ 

ED 11.521⁕⁕⁕ 10.855⁕⁕⁕ 10.706⁕⁕⁕ 11.807⁕⁕⁕ 12.677⁕⁕⁕ 

REP 15.473⁕⁕⁕ 15.424⁕⁕⁕ 15.451⁕⁕⁕ 16.801⁕⁕⁕ 18.063⁕⁕⁕ 

CO2 11.370⁕⁕⁕ 10.236⁕⁕⁕ 9.512⁕⁕⁕ 10.901⁕⁕⁕ 11.903⁕⁕⁕ 

Note: M denotes the embedding dimension. ⁕⁕⁕, ⁕⁕, and ⁕ indicate the rejection 
of the null hypothesis that the relevant series is independent and identically 
distributed at 1%, 5%, and 10% levels, respectively.  
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Traditional QQR Multivariate QQR

(a) Effect of energy demand on crude oil prices

Model: COP = (ED) Model: COP = (ED, REP, CO2)

(b) Effect of retail electricity prices on crude oil prices

Model: COP = (REP) Model: COP = (ED, REP, CO2)

(c) Effect of CO2 emissions on crude oil prices

Model`: COP = (CO2) Model: COP = (ED, REP, CO2)

Fig. 3. Traditional and multivariate QQR results.  
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QQR is one of the best approaches for this study because it simulta
neously accounts for both non-normality and nonlinearity. 

4.4. Multivariate quantile-on-quantile regression 

This study employs the multivariate QQR to investigate the effect of 
energy demand on crude oil prices by controlling the effects of retail 
electricity prices and CO2 emissions. For the sake of comparison, we also 
employ the traditional QQR. Both the traditional and our multivariate 
QQR results are plotted in Fig. 3. The graphs in Fig. 3 clearly show that 
although both the traditional and multivariate QQR results are similar 
for the effect of energy demand on crude oil prices, their results are 
totally different for the effects of retail electricity prices and CO2 emis
sions. These results obviously reveal how misleading results can be if the 
effects of other factors are not considered. Therefore, this finding is 
consistent with Balcilar et al. (2021a, 2021b) who argued that multi
variate nonparametric causality provided better outcomes of the cau
sality relationship because of the incorporation of other dimensions of 
economic policy uncertainties, namely, global, regional, and advanced 
markets. 

Turning to the multivariate QQR estimations, the results reveal that 
the effects of energy demand (measured by energy expenditure per 
household), retail electricity prices, and CO2 emissions on crude oil 
prices in the USA vary across quantiles. That is, the effects of these 
variables on crude oil prices are non-linear. Fig. (3a) shows that the 
effect of energy demand on crude oil prices is positive, and this effect is 
quite strong at lower quantiles (0.05–0.15) of crude oil prices, whereas it 
decreases at higher quantiles (0.80–0.95) of crude oil prices. This result 
empirically reveals that an increase in energy demand raises crude oil 
prices in the USA, especially during lower crude oil price periods. This 
finding which aligns with the result of Wei et al. (2022) implies that 
prices of crude oil determine the level of the demand for energy in the 
USA. Therefore, the government can regulate the demand for energy by 

putting the underlying drivers of prices of crude oil under regulatory 
check. On the other hand, Figs. (3b) and (3c) demonstrate that the effect 
of both retail electricity prices and CO2 emissions on crude oil prices is 
negative in the USA. A strong negative relationship is evident in the 
areas which merge all quantiles of retail electricity prices and CO2 
emissions with the lowest quantile of crude oil prices (i.e., 0.05). These 
imply that the effects of retail electricity prices and environmental in
dicator are stronger during periods of low crude oil prices. These results 
empirically divulge that an increase in retail electricity prices and CO2 
emissions declines crude oil prices in the USA, especially during periods 
when crude oil prices are very low. This result possibly explains that 
electricity prices are closely associated with crude oil prices in the USA. 
Therefore, the current results which contradict the findings of Kassouri 
et al. (2022), are consistent with the study of Ike et al. (2020) that found 
a causal relationship between oil production and electricity prices in 15 
countries that are producing oil in the world and the analogue of energy 
consumption synchronization in Kassouri et al. (2023). Similarly, the 
decreasing effect of CO2 emissions on crude oil energy prices is consis
tent with Rafindadi and Usman (2021) who found evidence that emis
sions led to a fall in electricity energy consumption. Meanwhile, 
environmental, and fiscal policies such as environmental-related taxes 
and clean energy credits could effectively incentivize the nexus of car
bon emissions and energy prices (Doğan et al., 2022). 

4.5. Robustness tests 

To check the validity of our multivariate QQR estimates, we perform 
two different robustness tests. First, we utilize the widely employed 
quantile regression (QR) method for the reliability of traditional QQR 
estimates (see e.g., Adebayo et al., 2022; Chang et al., 2022; Liu et al., 
2022; Pang et al., 2022; Xie and Tang, 2022; Yu et al., 2022). It should be 
noted that while the single-variate QR method can be applied for the 
robustness of the traditional QQR, we employ the multivariate QR based 

Fig. 4. Multivariate QQR and QR comparison.  
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Fig. 5. KRLS pointwise marginal effect plots.  

Table 4 
KRLS average marginal effect results.  

COP Avg. Std. error t-value ρ value 25% 50% 75% 

ED 3.081⁕⁕⁕ 0.145 21.200 0.000 2.979 3.144 3.511 
REP − 2.024⁕⁕⁕ 0.370 − 5.462 0.000 − 3.012 1.371 − 0.913 
CO2 − 1.834⁕⁕⁕ 0.442 − 4.145 0.000 − 2.605 − 1.846 − 1.846  

Diagnostics 
R2 0.904 Lambda 0.172 Sigma 3 Looloss 2.576 

Note: ⁕⁕⁕, ⁕⁕, and ⁕ stand for significance at 1%, 5%, and 10% levels, respectively. 25%, 50%, and 75% represent quartiles of marginal effects. 

Fig. 6. Summary of the findings.  
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on the model of COP =f̂ (ED, REP, CO2) for the robustness of our 
multivariate QQR. Fig. 4 illustrates the multivariate QR and the average 
of the multivariate QQR estimates across the quantiles of crude oil pri
ces. It is observed that the trend of both multivariate QR and QQR es
timates is quite the same, and this confirms the validity of our 
multivariate QQR results. 

Second, we employ Kernel-based Regularized Least Squares (KRLS) 
of Hainmueller and Hazlett (2014), a machine-learning algorithm that 
allows us to detect a non-linear association between the variables by 
considering the marginal effects of the independent variables at each 
data point in the covariate space. Fig. 5 shows the pointwise marginal 
effects of energy demand, retail electricity prices, and CO2 emissions 
across data points of crude oil prices, and Table 4 demonstrates the 
average marginal effect of these variables on crude oil prices. The plots 
in Fig. 5 indicate that the marginal effects of energy demand, retail 
electricity prices, and CO2 emissions vary based on crude oil prices, 
implying these factors have non-linear effects on crude oil prices. The 
plots also depict that the effect of energy demand on crude oil prices is 
positive, while the effect of retail electricity prices and CO2 emissions is 
negative in the USA. Table 4 reveals that, on average, a 1% increase in 
energy demand increases crude oil prices by 3.081%, whereas a 1% 
surge in retail electricity prices and CO2 emissions decreases crude oil 
prices by − 2.024% and − 1.834% in the USA, respectively. It is observed 
that the results of the KRLS also support our multivariate QQR results. 

Finally, we summarize the study findings in Fig. 6. From the figure, it 
is observed that energy demand has a non-linear positive effect on crude 
oil prices in the USA, while retail electricity prices and CO2 emissions 
have a non-linear negative effect on crude oil prices. A 1% increase in 
energy demand escalates crude oil prices. Conversely, a 1% increase in 
retail electricity prices and CO2 emissions have lowered crude oil prices. 
Consistent with these findings, we offer several policy implications for 
the USA. 

5. Conclusion and policy implications 

Over the years, economists and researchers have unanimously 
accepted that the shocks to crude oil prices determine the state of a 
country’s economy. In other words, crude oil prices significantly affect 
macroeconomic variables. To this extent, this paper examines the dy
namics of crude oil price outlook amidst energy price substitutes such as 
retail electricity prices and environmental indicators in the USA over the 
period 1970–2040. One advantage of this paper is its capacity to explain 
changes in crude oil prices by incorporating forecasted data series. In 
addition, our study applies the usual bivariate QQR and compared the 
results with the estimates of a novel multivariate QQR. The empirical 
results suggest that the effect of energy demand is quite indifferent 
across different quantiles both in the bivariate and multivariate QQR 
results. However, for the multivariate QQR, significant differences exist 
regarding the effects of retail electricity prices and environmental in
dicators on crude oil prices across quantiles with evidence of stronger 
effects noticed in the lower quantiles. This suggests that the negative 
effects of retail electricity prices and environmental indicators are 
stronger during periods of low crude oil prices in the USA. Furthermore, 
from the multivariate QQR, it is found that energy demand, retail 
electricity prices, and CO2 emissions have time-varying effects across 
quantiles. While energy demand increases crude oil prices with a 
stronger effect at the lower quantiles and decreases at higher quantiles, 
retail electricity prices and retail electricity prices and CO2 emissions 
exert a negative effect on crude oil prices with evidence of a stronger 
effect in the mid quantiles. In addition, an increase in retail electricity 
prices and CO2 emissions decreases the U.S. crude oil prices during pe
riods crude oil prices are very low. These results are robust to the Kernel- 
based Regularized Least Squares (KRLS) and the quantile regression 
(QR). 

5.1. Policy implication 

Based on the findings of this paper, the following policy implications 
are crafted to mitigate the effects of shocks to energy demand, retail 
electricity price, and environmental indicators on crude oil price in the 
USA: First, the fact that energy demand, retail electricity price, and 
environmental indicator have different effects across the quantiles 
suggest the need for the government and policymakers to carefully 
address the macroeconomic effects of these variables on crude oil price 
based on time variances. In other words, policy thrusts of the govern
ment should be dependent on the direction and size of the effect of 
energy demand, retail electricity price, and environmental indicators on 
crude oil prices at a time. Therefore, this finding calls for time-varying 
policies to adequately reduce and stabilize crude oil prices. Second, 
the positive effect of energy demand on crude oil prices suggests that 
changes in crude oil prices are positively dependent on the level of en
ergy expenditures in the USA. Therefore, to reduce the price of crude oil 
in the country without reducing energy demand, governments and 
policymakers need to design policies that encourage energy production 
and consumption such as providing incentives for energy production 
and consumption. Once incentives are provided in the energy sector, 
crude oil prices can be fixed by the government or allow market forces to 
determine the price of crude oil. Third, since retail electricity price has a 
negative effect on crude oil prices, it shows that to reduce the impact of 
volatility in crude oil prices, macroeconomic policies should be focused 
on stimulating retail electricity, especially from alternative energy 
sources in the USA. For instance, the proportion of electricity utilization 
from the total electricity generated in the USA could be increased 
through scaling up investment in clean and renewable energy sources 
such as wind, solar, nuclear, and hydropower. Fourth, the negative ef
fect of CO2 emissions on the price of crude oil during the period of low 
prices of crude oil suggests the effectiveness of policies of decoupling 
environmental degradation from crude oil production in the country. 
Thus, the pathway to carbon neutrality which supposedly offers a niche 
in the energy transition plan in the country should be strengthened 
through more stringent environmental-related policies such as clean 
energy credit and environmental tax. 

5.2. Limitation and future implementation 

Despite the exciting policy recommendations that emanate from this 
investigation, there are visible limitations that could be improved upon 
in future implementation. For instance, there is a limited number of 
variables that span the 2040 period which restricts the control for 
relevant factors such as economic and financial uncertainties in the 
model. Thus, while the future study could consider and control for other 
factors, two sub-periods such as 1970–2022 and 1970–2040 could also 
be employed for sensitivity checking and the reason for temporal in
sights. Lastly, the current study implements CO2 emissions, except for 
data availability issues, future studies could consider other environ
mental indicators such as ecological footprint and greenhouse gas 
(GHG) emissions. 
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