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Abstract

Camera traps have become important tools for the monitoring of animal popu-

lations. However, the study-specific estimation of animal detection probabilities

is key if unbiased abundance estimates of unmarked species are to be obtained.

Since this process can be very time-consuming, we developed the first semi-

automated workflow for animals of any size and shape to estimate detection

probabilities and population densities. In order to obtain observation distances,

a deep learning algorithm is used to create relative depth images that are cali-

brated with a small set of reference photos for each location, with distances

then extracted for animals automatically detected by MegaDetector 4.0. Animal

detection by MegaDetector was generally independent of the distance to the

camera trap for 10 animal species at two different study sites. If an animal was

detected both manually and automatically, the difference in the distance esti-

mates was often minimal at a distance about 4 m from the camera trap. The

difference increased approximately linearly for larger distances. Nonetheless,

population density estimates based on manual and semi-automated camera trap

distance sampling workflows did not differ significantly. Our results show that

a readily available software for semi-automated distance estimation can reliably

be used within a camera trap distance sampling workflow, reducing the time

required for data processing, by [ 13-fold. This greatly improves the accessibil-

ity of camera trap distance sampling for wildlife research and management.
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Introduction

The mass extinction of species is progressing at a rate

unprecedented in Earth’s history (Diáz et al., 2019). It

is mainly driven by the synergistic effects of anthropo-

genic activities, especially the destruction of habitats, the

overexploitation of populations and climate change.

While the conservation of threatened species is a prior-

ity because of their intrinsic value as well as their cul-

tural and economic benefits for humans (Diáz

et al., 2019), effective population control measures are

demanded for animal populations that fuel human–
wildlife conflicts, because of damage to forestry, agricul-

ture and private property (Massei et al., 2011). These

problems have never been as relevant as they are today

and they have highlighted the need for readily available

methods to monitor the population status and develop-

ments of these species, in order to evaluate the effec-

tiveness of management measures and adjust them if

necessary.

In principle, the easiest way to estimate animal abun-

dance is to count individuals in a random sample of

plots, with subsequent extrapolation to the whole survey

area. While this approach is straightforward for sessile

organisms, the high mobility of vertebrates means that an

observer would need to count all animals in all plots at

one instance in time and with a high degree of certainty,

to avoid double-counting and missing animals. A number

of methods for the counting of vertebrates have been

developed, ranging from the recording of indirect signs of

animal presence to the capture and marking of individ-

uals (Schwarz & Seber, 1999). Distance sampling, which

models the probability of observing an animal dependent

on its distance from a transect point or line (detection

probability), is among the most widely applied

approaches to estimate animal abundance (Buckland

et al., 2004) and its application goes beyond traditional

human observer-based surveys of animals along transects.

Distance sampling theory can be applied to data collected

by autonomous recorders, such as passive acoustic sensors

or camera traps (CTs), which observe their surroundings

continuously, in defined time intervals or following a trig-

ger event. When these recorders are randomly placed with

respect to landscape features, they can be used for special

forms of point transect distance sampling. While acoustic

sensors are mainly used for songbirds and marine mam-

mals (Marques et al., 2013), camera trap distance sam-

pling (CTDS) is a promising approach for many

terrestrial bird and mammal species (Howe et al., 2017).

Distance sampling functions are also useful to estimate

the size of the sampled area for alternative methods to

estimate population densities from CT data, such as the

Random Encounter Model and the Random Encounter

and Staying Time Model (Nakashima et al., 2018; Row-

cliffe et al., 2008).

While camera trapping requires little fieldwork, the

generated datasets often consist of several thousand

photos or videos whose manual processing requires enor-

mous amounts of time and effort. In the Snapshot Seren-

geti project, more than 30 000 h were needed to classify

and count animals on 5.5 million photos (Norouzzadeh

et al., 2018). Estimation of the distances to the observed

animals, necessary to estimate detection probabilities, fur-

ther increases the workload. Observation distances are

most often either measured in the field, using a tape mea-

sure and compass, after the positions of observed animals

have been reconstructed based on natural landmarks

(Rowcliffe et al., 2011) or estimated by eye, based on ref-

erence images of an object photographed at a known, reg-

ular interval (Hofmeester et al., 2017). Comparison of the

position of one animal with 4–15 different positions of

the reference object takes, on average, 12 sec under opti-

mal conditions (Haucke et al., 2022). If additional manual

steps are needed to load and align photos or if the hori-

zontal observation distance to the centre of the field of

view (FOV) must be considered, then the process may

take several minutes.

The automation of these tasks is therefore desirable.

This has been hindered by the fact that the animals of

interest are often only partly visible, lighting conditions

are frequently challenging, and the background can be

highly dynamic (Norouzzadeh et al., 2018). The first

approaches to automatically detect animal presence or

absence were based on motion detection in videos and

background identification in time lapse photos (Price

Tack et al., 2016; Swinnen et al., 2014). Thereupon suc-

cessive video frames were used to localize and count ani-

mals (He et al., 2016). The development of

MegaDetector, an object detection model trained on sev-

eral hundred thousand bounding boxes from a variety of

environments (Beery et al., 2019), allowed the same for

single photos. The automated identification of animal

species gained interest following the introduction of con-

ventional image classification algorithms for use with

cropped photos (Yu et al., 2013), leading to the applica-

tion of deep convolutional neural networks with increas-

ing accuracy (Norouzzadeh et al., 2018). Nonetheless,

obtaining accurate estimates of observation distances for

large datasets remains problematic, with the exception of

recently described photogrammetric approaches to esti-

mate the distances of objects of known size (Leorna

et al., 2022; Zuleger et al., 2022). Such an approach was

already adopted for population density estimation of 35

species on Borneo based on a pole as reference object,

but it still required the manual annotation of pixel posi-

tions for observed animals (Wearn et al., 2022). Haucke
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et al. (2022) developed a semi-automated approach for

estimating the distances to animals of any size from a sin-

gle photo, with only a minimum of two reference images

of an object at a known distance required.

In this study, we incorporated the semi-automated esti-

mation of observation distances in a workflow to estimate

the population densities of ten animal species via CTDS:

European badger Meles meles, Eurasian beaver Castor

fibre, domestic cat Felis catus, European hare Lepus euro-

paeus, North American raccoon Procyon lotor, red deer

Cervus elaphus, red fox Vulpes vulpes, roe deer Capreolus

capreolus, water rail Rallus aquaticus and wild boar Sus

scrofa. Data were obtained from two camera trapping

studies that employed different CT models and settings,

included different subsets of the aforementioned species,

and covered a broad range of habitats within a wetland

nature reserve in Eastern Germany and a mountainous

national park in Southern Germany. In the first step (1),

we assessed the recall (% of photographed animals

detected) and precision (% of true positives in animal

detections) of MegaDetector, dependent on the distance

to the CT. For animals that were correctly automatically

detected (2), we then investigated the relationship

between different ranges of semi-automated distance esti-

mates and their divergence from the manual estimates to

test the hypotheses that their agreement is the highest

closest to the CT and decreases linearly with distance.

Finally, (3) we compared the CTDS-based abundance esti-

mates obtained from manually versus semi-automatically

derived observation distances and assessed the overlap of

their confidence intervals.

Materials and Methods

Study area descriptions

The conservation area “Hintenteiche bei Biesenbrow”

(1.04 km2) is located in the north-eastern section of the

Biosphere Reserve Schorfheide Chorin (S-C) (Branden-

burg, Germany). Over half of the area consists of three

ponds, surrounded, respectively, by alder-ash forests, allu-

vial softwood forests and grasslands within a farmland

area. Our study site included 0.461 km2 of the total area,

excluding ponds and farmland. The Bavarian Forest

National Park (BFNP, 242.3 km2) is located 448 km to

the south (Fig. 1). Its forests, which are dominated by

spruce (Cailleret et al., 2014), cover 90% of the area.

Study design

The 27 CTs placed in the S-C were separated from each

other by a distance of at least 150 m. The 50 CTs in the

BFNP had a minimum spacing of 1 km.

All potential sites located in water or human settle-

ments were excluded. The CTs were attached to trees at a

height of 50–80 cm and oriented north to avoid back-

light. The CT settings are listed in Table 1. The CTs in

the BFNP and S-C were active throughout the summer

(June–August) of 2018 and 2019 respectively. Because of

their non-invasive nature, these CT studies did not

require ethical approval.

Manual distance estimation

At each CT location, a set of reference photos (BFNP) or

videos (S-C) was obtained by recording a ranging pole

(BFNP) or a person (S-C) positioned at distances of 1–
15 m at 1-m intervals along the visual axes of each CT

(larger intervals were used in the S-C for distances

[ 8 m; see Table S1). For the animal detections, still

images were extracted from the videos recorded in the S-

C at 2-sec intervals (Howe et al., 2017), with the animal

species and number of individuals noted for all ground-

living species observed in at least 10 videos from any

number of CT locations (9 of the 10 species included in

our study except for red deer). The distances to the

observed animals were derived from the two closest posi-

tions of the person in the reference videos.

In the BFNP, the first photos of the photo series were

defined as snapshot moments to account for variable

delays between triggers (Kühl et al., submitted; Henrich

et al., 2022). Red deer and roe deer were counted on

these photos; images taken directly after behavioural reac-

tions to the CTs were excluded. An event was defined as

all images of an animal species at a CT location obtained

within \5 min from each other. Ten events per species,

CT location, and month were randomly sampled to esti-

mate observation distances to the animal that had moved

the furthest into the FOV upon first detection (see Hen-

rich et al., 2022). Transparent photos of the ranging pole

positions were superimposed on the animal photos using

Microsoft PowerPoint 2016 to find the best fit. This dis-

tance along the visual axis and the horizontal distance of

the animal to the visual axis were used to trigonometri-

cally calculate the observation distance (following Pfeffer

et al., 2018).

Semi-automated distance estimation

For the S-C, the reference images for the manual and

semi-automated distance estimation were the same. How-

ever, the ranging poles used in the BFNP were not well

suited as reference objects for the semi-automated

approach, since their outlines became very thin at larger

distances and covered only a small number of pixels,

increasing the risk that a large proportion of them is

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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obscured by vegetation. Independent distance estimates

were instead created using a person carrying an ultrasonic

hypsometer (Vertex IV, Haglöf Sweden AB) to mimic the

position of observed animals, with the distances between

that person and the CT then measured. Two animal posi-

tions were used as references for each CT location, cover-

ing the range of observation distances.

All reference images and photos with animal observa-

tions were cropped to exclude the banners along the bot-

tom. Masks were created for the outlines of the reference

objects and text files containing the information on the

corresponding distances were generated. The photos were

sorted in the required folder structure and processed

using the Distance Estimation Workbench of Haucke

et al. (2022) (latest version available here: https://github.

com/timmh/distance-estimation). Relative depth images

of the reference photos are created using a deep learning

algorithm (Dense Prediction Transformers, Ranftl

et al., 2021), depicting pixel-wise inverse distances (Dref )

to objects in the FOV with the unknown scale and shift

parameters m and c. These parameters are obtained by

aligning at least two reference images before minimizing

the error between the median value within the binary

mask covering the reference object in each image and its

Figure 1. Map of the camera trap locations within their respective study areas.

4 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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known distance (RANSAC, Fischler & Bolles, 1981). Met-

ric distances Zref of all pixels in the images are then

obtained by Equation 1.

Zref ¼ 1

m� Dref þ c
(1)

The metric scale of these depth images is transferred to

the relative depth images of the animal observations. Ani-

mals are detected in the photos using MegaDetector 4.0

(Beery et al., 2019), which creates bounding boxes around

them, within which the 20th percentile of the calibrated

depth values is extracted to obtain an estimate of the dis-

tance to the animal (Fig. 2). Since animals are often

slightly occluded by objects in the foreground, the 20th

percentile offers the highest probability that the value is

sampled within the outline of the photographed animal

and not any other pixel of the rectangular bounding box

(Haucke et al., 2022). The confidence threshold of Mega-

Detector was set to 0.75, since the suggested typical value

ranges between 0.7 and 0.8 (Osner, 2022). Lowering the

threshold means a higher probability to detect animals,

but also an increase in false detections. With a threshold

of 0.75, the percentage of motion-triggered images with

false positive detections was \1% in Leorna and Brink-

man (2022). The maximum distance was defined as 15 m

in the S-C and 25 m in the BFNP, depending on the

known maxima in the datasets (S-C: 13.5 m, BFNP:

21.7 m based on the hypsometer measurements). At dis-

tances exceeding 10 m, animals blend into the back-

ground and the corresponding depth image regions do

not allow meaningful distance estimations. Depth sam-

pling was therefore modified to allow a linear interpola-

tion of the original 20th percentile (z20th) and the depth

value at the bottom centre of the bounding box (zbottom)

for z20th values between 10 and 25 m in the BFNP data

(Eq. 2, see Fig. S1). Thus, instead of extracting the dis-

tance estimate from within the outline of the animal, the

point on the ground where the animal stood is used.

zsampled ¼ 1�að Þz20th þ a zbottom (2)

a ¼ z20th�10ð Þ
25�10ð Þ

Analyses of false negatives, false positives
and differences in distance estimates

The datasets of the manual and semi-automated distance

estimates (Dm/Da) were merged based on the photo file

names, such that Da was assigned to an animal species

based on manual species classification. In case of multiple

distance estimates of animals in the same image in the S-

C, both Dm and Da were sorted in ascending order and

matched accordingly. Animal detections in which Dm was

[ 14.5 m were excluded, since larger Dm could not be

estimated manually due to a lack of reference photos and

were frequently assigned to 15 m, the maximum distance

of the reference object.

Dms without designated Das were classified as false nega-

tives, and Das without designated Dms as false positives. The

number of false negatives was summarized for each species

(within each study area), CT location, and rounding interval

of Dm (Table S1). Subsequently, recall was calculated for each

category (species/species and distance interval/ species, dis-

tance interval and CT location). We modelled the interacting

effects of Dm and animal species on the recall for each dis-

tance class, species and CT location per study area, including

the identification code of the CT location as a random inter-

cept. For this purpose, a beta-binomial generalized linear

mixed model was chosen to prevent a decline in model fit

with increasing Dm that occurs in binomial models

(‘glmmTMB’, Brooks et al., 2017). Model fit was checked

using “DHARMa” (Hartig, 2020). The deviation of the

species-specific effect of Dm on recall from the average over

all species was compared using the emtrends function with

false discovery rate correction to account for multiple testing

(Lenth, 2020). False positives were counted in the S-C for

each distance interval based on Da. No false positives

occurred in the BFNP because there was only one Da per

photo (for the centre-most animal only).When both Dm and

TABLE 1. Overview of the two test datasets used in the current study.

Schorfheide-Chorin Bavarian Forest National Park

Camera model Bushnell Trophy CAM HD Aggressor 119876

(Bushnell Outdoor Products, Overland Park, Kansas, USA)

Cuddeback C2 (Cuddeback, Green Bay,

Wisconsin, USA)

Angle of view 40° 55°
Flash Infrared flash (“medium”) Infrared flash (“far”)

Passive infrared sensor settings High sensitivity High sensitivity, wide angle

Recording settings 60-sec video, 2 sec between videos 5-pictures series, no delay between photos

(“fast as possible”)

Resolution 30 frames per second, resolution = 1920 × 1980 pixels resolution = 2576 × 1984 pixels

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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Da could be assigned to an observed animal (in total n obser-

vations), the values were used to compute the root mean

square error (RMSE) per species and time of day (Eq. 3). All

photos, for which the flash was used, were considered night-

time photos.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

1 Dm�Dað Þ2
q

n
(3)

The RMSEs of day-time and night-time detections were

compared for each species by resampling the animal

detections with replacement and recalculating the differ-

ence of the RMSEs for each of 10 000 non-parametric

bootstrap iterations. In addition, the difference Da minus

Dm was modelled depending on Da, using Gaussian-

family generalized linear and additive models, in which

the identification code of the CT location was used as a

random intercept (‘mgcv’, Wood, 2011). In a first model,

Da and the animal species were included as interacting

parametric coefficients (GLMM). In a second model, a

spline was fitted to Da for each species (GAMM). The

models were re-fitted based on maximum likelihood and

compared with a log-likelihood ratio test, which could

Figure 2. Graphical depiction of the semi-automated workflow to estimate distances to observed animals, featuring example photos of a camera

trap location in the Schorfheide-Chorin study area.

6 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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otherwise not be applied since the likelihoods of models

with different fixed effect structures would not be directly

comparable (Faraway, 2016).

Distance sampling

Detection probabilities and population density estimates

based on them were calculated for each animal species

and distance estimation method based on the full dataset,

including Dms for detections with missing Das. The R

package “Distance” 1.02 (Miller et al., 2019) was used to

fit detection functions to the distributions of the distances

(Fig. S2). Bins were based on the rounding intervals

(Table S1), but the two intervals of the closest distances

were combined to account for increased uncertainty in

the distance estimates when the position of the animal on

the ground was not visible. Truncation distances were

determined by the bin with the maximum estimate or the

bin preceding a hump in the tail of the distribution, with

the smaller value from the distributions of Dm and Da

being used for both datasets (except for water rail, where

detection functions could otherwise not be fitted).

For the S-C, the model selection procedure of Howe

et al. (2019), with nine candidate detection functions, was

applied. Model fitting and selection for the BFNP data

were the same as in Henrich et al. (2022). Population

density estimates were computed following Equation 4.

bD ¼ 2t∑K
k¼1nk p

θv ω2∑K
k¼1Tk

bP
1

bA (4)

t = interval between snapshot moments (replaced by bd
in the BFNP); k = camera trap location index; K = num-

ber of camera trap locations; nk = sum of individuals

counted during all snapshot moments for a given species

at location k; p = proportion of all estimated distances

that are within ω for a given species in the BFNP; takes the

value 1 in the S-C; θv = horizontal angle of view (radians);

ω = truncation distance (km); Tk = camera trap deploy-

ment time at location k (seconds); bP = detection probabil-

ity of a given species; bA = activity level of a given species

(daily proportion of time spent active).

The value of θ was based on the manufacturer’s specifi-

cations and that of bA was derived from circular probabil-

ity density functions fitted to the daily distributions of

independent events for each species (‘activity’, Rowcliffe

et al., 2014). nk corresponded to the number of MegaDe-

tector detections for the semi-automated workflow in the

S-C, but manual counts had to be used to that end in the

BFNP, since only a subset of the animal observations was

used for distance estimation and analysed by MegaDetec-

tor. p had to be included in the formula since the number

of observations within the truncation distance was known

only for this subset. Furthermore, t had to be changed tobd to account for recovery and retrigger times between

photos (see Henrich et al., 2022).

The 95% confidence intervals for the density estimates

from the manual and semi-automated workflows and

their differences were derived using a non-parametric

bootstrap of CT locations, with the numbers of observa-

tions n and deployment times T recalculated for each

bootstrap iteration (n = 10 000).

All analyses were performed in R 4.0.2 (R Core Team,

2020).

Results

Automated animal detection

The percentage of animals not detected by MegaDetector

varied widely between species, ranging from 4% for water

rail to 39% for wild boar (see Table S2). In general, recall

across species was not related to the distance from the CT

(see Table S3). However, distance had a negative effect on

the proportion of automatically detected roe deer

(P = 0.03), beaver (P = 0.006) and wild boar

(P \ 0.0001) relative to the overall trend in the S-C. In

this study area, 3.8% of the automated detections were

false positives and their distribution closely followed that

of true positives, with a peak at the 4- to 5-m interval of

Da (Fig. S4).

Differences in distance estimation methods

The RMSE for Dm and Da of the same animal detection

was smallest for water rail and largest for red deer

(Table 2). It was larger at night than during the day for

roe deer, wild boar, and beaver in the S-C and for red

deer in the BFNP, but the relationship was reversed for

hare. For all species, the difference between the estimates

was positively related to Da (Fig. 3, see Fig. S3 for all spe-

cies). The minimum in the differences, as derived from

the GAMMs, occurred around the 4-m mark of Da for

most species, but at a shorter Da for domestic cat (2 m)

and a higher Da for beaver (5 m) and the two deer spe-

cies in the BFNP (7 m). Overall, the non-linear splines

did not improve the model significantly (see Table S4).

Roe deer and wild boar in the S-C deviated the most

from linearity (effective degrees of freedom of � 4), with

little change (≤0.5 m) in the predicted difference between

Dm and Da at 4–7 m and 3–7 m respectively.

Differences in estimated animal abundance

The differences between the population density estimates

based on manual versus semi-automated workflows was

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7
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\5% of the estimated densities for red deer, roe deer (S-

C), hare, and badger, whereas the largest relative differ-

ences of 71% and 129% were found for water rail and

domestic cat (Fig. 4; Table S2). The population density

estimates for the same species and study area were never

statistically significantly different, as the confidence inter-

vals for their difference always overlapped zero (see

Table S2).

Discussion

The semi-automated estimation of distances between

camera traps and observed animals was generally unbiased

in comparison to the manual estimation around 4 m, but

the agreement between the methods decreased in larger

distances. These differences did, however, not significantly

impact the population density estimates of ten animal

species at two different study sites, although the point

estimates diverged to varying degrees.

TABLE 2. Root mean square error between manual and semi-

automated distance estimates of the same animal detection: per spe-

cies, per time of day (without or with infrared flash) and per

study area.

Species Area

RMSEday
[m]

RMSEnight
[m]

95% CI difference

(RMSEnight – RMSEday)

Badger S-C 2.61 2.22 �0.87, 0.10

Beaver S-C 2.33 3.89 1.23, 1.87

Domestic

cat

S-C 2.59 2.52 �0.73, 0.56

Hare S-C 3.36 1.64 �2.55, -0.67

Raccoon S-C 2.99 3.13 �0.15, 0.42

Water rail S-C 1.87 NA NA

Red fox S-C 2.60 2.54 �0.50, 0.35

Roe deer S-C 2.44 2.78 0.25, 0.42

Wild boar S-C 2.31 2.95 0.55 0.73

Red deer BFNP 3.25 5.63 0.94, 3.75

Roe deer BFNP 1.94 2.01 �0.77, 1.05

BFNP, study area Bavarian Forest National Park; RMSE, Root mean

square error; S-C, study area Schorfheide-Chorin.

Figure 3. (A) Percentage of animal observations detected by MegaDetector, dependent on the distance from the camera trap, (B) the

relationship between the semi-automated distance estimates and their differences with the manual estimates and (C) the semi-automated

distance estimates plotted against the manual distance estimates, as exemplified by wild boar (Schorfheide-Chorin) and roe deer (Bavarian Forest

National Park). The numbers above the bars in (A) indicate the total number of true positive detections in the respective distance class; a

difference of zero is indicated by the red line in (B) and the solid grey line in (C). The trend line of the actual data is shown with a red dotted line

in (C).

8 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Automated animal detection

With MegaDetector, 77%–96% of the observations of

most animal species were automatically detected on the

CT images, except wild boar, which were often present in

groups, decreasing the probability to detect all individuals

on a photo (Fig. S5). The significant decrease in recall

with distance indicated that the further away an animal

was from the CT, the higher the likelihood that it would

be partly concealed by other group members (see, e.g.,

Fig. 5c). Additionally, the chance of an animal being

largely hidden by vegetation, such as a fallen tree at one

CT location with beaver observations, also increases with

the distance from the CT. Thus, if only automated animal

detections are counted for population density estimations,

as was done in the S-C, a steady increase in false nega-

tives at larger distances would be fully accounted for by a

lower detection probability. After all, distance sampling

was specifically developed to consider false negatives as a

function of distance. However, if the distance ranges with

low recall are more irregularly distributed such as for bea-

vers, the detection probability cannot account effectively

for the missed detections.

Beside plant parts being classified as animals, false posi-

tive detections by MegaDetector could often be ascribed

to the separate detection of body parts of the same ani-

mal (see, e.g., Fig. 5D), which explains why the distribu-

tion of false positives over different distance classes

follows that of the true positives. Consequently, the esti-

mation of the detection probability would not be biased

if false positives were included. However, false positives

were not assigned to an animal species and therefore not

included for population density estimation in our study.

Differences in distance estimation methods

If MegaDetector correctly detected an animal, the species-

specific RMSE of the Dm and Da was 2–3 m, except for

Figure 4. Detections, detection probabilities and population density estimates of nine animal species at 27 camera trap locations in the Biosphere

Reserve Schorfheide-Chorin in the summer of 2019 (A–C) and of red and roe deer at 50 camera trap locations in the Bavarian Forest National

Park in the summer of 2018 (D). Detection probabilities can only be compared within species due to different truncation distances ω. For the

same number of animal detections, an increase in the detection probability leads to lower population density estimates. Apart from the number

of detections and the detection probability, the other camera trap distance sampling parameters were constant between the manual and semi-

automated workflows.

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9
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red deer and beaver. The error was largest for red deer in

the BFNP (4.73 m), but it was substantially reduced

(2.74 m) when detections with Da [ 15 m (14% of the

estimates) were removed from the dataset. In contrast,

the high RMSE of the beaver detections could be ascribed

to three CT locations, which had an inherent bias in their

reference depth images, as very small or very large dis-

tances were ascribed to nearly the entire picture and

sometimes even the range was inverted. It is not clear

why the deep learning algorithm sometimes over- or

underestimates distances, as its underlying mechanism

largely remains a black box (Hu et al., 2019). However, a

few issues are known: Dense vegetation close to the

camera trap can lead to an underestimation of distances

to objects behind it, because the depth estimation algo-

rithm tends to smooth over small gaps in the vegetation

(Haucke et al., 2022). Furthermore, the accuracy of the

depth estimation is reduced if the ground is only visible

in a small part of a photo, since context information

about the relative positions of objects is lost. While the

semi-automated density estimation is robust to small

changes in the FOV (e.g. Fig. S6), large changes can be

detrimental. It is, therefore, recommended that at least

one third of the FOV should be covered by ground, there

should be no tall vegetation within 3 m and the camera

should be fixed securely (Haucke et al., 2022). Moreover,

Figure 5. Examples of photos with animal observations, the corresponding calibrated depth images and the reference depth images with the

reference object at the farthest distance (not always visible against the background). MegaDetector created the bounding boxes in the panels on

the left; the cross indicates the pixel of the sampled distance estimate. In the depicted scenarios: (A) the animal is detected both manually and

automatically and the difference in the estimated distance to the camera trap is minimal (0.48 cm in this case); (B) the animal is detected

manually and automatically, but there is a large difference in the resulting distance estimates (15.9 m in this case); (C) some animals are not

detected automatically (such as two of the four wild boar); (D) the automated detection produces false positives (as multiple crosses on different

body parts of the same roe deer show).

10 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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it would be advantageous for long-term camera trap stud-

ies to take reference photos seasonally to prevent difficul-

ties due to major changes of the scene such as fallen trees

or growing vegetation over time.

The agreement between the methods was not consis-

tently negatively impacted by the lack of colour images at

night. However, the RMSE was larger at night for ungu-

lates and beaver in the S-C and for red deer in the BFNP.

Except for beaver, these species had an above average

number of observations at larger distances (90% quantile

of Dm between 7.5 and 12 m). If an animal is observed

outside the range of the infrared flash at night, its outline

is often barely visible. A low visibility of animal contours

is highly detrimental to the quality of the semi-automated

distance estimates (Fig. S7), but this problem is not

restricted to night-time images, as fog, sun flares or water

on the camera lens can also result in blurry photos (see,

e.g., Fig. 5B).

The hypothesis that the agreement between Dm and

Da depends on the distance from the CT was confirmed.

Distances were best estimated when an animal was close

to the CT and its body was fully visible (Fig. S3). In

distances below 3 m, it was not possible to directly

locate an animal’s position on the terrain and Dm

tended to be larger than Da. Further away, the number

of pixels representing a given interval decreased with

distance, but Da often overestimated this decrease. The

large differences between the methods at the highest Da

values can be explained by a depth estimation failure,

such that these values were produced by resorting to the

maximum Da. For roe deer and wild boar in the S-C

(89% of all observations in the area), the difference

between Dm and Da was relatively constant within a

range of 3 m around the optimum. This might be

explained by robust predictions of the mean difference

due to large sample sizes, since these distance ranges

covered 44% (roe deer) to 50% (wild boar) of the

species-specific observations. In general, the relationship

between Dm and Da did not deviate from linearity. This

finding could be exploited to derive a correction factor

that can be used to adjust Da to Dm irrespective of the

distance to the CT (Fig. S8 and S9). For a consistent

and robust correction, measurement errors should, how-

ever, be explicitly incorporated in the fitting of detection

functions in future (analogous to Borchers et al., 2010).

Importantly, Dm does not equal ground truth, since it

can also be expected to have a lower precision very close

and very far from the CT. For the BFNP, the manual

estimates could, however, be validated by comparing

them with the hypsometer estimates for all animal

observations, which revealed negligible bias until approx-

imately 10 m (Fig. S10) and small RMSEs (red deer:

1.65 m, roe deer: 1.24 m).

Differences in estimated animal abundance

A high RMSE translated in some cases to large differences

in the detection probabilities derived from Dm and Da,

for example, for beaver. Water rail, in contrast, had the

lowest RMSE, but its manual and semi-automated detec-

tion probability estimates diverged strongly. This problem

arose because of low-biased reference depth images at the

CT location where all except one water rail detection

occurred, leading to a systematic underestimation of the

distances to all observed animals. While the impact of

such issues at individual CT locations decreases with the

number of CT locations at which a species is observed,

efforts to obtain accurate reference images should never

be neglected. For red deer, Dm and Da were nearly identi-

cal despite a large RMSE. Since RMSE is a measure of

precision and not accuracy, it may possess limited explan-

atory power for differences in the distribution of Da and

Dm. A small number of large estimates can also strongly

influence the RMSE, but will have little impact on the

distribution overall. These values will also be removed by

truncation before the fitting of the detection function, to

increase precision (Buckland, 2001). Furthermore, aggre-

gation of the data into bins centred on favoured rounding

values (Thomas et al., 2010) eliminates the influence of

the smaller scale differences between Dm and Da in the

form of the detection function. The smallest differences

between Da and Dm were found in the bins with the larg-

est number of Das, except for beaver and water rail

(Fig. S11). Together, these factors led to a lower diver-

gence of detection probabilities than expected based on

the absolute mean differences between Dm and Da.

For most species, a small difference between detection

probabilities implied a small difference in population den-

sity estimates relative to the absolute values and vice versa.

However, in the case of raccoon, a small difference in the

detection probability but a high proportion of not auto-

matically detected individuals led to an underestimation

of the population density with the semi-automated

approach. While for hare the false negative detections

were largely balanced out by a lower semi-automated

detection probability, this was not the case for wild boar.

Although the concrete outcome depended on the specific

number and distribution of observations for each species,

there were no significant differences between the popula-

tion density estimates obtained with manual and semi-

automated CTDS for any of the studied species. The dif-

ferences between the estimates were obscured by the

spread of the confidence intervals, which was governed by

the variability in the number of observed animals across

CT locations. Typically, the coefficients of variation (CVs)

for camera trap distance sampling range between 0.2 and

0.5 (76% of the 29 estimates per species or species-group

ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 11
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in Bessone et al., 2020; Cappelle et al., 2019, 2021; Cor-

latti et al., 2020; Howe et al., 2017; Mason et al., 2022).

The CVs in our study fall within this range in the BFNP

(0.21, 0.31), but are higher in the S-C (0.7–1.7). However,

even if we assume a CV of 0.2, only the estimates for the

water rail might become significantly different for the two

observation distance estimation techniques (Table S5).

Semi-automated distance estimation greatly reduces the

time required for data processing. Based on the mean

processing period per photo reported by Haucke

et al. (2022) and on two reference photos per CT loca-

tion, the manual observation distance estimation for the

dataset used in the present study would require [ 23

work days, whereas semi-automated processing would be

completed in \2 days (Table S6). For the manual steps

alone, this is a 55-fold reduction in the hours of work.

Considering that manual distance estimation may need

[ 12 sec per photo, in many cases the amount of time

saved will be even greater.

Our semi-automated distance estimation workflow can

be easily applied by practitioners, since the whole process

is based on freely available software, which can be con-

trolled via a simple graphical user interface. After sorting

the images in the appropriate folder structure and check-

ing the settings, the whole workflow runs autonomously

as soon as the start button is pressed. The method can be

applied to a variety of species and settings, since it does

not depend on the size and outline of the animals or the

form of the terrain and just requires two reference images

per camera trap location. Future advances might omit the

need for reference images and fully automate the process

(Johanns et al., 2022).

Conclusions

Accurate estimation of the distances from observed ani-

mals to CTs is an essential, but time-consuming, step for

many methods to estimate the population density of

unmarked species based on camera trapping data (Palen-

cia et al., 2021). Our study demonstrates that distance

estimates obtained with a deep-learning approach based

on standard monocular photos can provide reliable popu-

lation density estimates, assuming both a small number

of missed animals not accounted for by the detection

probability and unbiased reference depth images. Poten-

tial errors can be minimized by compliance with CT

placement guidelines as well as analytical approaches. The

method is an important step in the establishment of a

largely automated pipeline for the analysis of CT data

aimed at the estimation of population densities, which

includes the detection of animals in the images, species

classification and distance estimation. Given the reduced

effort required to obtain this information, it offers a

practical option for wildlife managers who lack the work-

force for extensive analyses and for situations in which

fast results are essential for decision making (Schulz

et al., 2019).
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Figure S1. An animal vanishing into the background of

the depth image at a large distance. From left to right:

infrared intensity image with bounding box, correspond-

ing aligned depth image with bounding box, and refer-

ence depth image obtained by the calibration step.

Figure S2. Detection functions fitted to the manually and

semi-automatically estimated observation distances of

nine vertebrate species in Schorfheide-Chorin and two

deer species in the Bavarian Forest National Park.

Figure S3. (A) Percentage of animal observations detected

by MegaDetector, dependent on the distance from the

camera trap, (B) the relationship between the semi-auto-

mated distance estimates and their differences with the

manual estimates and (C) the semi-automated distance

estimates plotted against the manual distance estimates,

for all animal species in the study areas Schorfheide-

Chorin (S-C) and Bavarian Forest National Park (BFNP).

The numbers above the bars in (a) indicate the total

number of true positive detections in the respective dis-

tance class; a difference of zero is indicated by the red line

in (B) and the solid grey line in (C). The trend line of

the actual data is shown with a red dotted line in (C).

Figure S4. Distribution of false positives in the Schorf-

heide-Chorin study area (S-C) over the range of the dis-

tance estimates. The numbers above the bars indicate the

number of true positives in the respective distance class.

Figure S5. Percentage of wild boar detected by MegaDe-

tector, dependent on the distance from the camera, for

different group sizes.

Figure S6. Examples showing slight shifts of the camera

trap field of view at two CT locations (upper two panels:

T09 in Schorfheide-Chorin, lower two panels: G454 in

the Bavarian Forest National Park).

Figure S7. Boxplots of the absolute differences between

manual and semi-automated distance estimates of red deer

and roe deer in the Bavarian Forest National Park depen-

dent (A) on the proportion of the body of an animal inside

the field of view and (B) the visibility of its outline.

Figure S8. The relationship between the population den-

sity estimates based on the semi-automated (A) or cor-

rected semi-automated (B) distance estimates and the

manual distance estimates. Corrections of the semi-auto-

mated distance estimates were based on the predictions of

a linear regression with the manual estimates as the

response variable: gam(Distance manual � scale[Dis-

tance automatic] × Species + s[CT location ID, bs =
“re”], data, family = Gaussian).

Figure S9. Detections, detection probabilities and popula-

tion density estimates with the manual, semi-automated

and corrected semi-automated workflows for nine animal

species at 27 camera trap locations in the Biosphere

Reserve Schorfheide-Chorin in the summer of 2019 (A–
C) and of red and roe deer at 50 camera trap locations in

the Bavarian Forest National Park in the summer of 2018

(D). Corrections of the semi-automated distance estimates

were based on the predictions of a linear regression with

the manual estimates as the response variable: gam(Dis-

tance manual � scale[Distance automatic] × Species + s

[CT location ID, bs = “re”], data, family = Gaussian).

Detection probabilities can only be compared within spe-

cies due to different truncation distances ω. Truncation
distances were the same as for the comparison of manual

and semi-automated density estimates in the main manu-

script (Table S2).

Figure S10. (A) The relationship between the distance

estimates to observed animals based on the ultrasonic

hypsometer measurements (Dvertex) in the Bavarian Forest

National Park (BFNP) and their differences with the

manual estimates and (b) the hypsometer-based estimates

plotted against the manual distance estimates. A differ-

ence of zero is indicated by the red line in (A) and the

solid grey line in (B). The trend line of the actual data is

shown with a red dotted line in (B).

Figure S11. Histogram of the semi-automatically esti-

mated observation distances for each species in the two

study areas Schorfheide-Chorin (S-C) and Bavarian Forest

National Park (BFNP). The bins were chosen according

to the rounding intervals in the respective study area. The

colours of the bars represent the predicted absolute differ-

ence between the semi-automatically (Da) and manually

(Dm) estimated distances in the respective bin with the

GAM that was also used for Figure 3B and Figure S3B,

averaged for 0.1 m intervals. The vertical grey dashed

lines indicate the truncation distances.

Table S1. Manual distance estimation process for animal

observations on camera trap photos based on reference

images depicting a person (Schorfheide-Chorin) or a

ranging pole (Bavarian Forest National Park).

Table S2. Number of camera trap locations, sample sizes

of manual and automatic detections, truncation distances,

selected keys for detection functions, detection probabili-

ties and population density estimates based on the

manual and semi-automatic workflows and their

differences.

Table S3. Regression coefficients and emtrends of the

number of animal observations detected by MegaDetector

in different distances from the camera traps, per animal

species and study area.

Table S4. Model summaries and ANOVA of the two

models describing the relationship of the semi-automatic
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distance estimate and its difference to the manual dis-

tance estimate of the same animal observation (S-

C = study area Schorfheide-Chorin, BFNP: study area

Bavarian Forest National Park).

Table S5. Coefficients of variation (CV) of the population

density estimates and 95% confidence intervals at an

assumed CV of 0.2 were computed using the Wald

method.

Table S6. Estimated time and effort for the processing of

the dataset used in the present study (77 camera trap

locations and 63 791 animal observations) with the man-

ual and semi-automated distance estimation workflows.
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