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Abstract: The observation that the extent of artery calcification correlates with the degree of atheroscle-
rosis was the background for the alternative treatment of cardiovascular disease with chelator
ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has
only marginal impact on the course of vascular disease. In contrast, endogenous calcium chelation
with removal of calcium from the cardiovascular system paralleled by improved bone mineralization
exerted, i.e., by matrix Gla protein (MGP) and osteocalcin, appears to significantly delay the devel-
opment of cardiovascular diseases. After post-translational vitamin-K-dependent carboxylation of
glutamic acid residues, MGP and other vitamin-K-dependent proteins (VKDPs) can chelate calcium
through vicinal carboxyl groups. Dietary vitamin K is mainly provided in the form of phylloquinone
from green leafy vegetables and as menaquinones from fermented foods. Here, we provide a review
of clinical studies, addressing the role of vitamin K in cardiovascular diseases, and an overview of
vitamin K kinetics and biological actions, including vitamin-K-dependent carboxylation and calcium
chelation, as compared with the action of the exogenous (therapeutic) chelator EDTA. Consumption
of vitamin-K-rich foods and/or use of vitamin K supplements appear to be a better preventive
strategy than EDTA chelation for maintaining vascular health.

Keywords: vitamin K; chelation; matrix Gla protein; osteocalcin; EDTA; vascular calcification;
bone loss

1. Introduction

Early studies identified calcification in the media and intima of coronary arteries to be
associated with arterial stiffness and increased risk for adverse cardiovascular events [1,2].
The extent of artery calcification was further reported to be correlated with the degree of
atherosclerosis and with the risk of cardiovascular events [3,4]. The possible pathogenic
role of arterial calcium deposits in cardiovascular disease (CVD) led to the early use of
infusions of the chelating agent ethylenediamine tetraacetate (EDTA) to dissolve these
precipitates [5]. EDTA is a chelating drug that binds calcium and several other metal
cations, including magnesium and zinc, thereby facilitating their urinary excretion [6].
However, EDTA treatment may be associated with severe side effects, such as hypocalcemia
and hypomagnesemia [7]. In this context, the function of non-toxic endogenous calcium
chelating agents is of great interest, i.e., the proteins osteocalcin and matrix Gla protein
(MGP), which are activated through vitamin-K-dependent enzymatic carboxylation [8].
Thereby, their glutamate residues are transformed into dicarboxylic acids with high affinity
for calcium ions [9]. Activated MGP with its five chelating groups operates as an inhibitor of
arterial calcification and may thereby delay an atherosclerotic process [10]. The cooperation
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with osteocalcin with three dicarboxylic groups is essential for the transfer of calcium
into the bones [10,11]. A key function of vitamin K is to catalyze the carboxylation of
specific glutamic acid residues in some vitamin-K-dependent proteins (VKDPs), including
osteocalcin and matrix Gla protein (MGP), as well as several other proteins [12], i.e., several
factors involved in blood clotting. Low plasma concentrations of clotting factors II and VII
have been associated with increased risk of cardiovascular mortality in elderly with signs
of heart failure [13]. It is worth noting that vitamin K may also work via a nuclear receptor
as a specific form of vitamin K, i.e., menaquinone 4 (MK4), may activate the steroid and
xenobiotic receptor (SRX), the human analogue of the pregnane and xenobiotic receptor
(PXR) in rodents [14].

Activated MGP is a potent inhibitor of vascular calcification, while osteocalcin is
essential for bone mineralization [15,16].

The importance of vitamin K in cardiovascular and bone health has been extensively
studied in recent years, and there is growing evidence to support its role in the prevention
of vascular calcification [17]. Vascular and valvular calcification with deposition of calcium
in blood vessel walls and heart valves leads to increased stiffness and reduced flexibility
of the vessels and valves, thus representing a significant risk factor for cardiovascular
morbidity and mortality [18]. The clinical evidence supporting the role of vitamin K in the
delay of calcification is increasing [19]. This has led to a growing interest in the potential
use of vitamin K supplements in the prevention of CVD. Nevertheless, it must be admitted
that the mechanisms of action and the clinical role of the different forms of vitamin K are
still insufficiently known, which has precipitated the present article.

This review aims to provide an overview of the role of vitamin K in cardiovascular
health, with a particular focus on the kinetics of different forms of vitamin K and the
mechanisms of vitamin-K-dependent carboxylation and calcium chelation. The advantages
of the endogenous chelators over exogenous chelators such as EDTA are outlined. The
review discusses the clinical evidence supporting the role of vitamin K in preventing CVD,
as well as potential future directions for research in this field.

2. Sources and Kinetics of Vitamin K

Different chemical forms of vitamin K have been used in previous studies and reviews
on impacts of the vitamin on vascular calcification and other health effects. Here, we briefly
describe the different forms of vitamin K; dietary sources; and their absorption, metabolism,
and possible differences related to their role in vascular calcification.

Natural vitamin K exists as two vitamers: vitamin K1 (known as phylloquinone
(PK)) found in leafy green vegetables [20] and vitamin K2 (a group of menaquinones,
often denoted MKs) (Figure 1) found in fermented foods and foods of animal origin [21].
Vitamin K also exists in the gut microbiota to an unknown extent, formed by intestinal
bacteria [22,23]. Vitamin K2 occurs both as short-chain menaquinone-4 (MK4) and as
long-chain menaquinone-7, -8, and -9 (MK7, -8 and -9), where the numbers denote the
number of isoprenyl groups at the C3 position (see Figure 1). The naphthoquinone ring
without the side chain is denoted menadione or vitamin K3 [23].
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number n of isoprenyl groups at its C3 position.

Following incorporation into mixed micelles of bile salts, triglycerides, and phospho-
lipids, vitamin K is absorbed in the proximal part of the small intestine. The absorption is
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mediated by several transporters including the Nieman-Pick C1-Like 1 (NPC1L1), which
also transports cholesterol and vitamin E [23,24]. Of note, ezetimibe, which is used for
blocking NPC1L1-mediated cholesterol uptake from the gut, also inhibits vitamin K up-
take [23]. While this cholesterol transporter appears to be clinically important, less is known
about the role of other cholesterol and vitamin E transporters, except for scavenger class
B type I (SR-BI) and CD36, which both appear to be involved in vitamin K absorption.
Following absorption, vitamin K is mainly found in triglyceride-rich lipoproteins, which are
rapidly cleared by the liver [25]. MKs may also occur in low- and high-density lipoproteins.
The plasma levels of PK, which do not directly reflect PK intake, are mainly influenced
by the plasma triglyceride level [26]. The knowledge on transporters has primarily been
obtained via the uptake of PK, and less is known about the uptake mechanisms for MKs
(vitamin K2) [23]. It is, however, likely that due to structural similarity and lipophilicity,
MKs are using the same transporters as vitamin PK. The synthesis of MKs by intestinal
bacteria mainly occurs in the colon, and due to the absence of bile salts, which are needed
for micelle formation and thus absorption, their contribution is uncertain [27].

In addition to the dietary intake of MKs, PK can be converted to MK4 [28]. Side-
chain removal with the release of menadione seems only to take place in the intestines
during absorption, as the release of menadione was absent upon parenteral administration
of PK [29,30]. In extrahepatic tissues, the released menadione is reduced to menadiol,
and subsequently prenylated by the UB1AD1-enzyme (UbiA Prenyltransferase Domain-
Containing Protein 1) to MK4, using geranylgeranyl diphosphate as co-substrate (Figure 2).
Recent experiments in rodents have shown that also the side chains of dietary MK7 and
MK9 are in part removed resulting in extrahepatic MK4 synthesis [31]. Menadione appears
to be a systemic precursor for MK4 formation in the tissues [30], and MK4 is formed both
upon oral and parenteral administration of menadione.
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The formation of the polyisoprenyl side chain of MK4 is dependent on a functional
mevalonate pathway, which can be blocked by the 3-hydroxy-3-methylglutaryl CoA (HMG-
CoA) reductase inhibitory statins that are used to lower cholesterol synthesis [32]. Also,
bisphosphonates, used in the treatment of osteoporosis, may interfere with this pathway
by inhibiting farnesyl-diphosphate formation [33,34].

The organ distribution of PK and MKs differs (Figure 3). MK4 is present in the kidney,
brain, bone, skin, and exocrine and endocrine glands [16], and to a lesser extent in the
liver. MK7 is mainly found in the liver, spleen, adrenal glands, and testes, whereas PK
is predominantly found in the liver and small intestine [35]. Upon oral administration,
it appears that long-chain menaquinones (MKs) reach higher plasma concentrations and
have considerably longer elimination half-lives than equimolar amounts of phylloquinone
(PK) or MK4 [8,36,37]. However, in plasma, PK is usually the dominating species, while
MK4 is either undetectable or occurs in low concentrations, and the MK7 concentration is
dependent on the dietary intake of fermented food or supplementation [38,39].
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formed by side-chain cleavage of dietary phylloquinone and menaquinones.

3. The Vitamin-K-Dependent Carboxylation, the Vitamin K Cycle, and
Pharmaceuticals Affecting Vitamin K

Vitamin K is, as mentioned above, an essential nutrient required as a cofactor for
γ-glutamylcarboxylase (GGCX), which is responsible for the carboxylation of vitamin-K-
dependent proteins (VKDPs) [40] (Figure 4). The naphthoquinone ring of both vitamin K1
and K2 is reduced to an active form called vitamin K hydroquinone (Figure 5), which is the
cofactor required for the carboxylation of VKDPs.
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Figure 4. Vitamin-K-dependent carboxylation of a glutamic acid containing protein (Glu protein) to a
protein containing two carboxyl groups (Gla protein). These two carboxyl groups confer chelation
property to the protein [6].

Vitamin-K-dependent carboxylation is a vital process that plays a critical role in
maintaining vascular and bone health and in physiological blood clotting [41]. It involves a
post-translational modification with the addition of carboxyl groups (COOH) to specific
glutamic acid residues in VKDPs. The carboxylation reaction consists of conversion of
specific amino acid residues from glutamic acid (Glu) to γ-glutamylcarboxylated amino
acids (Gla) (Figure 4), which is essential for the calcium binding capacity of these proteins.
Although the organ distribution of PK and MKs differs, there is little evidence at present
indicating that PK and MKs differ in their ability to support the carboxylation of hepatic
and extrahepatic VKDPs [27].

VKDPs such as MGP and osteocalcin play a crucial role in regulating the calcium traffic
in the body. In the carboxylation reaction, carbon dioxide (CO2) and oxygen (O2) represent
essential substrates by being sources for the addition of the extra carboxyl group to the
protein, while vitamin K is converted from its reduced form to the epoxidized vitamin [42].
This activating step is crucial for the proteins to tightly bind calcium ions into chelates,
which is necessary for their ability to carry calcium from the vascular space to the bones.
Thereby, MGP in its activated form is a potent inhibitor of arterial calcification, as it is
highly expressed in healthy arteries. Presumably, the phosphorylation of two serin units in
MGP contributes to the affinity and selectivity of the protein to calcium ions [8]. Vitamin
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K deficiency results in an undercarboxylated and inefficient MGP. The same deficiency
affects the activation of other VKDPs including osteocalcin. As osteocalcin is a bone-specific
protein that is crucial in bone mineralization, vitamin K deficiency has been associated with
decreased bone mineral density and an increased risk of fractures [43]. It has been suggested
that vitamin K deficiency after bariatric surgery can contribute to the development of
postoperative osteoporosis despite adequate vitamin D supplementation [44].

The conversion of vitamin K to vitamin K hydroquinone, as well as the reduction
in the vitamin K epoxide, depends on the availability of reducing equivalents, such as
NAD(P)H. While vitamin K epoxide reductase (VKOR) has been characterized, vitamin
K reductase (VKR) has not [42,45,46]. It has been shown that both VKOR and NAD(P)H
quinone oxidoreductase1 (NQO1) (previously DT-diaphorase) may possess some VKR
activity, but none of these appear to account for all the VKR activity [40] (Figure 5).
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The importance of vitamin K in carboxylation is underlined by the fact that its defi-
ciency, by leading to an impaired carboxylation and reduced activity of VKDPs, can lead to
health problems, such as bleeding disorders [47] and impaired cardiovascular health [48].
Maintaining adequate levels of vitamin K through a balanced diet or supplementation is
essential for optimal carboxylation and overall health. However, it should be noted that
certain medications can interfere with vitamin K function and carboxylation and affect its
activity, such as the commonly used anticoagulant drug warfarin that inhibits VKOR in the
vitamin K cycle and promotes vascular and valvular calcification [49], and ezetimibe that
inhibits the intestinal uptake of vitamin K [50]. Although the role of statins that may inhibit
MK4 synthesis appears more unclear [32,51], one might envisage that high-intensity statin
treatment, particularly when combined with ezetimibe, despite its proven beneficial effects
on atheroma progression, might cause detrimental effects on vascular calcification [52].
Further studies are needed to clarify these issues [53,54].

4. Vitamin K, Human Steroid and Xenobiotic Receptor (SXR), and Inflammation

Another mechanism by which vitamin K can affect vascular calcification is interaction
with the SXR nuclear receptor (or its rodent homologue, the pregnane xenobiotic receptor
(PXR)) [14]. SXR/PXR heterodimerizes with retinoid X receptor (RXR) after ligand binding,
and MK4 is the only vitamin K homologue that binds to and activate SXR/PXR [55]. In
osteoblasts, MK4 has been shown to activate the classical SXR target CYP3A4, in addition
to several genes involved in bone formation, i.e., bone-specific alkaline phosphatase (ALP),
osteopontin (OPN), matrix gla protein (MGP), osteoprotegrin (OPG), and other matrix-
related genes [56,57]. It appears that SXR/PXR plays an important role in bone maintenance
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as PXR knockout mice show enhanced bone resorption and develop severe osteopenia
despite adequate dietary vitamin K [58].

Regarding vascular calcification, the role of MK4 and SXR is less clear. Contrary to
expectations, MK4 via SXR activation, in a high phosphate medium, appeared to accelerate
warfarin calcification in human aortic valve interstitial cells from patients with calcified
aortic valve stenosis [59], while in cells taken from non-calcified aortic valves, the SXR
agonist warfarin did not cause calcification [60]. At present, it is not possible to conclude
on the precise role of MK4 activation of SXR in vascular calcification.

Atherosclerosis is a chronic inflammatory process in the vascular wall where proinflam-
matory cytokines secreted from activated macrophages may promote osteogenic transition
of vascular smooth muscle cells via NF-κB signaling, and as vitamin K has been shown in
experimental studies to inhibit NF-κB signaling, this might indicate yet another mechanism
of vascular protection [61].

5. Calcium Chelation Therapy—With Endogenous or Exogenous Chelators

Calcium chelation is a process by which calcium ions are bound to a chelating agent, for
instance, to vitamin-K-activated proteins. Chelating agents can form bonds with metal ions,
such as calcium, lead, and cadmium, and thereby lower their levels in the circulation [62].
Endogenous calcium chelation by MGP and osteocalcin appears to represent essential
physiological processes for maintaining cardiovascular and bone health. Excess calcium
deposited in blood vessels can lead to vascular calcification and loss of elasticity as well as
calcification of vascular plaques, and thereby aggravate CVD especially in older individuals
with an increased vascular calcification risk [48,63,64]. Carboxylation of MGP allows it to
bind calcium upon its transfer to the blood vessel walls, preventing the ions from deposition
and causing calcification [63]. Furthermore, MGP may also work by inhibiting bone
morphogenic protein-2 (BMP-2) that promotes the osteogenic transition of vascular smooth
muscular cells [65,66]. Studies have shown that an increased fraction of undercarboxylated
MGP is associated with an increased risk of vascular calcification and CVD [63]. Activated
MGP facilitates the export of the calcium ions from the vascular system to the bone tissue,
where calcium is needed for mineralization. Complete activation of MGP also requires
phosphorylation of its two serine residues that may further contribute to its calcium affinity
and its ability to carry calcium ions to the bone tissue [8]. Increasing evidence regarding
the importance of VKDPs in maintaining vascular health has been obtained in recent
years [12,63]. It has also been reported that VKDP GAS6 (growth arrest-specific protein-6)
inhibits the calcification of blood vessels and the apoptosis of vascular smooth muscle
cells [12]. Taken together, current research suggests that vitamin K plays a crucial role
in maintaining vascular as well as bone health, although the mechanisms of vitamin K
in calcium chelation still deserve to be studied [67]. In future studies on the proposed
decalcification by vitamin K supplementation, assessments of calcium in coronary arteries
and aortic valve should be included among the primary endpoints.

As regard therapeutic calcium chelation, the alternative therapy of atherosclerosis with
the exogenous chelator EDTA (Figure 6) is briefly commented in the following paragraphs.

EDTA was first launched in medicine for the treatment of lead poisoning [68], and
it has later been used as an antidote in various other heavy metal poisonings [6]. In such
cases, it is usually administered as a calcium complex (Ca-EDTA) to avoid hypocalcemia
as a side effect. However, the clinical use of EDTA involves the risk of disruption of the
physiological functioning of several metal ions in biological systems. For this reason, the
use of EDTA for treatment of severe CVD has been discouraged [7].
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6. The Use of EDTA Chelation Therapy in the Context of Vascular Health

Although EDTA in clinical use was reserved for heavy metal poisonings, the same
drug has been promoted as a treatment for CVD [69–71]. This chelation therapy for
atherosclerosis is still practiced around the world as an alternative treatment. The therapy
involves multiple intravenous infusions of solutions of EDTA, believed to remove calcium
from deposits in blood vessel plaques [69]. EDTA treatment has been offered as a way of
breaking down the blockages in arteriosclerotic blood vessels. However, there were early
concerns about the potential negative impact of EDTA, as it removes magnesium and other
essential metals from the body [72]. A Cochrane review from 2020 concluded that there
is limited high-quality research and evidence-based medicine on the topic, specifically
regarding clinical outcomes [73], although all previous studies were considered [74–77]. In
addition, the more recently presented TACT study (Trial to Assess Chelation Therapy) [70]
only reported a tendency to benefit as regard their predefined composite endpoint. The
primary endpoints in the TACT study were a composite of death from any cause, reinfarc-
tion, stroke, coronary revascularization, or hospitalization for angina. A post hoc analysis
of the TACT study including only the participants with diabetes and peripheral artery
disease reported that the EDTA therapy reduced the occurrence of primary endpoints in
this subgroup as compared with diabetic patients given placebo [78]. However, this effect
might be due to the addition of glucose (1.2%) in the placebo solution, which was not added
to the EDTA solution [70]. Their observations are being investigated further in ongoing
trials (TACT2) [71], suggesting chelation of lead and cadmium as a possible cause of the
hypothesized therapeutic action [71,79]. Protocol discrepancies in the initial TACT study
have been commented [80], and the researchers had no information on the vitamin K status
of their participants. A JAMA editorial concluded that the findings of TACT should not be
used as a justification for increased use of this controversial therapy [81].

However, a mechanism of the suggested positive effects of EDTA [78] might reside
in some delay of ongoing plaque formation or a stabilization of existing plaques. Any-
how, if chelation therapy really stabilizes calcium plaques in vessel walls, it is tempting
to suggest that an activated MGP obtained by adequate vitamin K intake may represent
a more tolerable alternative than multiple EDTA infusions. Studies have suggested that
long-term EDTA chelation with increased calcium loss from the body can cause hypocal-
cemia and increased release of parathyroid hormone (PTH) [82], which is a well-known
cause of bone loss and osteoporosis [83]. Furthermore, EDTA infusions may be associated
with hypomagnesemia [7], which involves the risk of cardiac arrhythmias [84]. An ap-
parent alternative to EDTA chelation is, therefore, the optimization of natural chelators,
such as VKDPs including MGP and osteocalcin. Future studies should investigate the
potential synergistic effects of combining vitamin K mediated chelation therapy with other
pharmacological interventions.
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7. Clinical Evaluations of Vitamin K Supplementation

MGP and GAS6 are expressed in various tissues, including in arterial walls. In acti-
vated forms, these proteins are considered to act as inhibitors of arterial calcification and
presumably also as plaque stabilizers [85]. The binding of these endogenous chelators
to ions of calcium prevents their deposition in the arterial wall, thus preserving arte-
rial elasticity and preventing the development of vascular calcification [86]. The formed
calcium–MGP complex is removed from circulation and degraded by the liver, releasing
the calcium moiety and promoting its deposition in the bone [12]. Animal studies have
demonstrated the critical role of MGP in preventing vascular calcification, as mice deficient
in MGP showed accelerated arterial calcification and increased mortality compared with
wild-type mice [61]. In a series of studies in humans, a reduction in plasma dephospho-
uncarboxylated MGP, a biomarker of vitamin K status, has been documented following
vitamin K supplementation [87,88]. Human observational studies have also revealed that
low vitamin K status is associated with an increased CVD risk, independent of other
risk factors, while in supplementation studies, vitamin K decreases vascular calcification.
Studies in humans are discussed in the following paragraphs.

Already in 2009, Gast et al. reported that in a prospective cohort (Prospect-EPIC cohort)
including 16,057 women, a high menaquinone intake was associated with reduced incidence
of coronary heart disease during a mean follow-up time of 8.1 years [89]. The intake of
vitamin K1 and K2 (mean values: 212 and 29.1 µg/day, respectively) was estimated from a
food frequency questionnaire (FFQ). The researchers found an inverse relationship between
vitamin K2 and CVD, with a reduction in the hazard ratio by 9% for each additional 10 µg
vitamin K2 dose. No association was found for vitamin K1 [89].

In 2016, Vissers et al. investigated the association of vitamin K1 and K2 intake, as
estimated by an FFQ, with peripheral artery disease (PAD) incidence in a prospective cohort
study of 36,629 participants. During 12 years of follow-up, 489 incident cases of PAD were
documented using national registries. When comparing the highest quartile of the intake
of menaquinones with the lowest, a 30% reduced risk of PAD hazard ratio (HR) 0.7 was
observed. An even stronger association was observed in participants with hypertension
who got a reduction in the risk by 49%, HR = 0.59, and in patients with diabetes with a
reduced risk of HR = 0.56. Phylloquinone intake was not associated with significantly
reduced PAD [90].

In 2019, a review article by Ruiz-Leon et al. [91] reported that, in several studies, high
intake of vitamin K2 was associated with a lower risk of vascular calcification and CVD.
In the Multi-Ethnic Study of Atherosclerosis, a case-control sub-study showed that in a
subgroup receiving anti-hypertensive medication, low serum vitamin K1 concentrations
were associated with greater progression of coronary artery calcification measured with
computer tomography [92].

In the Hordaland Health Study, a prospective cohort study, 2987 healthy Norwegian
subjects without CVD (aged 46 to 49 years, 43% men) were followed up for 11 years. A
reduced risk of incident CVD was associated with increased vitamin K2 intake, but not
with K1, as estimated from a food frequency questionnaire. The relationship was weakened
upon adjustment for dietary confounders [93].

In the Danish Diet Cancer and Health study, comprising 53,372 citizens [94], dietary
vitamin K, both K1 and K2, was associated with a reduced risk of hospitalization for
atherosclerotic CVD during 21 years of follow-up. Atherosclerotic CVD included ischemic
stroke, ischemic heart disease, and PAD. For all outcomes, there were significant associa-
tions between the intake of both vitamin K1 and vitamin K2 and a reduced risk. Dietary
vitamin K intake was estimated from validated food frequency questionnaires. In another
study performed in the same cohort comprising 56,048 participants, 14,083 deaths occurred
during 23 years of follow-up, with a significant association between dietary vitamin K1 and
reduced CVD-related mortality when comparing the first quintile with the fifth quintile.
The relationship was also found for subpopulations upon stratification into sex, smoking,
diabetes, and hypertension. As vegetables are a major source of vitamin K1, it is possible
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that dietary vitamin K1 can be a marker of vegetable intake, which is known to protect
against CVD. However, the associations persisted after adjustments for total vegetable
intake [94].

There are also intervention studies addressing a possible role for a preventive effect
of vitamin K in cardiovascular health. In an intervention study including 121 healthy
participants, it was shown that a 3-year vitamin K1 (100 µg/day) supplementation period
resulted in maintenance of vascular elasticity, in comparison with a 12% loss of elasticity
in the placebo group [95]. In a placebo-controlled human trial of supplementation with
vitamin K2 MK7 in postmenopausal women (n = 244), Knapen et al. showed that MK7
supplementation (180 µg/day) for 3 years significantly decreased pulse wave velocity,
which is the gold standard for measuring arterial stiffness [96].

In 2019, Lees et al. [97] conducted a systematic review and meta-analysis of the connec-
tion of vitamin K with vascular health. They included 6 controlled clinical trials lasting for
6–36 months using PK 500–2000 µg/day or MK7 90–180 µg/day as supplementation. Three
had vascular calcification as outcome (n = 407), and another three had vascular stiffness as
outcome (n = 445); it was concluded that supplementation with vitamin K in comparison
with placebo significantly reduced vascular calcification, while the reduction in vascular
stiffness was not significant.

While most studies have used vitamin K2, Bellinge and co-workers in 2022 [98]
investigated the effect of vitamin K1 and colchicine on vascular calcification in 154 patients
with type 2 diabetes mellitus. After 3 months, neither vitamin K1 nor colchicine had any
effect on coronary calcification, measured with 18F-NaF positron emission tomography;
however, the intervention period was relatively short.

It appears from these reviewed studies that the approach of increasing vitamin K
either by dietary means or through supplementation can delay or prevent CVDs, and that
this effect apparently is obtained through optimized carboxylation of MGP, which chelates
and redistributes calcium. However, large-scale, long-term supplemental trials are still
needed to determine whether vitamin K1 or vitamin K2 reduces the risk of atherosclerosis
including other CVDs and cardiovascular-related events like stroke, and the efficient dose
range also remains to be settled.

8. Conclusions

Calcification in blood vessel walls is a pathological process that might accelerate the
development of arterial stiffness and increase the risk of severe cardiovascular incidents.
Vascular calcification commonly occurs in atherosclerosis, diabetes, chronic kidney disease,
and aging. Although chelation therapy with EDTA may stabilize calcium precipitates in
atherosclerotic plaques, calcium chelation with EDTA has negative impacts on bone by
its mobilization of skeletal calcium. Today, intravenous EDTA infusions as therapy for
CVD, which has been promoted by alternative medical centers, should be discouraged due
to the risk of disruption of the physiological functions of several metal ions. It is also a
puzzle that clinical trials on EDTA chelation therapy have never reported the important
role of endogenous chelators. In this context, the therapeutic role of natural chelators
such as VKDPs represents an option with low risk of side effects. Optimized intake of
vitamin K has been shown to play a crucial role in preventing vascular calcification by
regulating the carboxylation of specific VKDPs including MGP and osteocalcin, which are
essential for physiological calcium metabolism, with beneficial effects on vascular health
and bone mineralization.

MGP appears to be a potent vascular calcification inhibitor produced by vascular
smooth muscle cells, chondrocytes, and other cells. In its carboxylated state, MGP binds
calcium ions with high affinity and prevents their aberrant deposition, e.g., in the arterial
wall. In contrast, dephosphorylated and undercarboxylated MGP (dp-ucMGP) has a low
affinity for calcium ions and is inefficient in inhibiting vascular calcification. A high dp-
ucMGP-to-total MGP ratio indicates a deficient vitamin K status and has been associated
with an increased risk of vascular calcification. More research is needed regarding the
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optimal intake of vitamin K. Also, vitamin-K-dependent molecular mechanisms involved
in vascular calcification, i.e., vitamin-K-dependent carboxylation and calcium chelation,
and the role of SXR activation by MK4 and impact on inflammation need to be investigated.
Potential therapeutic applications of vitamin K supplementation should be elucidated to
develop effective interventions that can improve bone and vascular health.

Conclusively, further investigations are necessary to examine more in detail the roles
of vitamin-K-dependent proteins in protection toward human atherosclerosis including
mechanisms in vascular and valvular calcification, and to evaluate the effect of prolonged
supplemental vitamin K as regard the risk of cardiovascular disease.
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