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Abstract
Adding to the debate on the drivers of carbon neutrality, the perspective of time-dependent 
effect of crucial factors such as the renewable and conventional energy utilization should 
offer relevant policy for the stakeholders in the energy sector. On the empirical front, sev-
eral studies have investigated the causal interaction between renewable and nonrenewable 
energy consumption, economic growth, and carbon dioxide (CO2) emission by using the 
conventional empirical approaches. In contrast, this study utilized a time-varying causality 
(TC) technique (which offers time inference) to determine the causal relationship between 
CO2 emission and its potential drivers such as energy source types and Gross Domestic 
Product (GDP) in South Africa, Egypt, Algeria, Libya, Nigeria, and Tunisia over the period 
spanning 1980Q1 and 2017Q4. Importantly, there is statistically significant evidence of 
causality as examined by the TC approach. For instance, causality from CO2 emission to 
renewable energy source for the period 2004Q1–2006Q3 and from GDP to CO2 emission 
during 2013Q2–2015Q3 were observed for South Africa. Moreover, the causality from 
non-renewable energy source to CO2 emission and from GDP to CO2 emission compares 
very well with Nigeria, Libya, and Algeria. Overall, the results largely indicate causality 
relationships among our variables for all the six countries over different time sequences. 
These results differ from the Toda–Yamamoto test, which only reveals a causality relation-
ship in Egypt, Libya, and Tunisia. The empirical findings obtained from the time-varying 
causality approach are essential for designing and implementing appropriate energy poli-
cies, especially attaining these countries’ Paris agreement and the Sustainable Develop-
ment Goal 13 since the goals are time periodically assessed.
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1  Introduction

With the evolving global changes, energy resources have remained important to human 
existence, especially in the increasingly competitive twenty-first century. Importantly, 
access to energy is crucial to human development (in education and health development) 
and unlocks economic fortunes by providing business and employment opportunities. In 
spite of these associated benefits of energy resources, access to energy across Africa has 
remained a long-lasting challenge. Notably, the African Development Bank Group (AFDB) 
motioned that only about 40% of the African population (the lowest among the world 
regions), corresponding to about 640 million people, have access to electricity (AFDB, 
2021). The significantly low access to energy sources will reportedly continue to account 
for the relatively small share of electricity consumption in Africa against the global total of 
electricity consumption by 2050 (International Energy Agency, 2021a).

Given this relatively low consumption, arising from lack of or unreliable access to cen-
tral grid power in rural areas (urban areas), more attention is increasingly shifting away 
from the traditional energy sources (mainly oil, coal, and probably natural gas) to renew-
able energy sources such as biofuels (David et al., 2020, 2021). Although the renewable 
energy resources across Africa that include a wealth of wind, biomass, and solar resources 
have been least explored, these environmentally desirable forms of energy are available in 
abundance across the continent (Adedoyin et al, 2020; Ibrahim et al., 2021). Specifically, 
the endowment of renewable energy resources is a spread of 1.1+ million Gigawatts per 
hour (GWh) in capacity of hydro capacity and 9000+ Megawatts (MW) in capacity of geo-
thermal (Johansson, 1993; Musa, 1993). Given the capacities mentioned above, for hydro-
power, for instance, less than a tenth of the total capacity of the source is being utilized. At 
the same time, a similar situation is associated with solar, biomass, wind, and geothermal 
sources (AFDB, 2021).

Moreover, while there is increasing development of renewable energy sources across the 
continent, which is directed at closing the region’s energy deficit (Adewale et al., 2021), 
a counter effect is extremely possible because of its unchecked population increase. Cur-
rently, Africa’s youngest population is coincidentally one of the world’s fastest growing. 
Specifically, the International Energy Agency (IEA) hinted at Africa’s energy outlook by 
noting that over 500 million Africans will be added to the continent’s urban population by 
2040 (IEA, 2021b). Given that one African in every two people in the world is added to the 
global population by 2040, such that the continent’s population overshoot China and India 
as the most populous region by 2023, the IEA (IEA, 2021b) projects a huge drawback to 
the African’s energy supply. Consequently, the increase in the continent’s population cre-
ates no choice than heighten the demand for traditional (fossil fuel) energy utilization, thus 
expectedly limiting the chance to mitigate environmental hazards (Asongu et  al., 2021). 
Although not to be compared with the United States, China, India (largely Asia, southern 
and Northern America), carbon emission and largely greenhouse gas emission are increas-
ingly hampering the continent’s environmental sustainability drive. For instance, reporting 
that South Africa ranks as the world’s 12th largest emitter of greenhouse gases (Bloomb-
erg, 2021) and that the atmospheric carbon dioxide emission is second largest in the Afri-
can tropics according to Palmer et  al., (2019), raises a severe concern vis-à-vis the tri-
lemma of carbon neutrality drive, renewable energy development, and cutting down fossil 
fuel energy utilization.

Considering this aforementioned African trilemma, the current study sampled selected 
African countries, especially those with the highest profile for non-renewable energy 
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utilization, for a contextual investigation. While considering the panel of South Africa, 
Egypt, Algeria, Libya, Nigeria, and Tunisia, the study’s objective offers a clear understand-
ing of the connectedness of carbon emission, real output, renewable and non-renewable 
energy dimensions. As such, a novel perspective is presented in the study through (i) the 
methodology where the time-varying (TV) causality approach is being utilized to provide 
time inference of the associated relationship, and (ii) the case of the panel countries has 
rarely been considered together in the literature. The approach does not only offer the asso-
ciated causality among the concerned variables, but it provides a time-specific inference 
or information about the variables’ connectivity given the peculiarity and age-long energy 
security challenge confronting many of the African states. Given the energy and economic 
profiles of the selected countries, this study differs from several other studies exploring the 
African cases. Thus, the current study exhibits the potential to add significant knowledge to 
the existing strand of literature.

Besides, the followed sections of the study are arranged such that the next part (Sect. 2) 
presents the literature (theoretical and empirical) segments while Sect. 3 captures the data 
description and model specification. The employed methodology and the results of the esti-
mation are presented in Sects. 4 and 5, respectively. Lastly, the study is summarized with a 
projection of policy relevance in Sect. 6.

2 � Literature review

2.1 � Theoretical literature

2.1.1 � Economic growth and energy consumption

Since the study of Kraft and Kraft (1978), four hypotheses have been put forward to explain 
the pattern of association between economic growth and energy utilization: growth, con-
servation, feedback, and neutrality. The growth hypothesis asserts that there is a unidirec-
tional causality from energy use to growth (Azam et al., 2021). The conservation hypoth-
esis is the inverse of the former, alleging unidirectional causality from economic growth to 
energy consumption. The feedback hypothesis combines the two and suggests a bidirec-
tional causality. Finally, the neutral hypothesis finds no causality between energy consump-
tion and economic growth (Maji et al., 2019). Until today, the nexus of economic growth 
and utilization of varying energy forms have been extensively covered (Adedoyin et  al., 
2021; Alola & Saint Akadiri, 2021).

2.1.2 � Carbon emission and economic growth

The nexus between CO2 emission and economic growth is derived from the Environment 
Kuznets Curve (EKC) hypothesis (Kuznets, 1955). The EKC hypothesis asserts that dur-
ing earlier stages of economic growth, environmental degradation, commonly measured by 
CO2 emissions, rises to a maximum point, beyond which it falls (Espoir & Sunge, 2021). 
This leads to an inverted U-shaped relationship between the two. This relationship exists 
because, during early periods of growth, production processes depend on more polluting 
non-renewable energy sources (Lu, 2017). As growth continues, higher incomes make it 
possible to invest in low polluting production processes such that emissions per output 
will fall. In this scenario, economic growth is expected to Granger cause emissions. The 
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relationship has since been upturned, with several studies including (Acheampong, 2018; 
Espoir et  al., 2021; Spagnolo, 2012; Zaidi & Ferhi, 2019) showing that CO2 emissions 
can also Granger cause economic growth. As in the energy consumption-economic growth 
relationship, it is also possible to have bidirectional causality and even a no causality 
relationship.

2.1.3 � Energy consumption and carbon emissions

There is no established theory or hypothesis relating energy consumption to CO2 emis-
sions. However, statistics and empirical evidence logically suggest that energy consump-
tion causes CO2 emissions. Data from the Intergovernmental Panel on Climate Change 
(IPCC, 2018) show that energy consumption, particularly non-renewable, accounts for 
approximately 70% GHGs across the globe. In addition, several studies, including (Ade-
bayo et al., 2020; Adebayo & Kirikkaleli, 2021; Balogh & Jámbor, 2017; Khobai & Roux, 
2017; Nuryartono & Rifai, 2017)) have shown a causality association between energy con-
sumption and CO2 emissions. The following section reviews empirical literature related to 
the three strands of literature.

2.2 � Empirical literature

Literature on the causality relationship among energy consumption, economic growth, 
and CO2 emissions continue to evolve. The literature can be classified into three strands; 
(1) CO2 and economic growth (Amarante et al., 2021; Odhiambo, 2017; Vo et al., 2019; 
Zaidi & Ferhi, 2019), (2) energy consumption and economic growth (Chontanawat, 2020; 
Mutascu, 2016; Pao & Fu, 2013; Shahbaz et al., 2013) and (3) energy consumption and 
CO2 emissions (Adebayo & Akinsola, 2021; Khobai & Roux, 2017; Nuryartono & Rifai, 
2017). It is noteworthy that in each strand, results tend to be sensitive to geographical 
space, econometric approaches, and periods. In line with our scientific contribution, we 
focus on results heterogeneities emanating from different periods. Accordingly, our review 
is carefully chosen to demonstrate our thesis that causality among the variables under 
investigation is time-varying. Hence, we review studies in the same geographical scope 
over different periods.

The possibility that causality among these variables is time-varying can be seen from 
studies covering Brazil. A study by Amarante et  al., (2021) assessed the causality rela-
tionship between CO2 emission and renewable energy consumption (REC), non- renewable 
energy consumption (NREC), and economic growth for 27 Brazilian states over the period 
1997–2016. The study utilized the generalized methods of moment and autoregressive 
vector model for analysis. The results established (1) a negative, bidirectional causality 
between economic growth and CO2 emission (2) NREC positively caused CO2 emissions 
and economic growth, (3) REC negatively causes CO2 emissions, and positively causes 
economic growth, and (4) no causality between CO2 emission and energy use. In an earlier 
study on Brazil (Pao & Fu, 2013), for the period 1980 to 2010 for the aggregate economy, 
the causality was investigated between economic growth and four forms of energy con-
sumption; non-hydroelectric renewable energy consumption (NHREC), total renewable 
energy consumption (TREC), nonrenewable energy consumption (NREC), and the total 
primary energy consumption (TEC).

Vector error correction estimation revealed; (1) unidirectional causality from NHREC to 
economic growth and from economic growth to NREC or TEC, (2) bidirectional causality 
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between economic growth and TREC. The interesting dimension here is that in Pao and 
Fu (2013), there is bidirectional causality between REC and economic growth, whereas in 
Amarante et al., (2021), only unidirectional causality from REC is confirmed. Barring the 
slight methodological disparities, time dynamics is more likely the primary factor in these 
different findings. Also, Chontanawat (2020) uses data spanning 1971–2017 to show unidi-
rectional causality running from economic growth to energy consumption.

The same pattern is evident in Africa. For instance, we noted diverging evidence on 
energy consumption and economic growth from studies by Qudrat-ullah and Nevo (2021). 
In Qudrat-ullah and Nevo (2021), data for 37 African countries from a shorter period 
2008–2014 supports the growth hypothesis. Again, sample size apart, the period under 
investigation cannot be ignored as a determining factor. In another study, Alabi et  al., 
(2017) agrees with Qudrat-ullah and Nevo (2021) on the growth hypothesis for renewable 
energy in African OPEC countries. However, regarding non-renewable energy, Alabi et al., 
(2017) confirm the feedback hypothesis while Qudrat-ullah and Nevo (2021) sides with the 
conversation hypothesis. The trend is also alive in Europe, where results continue to con-
tradict. For instance evidence by Pejović et al. (2021) find no causality between economic 
growth and renewable energy consumption in 28 European countries using data from 2008 
to 2018. In another study spanning 1995 to 2014, Radmehr et al. (2021) reported that the 
relationship is bidirectional.

Turning to the CO2-economic growth nexus, results strongly suggest causality differ-
ences across time for the same geographical areas. Using a dynamic-panel Granger cau-
sality approach for 1986–2013 among 10 SSA countries, Odhiambo (2017) reports a uni-
directional causality relationship stemming from economic growth to CO2 emissions for 
both the short-run and long-run. In contrast, Zaidi and Ferhi (2019) find evidence for bidi-
rectional causality after applying a dynamic GMM simultaneous-equation estimator over 
a more recent and shorter period, 2000–2012. Also, we refer to conflicting studies by Vo 
et al. (2019) Chontanawat (2019), and Jauhari et al. (2018), from Indonesia covering differ-
ent time horizons. In Africa, for example, Jacques & Keho (2016) and Attiaoui et al.(2017) 
for periods 1971–2010 and 1990 and 2011, respectively.

2.3 � Significant contribution

The review above points to an exciting conclusion. The causal relationship is TV, where 
there is Granger causality among variables over a specific time-interval. In some cases, 
it is possible to observe bidirectional causality in some time intervals and not in others. 
However, our observation thus far is not based on any econometric process. This is because 
the conventional causality tests employed in these studies, such as Granger and even the 
increasingly popular Toda and Yamamoto (1995) assume static causality over the whole 
study period. Realistically, this is less likely due to change in global and local policy on 
climate-related issues and the significant changes in energy consumption and production 
process. Thus, the adopted method here follows Balcilar et al., (2010) considering a situa-
tion when there is instability in the causal relationship between two variables (also that the 
non-causality is not rejected), it becomes unclear to argue about what has been rejected. 
This ambiguity can be addressed by allowing for time-varying causality among the con-
cerned relationships. Econometric approaches to handle this are still new and developing, 
and understandably, such evidence is still scant. Moreover, the aforementioned approach is 
applied alongside Emirmahmutoğlu et al., (2021) to close the research gap on the drivers 
of environmental sustainability for the case of Africa.
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3 � Data and model specification

We start by collecting annual data on GDP per capita (measured in billions of US dol-
lars), CO2 emissions per capita (measured in metric tons per capita), REC and NREC (both 
measured in billion kilowatt-hours) from the World Bank and the US. Energy Informa-
tion Administration (EIA)1 databases from 1980 to 2017. We next construct a dataset of 
six African countries (South Africa, Egypt, Algeria, Libya, Nigeria, and Tunisia) based on 
their importance in terms of NREC (see Fig. 1). Additionally, we use NREC for sample 
country selection because it is the most dominant energy source for most African countries 
(Espoir et al., 2021). We employ quarterly data in implementing the time-varying causality 
procedure between REC and NREC, real output, and CO2 emissions. Specifically, we use 
the Deaton (1970) data transformation method to obtain the time series. Due to the high 
range of the data, all the time series variables are seasonally adjusted to account for busi-
ness cycle movements and financial shocks.

In Fig.  2, we present the dynamics of the REC, NREC, and GDP per capita relative 
to carbon dioxide emissions (CO2 emissions) of the six selected countries starting from 
1980 to 2017. In addition, the basic descriptive statistics of the variables for each of the six 
countries are illustrated in Table 1.

To be consistent with the pollution-growth and the pollution-energy literature, this study 
adopts a model specification presented as:
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(
REC�

t
NREC

�
t GDP

�
t

)

173.4

171.0

2.4

83.5

71.1

12.4

24.2
23.9
0.3

18.9
13.6
5.3

15.3
15.2
0.0

8.78.50.2

0
10

0
20

0
30

0
40

0

B
ill

io
n 

ki
lo

w
at

t-h
ou

rs

South Africa Egypt Algeria Nigeria Libya Tunisia

Total electricity consumption NREC REC

Fig. 1   Period average value of non-renewable electricity consumption (billion kWh) across African coun-
tries, 1980–2017

1  US Energy Information Administration database, 2020 [https://​doi.​org/​Annua​lly update of energy avail-
able at http://​www.​eia.​gov].

https://doi.org/Annually
http://www.eia.gov
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where CO2t denotes CO2 emissions per capita, RECt(NRECt) is renewable (non-renewable 
electricity consumption), respectively. GDPt is GDP per capita (a proxy for real output), � , 
� , and � are the coefficients of the variables to be estimated.

By logging both sides of Eq. (1), we get:

Fig. 2   Pattern and relative magnitude of lnREC, lnNREC, lnGDP, and lnCO2. Note: This figure shows the 
dynamics of GDP per capita, renewable and non-renewable electricity consumption, and CO2 emissions in 
a South Africa, b Egypt, c Algeria, d Libya, e Nigeria, and f Tunisia. Source: Authors own computation
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where ln , � , and vt represent the natural logarithm, regression intercept, and stochastic 
error term.

4 � Estimation strategy

In empirical studies, the causality test developed by Toda and Yamamoto (1995) (now 
regarded as TY) is among the most popular methods to examine the causal relationships 
between two variables. TY have developed a LA-VAR (Lag Augmented VAR) causality 
approach as an alternative to the vector autoregressive (VAR) model. They show that the 
VAR could not be used when the variables are non-stationary or co-integrated. Further-
more, they indicate that if the variables are non-stationary, the traditional asymptotic the-
ory from the Granger (1969) causality approach is not valid for hypothesis testing in the 
level VAR specification. Given the difficulty of utilizing the VAR model in the presence of 
non-stationary series, TY (1995) suggest a Wald test statistic that asymptotically follows 
a chi-square distribution even in different order of integration of the variables. Following 

(2)lnCO2t = � + �lnRECt + �lnNRECt + �lnGDPt + vt

Table 1   Descriptive statistics

Country Variable Mean Median Minimum Maximum SD Skewness Kurtosis Obs.

REC 2.360 1.623 0.146 12.243 2.518 2.613 9.523 152
NREC 171.019 173.851 85.519 220.4171 39.269 − 0.481 2.049 152

South Africa GDP 4215.90 3479.08 1807.976 8007.477 1731.46 0.616 2.057 152
CO2 7.845 7.867 6.175 9.922 1.179 0.287 2.053 152
REC 12.383 13.254 7.821 16.944 2.914 − 0.156 1.630 152
NREC 71.147 60.269 15.861 150.579 42.272 0.376 1.707 152

Egypt GDP 1501.25 1186.39 498.559 3562.933 958.222 0.969 2.553 152
CO2 1.814 1.650 1.044 2.502 0.467 0.227 1.576 152
REC 0.298 0.248 0.053 0.729 0.173 0.835 2.887 152
NREC 23.946 18.492 5.915 62.062 15.885 1.041 2.983 152

Algeria GDP 2911.86 2417.38 1452.278 5592.22 1300.47 0.786 2.338 152
CO2 2.915 2.786 1.920 3.674 0.465 0.052 1.745 152
REC 0.006 0.006 0.006 0.006 0.0007 1.787 4.281 152
NREC 15.238 14.119 3.332 28.486 6.942 0.252 2.464 152

Libya GDP 7118.15 6514.31 3703.043 14382.6 2383.93 1.422 4.613 152
CO2 8.039 8.110 6.090 9.383 0.718 − 0.677 3.452 152
REC 5.309 5.640 1.856 8.165 1.681 − 0.310 2.491 152
NREC 13.611 8.554 4.685 29.011 7.485 0.643 2.009 152

Nigeria GDP 1273.87 882.520 270.224 3098.986 867.135 0.612 1.946 152
CO2 0.699 0.672 0.457 0.928 0.110 0.098 2.490 152
REC 0.170 0.092 0.023 0.643 0.189 1.635 4.214 152
NREC 8.520 8.348 2.264 15.837 4.447 0.172 1.642 152

Tunisia GDP 2528.53 2253.03 1147.429 4307.58 1141.55 0.302 1.576 152
CO2 2.051 2.063 1.413 2.653 0.390 − 0.017 1.594 152
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Hacker and Hatemi-J (2006) description, in this study, the TY VAR(p + d) model can be 
presented in a more compact was as:

where
R = (x1,…, xT)(nxT  ) matrix, F = (v , H1,…, Hp,…, Hp+d)(nx(1 + n(p + d)) ) matrix, 

Qt = 

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

xt
xt−1
.

.

.

xt−p−d+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

((1 + n(p + d))x1) matrix, for t = 1,… T , matrix, 

Q = 
(
Q0,…QT−1

)
((1 + n(p + d))xT) matrix, ∅ =  = 

(
�1,… �T

)
(nxT) matrix.

However, a modified Wald (MWALD) test statistic was introduced by TY (1995) to test 
the null hypothesis of non-Granger causality as:

where Y = bpxn(1 + n(p + d)), ⊗ = the Kronecker product, ZU = the estimated vari-
ance–covariance matrix of residuals in Eq. (3), Φ = vec (F) , where vec represents the col-
umn stacking operator.

Under the null hypothesis, the MWALD statistic has the usual �2

P
 property, conditional 

on the assumption that the error terms are normally distributed, with the number of degrees 
of freedom (p) equal to the number of restrictions to be tested. Nevertheless, Hacker and 
Hatemi-J (2006) indicates that the MWALD test statistic usually rejects the null hypoth-
esis, specifically when the error term is not normally distributed and characterized by 
autoregressive conditional heteroscedasticity (ARCH).

To avoid spurious results and wrong policy prescription, we consider and rely on the 
time-varying causality tests. We particularly and briefly review three time-varying causal-
ity tests such as the rolling window (RW) approach of Balcilar et al., (2010), the forward 
expanding window (FEW) approach of Thomas (1994), and the recursive evolving window 
(REW) approach (Emirmahmutoglu et  al., 2021; Shi et  al., 2017). A crucial point to be 
mentioned here is that all the three time-varying causality tests as listed above fundamen-
tally uses VAR model, which gives a possibility for calculation of a MWALD test statistic.

Let us consider g to be the (fractional) observation of the estimated regression and g1 
and g2 the (fractional) starting and ending points of the estimated regression ( g ), respec-
tively. Let us also assume �1 =

[
g1T

]
 , �2 =

[
g2T

]
 , where [.] is the integer part with interest 

fractional of the time dimension, T. Similarly, �w =
[
gwT

]
 , where �w is equal to the mini-

mum number of observations required to estimate the LA-VAR model. To begin with the 
FEW test, the procedure considers a fixed starting point of the regression ( �1 ) on the first 
available observation. Then the regression window size expends from �w to T  . In other 
words, the movement of the ending point of the regression goes forward from �w to T  . 
Similar to the FEW test, the RW approach has also the ending point of regression �2 going 
from �w to T  . The only difference is that the regression window size ( �w ) is fixed and thus 
the starting regression point �1 = �2 − �w + 1.

For the REW approach, the procedure is to combine the procedure of both the FEW and 
the RW approaches. The REW approach allows the starting and ending regression points 
and the window size of the regression to vary in the recursive evolving window approach. 

(3)R = FQ + �

(4)MWALD = (YΦ)
�[
Y((Q�Q)−1 ⊗ ZU

]−1
Y �H−1(YΦ) ∼ 𝜒2

P
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This flexibility provides the REW approach a net advantage over the FEW and REW 
approach. Moreover, the REW approach has an additional advantage over the other two 
approaches in finite samples for both non-stationary and stationary time series (Emirmah-
mutoglu et al., 2021; Shi et al., 2017). Thus, in this study, we follow the REW approach to 
obtain the MWALD statistic for each subsample regression as follows:

where Wg2
g1

 denotes the sample size fraction of gw = g2 − 1 ≥ g0.
Then, the time-varying causal relationships are obtained by the origination ( ge ) and ter-

mination ( gf  ) periods. The computation of these two periods is as follows:

where scv is the corresponding subsample critical value of the SWg . Figure 3 below pro-
vides the Schematic flow and pseudo-code of the research methodology as described in this 
section.

(5)
SWg

(
g0
)
= sup Wg2

g1

g2 = g, g1 ∈
[
0, g2 − g0

]

(6)ĝe = inf
g∈[g1,1]

{
g ∶ SWg

(
g0
)
> scv

}

(7)ĝf = inf
g∈[ĝe,1]

{
g ∶ SWg

(
g0
)
< scv

}

Fig. 3   Schematic flow and pseudo-code of the research methodology using. Source: Authors’ own presenta-
tion using YeD
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5 � Empirical results and discussion

To investigate the dynamic causal relationship between REC, NREC, GDP, and CO2 emis-
sions, we first test for a unit root in all the time series of the six selected countries using 
the well-known Z(t) test of Dickey and Fuller (1979) and Phillips and Perron (1988). This 
procedure allows us to determine the order of integration of all the variables. Table 2 pre-
sents the unit root test results for the model with an intercept and an intercept and trend. 
The results of this table clearly indicate that all the variables are stationary at the first dif-
ference, thus integrated order of one, I(1).

After determining stationarity and order of integration among the variables, we now 
proceed and present the results of the Toda-Yamamoto causality test between REC, NREC, 
GDP, and CO2 emissions for each country in Table 3. We employ the Schwarz Bayesian 
Information Criterion (SBIC) in selecting the optimal lag length for the regressions of the 
VAR models. As shown in Table 3, REC Granger causes CO2 emissions at the 10% percent 
significance level in Egypt. Next, we observe a unidirectional causality running from CO2 
emissions to REC at the 5% significance level and from CO2 emissions to GDP at the 10% 
significance level in Libya. Moreover, there is a bidirectional causal relationship between 
NREC and CO2 emissions at the 1% significance level in Tunisia, respectively. Finally, 
there is no causal relationship between REC, NREC, GDP, and CO2 emissions in the rest 
of the sample countries (South Africa, Algeria, and Nigeria), suggesting the validity of the 
neutrality hypothesis in those countries.

Despite these exciting findings, in this study, we consider the Toda-Yamamoto causal-
ity results inaccurate and inconsistent because all our variables in all the six countries are 
subject to several exogenous and endogenous financial, political and economic dynamisms 
and shocks. In addition, it is well acknowledged that most African economies have struc-
turally changed over the past three decades Diao (2017). It is possible that those dyna-
misms, shocks, and structural changes that happened in the recent past will have positively 
or negatively affected the time series variables’ behavior. Hence, the assumption of a time-
invariant causal relationship between REC, NREC, GDP, and CO2 emissions over a sample 
period spanning 1980Q1 and 2017Q4 may provide incorrect results and lead to a wrong 
policy prescription.

To avoid spurious results, we conduct the time-varying Granger causality test as 
described in the methodology section. We believe that this approach provides consistent 
and robust results as it considers any structural change in the relationship between REC, 
NREC, GDP, and CO2 emissions. We present the results for the time-varying Granger cau-
sality tests in Figs. 4 and 5. It is important to mention that we employ the SBIC with a 
maximum lag order of 10 in selecting the optimal lag length in the LA-VAR model for all 
subsample regressions. In time-varying analysis, the results rely heavily on the size of the 
window. In rolling window regression for example, there is no strict criterion for selecting 
the window size. Pesaran and Timmermann (2005) studied the window size in terms of 
root-mean-square error (RMSE) under structural change assumption. These authors found 
that optimal window size depends on the size of the break and the persistence. Their Monte 
Carlo simulations disclosed that a window size around 10–20 was enough to minimize the 
bias in autoregressive (AR) parameters especially when there are frequent breaks. Given 
the length of our time series and based on the simulation results in Pesaran and Timmer-
mann (2005), we set the minimum window size to 40 observations. Additionally, note 
that the empirical size is 5% and we obtain the bootstrap critical values (the test statistic 
sequences) with 999 replications.
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Figures 4, 5, 6, 7, 8 and 9 present the plots of the recursive evolving window (REW) test 
statistics and the 5% critical value sequence for Nigeria, South Africa, Egypt, Libya, Tuni-
sia, and Algeria, respectively. Figure 4 shows the time-varying Granger causality results for 
Nigeria. The plots show the test statistics testing the null hypothesis that (non)renewable 
electricity consumption does not Granger-cause GDP and CO2 emission and the opposite 
case, respectively. At a glance, it can be seen that the direction and strength of causality 
across all three relationships are time-varying. When the test static sequence is greater than 
the 5% critical value, the null hypothesis of no causality is rejected. Taking the REC to 
CO2 emission relationship into perspective (upper panel of Fig. 4), we observe that the null 
hypothesis that REC does not Granger-cause CO2 emission is not rejected at the 10% level 
of significance during the 1980Q1 to 1997Q2 period. In addition, we observe that REC 
Granger-cause CO2 emissions in different time sequences: (1) causality from 1997Q3 to 
2001Q4, (3) oscillating causality from 2002Q1 to 2002Q4, (4) no causality from 2003Q1 
to 2008Q3, and (5) causality from 2008Q4 to 2017Q4.

Considering the reverse causality from CO2 to REC, we observe a more unsta-
ble trend. Causality is evident for the periods 1999Q1–2001Q1, 2002Q1–2005Q2, 
2010Q3–2012Q3, and 2012Q3–2017Q4. Otherwise, there is no causality for all other 
periods, except 2008Q4–2009Q2, which experienced inflection causality. Looking at 
both directions, we also observe bidirectional causality for the period 1999Q1–2001Q1 
and 2012Q3–2017Q4 and unidirectional causality from REC to CO2 for the period 
1997Q4–1998Q4 and CO2-REC for the period 2002Q1 to 2005Q2. The results of 
NREC-CO2 relationship (middle panel) and GDP-CO2 (lower panel) follow the same 
interpretation and conclusion: (non)causality is not static but varies with time.

It is important to recall the Toda-Yamamoto causality results for comparison. Previ-
ously, results for Nigeria have pointed to the neutrality hypothesis across the three relation-
ships for the entire period, 1980Q1–2017Q4. As we have shown through the time-varying 
Granger causality results, the conclusion is not proper. Indeed, (non)causality is dynamic. It 
changes direction and strength over time. Our findings are in tandem with recent evidence 
by Emirmahmutoglu et  al., (2021), who confirm time-varying causality for four energy 
sectors in the US. The results for Nigeria are more or less mirrored for Egypt (Fig.  6), 
Libya (Fig. 7), and Algeria (Fig. 5). For these countries, the existence/non-existence and 
direction of causality changes with time across all three relationships. However, in Figs. 4 
and 7, respectively, results for South Africa and Tunisia tell an interesting story.

For South Africa as is in Fig. 8, the absence of causality is observed from REC to CO2, 
CO2 to NREC, and CO2 to GDP. These results are like those of the Toda-Yamamoto test. 
However, when we consider reverse causality for these relationships, the Toda-Yamamoto 
tests are rejected. For example, while Toda-Yamamoto results suggest a neutral hypothesis 
across all the three relationships in South Africa, the time-varying causality results imply 
unidirectional causality for some periods. For instance, in the upper right panel in Fig. 8, 
there is clear causality from CO2 emission to REC for the period 2004Q1–2006Q3. The 
same can be said for directional causality from GDP-CO2 during 2013Q2–2015Q3. For 
Tunisia, as the upper panel of Fig. 9 shows, the REC-CO2 emission relationship is distinct. 
Throughout, the test statistics are clearly drifting away from the 5% critical values, suggest-
ing the absence of causal relationship between REC and CO2 emission. It is the only case 
across all the countries where the neutrality hypothesis is confirmed for the entire period 
from 1980Q1 to 2017Q4. The results for NREC-CO2 emission and GDP-CO2 compares 
very well with Nigeria, Libya, and Algeria.

The existence of time-varying causality among the three relationships is important 
for policy. If anything, it implies that policy meant to promote environmentally friendly 



	 D. K. Espoir et al.

1 3

Ta
bl

e 
3  

R
es

ul
ts

 o
f T

Y
 c

au
sa

lit
y 

te
st 

fo
r t

he
 e

nt
ire

 sa
m

pl
e 

pe
rio

d

↛
 in

di
ca

te
s n

o 
ca

us
at

io
n 

w
hi

le
 *

 a
nd

 *
**

 im
pl

ie
s p

 <
 0.

1 
an

d 
p <

 0.
01

 re
sp

ec
tiv

el
y

N
ul

l h
yp

ot
he

si
s

So
ut

h 
A

fr
ic

a
Eg

yp
t

A
lg

er
ia

Li
by

a
N

ig
er

ia
Tu

ni
si

a

M
W

A
LD

p 
va

lu
e

M
W

A
LD

p 
va

lu
e

M
W

A
LD

p 
va

lu
e

M
W

A
LD

p 
va

lu
e

M
W

A
LD

p 
va

lu
e

M
W

A
LD

p 
va

lu
e

ln
R

EC
 ↛

 ln
CO

2
ln

CO
2 
↛

 ln
R

EC
ln

N
R

EC
 ↛

 ln
CO

2
ln

CO
2 
↛

 ln
N

R
EC

ln
G

D
P 
↛

 ln
CO

2
ln

CO
2 
↛

 ln
G

D
P

0.
62

00
0.

82
00

0.
57

00
0.

48
00

0.
20

00
0.

06
00

0.
73

31
0.

66
23

0.
75

17
0.

78
82

0.
90

62
0.

96
92

5.
64

00
*

2.
44

00
1.

09
00

1.
28

00
2.

69
00

0.
64

00

0.
05

95
0.

29
58

0.
57

87
0.

52
83

0.
26

10
0.

72
49

1.
03

00
0.

36
00

1.
03

00
0.

04
00

0.
06

00
0.

39
00

0.
59

78
0.

83
56

0.
59

65
0.

97
99

0.
97

19
0.

82
09

0.
59

00
11

.5
6*

**
0.

26
00

4.
57

00
0.

78
00

5.
84

00
*

0.
74

54
0.

00
31

0.
87

63
0.

10
18

0.
67

61
0.

05
39

0.
49

00
0.

45
00

0.
18

00
0.

09
00

0.
31

00
2.

58
00

0.
78

21
0.

80
02

0.
91

50
0.

95
48

0.
85

44
0.

27
51

0.
93

00
0.

95
00

22
.1

60
0*

**
34

.0
40

0*
**

1.
12

00
8.

17
00

0.
98

82
0.

98
74

0.
00

11
0.

00
00

0.
98

05
0.

22
58



Time‑varying causality nexus of (non)renewable electricity…

1 3

and sustainable economic growth should not be static. In other words, our empirical 
findings imply that specific policy designed to promote growth and mitigate the global 
warming through carbon dioxide abatement must be dynamic in relation to countries 
structural changes. Otherwise, wrong decisions are made. Comparing the Toda-Yama-
moto and time-varying causality results for Nigeria helps to elaborate on this.

However, closely examining the estimated results, we witness a bidirectional time-
varying causality between GDP and CO2 emissions in all six African countries. The only 
exception is South Africa, where we observe a unidirectional causality running from GDP 

Fig. 4   Time-varying Granger causal relationship between REC, NREC, GDP, and CO2 emissions for Nige-
ria
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to CO2 emission. The causality effect from GDP to CO2 emission means that industrial 
productions in all six African countries promote economic growth. Meanwhile, the struc-
tural economic dynamics accelerate carbon dioxide emissions. Moreso, the causality effect 
from CO2 emission to GDP implies that economic structural changes from energy and car-
bon-intensive economies to decarbonised economies could be an important factor to the 
global efforts to mitigate climate change and its impacts as well as attaining the SDG 13 
(Bekun et al., 2019; Sarkodie & Strezov, 2018).

Fig. 5   Time-varying Granger causal relationship between REC, NREC, GDP, and CO2 emissions for South 
Africa
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Furthermore, we observe a bidirectional causality between REC and CO2 emission at 
different time sequences in countries such as Nigeria, Egypt, Libya, and Algeria. In addi-
tion, a unidirectional time-varying causality from CO2 emission to REC is observed for 
South Africa, while no causality effect is depicted between REC and CO2 emission for 
Tunisia. Also, we detect a bidirectional causality between NREC and CO2 emission at dif-
ferent time sequences in all countries, except South Africa where a unidirectional time-
varying causality running from NREC to CO2 emission is evident. These findings indicate 

Fig. 6   Time-varying Granger causal relationship between REC, NREC, GDP, and CO2 emissions for Egypt



	 D. K. Espoir et al.

1 3

that both REC and NREC trigger CO2 emissions in these countries and vice versa. Nev-
ertheless, we maintain two key observations from these findings. First, fossil fuel energy 
utilization accelerates carbon dioxide emissions leading to extreme climate change-related 
events. Second, countries increase their clean energy technologies penetration in their 
energy mix to reduce energy imports and diversify supply options. They also diminish their 

Fig. 7   Time-varying Granger causal relationship between REC, NREC, GDP, and CO2 emissions for Libya
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economic vulnerability to price volatility and increase energy security. These two observa-
tions show that at some point, environmental and growth actors need to balance energy 
consumption and CO2 emissions. When REC causes CO2 emission there is an impetus to 
increase investment in renewable energy sources relative to nonrenewable sources. There-
fore, we recommend a progressive shift from nonrenewable to renewable energy technolo-
gies as more intermittency, energy stability, sustainable growth, and pollution abatement 
can be achieved.

Fig. 8   Time-varying Granger causal relationship between REC, NREC, GDP, and CO2 emissions for Tuni-
sia
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6 � Conclusion

Many studies examine the relatively important role of renewable and nonrenewable energy 
consumption and economic growth in driving carbon dioxide and greenhouse gas emis-
sions. Most of those studies focus their interest on industrialized countries such as the 
United States and the EU countries, but little is known for African countries. The ultimate 
aim of such studies is to produce evidence-based policy that can help to mitigate climate 

Fig. 9   Time-varying Granger causal relationship between REC, NREC, GDP, and CO2 emissions for Alge-
ria
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change and its impact. Thus, Africa as part of the World regions seems to remain behind on 
this important front.

Furthermore, the existing studies that examine the association between REC, NREC, 
GDP, and CO2 emissions through causality hypothesis framework consider a strong 
assumption of homogeneity over the entire study period and overlook the presence of a 
possible time-varying relationship. Given this drawback, the current study investigates the 
causality relationship between REC, NREC, GDP, and CO2 emissions in six selected Afri-
can countries over the period spanning 1980Q1–2017Q4. To achieve the research objec-
tive, we utilize two different causality tests. First, we employ the conventional Toda-Yama-
moto causality technique. The results of this approach indicate a unidirectional causality 
from REC to CO2 emission in Egypt, a unidirectional causality from CO2 emission to REC 
and CO2 emission to GDP in Libya, and a bidirectional causality between NREC and CO2 
emission in Tunisia. Second, we utilize a recursive evolving window (REW) test to con-
sider time-varying causality mainly due to several dynamisms that characterize time series 
over the years. The results of this approach indicate the presence of causality among the 
three relationships for all six African countries over different time sequences.

Contrary to the Toda-Yamamoto causality results that indicate static no(causality) 
among the three relationships, the REW causality results show that the associations vary 
significantly across the time periods. In other words, the causality relationship between 
REC, NREC, GDP, and CO2 emissions is dynamic. These findings have implications for 
research and policy. For research, the results suggest that causality relationships could vary 
significantly across the techniques employed by the researcher. For policy implication, the 
results of REW causality approach suggest that policy formulated to promote environmen-
tally friendly and sustainable economic growth in Africa and in the world at large should 
not be static. Those policy should be dynamic by considering countries economic struc-
tural changes.

Our findings is a case for speeding the NREC to REC transmission. Given that REC 
causes CO2 emission and economic growth, African governments are supposed to esca-
late investment in RE sources. Such investments should be anchored on the abundance of 
renewable energies in Africa vis-a-vie low exploitation. In addition, reports have shown 
that the cost of renewable energy projects are declining and continued to be competitive 
and lower than that of fossil fuel projects. For instance, it is reported that close to two-
thirds or 163 gigawatts (GW) of greenfield renewable power investments in 2021 were 
cheaper compared to the world’s cheapest coal-fired alternatives in G20 (International 
Renewable Energy Agency, 2021). This shows the sustainability of renewable energy in 
Africa, and therefore an impetus to increase investment in the sector. This can go a long 
way to address energy poverty in Africa, and has a potential to be the foundation for envi-
ronmentally friendly sustainable economic growth in the region.
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