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Classification of behaviors of
free-ranging cattle using
accelerometry signatures
collected by virtual fence collars
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Barbara Zimmermann1, Anna Hessle2, Morten Tofastrud3,
Olivier Devineau1 and Alina L. Evans1

1Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management,
Campus Evenstad, Koppang, Norway, 2Swedish University of Agricultural Sciences, Department of
Animal Environment and Health, Skara, Sweden, 3Inland Norway University of Applied Sciences,
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Precision farming technology, including GPS collars with biologging, has

revolutionized remote livestock monitoring in extensive grazing systems. High

resolution accelerometry can be used to infer the behavior of an animal. Previous

behavioral classification studies using accelerometer data have focused on a few

key behaviors and were mostly conducted in controlled situations. Here, we

conducted behavioral observations of 38 beef cows (Hereford, Limousine,

Charolais, Simmental/NRF/Hereford mix) free-ranging in rugged, forested

areas, and fitted with a commercially available virtual fence collar (Nofence)

containing a 10Hz tri-axial accelerometer. We used random forest models to

calibrate data from the accelerometers on both commonly documented (e.g.,

feeding, resting, walking) and rarer (e.g., scratching, head butting, self-grooming)

behaviors. Our goal was to assess pre-processing decisions including different

running mean intervals (smoothing window of 1, 5, or 20 seconds), collar

orientation and feature selection (orientation-dependent versus orientation-

independent features). We identified the 10 most common behaviors exhibited

by the cows. Models based only on orientation-independent features did not

perform better than models based on orientation-dependent features, despite

variation in how collars were attached (direction and tightness). Using a 20

seconds running mean and orientation-dependent features resulted in the

highest model performance (model accuracy: 0.998, precision: 0.991, and

recall: 0.989). We also used this model to add 11 rarer behaviors (each< 0.1%

of the data; e.g. head butting, throwing head, self-grooming). These rarer

behaviors were predicted with less accuracy because they were not observed

at all for some individuals, but overall model performance remained high

(accuracy, precision, recall >98%). Our study suggests that the accelerometers

in the Nofence collars are suitable to identify the most common behaviors of

free-ranging cattle. The results of this study could be used in future research for

understanding cattle habitat selection in rugged forest ranges, herd dynamics, or

responses to stressors such as carnivores, as well as to improve cattle

management and welfare.
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1 Introduction

Livestock grazing, whether in intensive (feed lots and pastures) or

extensive (free-range) systems is a traditional practice that has

persisted in our modern society to cope with increasing food

production demands (Michalk et al., 2019; Komarek et al., 2021).

Within this tradition, the ever-expanding development of modern

technology has allowed for the growth of precision livestock farming

management and research (Eastwood et al., 2017). Indeed, this

management approach focuses on the fine-scale monitoring of

individuals’ health and food intake (Schellberg et al., 2008;

Werkheiser, 2018). While it remains relatively easy to implement in

barn and pasture settings, free-range farming presents additional

challenges; herd supervision can become more difficult as cattle are

not contained. Additionally, external factors affecting cattle such as

exposure to climatic extremes, parasitic load, untreated diseases,

accidents, and potential carnivore effects are complex to monitor

(Hutchings et al., 2000; Silanikove, 2000; Sevi et al., 2009; Nedeva,

2020). Technological advances such as biosensors, camera-equipped

drones and GPS collars have offered scientists, managers and farmers

tools to address those challenges (Herlin et al., 2021).
Notably, modern GPS collars, which often contain accelerometry

sensors, provide researchers with an opportunity for non-invasive,

low maintenance and remote monitoring of livestock and wildlife. If

properly calibrated, this allows for the study of fine-scale animal

behavior, activity budgets and energy expenditure on an individual

level (Vázquez Diosdado et al., 2015; O’Leary et al., 2020; Mulvenna

et al., 2022). Even though accelerometry data has largely increased

our understanding and knowledge of livestock behavior (Theurer

et al., 2013; Uenishi et al., 2021), most behavioral studies using

accelerometry sensors focus on a few key behaviors such as grazing,

resting, and walking (Robért et al., 2011; Homburger et al., 2014;

Benaissa et al., 2019), and they are conducted in controlled settings

such as barns and pastures (Homburger et al., 2014; Hendriks et al.,

2020; Rodriguez-Baena et al., 2020).

Very few studies examine the behavior of free-ranging cattle in

remote areas, where cattle are difficult to monitor and observe due

to them moving over large areas and using dense vegetation types

(Tofastrud et al., 2019). Yet, in these conditions, behaviors such as

vigilance, social behaviors or grooming can be representative of

stress, as cows have been reported to increase vigilance when

stressed (Welp et al., 2004), and to decrease milk production

when separated from the herd and not allowed to perform social

behaviors (Hedlund and Løvlie, 2015). In addition, self and

allogrooming are reported to be frequent as maintenance

behaviors and shown to be an important proxy for welfare

(Kohari et al., 2007). While these behaviors are important to

monitor, they are especially difficult to observe. Tofastrud et al.

(2018) used two-axial accelerometry data at five-minute intervals on

free-ranging cattle to study resting, grazing and movement activity

patterns. Although this allows for insight into general free-ranging

cattle behavioral habits in remote areas, it lacks the ability to

precisely quantify additional, rarer behaviors and restricts the

amount of information capable of being calibrated and further

studied. Continuous, high resolution (10Hz) tri-axial accelerometry

data can potentially increase the number of behaviors that can be
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classified and provide more detailed information about cattle

behavior in large rugged, forested ranges (Hounslow et al., 2019).

Such studies could contribute to the improvement of farmer

monitoring systems related to high precision farming in outfields

and offer the possibility to study effects from external factors, such

as carnivores, on cattle behavior while monitoring welfare.

There are numerous ways to analyze accelerometry data, ranging

from simple decision trees to complex neural networks (Riaboff et al.,

2022). Most studies utilize supervised machine learning methods

such as random forest (de Weerd et al., 2015; Williams et al., 2020;

Riaboff et al., 2022), while others use unsupervised machine learning

such as hidden Markov Models (Leos-Barajas et al., 2017; Chimienti

et al., 2021; Rautiainen et al., 2022). Supervised methods provide the

advantage of allowing for accelerometry data to be calibrated on

actual behavioral observations, which then allows for prediction of

behaviors based on collected data.

Feature selection is the first step in this process. Features can be

calculated and extracted from raw accelerometry data and be used for

behavioral classification. Orientation dependent features, such as the

mean and variance of the raw x, y, z values, body pitch roll, yaw and

dynamic acceleration (Figure 1) remain sensitive to the sensor’s

orientation (Abell et al., 2017; Benaissa et al., 2019). For example,

even though collars are assumed to be stationary positioned on the

animal, there can be noise related to rotation, collar deployment

errors, and other causes. This may result in additional variability in

orientation-dependent features, which may render these features

unusable without correcting for orientation (Williams et al., 2017;

Barker et al., 2018; Kamminga et al., 2018). This sensitivity can be

challenging when standardizing accelerometer sensor placement

during animal handling, and recapturing individuals to manually

fix issues is difficult (Chakravarty et al., 2019; Cade et al., 2021;

Rautiainen et al., 2022). To remedy this problem, orientation

independent features can be utilized. Models can then account for
FIGURE 1

Position of the GPS collar below the cows’ neck. Black lines indicate
the direction of the three axes (X, Y, Z) and arrows indicate on which
axis the roll and pitch were calculated. Art by Saskia H. Wulff.
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displacement of the sensor’s orientation and make obsolete the need

to correct for orientation.

High resolution (> 1Hz) accelerometry data is usually smoothed

with a running average over a given time window (Shepard et al.,

2008a). The chosen window length can result in the loss of certain

less frequent and shorter behaviors that might not be detectable,

while longer lasting, more common behaviors increase the accuracy

and precision of the predictions (Mansbridge et al., 2018; Chang

et al., 2022). Therefore, clear study goals become essential in

accelerometry analysis, as the study aim will determine different

trade-offs and decisions for modeling (Chang et al., 2022).

For instance, some authors suggest that averaging values in the

sensor provides an opportunity to increase data collection capacity,

and thus allows for live monitoring of behaviors with

computationally simple and cost-efficient features and algorithms,

which reduce battery usage (Kamminga, 2020; Nuijten et al., 2020).

Study questions will thus determine data collection methods, which

resolution the data needs to be collected in, as well as which steps

should be included in the pre-processing. This will induce trade-offs

which will determine what type and number of behaviors that can

be analyzed (Kamminga et al., 2018; Riaboff et al., 2022).

In this paper, we aim to calibrate high-resolution accelerometry

data collected by commercially available livestock collars deployed

on free-ranging cattle in remote areas. Additionally, we aim to

investigate the effect of collar placement during deployment of

collar and how it might affect accelerometry data. Finally, we

attempt to address the gap in knowledge concerning the

classification of less frequent cattle behaviors to accelerometry

data, as these behaviors can represent behavioral changes or even

be indicators of stress.

Our classification study contributes to potential research on

cattle social interactions, behavioral responses to carnivores, and

energy expenditure of free-ranging cattle in remote forested areas.

Additionally, this study has the potential to develop tools for

improved monitoring systems for farmers, and therefore to

contribute to the practice of agroforestry and precision

livestock farming.

We first hypothesized that the model performance to predict

general behaviors such as walking (locomotion), foraging, vigilance,

standing, laying/resting, or ruminating, would be affected by the

choice of features included in the models (orientation-dependent

versus orientation-independent features) and by the direction of the

collar position on the neck of the animals (as we wanted to account

for collar placement variation by the farmers on cattle) (H1).

Models with orientation-independent features might perform

better than those using orientation-dependent features, as

orientation-independent features can account for potential

rotation or tightness differences of collars when individuals

navigate through rugged terrain. Additionally, models including

orientation-dependent features corrected for direction might

perform better than those without correction.

Secondly, we hypothesized that less frequent behaviors such as

social interactions and body care movements would be impacted by

the smoothing of the data (H2). Data smoothed with a short

running mean would allow for the detection of rarer behaviors,
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but at the cost of a loss in the overall model’s performance as a short

running window mean can induce more noise during the analysis.
2 Methods

2.1 Study area

We collected data in three summer grazing ranges in the

Innlandet county of Norway. This region of Norway belongs to

the boreal forest biome and is dominated by coniferous forest,

mires and lakes, and only about 4% is covered by agricultural

fields. Many beef cattle breeders release their suckler cows with

their calves into the forest during the summer months, to make use

of outfield grazing resources and to spare the fields close to the

farm for winter forage production. The summer ranges included in

this study (Steinvik 27.2 km2, long = 11.28°, lat = 61.23°, Deset west

16.4 km2, long = 11.42°, lat = 61.29°, Tørberget 5.8 km2, long = 12.29°,

lat = 61.08°) consisted of a patchwork of forest stands of different age

classes due to clearcutting practices, often followed by soil

scarification, thinning and other silvicultural practices used to

increase timber production. Forest stands were either dominated by

Norway spruce (Picea abies) or Scots pine (Pinus silvestris),

interspersed with birch (Betula pendula, B. pubescens) and other

deciduous species. Only minor parts of the ranges were covered by

bogs and old grazing meadows. The terrain was rugged and covered

an elevational gradient of 300 – 640 m above sea level. A network of

forest roads connected the forest stands. Earlier studies in similar

habitat have shown that cattle prefer to graze in young forest stands

(Tofastrud et al., 2019), where there is access to graminoids of

different species (Spedener et al., 2019). However, clearcutting and

soil scarification induced varied landscapes that force wildlife and

free-ranging livestock to walk on uneven, rugged terrain with

obstacles such as fallen trees, stumps, and tree residuals after logging.
2.2 Study animals

All suckler cows belonging to four farms were fitted with virtual

fence collars (Nofence, 2022) in May 2021. The farmers trained the

cows for virtual fencing while still at the farm, following the

instructions given by Nofence (Nofence, 2022). In end of May

and beginning of June, the cows were released into their summer

grazing ranges (45 cows Steinvik, 21 cows in Deset West, and 13

cows in Tørberget), along with their (uncollared) calves. The

grazing ranges were delimited by virtual fencing, and range size

did not change much during the summer season. In this study, we

included data from 38 cows (4 – 16 individuals per farm) of the

following breeds: Hereford (n = 16), Limousine (n = 5), Charolais

(n = 4), and 13 crossbred individuals including the beef breeds

Simmental, Hereford and the dual-purpose breed Norwegian Red

(NRF) (Supplementary Table 1).

Nofence collars with virtual fencing technology (Brunberg et al.,

2017; Werkheiser, 2018; Søraa and Vik, 2021; Verdon et al., 2021)

triangulate the positions of animals (1 position every 5 to 15
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minutes) through the GNSS (Global Navigation Satellite Systems),

as well as record movement activity with a motion sensor that yields

high-resolution tri-axial accelerometry data (10Hz). The battery is

designed to last for at least three months and to be continuously

recharged through solar panels. Each animal carried a total weight

of 1446g. As cows weighted between 500 and 900 kg depending on

the breed and age, collars made up about 0.3-0.5% of the body

weight. These devices fell under the recommended threshold of 3-

5% of an animal’s body mass (Arnemo et al., 2011; Soulsbury et al.,

2020; Hamidi et al., 2022; Sonne et al., 2022).
2.3 Accelerometry sensor activation

Accelerometry sensors on the Nofence collars were remotely

activated to continuously sample and transmit data during bouts of

48h. Bouts were distributed throughout the grazing season at

intervals of minimum three weeks between bouts per cow, to

enable the solar-powered batteries to recharge. This resulted in 1-

5 sampling bouts per monitored cow. The order of activation

followed a somewhat opportunistic design, depending on where

the cows were in relation to each other and in relation to the habitat

type. Cows in dense forest were difficult to observe, and we therefore

activated mostly collars of cows in more open habitat types.
2.4 Video data

A team of two people located and filmed adult individual cattle

in-field while the collars’ accelerometers were activated (Arablouei

et al., 2021). To ensure a maximum number of behaviors was

captured, we filmed the cattle throughout the summer, in varying

weather conditions, times of day, and terrains. The team located the

cattle with the Nofence app (Nofence, 2022), which displays the

latest positions of individuals.

Carrying a video camera (Canon XA40, Canon Inc.), the team

approached the herds as quietly as possible (min. 10 - 15 m

distance) to minimize disturbance and stress. When the habitat

was open (e.g., clearcuts), the team filmed the entire herd, but when

the vegetation was dense, the team focused on filming single

individuals. Individual cows were identified by their earmarks and

color patterns, using direct observation, binoculars or camera zoom.

Video clips lasted between 24 seconds to 48 minutes and were

downloaded from the internal memory card every evening, to be

stored on a One Drive folder for later use.

All video footage was then viewed and tagged in the software

BORIS (Friard and Gamba, 2016), an open-source platform for

behavioral coding of video/audio files, to identify and label

individual cattle behavior (done multiple times for the same video

if multiple individuals in the footage). This was done using an

ethogram with a total of 42 behaviors and postures in the following

categories: alert, body care, excretion, intake, locomotion, posture,

posture transition and social interaction. This ethogram was

constructed to be as inclusive as possible of all cattle behaviors

(Langford et al., 2011; MacKay et al., 2013; Petherick et al., 2013;

Tofastrud et al., 2018; Navarro et al., 2019) and was further detailed
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with field observations (Supplementary Table 2). The principal

investigator of the fieldwork and video analysis labeled ~95% of

the video material and trained and supervised three students for the

remaining videos, thus minimizing observer bias.
2.5 Pre-processing of the accelerometry
data

The software R, version 4.2.1 (R Core Team, 2022) with the

Rstudio interface (R Studio Team, 2021) was used for data pre-

processing, analysis, and visualization. The tri-axial accelerometry

data was matched with the corresponding video data. First, the

approximate time stamps of the tri-axial accelerometry data were

calculated in decimal seconds. Raw data files have rounded

timestamps, up to 32 observations per timestamp, while the data

was collected at 10Hz. We converted this to unique timestamps with

decimal seconds by subtracting the amount of time that had passed

since the last rounded timestamp (i.e., when the time stamp was

13:02:02, and it was the 5th observation, we subtracted 2.7 seconds

((32-5)/10) from the original time stamp). Double observations

were then removed, resulting in a data set of approximately 10Hz

with an error of ±0.5 seconds. Due to this rounding error, possible

time drift in video recordings, and to reduce observer bias in video

analysis, we excluded any behavior which had a shorter length than

five seconds.

In the next step, the behavioral data was matched with the

accelerometry data by timestamp using the function ‘foverlaps’ from

the Data.table package (Dowle and Srinivasan, 2019). For the initial

match, all behaviors were used (Supplementary Table 2). However,

as some behaviors overlapped with each other and we could only

keep one single behavior per observation for the analyses, we

introduced decision rules based on cattle ecology and body

movement (Supplementary Figure 1, Supplementary Table 3). For

example, grazing behavior was prioritized over walking, and vigilant

behavior was considered only when no other behaviors were shown,

to avoid noise in the accelerometry signature from the other

behaviors. Behaviors that made up less than 1% of all observation

time were pooled into one class named ‘other’.
2.6 Features calculation

We used the raw accelerometry data to calculate orientation

dependent and independent features to avoid additional complex

pre-processing steps and to reduce the need for computing power.

The mean and the standard deviation were calculated along the

three axes (Table 1) using 1, 5, and 20 seconds running means,

following previous work with accelerometry data on cattle (Riaboff

et al., 2022). The pitch is the angle of the collar in degrees (°) along

the x axis (Figure 1, Equation 1) where the collar is facing upwards

for a +90° angle and downwards for a -90° angle. Similarly, the roll

is the angle of the collar along the y axis (Figure 1, Equation 2)

(Shepard et al., 2008b; Chimienti et al., 2016). Thereafter, we

calculated the mean and standard deviation of the pitch and roll

across the three-running means (Table 1).
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Pitch = arctan(
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(y2 + z2)
p ) (1)

Roll = arctan(
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x2 + z2)
p ) (2)

For the overall dynamic body acceleration (ODBA) and the

vector of dynamic body acceleration (VEDBA) we first subtracted

the mean acceleration from the raw acceleration for each axis to

calculate the dynamic acceleration (respectively noted dx, dy, dz

for each axis). The sum of the absolute values from the dynamic

acceleration was then used to calculate the ODBA (Equation 3),

and subsequently the mean and standard deviation of ODBA

across the running means (Table 1). The VEDBA was calculated

by taking the square root of the squared dynamic acceleration for

the three axes (Equation 4), again followed by calculation of mean

and standard deviation across the running mean (Table 1). Finally,

the magnitude of acceleration (AMAG) was calculated by taking

the square root of the squared acceleration for the three axes

(Equation 5), with mean and standard deviation across the

running mean (Table 1).

ODBA = dxj j + dyj j + dzj j (3)

VEDBA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 + dy2 + dx2

q
(4)

AMAG =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + x2

q
(5)

During the analyses, we noticed that about half of the collars

were placed in the reverse direction on the cow. We identified these

based on the pitch angle from “foraging_low” behavior (a positive

angle suggests a reversed collar), and by looking at the video data

(the collars have a small mark to distinguish between left and right
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side). The data was then corrected by reversing both x and y axis.

The orientation-dependent features were calculated for both the

original and the corrected data sets (Figure 2).
2.7 Random forest models

We prepared data for orientation-dependent, orientation-

dependent with correction, and orientation-independent features

(Figure 2). Within each category, we ran three models on the three

different running means (1, 5, and 20 seconds). All features were

standardized before running the models. The data were grouped by

behavior and split with 80% used for training and 20% for

validation. Thereafter, random forest models were run using the

function ‘h2o.randomforest’ from the H2O package version 3.36.1.2
TABLE 1 Overview of the features used in the models: orientation dependent (three axis, body pitch, and body) and orientation independent (overall
dynamic body acceleration (ODBA), vector of dynamic body acceleration (VEDBA), and magnitude of acceleration (AMAG)).

Orientation Features Definition

Dependent

Mean X, Y, Z Mean acceleration recorded from the accelerometer (g) across the running mean for all three axis (X,Y,Z)

Standard deviation X, Y, Z
Standard deviation of the acceleration recorded from the accelerometer (g) across the running mean for all three axis
(X,Y,Z)

Mean body pitch Mean angle of the collar along the x axis (degrees) across the running mean.

Standard deviation body
pitch

Standard deviation of the angle of the collar along the x axis (degrees) across the running mean

Mean body roll Mean angle of the collar along the y axis (degrees) across the running mean.

Standard deviation body roll Standard deviation of the angle of the collar along the y axis (degrees) across the running mean

Independent

Mean ODBA Overall Dynamic Body Acceleration – Measure of general effort across three axis averaged across the running mean

Standard deviation ODBA Standard deviation of the ODBA across the running mean

Mean VEDBA Vector of Dynamic Body Acceleration - Vector of the general effort across three axis averaged across the running mean

Standard deviation VEDBA Standard deviation of the VEDBA across the running mean

Mean AMAG Magnitude of acceleration - Measure of the magnitude of effort across three axis averaged across the running mean

Standard deviation AMAG Standard deviation of the AMAG across the running mean
FIGURE 2

Flow chart showing the modeling process. For each feature category
(orientation dependent, orientation dependent corrected, orientation
independent), we ran three models, one for each running mean (1, 5,
and 20 seconds). Furthermore, after assessing the models performance
we reran the best model including more behaviors.
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(LeDell et al., 2021). We chose the random forest algorithm for its

versatility, and because it has good predictive power for its

computation time (Biau & Scornet, 2016). Models were run with

150 trees, as with this number of trees, the log-loss of the model

became stable. We used 5-fold cross-validation, and we added a

weight to each class (N of rarest behavior divided by the N of the

behavioral class) to account for class imbalance and potential over-

fitting (Cutler et al., 2012). Additionally, we checked for individual

variation by running an individual-based cross-validation (without

data split by behavior). The package’s default settings were used for

the other hyperparameters (max tree depth = 20, mtries = square

root of the number of features). We visualized model results using

the DALEX package (Biecek, 2018) and the ggplot2 package

(Wickham, 2016). Furthermore, the model accuracy, precision,

and recall were calculated to compare model performance

(Equations 6, 7, and 8, respectively) (Kamminga, 2020). Based on

the best performing model, we ran the last model including more

behaviors to test if models including more behaviors performed

similarly well (Figure 2). Here, the threshold for a behavior to be

included was minimum 0.1% of the total observation time.

Accuracy =
n   true   positives + n   true   negatives

n   positives + n   negatives
(6)

Precision =
n   true   positives

n   positives
(7)
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Recall =
n   true   positives

n   true   positives + n   false   negatives
(8)

3 Results

We annotated 6 898 behavioral observations based on video

analysis and matched them with accelerometry data, resulting in a

total of 1 240 588 observations for 31 behaviors (Supplementary

Table 2). Visual inspection showed appropriate matching, i.e. the

accelerometry data showed different signatures for different

behaviors (Figure 3).

Overall, the models with 20 seconds running mean performed

better than those with shorter running means (Table 2).

Orientation-independent models showed a lower performance

than orientation-dependent models. Corrected orientation-

dependent models performed similar to uncorrected models

(Table 2). Both orientation-dependent models with 20 seconds

running mean (models C and F) had average accuracy, precision

and recall > 0.96. The orientation-independent model I had an

average precision of 0.88, recall 0.93 and accuracy 0.99 (Table 2).

Precision averaged 0.62 and 0.63 for the 1 second running mean in

the orientation-dependent and corrected orientation-dependent

models, respectively (models A and D, Table 2), and averaged

0.37 and 0.64 for the 1 second and the 5 seconds running means,

respectively in the models with orientation-independent features
D

A B

C

FIGURE 3

Example of four behaviors and their raw accelerometry signature for the duration of 30 seconds (300 observations). For the behaviors; (A) Walking,
(B) Ruminating laying, (C) Vigilance, and (D) Foraging low. Line color indicate the different axis; blue: z axis, red: x axis, green: y axis. The proportion
of observations for each of these behaviors is 9%, 23%, 8%, 33%, respectively. See the full overview of behaviors in Supplementary Table 3.
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(models G and H, Table 2). Similarly, the recall averaged 0.69 for

the 1 second running mean in the orientation-dependent and

corrected orientation-dependent models (models A and D,

Table 2). The orientation-independent models G and H had an

average recall of 0.39 and 0.72 for 1 and 5 seconds running mean,

respectively (Table 2). Prediction performance varied across

behaviors for recall, accuracy and precision (Figure 4, and

Supplementary Figures 2, 3, respectively). Behaviors in models

with a shorter running mean varied more in recall than in models

with a longer running mean, e.g., ‘foraging_high’ and ‘other’ in the

orientation-dependent models A and D were below 0.4 (Figure 4).

Those behaviors were correctly classified in less than 40% of their

occurrence. Orientation-dependent models using 5 seconds

running means performed better with lowest recall of 0.8 (model

B, Figure 4). For models with 20 seconds running mean, the recall

was never below 0.96, showing that the lowest performing behavior

had a classification success of 0.96. The performance of the

orientation-independent models showed overall lower recall

values for each behavior. Still, increased running means in the

orientation-independent models helped to improve prediction and

decreased the number of classification errors.

The orientation-dependent model with 20 seconds running

mean had a few occasions where behaviors were misclassified

(Table 3). However, the confusion matrix for the orientation-

independent model with 20 seconds running mean showed a

higher degree of misclassification (Table 4), especially for

behaviors that were more similar in their acceleration signature

(e.g. ‘foraging_low’ and ‘walking’, or ‘ruminating_standing’ and

‘ruminating_laying’). The confusion matrices for all other models

are presented in Supplementary Tables 4–10.

The individual-based cross validation model using a 20 second

running mean and orientation-dependent data indicated that rarer

behaviors were more difficult to predict for individuals with less

observations, but overall, the model performed similar to the model

using the 80-20 data split, because there were enough observations

of these rare behaviors across all individuals. The averaged accuracy

was 0.997, the averaged precision was 0.965, and the averaged recall

was 0.987 (See Supplementary Table 11 for the confusion matrix).
Frontiers in Animal Science 07
The model including more behaviors had an average accuracy

of 0.99, precision of 0.71, and recall of 0.96. The classification

success for the behaviors that were also present in the other models

performed similarly well (Tables 3–5). However, rarer behaviors

had a high classification success with almost no misclassifications,

e.g., in the behaviors ‘stretching’ and ‘throw_head’ (Table 5).
4 Discussion

In this study, tri-axial accelerometer signatures were assigned to

observed behaviors of free-ranging cattle based on supervised

machine learning algorithms and using different accelerometer

features and running mean smoothing windows. We found that

(1) using a long running mean (20 seconds) translated to best model

performance across all model categories, and (2) model

performance remained excellent when using orientation-

dependent instead of orientation-independent features, or when

adding more behaviors (with accurate classification even with

minority class behaviors i.e., allogrooming, suckling calf).

How tight and in which direction collars were deployed, and

terrain ruggedness through which the cows navigated, varied widely

in our study. We therefore expected that orientation-independent

features derived from accelerometer data, would lead to better

prediction performance than orientation-dependent features

(hypothesis H1). However, models based solely on orientation-

dependent features performed better than those based on

orientation-independent features.

While our study assessed the outcome and performance of either

orientation-dependent or -independent features, previous studies have

combined up to 60 features of both types to increase model

performance (Lush et al., 2018; Riaboff et al., 2020; Riaboff et al.,

2022). However, as our best model with solely orientation-dependent

features had excellent performance (0.997 accuracy, 0.961 precision,

0.985 recall), we did not need to extend the model by including

additional orientation-dependent and -independent features. We

believe our model performed so well in part because the

accelerometer was placed along with the battery and other collar
TABLE 2 Overview of the nine models with the average and range for accuracy (as the ratio of correct predictions out of all predictions), precision (as
the ratio of true positives over the sum of false positives and true negatives), and recall (as the ratio of correct predicted outcomes to all predictions).

Model Accuracy Precision Recall

(A) Orientation dependent (1 sec) 0.954 (0.907-0.989) 0.617 (0.325-0.894) 0.687 (0.473-0.842)

(B) Orientation dependent (5 sec) 0.985 (0.961-0.997) 0.854 (0.645-0.972) 0.923 (0.839-0.982)

(C) Orientation dependent (20 sec) 0.997 (0.991-0.999) 0.961 (0.875-0. 995) 0.985 (0.965-0.999)

(D) Orientation dependent corrected (1 sec) 0.957 (0.908-0.990) 0.629 (0.337-0.898) 0.693 (0.480-0.848)

(E) Orientation dependent corrected (5 sec) 0.986 (0.959-0.998) 0.868 (0.648-0.975) 0.922 (0.826-0.978)

(F) Orientation dependent corrected (20 sec) 0.997 (0.990-1.000) 0.964 (0.872-0.995) 0.985 (0.953-0.999)

(G) Orientation independent (1 sec) 0.918 (0.834-0.974) 0.371 (0.108-0.755) 0.392 (0.080-0.741)

(H) Orientation independent (5 sec) 0.956 (0.901-0.985) 0.642 (0.437-0.881) 0.721 (0.498-0.849)

(I) Orientation independent (20 sec) 0.988 (0.970-0.997) 0.884 (0.798-0.973) 0.931 (0.891-0.981)
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electronics on the low side of the collar. The combined weight of the

unit seems to hold the accelerometer in place, independently from

collar tightness. In comparable studies on marine mammals,

accelerometer placement is highly variable (Shepard et al., 2008b).

Moreover, and contrary to our predictions, we found that

correcting for collar orientation did not improve the model

performance. Indeed, both corrected and uncorrected models

performed similarly. While placing the accelerometer backwards can

impact axes values, the accelerometer unit remains below the neck of

the animal and hangs similarly for all individuals. In fact, backwards

placement of the accelerometer affects only the mean of the X and Y

axes, with a more pronounced effect for the X axis, as well as the mean

pitch values; the variance of the Z axis and the pitch are not affected by

orientation (Wanget al., 2015;Chang et al., 2022).Despite variations in

feature values, the amplitude and pattern of movement remain

consistent, which might explain why orientation-corrected models

did not outperform uncorrected models. Additionally, the sample size

in our study is large enough to rule out noise in the data due to collar

deployment error, making our models robust (Riaboff et al., 2022).
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Furthermore, cattle are large and slow animals, and behavior-specific

bodymovements can bemore easily differentiated compared to small-

sized animals. This might be more challenging for smaller, faster

moving species, and placement of accelerometers in those species, and

placement of accelerometers in those species is likely more important

(Grünewälder et al., 2012; Brewster et al., 2018).

We initially hypothesized that the detection of less frequent

behaviors, such as social interactions and body care movements,

would be impacted by the smoothing of the data, as these behaviors

might not be detected by long running mean windows. Contrary to our

predictions, we found an increase in model performance across all

categories (orientation-dependent, orientation-dependent with

correction, orientation-independent) with increasing smoothing

window, with highest performance when using a 20 second running

mean. Other studies have shown that smoothing of the data increases

the classification success by reducing noise, and that larger animals

often require a longer running mean as their movements are generally

slower (Shepard et al., 2008a). However, this often results in a decrease

in classification success for behaviors which are rare and short in time
FIGURE 4

The recall (classification success) for each model, specified by behavior and based on the model’s validation data. Rows indicate orientation-
dependent features, corrected orientation-dependent features, and orientation-independent features, respectively.
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(Mansbridge et al., 2018; Chang et al., 2022). In our study we did not

find such a decrease. An explanation might be that we excluded all

behaviors shorter than 5 seconds, resulting in a large enough difference

in mean and variance of the features for those behaviors for successful

classification. Furthermore, the large number of observations in the

minority classes (rarer behaviors) across individuals might have

contributed positively during the training of the model, resulting in

high model performance.

Finally, we predicted that adding more behaviors would affect

model performance negatively and expected that the addition of

behaviors would lead to loss of model performance (H2) as it has

been shown in previous studies (Vázquez Diosdado et al., 2015;

Lush et al., 2018). Contrary to our prediction, we found that models

performed well with an increase of behaviors and could accurately

predict less frequent behaviors such as head butting, throwing head

and shaking. Less frequent behaviors were observed for fewer

individuals than more common behaviors, which may lead to a

stronger impact of individual-specific accelerometer signatures in

the random forest models. We addressed this through class

weighting, and individual-based cross validation. Even though

there was variation in prediction success across individuals and

behaviors, the overall model performed similarly well as with the 5-

fold (i.e. with random 80/20 data split) cross-validation model.

This study’s sample size of individuals is larger than most

accelerometry classification studies of free-ranging cattle (Chapa

et al., 2020; Kour et al., 2021). Riaboff et al. (2022) recommended

using a minimum of 10 animals and emphasized more robust

analysis with at least 25 animals and a variety of breeds and farms.

While we exceeded this recommendation (n = 38 individuals

distributed on four breeds and four farms), we did not specifically

account for breed, farm or individual characteristics such as body

weight or age, as this would require an even larger sample.

Interestingly, we were able to differentiate between behaviors

that we expected to have similar accelerometry signatures, such as

laying ruminating and standing ruminating. When looking at

posture, cattle laying causes the angle of the accelerometer to vary

slightly compared to when they are standing, as the electronic

housing often leans against the individual’s chest. Similarly, we

could identify vigilance behavior, which is likely due to our decision

rule defining individuals as being vigilant only when no other

behavior happened (Supplementary Figure 1).

Often, scientific studies develop models and tools that are

appropriate for experimental settings, but too expensive or

impractical to be used for commercial settings. Our results based on

the accelerometers contained in the commercial Nofence collars open

up for a range of end-user applications. For example, these could be

Nofence tools for easy handling by the customers, such as a built-in

algorithm in the collar converting accelerometer data directly to

behavioral states or to time budget summaries, which could be

continuously transmitted to the farmer. This could allow for an easy

and fine-scale supervision and monitoring of free-ranging cattle in

remote areas or dense habitats. Furthermore, the success in

classification of ruminating, vigilance and social behaviors could

contribute to the study of free-ranging cattle welfare, stress and

productivity, through the quantification of precise nutrient intake

and energy expenditure.
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In conclusion, our study succeeded in categorizing high resolution

accelerometer data into behaviors for free-ranging cattle in rugged

terrain of the boreal forest. Not only were collar deployment errors

confirmed to not significantly impact model performance, but our

models also showed success in detecting more behaviors than

previously published, including less frequent behaviors other than

resting, grazing, ruminatingandwalking.Calibrating suchdatawithan

array of different behaviors makes a valuable contribution to livestock

precision farming in extensive rangeland systems. Itmay allow farmers

tomonitor thewelfare of their animals continuously and todetect non-

normal behaviors caused by e.g. diseases or carnivore attacks.
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Robért, B. D., White, B. J., Renter, D. G., and Larson, R. L. (2011). Determination of
lying behavior patterns in healthy beef cattle by use of wireless accelerometers. Am. J.
Veterinary Res. 72, 467–473. doi: 10.2460/ajvr.72.4.467

Rodriguez-Baena, D. S., Gomez-Vela, F. A., Garcıá-Torres, M., Divina, F., Barranco,
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