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A B S T R A C T   

This study offers a new perspective on the drivers of environmental sustainability for sector level (manufacturing, 
mining, agriculture, business, trade, and transport) analysis. In this case, country-level sectoral dynamic index for 
technology adoption and emission intensity were constructed to study the environmental efficiency effect of 
technology adoption and technology diffusion across tradable and non-tradable sectors by using empirical 
illustration for 49 developing and emerging countries during 1990–2018 period. By correcting for potential bias 
arising from endogeneity and cross-border spillover effects via cross-section dependence, results reveal long-term 
effects of technological changes. Importantly, it is shown that the environmental efficiency effect of technology 
adoption holds in technology-intensive sectors (i.e manufacturing, mining, agriculture) only at lower capitali-
zation levels, thus establishing a U-shaped nexus of technology adoption and carbon emission. Additionally, it is 
found that trade networks reduce emission intensities by improving technology diffusion across all the tradable 
sectors and in transport sector. Moreover, trade alone mitigates carbon intensity across all the sectors while 
income per capita spur carbon intensity in the tradable sectors. From policy insight, the study identifies the need 
for stricter policy directives to scale up energy and clean technologies adoption in all sector activities.   

1. Introduction 

Building on the endogenous technological change theory that tech-
nological adoption can promote economic growth, improve energy ef-
ficiency and reduce carbon emissions through the substitution of 
production factors (technical efficiency), this study addresses how 
changes in the sectoral adoption of technology influence the dynamics of 
emission intensity across economic sectors. While studies have so far 
focused on the relationship between overall technological improvement 
and carbon emission from an aggregate perspective, less is known about 
their heterogeneous effects from a sectoral perspective. As the devel-
opment of new and emerging technological breakthrough unfolds, it 
offers timely opportunities for developing nations to narrow down 
technological gaps across economic sectors by playing the catching-up 
effect (Kassouri et al., 2021; World Bank, 2019). Then, it becomes 
paramount to understand pathways toward a more sustainable struc-
tural transformation in emerging and developing economies (EMDEs) 
given the environmental setback of rapid industrialization. 

Several previous papers addressed the relationship between 

technology and economic growth. For instance (Syrquin, 1988), argued 
that the process of economic growth can be formally described as the 
result of capital accumulation and technological change. Following the 
structuralist perspective of economic growth, Justman and Teubal 
(1991) emphasized the key role of technological progress in economic 
growth and of the structural changes that such progress requires. 
Building on a endogenous technology-driven growth model (Carlaw and 
Lipsey, 2003), show that technological change is the main trigger of long 
term economic growth. Overall, these studies established the role of 
technology change in driving economic growth. At the same time, there 
has been increasing drive on the close relationship between economic 
growth and the environment (Grossman and Krueger, 1991). Starting 
from the direct impact of technology adoption on economic develop-
ment, theoretically a series of mechanisms through which technology 
can influence the environment has been advanced in the literature. First, 
the adoption of technology improves overall work and production effi-
ciency by replacing low-skilled labor force and display a complementary 
effect on high-skilled labor force (Wadley, 2021). This in turn may 
reduce the working hours and energy consumption caused by works. 
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This can further reduce emission intensity and improve environmental 
efficiency. However, it is important to know that improvements in 
production efficiency can also promote industrial output and therefore 
exacerbate environmental degradation (Shahbaz et al., 2015). 

Moreover, by reducing employment in the manufacturing sector 
(Acemoglu, 1997; Acemoglu et al., 2007), technology can force workers 
to make disruptive transitions to agriculture and services. The devel-
opment of technology can lead to the creation of green jobs across sec-
tors (through green agriculture, green technology research and 
development) which in turn promote green employments while 
relieving pressure on the environment (Bessen, 2019). Finally, techno-
logical innovation is likely to stimulate a transition to sustainable energy 
systems by providing good solutions for the management and utilization 
of renewable energy (Altıntaş and Kassouri, 2020; Bilgili et al., 2020). 
The deployment of renewable energy stemming from technological 
innovation can effectively curb environmental degradation Olanrewaju 
et al. (2019); Alola and Saint Akadiri, 2021; Usman et al. (2020). While 
energy transition and clean technology development are believed to 
promote energy efficiency and mitigate environmental degradation 
(Adebayo et al., 2021; Pylaeva et al., 2022; Vaisman et., 2022; Onifade 
and Alola, 2022). However, the role of technology adoption especially 
across the sectors of the economy has been sparsely addressed in the 
literature. 

Therefore, the main goal of this paper is to investigate the 
technology-emission intensity nexus across aggregate economic sectors: 
(a) the tradable sector, which includes manufacturing, mining, and 
agriculture; (b) the non-tradable sectors, which include transport, 
commercial activities, and trade services. For the empirical application, 
this study considers a sample of 49 EMDEs over the period 1990–2018. 
Based on the current state of the literature, two hypotheses have been 
put forward: (i) drawing on a perspective of technology heterogeneity 
among sectors; it is expected that technology-intensive sectors become 
more environment-efficient than others, which is consistent with the 
environmental efficiency effect of technology. The rationale behind this 
hypothesis is that technological development can improve industriali-
zation and help push the upgrading of the energy structure (Su and Fan, 
2022; You and Zhang, 2022). (ii) Inspired by Bin and Jianmao (2000), 
bilateral trade networks among countries is considered to identify 
technology diffusion by introducing an interaction term between trade 
and technology. In this light, the hypothesis that strong trade networks 
among countries can improve the diffusion of technology needed to 
mitigate CO2 emission intensity is tested. Previous studies have 
confirmed that enhancing cross-border diffusion of new technologies is 
critical to address environmental problems in developing countries 
(Bayer and Urpelainen, 2013; Dechezleprêtre et al., 2015). Our paper 
offers research on the above hypotheses. 

Moreover, the research innovation of this paper and the contribution 
to the literature can be viewed from these distinct aspects. Previous 
contributions mainly rely on input-output approach to generate emis-
sion intensity from a single country perspective (Khan et al., 2020; 
Majumdar and Kar, 2017). But the current attempt contributes to the 
literature by providing for the first time a comprehensive measure of 
emission intensity from the perspective of technology adoption along-
side other related indicators for a panel of 49 developing and emerging 
economies. Importantly, selected African countries are employed as a 
panel of developing economies for a robustness purpose. The justifica-
tion for using selected African states is not only because of the fast pace 
of increasing access to the internet across the continent, but also because 
the continent still lags far behind other continents in term of techno-
logical advancements. Furthermore, this study is approached from a rare 
perspective of sectoral-based approach by using the value-added dataset 
to assess the sectoral decarbonization effects of technology adoption. In 
subsequent section 2, the related literature is discussed which further 
highlights the existing gap. Following the literature section is section 3 
where the data and the empirical strategy of the study are detailed. The 
discussion of the empirical results with policy significance and the 

conclusion of the study are highlighted in section 4 and 5 respectively. 

2. Brief literature review 

Although there has been different argument to both the economic 
advantages of technology adoption and the assumption about the deci-
sion agents (Alola et al., 2021; Chen and Ma, 2021; Fang and Ma, 2021), 
however, its relationship with environmental indicators such as green-
house gas (GHG) emissions is well-documented in the literature. 

For instance, Lu et al. (2022) investigated whether technology 
adoption and democracy play any moderating role in the nexus of car-
bon emission and liberalisation in the panel of 35 Organisation for 
Economic Cooperation and Development (OECD) countries over the 
time 1970–2019. The study utilised the interaction of trade policy and 
democracy (i.e trade policy*democracy) to account for technology 
adoption and suggests that higher value ‘trade policy*democracy’ sig-
nifies higher rate of technology adoption. Consequently, by using the 
econometric approaches (fixed-effect and Quantile Regression for Panel 
Data (QRPD)), the study established that democracy mitigates carbon 
emission while trade liberalisation spur carbon emission. Importantly, 
Lu et al. (2022) found that technology adoption (i.e trade policy*-
democracy) spur carbon emission in the panel of OECD countries. In the 
work of Mohareb and Kennedy (2014), the case of a developed world 
city such as the Greater Toronto Area was considered to examine 
whether technological change is capable of mitigating GHG emission by 
80 percent. The study used emissions from the residential buildings, 
light duty passenger vehicles, and institutional or commercial buildings 
to establish that higher technology adoption is insufficient at providing 
80 percent mitigation of GHG emission by 2050. 

Furthermore, electric power utilization and high-technology exports 
were employed as indicators of technology adoption alongside the 
technology innovation indicators in the study of Su et al. (2021). While 
considering the case of the Brazil, Russia, India, China, and South Africa 
(BRICS) economies, the study found that carbon emission is positively 
driven by electric power utilization and high-technology exports in 
BRICS countries. However, there is a relief from the findings, as it 
further revealed that both technology innovation and technology 
adoption exhibits inverted U-shaped relationship with carbon emission. 
On the contrary, a more desirable result was put forward in the study of 
Hammond et al. (2020). The study investigated the appropriate 
approach to mitigate GHG emissions (as to attain the 80 percent GHG 
emissions reduction by 2050) by using the freight sector in Canada as a 
reference case. While the study revealed that both standards and carbon 
pricing (which are current scenarios in Canada) and implementation of 
individual policy are insufficient measures to achieving the 2050 sector 
GHG emission reduction targets. But, as noted by Hammond et al. 
(2020), policy combination of technology adoption involving the strin-
gent the use of zero-emissions vehicle and low-carbon fuel standard 
could help to attain the 80 percent reduction in sector GHG emissions by 
2050. 

Moreover, Lasisi et al. (2022) and Pylaeva et al. (2022) are another 
two distinct studies in the context of the current investigation. Specif-
ically, the case of selected economies i.e., Austria, Denmark, Finland, 
France, Germany, Netherland, Spain, and Sweden, the leading 
eco-innovation countries were considered in the period 1990–2020. By 
using the econometric approach of method of moments quantile 
regression alongside Granger causality approach, the study reveals that 
environmental technologies spur economic growth when other factors 
such as environmental-related technological innovations and oil con-
sumption are controlled. Additionally, with or without the moderating 
effect of environmental technologies, it is observed that oil consumption 
also promotes economic growth in the examined panel of eco-innovation 
countries. Contrarily, a disservice effect of environmental-related tech-
nological innovations is observed as economic growth is hindered by 
increase in the development of environmental-related technological 
innovations. Similar to Lasisi et al. (2022) but more business-related, 
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Pylaeva et al. (2022) found that implementation of technological 
development by small and medium enterprises (SMEs) enhances gross 
profit and asset management as it causes a decline in resource costs of 
production. Meanwhile, the drivers of environmental-related indicators 
have been studied under different framework in the literature (Bekun 
et al., 2019; Anser et al., 2021; Umar et al., 2021). 

3. Data and estimation strategy 

To study the technology-emission intensity nexus over the stipulated 
period 1990–2018 for the listed countries (see Table A1), the dataset 
real GDP per capita, capital stock, and population were obtained from 
the Penn World Table version 10.0 database. Additionally, total CO2 
emissions was obtained from World Development Indicators. The value- 
added data of agriculture, manufacturing, mining, trade services, 
transport services, and business services were retrieved from the Eco-
nomic Transformation database by (de Vries et al., 2021) and bilateral 
trade data from World Trade Organization database by (Monteiro, 
2020). Specifically, Table 1 provides a description of the dataset. 
Additionally, Figs. 1 and 2 show that technology adoption and emission 
intensities display upward trends over our sample period, with higher 
levels of emission intensity in the transport and mining sectors. The 
statistical properties of the dataset are displayed in appendix alongside 
the cross-sectional dependency (CSD) test in Tables 2 and 3 respectively. 
From the descriptive statistics, it shows that control variable ‘Trade’ has 
the highest deviation from the mean followed by emission intensity in 
the mining sector and emission intensity in the manufacturing sector. 
Moreover, there is evidence of cross-sectional dependence as illustrated 
by the result displayed in Table 3. 

3.1. Estimation strategy 

Given the priori information from the CSD test, the investigation 
proceeds to employ the advantage of cross-sectional autoregressive 
distributed lag (CS-ARDL) approach because of its appropriateness. 
Importantly, the CS-ARDL is found to be appropriate in examining 
dataset with mixed order of integration, at least not more than I (1). 
Additionally, this estimation technique offers long-run elasticity for the 
relationship between the regressor and regressed. Moreover, in the 
literature, there are other advantages that are associated with the choice 
of the CS-ARDL, such as robustness to potential bias arising from 
endogeneity and cross-border spillover effects (cross-section depen-
dence) and heterogeneity across countries. However, one of the key 
limitations of this estimation approach is in the aspect of heterogeneous 
slope specifications. Specifically, long-run coefficient estimates with CS- 
ARDL could be sensitive to outlier estimates of the long-run effects for 
individual countries (Chudik and Pesaran, 2015). 

Nevertheless, to examine the long-run effects of technology on 
emission intensity, the CS-ARDL approach is considered appropriate, 
thus its implementation follows this model: 

ΔEijt =αi +
∑P

l=1
γilΔEijt− l +

∑P

l=0
∅ilΔXijt− l +

∑Q

l=0
ailΔEⅈt− l +

∑Q

l=0
bilXⅈt− l + vijt

(1)  

where Eijt =
CEit
VAijt 

represents emission intensity as proposed by Randers 
(2012), i.e. total carbon emission (CE) per unit of value-added (VA) in 
sector i of country j in year t. Xijt is a vector of explanatory variables, 
including technology adoption measured by the capital (kjt) labor (Lⅈjt) 

ratio (kjt
Lⅈjt

) as suggested in Majumdar and Kar (2017); real GDP per capita; 

population, and trade among countries. Eⅈt and Xⅈt are the cross-section 
averages of Eijt and Xijt. The Schwarz criterion were used to select the 
optimal lag orders (and Q). vijt is the error term. Building on (Tase, 
2019), we measure sectoral dynamics (Dⅈjt) of technology adoption and 
emission intensity as follows: 

Dⅈjt =
1
n
Σi
⃒
⃒πijt − πijt− 1

⃒
⃒ (2)  

where πijt denotes the sector (i) share of emission intensity and tech-
nology adoption in the country (j) at time (t). The complete illustration 
of the CS-ARDL approach is not captured here because of its wide 
coverage in the literature and for space constraint. 

3.1.1. Empirical estimations 
To achieve the objective of the study, the CS-ARDL method is applied 

for different country groups and constructed models (for the main sec-
tors, service sectors, and for interaction term) are categorized as follows. 

3.1.1.1. For the main (tradable) sectors. Model 1a: Sectoral emission 
intensity (in manufacturing, mining, agriculture sectors) = f (GDP per 
capita, population, trade, technology adoption) for entire panel. 

Model 1b: Sectoral emission intensity (in manufacturing, mining, 
agriculture sectors) = f (GDP per capita, population, trade, technology 
adoption, square of technology adoption) for entire panel. 

3.1.1.2. For the (non-tradable) service sectors. Model 2a: Sectoral 
emission intensity (in trade, business, transport services) = f (GDP per 
capita, population, trade, technology adoption) for entire panel. 

Model 2b: Sectoral emission intensity (in trade, business, transport 
services) = f (GDP per capita, population, trade, technology adoption, 
square of technology adoption) for entire panel. 

3.1.1.3. For the interaction term. Model 3a: Sectoral emission intensity 
(in manufacturing, mining, agriculture, trade, business, transport ser-
vices) = f (GDP per capita, population, trade, technology adoption, 
trade*technology adoption) for entire panel. 

Model 3b: Sectoral emission intensity (in manufacturing, mining, 
agriculture, trade, business, transport services) = f (GDP per capita, 
population, trade, technology adoption, trade*technology adoption) for 
panel of African countries. 

Where in all the aforementioned models, technology adoption is 
estimated and represented as (K/L), such that the square of technology 
adoption = (K/L) ^2, and technology diffusion is trade*technology 
adoption = trade*(K/L). Importantly, the study seeks to illustrate 
whether there is a turning point in the relationship between technology 
adoption and sectoral emission intensity i.e whether there is a U-shaped 
or inverted U-shaped relationship between duo. 

4. Discussion of the results 

The results from the model 1 and 2 (for tradable and non-tradable 
sectors) are first discussed. From Table 4, especially in Model 1A 
(without interaction), it is observed that the measure of technology 
adoption (K/L) shows a negative and significant impact on emission 

Table 1 
Variable description.  

Variable Description 

Capital stock Capital stock at constant 2017 national prices (in mil. 2017US$) 
Labor Number of persons engaged (thousands) 
CO2 emissions Total CO2 emissions (metric tons per capita) 
Real GDP per 

capita 
Real GDP at constant 2017 national prices (in mil. 2017US$) 

Population Population (in millions) 
Value added Gross value added at constant 2015 prices (millions, local 

currency) 
Trade Domestic trade flows are computed as the difference between 

gross output and exports of manufacturing goods  
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intensities across tradable economic sectors. In term of the magnitude of 
the impact, technology adoption shows higher impact in the 
manufacturing sector and followed by the mining and agriculture sec-
tors. The significance of this desirable observation probably shows that 
technological change in these sectors is at least driving and achieving 
carbon emission mitigation, thus conforming with environmental sus-
tainability pursuit. For the non-tradable sectors, insignificant impacts 
are observed in business and trade services (non-tradable sectors). 
However, given the interaction terms in Models 1A and 1B in Table 4, 
there is positive and significant coefficients of the squared terms of (K/L) 
indicate that a U-shape nexus between technology adoption and emis-
sion intensities holds in manufacturing, mining, agriculture, and trans-
port service sectors, suggesting the existence of nonlinearity in the 
efficiency of technology adoption across tradable sectors as supported in 
Majumdar and Kar (2017). The implication is that though technology 
adoption mitigates carbon emission intensity in the tradable sectors 
(Model 1A), and only the transport services of non-tradable sectors 
(Model 1B), further escalation of technology adoption to a certain 
threshold suddenly become a menace to environmental quality. This 
evidence further louds the position of several studies that technology 
adoption would probably not or ineffectively drive environmental 

sustainability (Mohareb and Kennedy, 2014; Lu et al., 2022). 
Conversely, Su et al., 2021 found an inverted relationship between 
technology adoption and carbon emission in the BRICS) economies. 

Furthermore, the control variables in all regressions generally ex-
hibits expected signs, and when there are not, they are statistically 
insignificant. For instance, GDP per capita spur carbon emission in the 
manufacturing sector with elasticity of 21.184 (model 1a with only 
technology adoption) and in the agricultural sector with elasticity of 
0.411 (model 1b with square of technology adoption). Another indicator 
with a statistically significant impact is trade which mitigate carbon 
emission in the manufacturing sector with elasticity of 0.005 (model 1a 
with only technology adoption) and in the agricultural sector with 
elasticity of 0.004 (model 1b with square of technology adoption). The 
take-home from previous studies shows that GDP per capita and trade 
could respectively exert positive and negative effect depending on the 
circumstance(s) under investigation (Bekun et al., 2019; Usman et al., 
2020; Umar et al., 2021). The negative and significant coefficients of the 
error correction term indicate that our model restore back to long-term 
equilibrium, giving some indication about the validity of our CS-ARDL 
model. 

The result from the interaction Model (3A) also offer more 

Fig. 1. Evolution of the sectoral emission intensity dynamics.  

Fig. 2. Evolution of the sectoral technological adoption dynamics.  
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interesting perspectives i.e for the entire panel of countries and the panel 
of African countries. Table 5 shows that the coefficient of the interaction 
term between capital intensity and trade is negative and statistically 
significant especially for the tradable sectors at the conventional level. 
This suggests that the environmental benefits of technology adoption 
can operate through bilateral trade among countries and especially in 
the manufacturing, mining, and agricultural sectors. Given that the 
interaction between trade and technology is an indirect way to capture 
the diffusion of technology, one might claim that both technology 
adoption and diffusion significantly contribute to reducing emission 
intensities. Comparing the results in Tables 4 and 5, although the role of 
trade also moderate technology adoption to exert a negative impact on 
carbon emission, the magnitude of the impact in this case is lower 
compared to the categorical impact of technology adoption. However, 
the results of the impact of GDP per capita and trade in this scenario is in 
harmony with the previous models expressed in Table 4. 

Moreover, as indicated in the Model 3B above, the interaction term i. 
e (K/L) *trade (representing technology adoption) is furthermore 
employed for the case of the African economies. By considering this 
endeavour as a robustness check, the result is indicated in Table 6. Apart 
from the results of the impact of GDP per capita and trade that remained 
unchanged, the impact of technology adoption and diffusion on carbon 
emission in this context (African economies) is similar to that of the 
entire panel earlier illustrated. Thus, these results infer that both tech-
nology adoption and diffusion are good enough to mitigate carbon 

emission in the panel of developing, emerging, and African economies. 
Meanwhile, the summary of the model specification and results are 
further exemplified in Table A2 (of appendix). 

4.1. Policy recommendation 

These findings yield new insights and policy implications for EMDEs. 
The underlying countries can exploit the emission reduction effect of 
technology adoption while restricting the rebound effect due to exten-
sive technological development. In this light, a more specific recom-
mendations and priority can be given to sectoral characteristics through 
exploring desirable environmental sustainability role of technological 
change such as in renewable energy utilization in the manufacturing, 
mining, and agricultural sectors. Unlike the non-tradable sectors, espe-
cially the trade services and business services, policy makers should give 
more priority to addressing the potential rebound effect in 
manufacturing, agriculture and mining sectors, and transport sectors. 
Moreover, promotion of trade activities and trade networks is important, 
and such could be achieved through improving the adoption of newer 
technologies vis-a-vis technology diffusion which in turn contribute to 
the reduction of emission intensities in manufacturing, mining, and 
agricultural sectors. Specifically, and according to United Nations 
Environment Programme (UNEP) report, developing economies are 
positioned to significantly benefit from the diffusion of environmentally 
sound technologies through global trades in renewable and clean energy 
technologies (United Nations Environment Programme, 2022). For 
instance, toward advancing regional clean energy penetration, Ghana’s 
Green Economy and Trade Opportunities Project (GE-TOP) strategy 
propagates exportation of solar energy (UNEP, 2016). Similarly, this 
approach of green economy through trade in environmental goods and 
especially renewable energy have long been operationalized among the 
South-South economies (UNEP, 2014). Thus, there should be stricter 
policy directives that compels the scale up of energy and clean tech-
nologies adoption in the activities of the examined sectors. From the 
societal and behavioral perspective, people’s consciousness and adop-
tion of environmentally friendly attitudes could turn out to influence the 
impact of GDP per capita toward improving environmental quality. 

5. Conclusion 

This study provides additional knowledge on the drivers of envi-
ronmental sustainability by employing a panel of 49 developing and 
emerging countries across the globe over 1990–2018. Categorically, 
appropriate econometric methods were employed such that the roles of 
technology adoption and diffusion alongside other relevant indicators in 
mitigating carbon emission were examined. This study is important 
because it considers the sectoral (tradable and non-tradable) level 

Table 2 
List of countries and descriptive statistics.  

Descriptive statistics  

Obs. Mean Std. Dev. Min Max 

Technology 
Manufacturing 1421 0.195 0.5244 0 4.216 
Mining 1421 0.176 0.163 0 0.854 
Agriculture 1421 0.145 0.223 0 1.885 
Trade 1421 0.102 0.117 0 1.002 
Transport 1421 0.089 0.091 0 0.833 
Business 1421 0.121 0.129 0 0.902  

Emission intensity 
Manufacturing 1421 0.846 2.282 0 18.330 
Mining 1421 1.243 3.842 0 31.235 
Agriculture 1421 1.015 2.117 0 15.574 
Trade 1421 0.289 0.176 0 0.682 
Transport 1421 0.289 0.176 0 0.682 
Business 1421 0.394 0.235 0 0.901  

Control Variables 
real GDP pc 1421 7.766 1.259 5.213 11.019 
Population 1421 3.313 1.490 0.054 7.263 
Trade 1421 15.001 4.023 1.945 28.3254  

Table 3 
Cross-section dependency tests.  

Variable Emission intensity in 

Manufacturing Mining Agriculture Trade Business Transport 

CD 128.577*** 110.212*** 85.755*** 158.385*** 162.781*** 143.413*** 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]   

Technology adoption in 

Manufacturing Mining Agriculture Trade Business Transport 

CD 37.212*** 23.339*** 139.015*** 22.101*** 51.070*** 7.436*** 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]   

Control variables 

GDP Population Openness 

CD 167.549*** 180.199*** 6.239*** 
[0.000] [0.000] [0.000] 

Notes: CD stands for the cross-section dependence tests developed by (Chudik and Pesaran, 2013). 
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carbon emissions in the aforementioned countries. 
Drawing on a perspective of technology heterogeneity across eco-

nomic sectors, there is statistically significant evidence that a U-shaped 
pattern characterizes the technology-emission nexus across all the 
tradable sectors (the manufacturing, mining, and agriculture) and the 
transport sector of the service industry. This result implies that although 
technology adoption initially provides an environmentally desirable 
result, but further adoption of technology to a certain threshold can be 
detrimental to the environment in the long term. Additional findings 
disclose that trade liberalisation is essential to technology diffusion 

across tradable sectors (mainly the manufacturing, mining, and agri-
culture) in each of the entire panel of countries and panel of African 
countries. Moreover, the result of the other indicators shows that GDP 
per capita in all the scenarios and across the tradable sectors exacerbate 
environmental degradation by increasing carbon emission while trade 
mitigate carbon emission. 

Considering the limitation of this study, more sectors could be 
examined in future study while the roles of several environmental agents 
especially the non-economic indicators are further examined. This study 
does not explicitly account for spatial effects in the diffusion of 

Table 4 
Long-term effects of technology adoption on emission intensity across sectors.   

(Tradable) Dependent Variable (DV): Emission intensity in 

Manufacturing Mining Agriculture Manufacturing Mining Agriculture 

Model 1A Model 1B 

Error correction term − 0.308*** − 0.208*** − 0.244*** − 0.125*** − 0.200*** − 0.276*** 
(0.105) (0.038) (0.051) (0.038) (0.040) (0.051) 

Log GDP per capita 21.184** 0.113 0.456 0.300 4.544 0.411* 
(10.715) (0.986) (0.288) (0.261) (8.310) (0.293) 

Log population 64.220 − 42.873 32.485 − 50.252 − 104.473 31.010 
(57.669) (146.751) (21.749) (45.618) (130.66) (22.284) 

Log trade − 0.005* − 0.050 0.002 − 0.001 − 0.201 − 0.004* 
(0.003) (0.073) (0.001) (0.002) (0.125) (0.002) 

Log K/L − 307.175* − 49.772* − 0.312** − 112.638* − 56.428* − 0.793*** 
(178.388) (28.182) (0.156) (60.116) (33.692) (0.232) 

Log (K/L)^2    9.525* 6.060** 0.056*    
(5.045) (3.039) (0.031) 

Observations 1173 1173 1177 1132 1173 1177 
R-squared 0.56 0.54 0.55 0.53 0.52 0.47   

Trade services (Non-tradable) DV: Emission intensity Transport services 

Business services Transport services Trade services Business services 

Model 2A Model 2B 

Error correction term − 0.183*** − 0.336** − 0.074* − 0.275*** − 0.114*** − 0.280*** 
(0.088) (0.177) (0.043) (0.054) (0.039) (0.074) 

Log GDP per capita 0.188 7.184* 0.595** 0.454 0.169 1.986 
(0.349) (4.339) (0.281) (0.290) (0.267) (1.347) 

Log population 6.153 1.233 1.700 8.708 4.820 29.969 
(7.443) (0.914) (0.746) (20.723) (0.405) (30.835) 

Log trade − 1.696* − 0.015* − 0.483 − 0.002 − 0.001 − 6.32E-04 
(0.958) (0.008) (0.558) (0.003) (0.001) (0.001) 

Log K/L 0.207 − 0.063 − 0.119 − 1.267* 2.597 − 31.257* 
(0.325) (0.183) (0.113) (0.707) (5.271) (16.713) 

Log (K/L) ^2    3.008 − 0.175 2.452*    
(2.539) (0.346) (1.317) 

Observations 1079 1079 1079 1078 1078 1078 
R-squared 0.53 0.61 0.66 0.64 0.77 0.43 

Note: Standard error are in parenthesis; *** significance at 1%; **significance at 5%; and * significance at 10%. 

Table 5 
Interaction effects of bilateral trade for overall panel.   

Manufacturing All sectors: Model 3A (DV: Emission intensity) Transport services 

Mining Agriculture Trade services Business services 

Error correction term − 0.295*** − 0.424** − 0.240** − 0.088* − 0.244*** − 0.216*** 
(0.107) (0.185) (0.051) (0.046) (0.042) (0.066) 

Log GDP per capita 0.425 1.049* 0.476* 0.045 0.101 0.240 
(0.462) (0.585) (0.280) (0.180) (0.477) (0.433) 

Log population 0.545 4.828 − 2.204 − 0.288 49.942** 19.830 
(0.598) (4.541) (5.914) (0.279) (25.486) (21.172) 

Log trade − 0.283* − 7.126* − 0.002* − 0.159* − 0.069* − 0.098** 
(0.154) (3.708) (0.001) (0.088) (0.041) (0.049) 

Log K/L − 0.622** − 14.357** − 0.261** − 0.049 0.077 − 0.508*** 
(0.291) (6.961) (0.119) (0.050) (0.196) (0.193) 

Log (K/L) * Log trade − 0.043* − 0.892* − 0.018** 0.007 0.008 − 0.001 
(0.024) (6.961) (0.008) (0.007) (0.005) (0.000) 

Observations 1079 1074 1177 1177 1177 1035 
R-squared 0.52 0.46 0.57 0.50 0.62 0.44 

Note: Standard error are in parenthesis; *** significance at 1%; **significance at 5%; and * significance at 10%. 
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technology. Future studies can adopt spatial econometric techniques to 
uncover how spatial interdependence among neighboring countries can 
shift technology diffusion and emission intensity. However, the result of 
the current study provides policy guidelines for decision makers and 
stakeholders in the examined sectors. 
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Appendix  

Table A1 
List of countries  

Argentina, Burkina Faso, Bangladesh, Bolivia, Brazil, Botswana, Chile, China, Cameroon, Colombia, Costa Rica, Ecuador, 
Egypt, Ethiopia, Ghana, Indonesia, India, Israel, Japan, Kenya, Cambodia, Republic of Korea, Lao People’s, Sri Lanka, 
Lesotho, Morocco, Mexico, Myanmar, Mozambique, Mauritius, Malawi, Malaysia, Namibia, Nigeria, Nepal, Pakistan, 
Peru, Philippines, Rwanda, Senegal, Singapore, Thailand, Tunisia, Turkey, Tanzania, Uganda, Viet Nam, South Africa, 
Zambia.   

Table A2 
Alternative model specifications  

Model Tradable Non-tradable linear Quadratic Technology adoption Sample 

Model 1a *  *   Whole sample 
Model 1b *   *  Whole sample 
Model 2a  * *   Whole sample 
Model 2b  *  *  Whole sample 
Model 3a * *   * Whole sample 
Model 3b * *   * African countries  
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