
Ecology and Evolution. 2023;13:e10599.	 ﻿	   | 1 of 14
https://doi.org/10.1002/ece3.10599

www.ecolevol.org

Received: 8 March 2023 | Revised: 3 July 2023 | Accepted: 4 September 2023
DOI: 10.1002/ece3.10599  

R E S E A R C H  A R T I C L E

Estimating effective survey duration in camera trap distance 
sampling surveys

Hjalmar S. Kühl1,2,3  |   Stephen T. Buckland4  |   Maik Henrich5,6  |   Eric Howe7  |   
Marco Heurich5,6,8

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Senckenberg Museum for Natural History 
Görlitz, Senckenberg – Member of the 
Leibniz Association, Görlitz, Germany
2International Institute Zittau, Technische 
Universität Dresden, Zittau, Germany
3German Centre for Integrative 
Biodiversity Research (iDiv) Halle-Jena-
Leipzig, Leipzig, Germany
4Centre for Research into Ecological and 
Environmental Modelling, University of St 
Andrews, The Observatory, St Andrews, 
UK
5Department of National Park Monitoring 
and Animal Management, Bavarian Forest 
National Park, Grafenau, Germany
6Faculty of Environment and Natural 
Resources, Albert Ludwigs University of 
Freiburg, Freiburg, Germany
7Wildlife Research and Monitoring 
Section, Ontario Ministry of Natural 
Resources and Forestry, Peterborough, 
Ontario, Canada
8Institute for Forest and Wildlife 
Management, Inland Norway University of 
Applied Science, Koppang, Norway

Correspondence
Hjalmar S. Kühl, Senckenberg Museum for 
Natural History Görlitz, Am Museum 1, 
02826 Görlitz, Germany.
Email: hjalmar.kuehl@senckenberg.de

Funding information
Bayerisches Staatsministerium für Umwelt 
und Verbraucherschutz, Grant/Award 
Number: 77262; Ziel ETZ FreeState of 
Bavaria - Czech Republic 2014-2020, 
Grant/Award Number: 184

Abstract
Among other approaches, camera trap distance sampling (CTDS) is used to estimate 
animal abundance from unmarked populations. It was formulated for videos and ob-
servation distances are measured at predetermined ‘snapshot moments’. Surveys re-
cording still images with passive infrared motion sensors suffer from frequent periods 
where animals are not photographed, either because of technical delays before the 
camera can be triggered again (i.e. ‘camera recovery time’) or because they remain 
stationary and do not immediately retrigger the camera following camera recovery 
time (i.e. ‘retrigger delays’). These effects need to be considered when calculating 
temporal survey effort to avoid downwardly biased abundance estimates. Here, we 
extend the CTDS model for passive infrared motion sensor recording of single images 
or short photo series. We propose estimating ‘mean time intervals between triggers’ 
as combined mean camera recovery time and mean retrigger delays from the time 
interval distribution of pairs of consecutive pictures, using a Gamma and Exponential 
function, respectively. We apply the approach to survey data on red deer, roe deer 
and wild boar. Mean time intervals between triggers were very similar when esti-
mated empirically and when derived from the model-based approach. Depending on 
truncation times (i.e. the time interval between consecutive pictures beyond which 
data are discarded) and species, we estimated mean time intervals between retrig-
gers between 8.28 and 15.05 s. Using a predefined snapshot interval, not accounting 
for these intervals, would lead to underestimated density by up to 96% due to over-
estimated temporal survey effort. The proposed approach is applicable to any taxa 
surveyed with camera traps. As programming of cameras to record still images is often 
preferred over video recording due to reduced consumption of energy and memory, 
we expect this approach to find broad application, also for other camera trap methods 
than CTDS.
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1  |  INTRODUC TION

With ongoing loss of biodiversity and decline of wildlife popula-
tions, species monitoring has become a major activity in applied 
conservation and research (e.g. Moussy et  al.,  2022; Nichols & 
Williams, 2006). Animal abundance in particular is a key parameter 
in ecological processes and essential for the assessment of species 
conservation status (Burton et al., 2015). Remote camera trapping 
has become a widely practised approach for assessing species oc-
currence, community composition, density and abundance (e.g. 
Bessone et al., 2020; Corlatti et al., 2020; Nichols & Karanth, 2011; 
Rowcliffe et  al.,  2008). Camera traps can be left in the field for 
several months and are activated either at regular intervals (time-
lapse photography) or by temperature differences and motion (e.g. 
a mammal or bird with a surface temperature higher than ambient 
temperature) via a passive infrared (PIR) motion sensor (Welbourne 
et al., 2016). A photograph, photo series or video is recorded follow-
ing activation.

The first studies to estimate animal abundance from camera 
trapping data used capture–recapture methods (e.g. Karanth, 1995; 
Noss et al., 2012) which require that individual animals can be iden-
tified (commonly referred to as ‘marked population’ approaches). 
With camera traps, however, marked population approaches are 
only applicable to species with unique and recognisable physical 
characteristics, such as pelage patterns. For estimating abundance 
of ‘unmarked populations’, that is when individuals cannot be dis-
tinguished easily, several methods have been developed in recent 
years (Campos-Candela et al., 2018; Chandler & Royle, 2013; Howe 
et al., 2017; Moeller et al., 2018; Nakashima et al., 2018; Rowcliffe 
et  al.,  2008). Spatially explicit models for unmarked animals (‘spa-
tial count’ models) require spatially intensive sampling to detect the 
same animals at more than one location and yield imprecise esti-
mates in the absence of additional data to inform the scale of individ-
uals' movements, but do not require that cameras are programmed 
to record videos or on time-lapse (Chandler & Royle,  2013). The 
random encounter model (REM, Jourdain et  al.,  2020; Rowcliffe 
et  al.,  2008) and time-to-event model (TTE) (Moeller et  al.,  2018) 
can also work with single sensor-triggered photographs as long 
as an independent, reliable estimate of animal movement speed 
is available; it is often necessary to estimate movement speed di-
rectly from the camera trap data to avoid bias (Palencia et al., 2022; 
Rowcliffe et al., 2016). Other methods such as Moeller et al.'s (2018) 
space-to-event (STE) and instantaneous sampling (IS) estimators use 
time-lapse photography to circumvent the requirement to account 
for animal movement. Nakashima et al.'s (2018) Random Encounter 
and Staying Time (REST) model and Campos-Candela et al.'s (2018) 
home-range based estimator also requires video surveys. Camera 
trap distance sampling (CTDS) avoids the need to estimate speed of 

movement or staying time by discretizing the survey duration into 
instantaneous ‘snapshot moments’ t units of time apart and calculat-
ing temporal survey effort as the survey duration divided by t (Howe 
et al., 2017). Howe et al.  (2017) recommended programming cam-
eras to record video when triggered to ensure distances could be 
measured at these predefined moments, and this formulation is also 
well-suited for high-frequency time-lapse photography. However, 
CTDS has since also been applied in camera trap surveys with single 
images (e.g. Corlatti et al., 2020; Harris et al., 2020).

The performance of both REM and CTDS have been assessed 
in a number of field studies (e.g. Bessone et  al.,  2020; Cappelle 
et  al.,  2021; Cusack et  al.,  2015; Kavčić et  al.,  2021; Mason 
et  al.,  2022; Pal et  al.,  2021; Palencia et  al.,  2021) and have been 
validated with populations of known size (e.g. Cappelle et al., 2019; 
Harris et  al.,  2020; Rowcliffe et  al.,  2008). Other methods have 
received little testing with real data (but see Garland et al., 2020; 
Nakashima et  al.,  2020; Palencia et  al.,  2021 for the REST model, 
and Loonam et al., 2021 for TTE and STE). Several studies have com-
pared subsets of these methods in terms of their assumptions, ro-
bustness to violations of assumptions, ease of implementation and 
their ability to produce accurate and precise results for different 
species and under different sampling scenarios; these studies did 
not recommend a particular model for use in all situations (Gilbert 
et al., 2021; Palencia et al., 2021; Santini et al., 2022).

Unfortunately, recording video or high-frequency time-lapse 
requires more energy and memory and thus more visits to camera 
locations during a survey. Time-lapse surveys with long intervals be-
tween pictures may yield sparse data and fail to detect rare species. 
Given constraints on power supply and memory most camera trap 
surveys rely on PIR motion sensors and record single images or short 
bursts (≤1 s) of images rather than recording long bursts (over several 
seconds) or videos which require more memory and consume more 
power. Such surveys may not always yield data that conform to the 
assumptions of the statistical method underlying CTDS, which may 
result in biased estimates of density, but see, for example Corlatti 
et al. (2020) and Harris et al. (2020) for estimating animal abundance 
using CTDS and image-based recording.

If technological limitations or animal behaviour prevent us from 
detecting animals at predefined snapshot moments, that we expect 
to be detected with a high probability based on their location rela-
tive to the camera, estimates of abundance will be negatively biased. 
For example, it has already been established that estimators should 
be corrected to account for periods of time when animals are not 
available for detection by camera traps because they are immobile 
(during long periods of sleep or rest) or because they are outside the 
vertical range of camera traps (Cappelle et al., 2019; Corlatti et al., 
2020; Howe et al., 2017; Palencia et al., 2022). It has also been ac-
knowledged that slow trigger speeds can cause missed detections 
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of animals that pass quickly through the narrow part of the sector 
monitored at short distances from cameras (Corlatti et  al., 2020; 
Howe et  al.,  2017). However, PIR motion sensor-based recording 
of pictures requires consideration of another yet neglected issue: 
short (<20 s on average) intervals between consecutive pictures that 
prevent animals which remain for several seconds within the field 
of view (FOV) of the camera from being redetected. There are two 
causes of such delays: (1) Camera traps frequently have technologi-
cal recovery times of several seconds after a picture has been taken 
even though manufacturers may specify shorter (<2 s) recovery 
times (Corlatti et al., 2020), and (2) animals that remain stationary 
in the FOV may not retrigger cameras continuously. Recovery times 
likely vary among models, and may also vary with, for example ambi-
ent temperature, humidity, image resolution, writing speed and state 
of memory cards and batteries. The second reason for the time dif-
ference between consecutive images, which we refer to as ‘retrigger 
delays’ is at least partly a function of animal movement behaviour, 
and therefore likely to be species-, population- or group-specific. 
In principle, bias induced by longer-than-expected recovery times 
and retrigger delays applies to PIR motion sensor-based recording of 
both pictures and video. However, where videos or bursts are long 
relative to the time between records of the same animal within a 
passage through the FOV, the effect should become small or even 
negligible; this is not the case where only single images or short 
bursts are recorded each time the sensor is triggered.

Both camera recovery time and retrigger delay influence effective 
survey effort. When using CTDS, cameras will not record during all 
predefined snapshot moments when animals are present in the FOV 
due to these two effects. If not taken into account, temporal survey 
effort will be overestimated. Consequently, the temporal effort term 
(T/t) that expresses the number of snapshot moments during a survey 
as defined by Howe et al., 2017 requires adaption. t can no longer be 
defined as the time interval between predefined snapshot moments 
but needs to be redefined as the ‘mean time interval between triggers’ 
to take the extended time between consecutive camera trap images 
into account. Previous studies have suggested to derive t from exper-
imentally tested camera recovery time, that is by human movement in 
front of a set of cameras and defining t as the minimum time interval 
between triggers (e.g. Corlatti et al., 2020; Harris et al., 2020).

Here, we propose a different approach to avoid negative bias in 
CTDS estimates of animal abundance when cameras are programmed 
to record single images or short bursts following the triggering of a PIR 
motion sensor, as opposed to long bursts or videos when triggered, 
or on time-lapse mode. Rather than simply selecting the time interval 
between predetermined snapshot moments when distances to ani-
mals are determined (parameter t in the CTDS formula for estimating 
density; Equations 2–4 below), as recommended by Howe et al. (2017) 
when recording video, we estimate (t) as a function of mean camera 
recovery time and mean retrigger delay. We apply the approach to sur-
vey data on wild boar (Sus scrofa), red (Cervus elaphus) and roe deer 
(Capreolus capreolus) and show that careful truncation of interval data 
is critical to avoid contamination of the time interval distribution of 
the same animals by detections of different animals or animal groups 

arriving in a camera's FOV that are not relevant. We show that negative 
bias in estimated abundance can be large, if camera recovery times and 
retrigger delays are not accounted for.

2  |  MATERIAL S AND METHODS

2.1  |  The point transect model

In conventional point transect distance sampling, a human observer 
makes observations in all directions from the centre of the transect. 
Radial distances to observed animals are recorded and used to es-
timate detection probability (p). The estimator of animal density is

where K is the number of point transects, nk is the number of observa-
tions on point transect k, w is the truncation distance beyond which an-
imal observation distances are discarded, p̂ is the estimated detection 
probability within w (Buckland et  al.,  2001). This conventional point 
transect model has been extended to accommodate to the use of cam-
era traps.

2.2  |  The CTDS model

The CTDS model is simply a modified point transect distance sam-
pling model:

where K is the number of camera trap locations, nk is the number of 
animal observations at camera location k, w is the truncation dis-
tance beyond which animal observation distances are discarded, P̂k 
is the estimated detection probability within w at location k, and ek 
is sampling effort at location k (for conventional distance sampling 
with human observers ek is simply the number of visits to the point; 
Buckland et al., 2001, 2004). The estimate of the proportion of time 
spent active per day Â is required to account for periods when an-
imals are not available for detection. For CTDS the effort term is 
redefined to include two major differences. First, a camera trap does 
not cover a full circle, as is the case with human observers in con-
ventional point transect distance sampling. Instead, a camera trap 
covers only a fraction, frequently with an opening angle between 
30 and 50°. Second, the number of visits by a human in conventional 
point transect distance sampling is replaced by ‘snapshot moments’. 
Snapshot moments are the times when animal observations and 
their distances from the camera are recorded. More specifically, a 
1-min video clip recorded by a camera trap with 20–30 frames per 
second has about 1200–1800 frames. Not all of these are taken for 
analyses, as this would be too time-consuming and would provide 
no additional information compared to a reduced data set of, for 
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example one observation every 2–3 s. Howe et al. (2017) formulated 
the CTDS model to accommodate data from camera traps by rede-
fining the effort term as:

where θ is the horizontal angle of view of the camera in radians (such 
that �

2�
 describes the fraction of a circle monitored), Tk is the duration 

a camera trap is deployed at location k, and t is the time interval 
between predefined snapshot moments when camera-to-animal dis-
tances are measured, such that Tk

t
 quantifies the number of opportu-

nities in time to detect animals in the FOVs of cameras. Substituting 
this formula for ek into the above equation yields:

For PIR motion sensor-based video recording and time-lapse 
photography, t is known and at the discretion of researchers; Howe 
et al. (2017) suggested setting t to 0.25–3 s when recording video to 
avoid positive bias in observed distances for large values of t and to 
balance sample size and precision versus data processing effort. In 
order to represent animal movement well, t needs to be small enough 
to record representative positions of the animal path throughout a 
passage through the FOV (Howe et al., 2017). It is important to note 
that t defines the interval between predefined snapshot moments 
independent of animal observations. More specifically, the onset of 
snapshot moments is not defined based on, for example the first 
observation, but as specific times of day. When cameras are pro-
grammed to record single images or short bursts when triggered, t 
cannot be defined as proposed by Howe et al. (2017). One reason is 
that many observations would not predefined snapshot moments, 
but in-between. A second complication with trigger-based record-
ing of still images is that intervals are highly variable when cameras 
record animals, depending on camera hardware and movement of 
animals, due to unknown and variable camera recovery times and 
retrigger delays. To address these issues previous studies have used, 
for example the minimum interval between retriggers tested in ex-
perimental setups to derive a value for t (e.g. Corlatti et al., 2020; 
Harris et al., 2020). Here, we propose to estimate this parameter and 
thus the realised temporal effort of the CTDS survey, from combined 
estimates of mean camera recovery time and mean retrigger delays 
derived from time interval distributions of consecutive pictures.

2.3  |  Estimating t

A direct approach to estimating t would be to examine consecutive 
images, determine whether successive detections are of the same 
individual and simply take the sample mean of the intervals between 
successive detections. However, this requires a lot of time and effort 
to track an individual within one passage through the field of view and 
to record the intervals within such a series. By contrast, a statistical 

approach to derive non-observation times (hereby referred to as ‘mean 
time intervals between triggers’) from time interval distribution data 
gives results very quickly. As time interval data are a mixture of times 
between consecutive pictures of the passage of the same animal 
through the FOV (mostly short intervals) and detections of other indi-
viduals (includes longer intervals), we first need to truncate our data. 
This is meant to remove the longer time intervals that mainly stem 
from images of different animals entering the FOV at different times 
and gaps that can be explained by an animal not being visible, for ex-
ample behind vegetation, which do not need to be considered here.

We truncate times between successive triggers of the camera at T 
so that we only analyse time intervals t for which t ≤ T. We can write

where r is the camera recovery time after triggering, v is the time until 
the animal retriggers the camera after recovery, and T denotes trunca-
tion time and is not related to Tk above. We do not observe values of 
r > T or values of v > T − r.

We assume that the camera recovery time r has a truncated 
gamma distribution

where λ > 0 is the rate and α > 0 is the shape parameter. The gamma 
distribution is suitable for modelling camera recovery times, as times 
are constrained to be positive, with most times clustering around 
the mean of the distribution, but with some shorter and some longer 
times. While the normal distribution also has this latter property, it 
does not constrain times to be positive, and unlike the gamma dis-
tribution, it does not have a shape parameter, and therefore it is less 
flexible.

For retrigger delay v, we assume an exponential distribution

where μ > 0 is the rate parameter. The rate � might be modelled as a 
function of distance from the camera and, where relevant, group size.

If the observed times truncated at T are ti , i = 1, … , n, then the 
likelihood function is:

where ft(t) is the probability density function of t = r + v.
We can then estimate the mean time intervals between retrig-

gers as the sum of camera recovery time r and retriggering time v as:

The full formulation is available in Appendix S1.

2.4  |  Implementation with real data

In our field study, we used the Cuddebback C2 (Green Bay, WI, 
United States). The camera manual suggested a recovery time of 

(3)ek =
�Tk
2�t

,
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∑K
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1

Â
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(6)fr(r) ∼ Gamma(r, 𝛼, 𝜆), 0 < r ≤ T
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ca. 1 s. To assess the manufacturer-specified time interval, we con-
ducted an experiment, in which we tested 10 cameras for 2 min each 
by moving a hand up down directly in front of the PIR sensor and 
then calculated mean camera recovery time across and within the 
individual cameras.

One hundred eight of these camera traps were deployed in a 
year-round survey (May 2018–August 2019) in the Bavarian Forest 
National Park and in a part of the neighbouring Šumava National 
Park (see Henrich et  al.,  2022 for details). The duration between 
triggers was set to the minimum (‘FAP’: fast as possible), and a series 
of five photographs was recorded each time the camera trap was 
triggered, which all get the same time stamp.

We used data on red deer (Cervus elaphus), roe deer (Capreolus 
capreolus) and wild boar (Sus scrofa) to estimate mean time in-
tervals between triggers from pairs of consecutive images. 
Preliminary exploration of the data suggested that all species 
showed behavioural responses to camera traps, although to a dif-
ferent degree.

Three different (sub-)sets of the data set were used: (1) the 
whole data set for which we assumed that all photographs with a 
time difference of less than 5 min to each other could be ascribed to 
the same group of animals, creating an ‘independent event’ (Henrich 
et al., 2022) (referred to as ‘full dataset’). We tested the influence 
of different time interval thresholds for the definition of an inde-
pendent event on the resulting number of events and found stable 
results for thresholds between 5 and 60 min (Henrich et al., 2022, 
Figure S1). (2) Additionally, we randomly sampled 120 events with at 
least two photo series per species from the data set and randomly 
selected two consecutive photo series from within these events (re-
ferred to as ‘events checked dataset’). The first 100 sampled pairs of 
photo series of each species were manually checked to make sure 
that they showed the same individuals that did not leave the FOV 
between photo series with a high probability (based on body char-
acteristics and the movement path of the animals across the FOV). 
For both red deer and roe deer, 15 events were excluded because 
these criteria were not met, while this was the case for 35 events in 
wild boar. These events were replaced by consecutive pairs of photo 
series from the remaining 20 events of each random sample. (3) The 
data set was further reduced to observations within a distance of 
7.5 m, for which a sample size of 50 events was randomly selected 
from the appropriate subset of events for each species. A post was 
placed at a distance of 7.5 m from the camera trap at each camera 
trap location, allowing an easy assignment of animals to distances 
below or above that threshold (referred to as ‘within 7.5 m dataset’). 
The proposed statistical approach to derive the mean time interval 
between triggers was only applied to the full data set. Empirically 
derived estimates of the mean time interval between triggers were 
calculated for all three datasets.

We tested the influence of different truncation times T on the 
estimated mean time interval between triggers in the range of 15.5–
40.5 s. To explore potentially more objective choices for selecting T, 
we also assessed two other truncation times when calculating T em-
pirically. First, we selected T as the value corresponding to the third 

quartile of the data. Second, we set T to the value corresponding to 
50% of the area under the curve of the histogram of time intervals 
between pairs of consecutive images. For doing this, we used the 
function ‘smooth. spline’ in R and set the smoothing parameter to 
0.1. We then used the function ‘integrate’ to derive the value that 
corresponded to 50% of the area under the curve.

Last, we calculated the extent to which density D would be un-
derestimated, when not accounting for reduced temporal survey 
effort due to longer-than-expected mean time intervals between 
triggers. Reference estimates for summer (June–August 2018), 
autumn (September–November 2018), winter (December 2018–
February 2019) and spring (March–May 2019) were derived from a 
CTDS analysis applied to the full data set, using the first photograph 
of each photo series as a snapshot moment. For red deer and roe 
deer, they are equivalent to those presented in Henrich et al. (2022). 
For wild boar, the parameters were derived in the same way. We 
repeated the same analyses, but set t̂  to 2, 6 and 9 s to represent the 
manufacturer specified recovery time, as well as the minimum time 
interval and the mean time interval between triggers as derived in 
the experimental setting. In addition, we filtered the data set to pre-
defined snapshot intervals t = 2 s, t = 6 s and t = 9 s, decreasing nk and 
affecting the estimate of the time spent active per day before recal-
culating the population density with CTDS to assess biases when 
using the snapshot approach.

We assumed a common camera recovery time model, and spe-
cies-specific retrigger delay models due to different movement be-
haviours among species. Assumed prior distributions are presented 
in Table 1. A Metropolis-Hastings algorithm was used with 10,000 
iterations, including a burn-in period of 4000 iterations.

3  |  RESULTS

When the time interval between photo series was tested experi-
mentally, the mean was 8.82 s across 10 camera traps with a range 
between 6.3 and 43.6 s across cameras (Table S1).

The sample sizes of time intervals between consecutive pictures 
were 2024, 5872 and 815 for wild boar, red deer and roe deer, re-
spectively. The time interval distributions for all three species are 
similar with a peak around 10 s and a long tail (Figure 1). Subsets of 
the data (n = 100) including only intervals between pictures with the 

TA B L E  1 Prior distributions for the shape parameter α and rate 
λ of the truncated Gamma distribution, and the species-specific 
rates μ1, μ2, μ3 (corresponding to red deer, roe deer and wild boar, 
respectively) for the exponential distribution.

Parameter Prior distribution

α lognormal(log(40), 1.0)

λ lognormal(log(4.5), 1.0)

�1 lognormal(log(0.4), 1.0)

�2 lognormal(log(0.4), 1.0)

�3 lognormal(log(0.4), 1.0)
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6 of 14  |     KÜHL et al.

same animals (data set 2) show the same distribution pattern as the 
full data set (data set 1), but with a considerably reduced tail. When 
filtering for intervals between consecutive pictures with the same 
animals (n = 50) that are within 7.5 m to the camera (data set 3), the 
time interval distribution does not change.

Mean time intervals between triggers were similar regard-
less of whether they were estimated from the full or the reduced 
data sets, but differed with truncation time T (Table 2, Figure 2). 

Exemplified by setting T to the 3rd quartile of the time interval 
data, estimates for the different data sets were within less than 
1.5 s for each species and data set, with the exception of the full 
data set for wild boar which differed by a maximum of 1.96 s rela-
tive to the other two data sets. Setting T to the value representing 
50% of the area under the histogram curve (Figure S1) results were 
very similar with 13.21, 12.55 and 12.6 s for red deer, roe deer and 
wild boar, respectively.

F I G U R E  1 Time interval distributions between retriggers for the three species (red deer, roe deer, wild boar) for the full data sets (above), 
subsets (n = 100), including only intervals between pictures with the same animals (middle, n = 100) and subsets including additionally only 
those intervals for which animals were at short observation distances (bottom,  n = 50). The vertical red line indicates the 3rd quartile of the 
time interval distribution data.
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    |  7 of 14KÜHL et al.

When comparing the empirically derived mean time intervals be-
tween triggers with estimates based on the above formulated model 
for a range of truncation times T (15.5, 20.5, 25.5, 30.5 and 40.5 s) 
results were very similar between both approaches (Tables 2 and 3, 
Figure 3, trace plots in Figures S2–S7).

However, estimation of t is sensitive to the choice of truncation 
time T. Estimates of mean camera recovery time r decrease as T 
increases (Table 3). Estimation of mean retrigger delay v once the 
camera has recovered is even more sensitive to the choice of T and 
increases as T increases. Overall, estimated t seems to be less sensi-
tive to T than either estimated r or estimated v. Sensitivity is greatest 
for smaller choices of T.

The retrigger delay v differs among species and is estimated to 
be longest for red deer, followed by wild boar and roe deer (Table 3). 
This is similar, when comparing time intervals between consecutive 
pictures between red and roe deer within camera locations. Here, 
time intervals were longer for red deer in 65% of all cases, suggest-
ing behavioural differences between the species (Figure S8).

Estimates of t seem to asymptote already at values of T below 
50 s (Figure 3), reflecting the increasing gaps of time interval data 
between consecutive pictures with increasing values of T (Figure 1). 
However, with single, large values of time intervals between 

consecutive pictures, estimates of t then continue to increase with 
increasing values of T and only show clear asymptotic values of t at 
very large T (Figure 1, Figure S8).

As density scales directly with the mean time interval between 
triggers, the correct representation of t has a major influence on the 
potential bias of estimates (Figure 4, Table S2). Using the experimen-
tally derived mean across camera traps (rounded to 9 s) and lowest 
camera specific mean (6 s), population densities are underestimated 
by 18%–30% and 45%–53%, respectively.

This negative bias gets even stronger when analysing data with 
a snapshot approach, as a large proportion of data does not overlap 
with the predefined snapshot moments (Figure S9), leading to an un-
derestimation of 87%–96% irrespective of the choice of t (Table S2).

4  |  DISCUSSION

Camera trap surveys with PIR motion sensor-based recording of sin-
gle pictures or short bursts require the correct estimation of mean 
time intervals between triggers. When animals are present in the de-
tection zone, but are not recorded, effective survey duration is over-
estimated and estimation of density and abundance is downwardly 

TA B L E  2 Mean time intervals between consecutive triggers for red deer, roe deer and wild boar for the three different data sets.

Species Truncation time T [s]

Mean time intervals between triggers [s]

(1) Full data set
(2) Manually checked, same 
animals

(3) Manually checked, same 
animals and within 7.5 m

Red deer 3rd quartile 12.45 (4.36) [25 s] 12.96 (4.15) [23.5 s] 13.29 (5.12) [25 s]

15.5 10.5 (2.07) 11.04 (2.51) 10.79 (2.69)

20.5 11.56 (3.23) 12.17 (3.3) 11.76 (3.41)

25.5 12.45 (4.36) 13.27 (4.53) 13.29 (5.12)

30.5 13.32 (5.53) 14.5 (5.97) 14.67 (6.5)

40.5 14.65 (7.5) 15.41 (7.21) 15.05 (6.89)

None 26.74 (37.02) 24.87 (31.13) 24.36 (25.19)

Roe deer 3rd quartile 11.33 (4.74) [23 s] 11.6 (4.78) [23 s] 11.61 (4.02) [23 s]

15.5 9.58 (2.93) 9.88 (2.7) 10.24 (1.87)

20.5 10.47 (3.81) 10.39 (3.35) 10.97 (3.05)

25.5 11.54 (4.99) 11.92 (5.14) 11.92 (4.44)

30.5 12.15 (5.8) 12.55 (5.99) 12.38 (5.23)

40.5 13.22 (7.47) 13.82 (7.79) 14.36 (8.1)

None 27.32 (40.5) 25.48 (35.77) 25.2 (36.2)

Wild boar 3rd quartile 12.14 (4.81) [27 s] 10.72 (2.42) [17.25 s] 10.03 (1.62) [14 s]

15.5 10.07 (2.18) 10.33 (1.99) 10.28 (1.92)

20.5 11.05 (3.29) 10.82 (2.55) 10.55 (2.24)

25.5 11.78 (4.29) 11.09 (3.04) 10.79 (2.73)

30.5 12.64 (5.55) 11.54 (4.11) 11.6 (4.64)

40.5 13.87 (7.45) 12.34 (5.81) 12.15 (5.92)

None 30.13 (44.2) 25.68 (36.32) 19.06 (31.96)

Note: Standard deviations are shown in parentheses. The truncation time T of the respective data set, corresponding to the 3rd quartile of the raw 
time difference between consecutive photographs within the same event is shown in square brackets.
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8 of 14  |     KÜHL et al.

F I G U R E  2 Comparison of mean time intervals between triggers for the three data sets and species with truncation time set to the 3rd 
quartile of the full data set (above: no truncation of datapoints; below: truncation of datapoints for better visibility of differences in mean 
time intervals between triggers).
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    |  9 of 14KÜHL et al.

biased. Clearly, this effect depends on the species studied, habitat, 
camera models and deployment method. Previous studies have sug-
gested to derive the mean time interval between triggers from ex-
perimental testing of cameras, for example using minimum retrigger 

time. Our statistical approach offers a possibility to estimate mean 
time intervals between triggers from the time interval distribution 
of consecutive camera trap pictures. As observed in the field, es-
timated mean time intervals between triggers exceed the recovery 

Ê(r) Species Ê(v) Ê(t) 95% CI

T = 15.5

9.56 (0.08) Red deer 1.17 (0.10) 10.74 (0.06) 10.63, 10.85

Roe deer 0.30 (0.08) 9.86 (0.09) 9.69, 10.04

Wild boar 0.64 (0.08) 10.20 (0.07) 10.06, 10.34

T = 20.5

8.26 (0.09) Red deer 4.12 (0.18) 12.38 (0.13) 12.15, 12.65

Roe deer 2.73 (0.20) 10.99 (0.18) 10.65, 11.35

Wild boar 3.08 (0.16) 11.33 (0.13) 11.09, 11.60

T = 25.5

7.94 (0.06) Red deer 5.37 (0.16) 13.31 (0.14) 13.05, 13.58

Roe deer 3.64 (0.22) 11.58 (0.21) 11.19, 12.00

Wild boar 4.10 (0.15) 12.04 (0.14) 11.78, 12.32

T = 30.5

7.69 (0.06) Red deer 6.50 (0.17) 14.19 (0.15) 13.91, 14.52

Roe deer 4.43 (0.23) 12.12 (0.22) 11.70, 12.57

Wild boar 5.31 (0.19) 13.00 (0.18) 12.67, 13.37

T = 40.5

7.46 (0.06) Red deer 7.85 (0.17) 15.31 (0.15) 13.91, 14.52

Roe deer 5.47 (0.27) 12.93 (0.26) 11.70, 12.57

Wild boar 6.72 (0.19) 14.18 (0.19) 12.67, 13.37

TA B L E  3 Estimates of mean camera 
recovery time Ê(r), mean retrigger delay 
Ê(v) and mean interval Ê(t) (standard 
errors in parentheses) for truncation 
values of T = 15.5, 20.5, 25.5, 30.5 and 
40.5 s. Also shown are 95% credible 
intervals for mean interval.

F I G U R E  3 Mean time intervals between triggers as a function of truncation time for the three data sets (a—full, b—events checked, c—
only distances up to 7.5 m) and the model-based estimates (d). The vertical lines indicate the 3rd quartile of the time interval data for the 
three species.

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10599 by N

orw
egian V

eterinary Institute, W
iley O

nline L
ibrary on [12/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 14  |     KÜHL et al.

time specified by the manufacturer and are also longer than ex-
perimentally derived intervals, since animals available for detection 
within the FOV do not constantly move and thus do not immediately 
retrigger the camera.

The proposed approach is more time-effective, once pro-
grammed, compared with manual processing of data that requires 
filtering for a ‘clean’ subset containing only intervals between con-
secutive pictures with the same animal for deriving the mean time 
intervals between triggers. This is particularly the case in multi-spe-
cies surveys, when different species show different behaviours that 
cause the mean time interval between triggers to be longer than 
camera recovery time. The tracking of individuals across photo se-
ries and data processing would be very demanding. As density scales 
directly with t (Equations 2 and 4) in the CTDS model formulation, 
it is essential to derive effective survey duration with sufficient ac-
curacy to avoid downwardly biased estimates of density. Thus, in 
CTDS surveys that use PIR motion sensor-based recording of single 
pictures or short bursts, the parameter t originally defined as a pre-
determined snapshot interval, needs to be replaced by the estimated 
mean time interval between triggers.

4.1  |  Trade-offs in defining truncation times

Estimation of the mean time interval between triggers is clearly 
sensitive to the choice of truncation time T. This is partly because 
observations of the same animal are increasingly mixed with obser-
vations of different animals when T gets larger. It is also possible that 
the same individual leaves and returns to a site, causing longer time 
intervals between subsequent triggers. In addition, an animal may 
be in the field of view, but shortly not visible, for example due to 
vegetation cover. This is indistinguishable from situations where ani-
mals remain stationary in the FOV and do not trigger the camera for 
a while. Whereas the latter contributes to the mean time intervals 
between triggers, the former does not.

For our cleaned data set (events checked data set), we had to 
remove 15 events for red and roe deer and 35 for wild boar, as they 

contained different individuals in consecutive picture series. This 
result suggests that truncation time T cannot extend over several 
minutes to avoid contamination of the time interval distribution be-
tween consecutive pictures. This will, however, certainly differ be-
tween species, their densities and habitats. If the chosen T is too 
large and includes a high proportion of time intervals between con-
secutive pictures with different individuals, the mean time interval 
between triggers will be biased upwards.

Although it would require additional cameras at a location to 
prove with certainty that an animal has left a spot and returned to it 
some time later, we found that leaving and returning likely contrib-
utes to longer estimated mean time intervals between triggers. By 
comparing pairs of consecutive images, we could not exclude the 
possibility that in 4%, 7% and 11% of image pairs red deer, roe deer 
and wild boar left and returned to the FOV within short time peri-
ods. Filtering those image pairs would lead to a reduction in esti-
mated mean time intervals between triggers with the exception of 
wild boar (red deer: 12.02/12.96, roe deer: 10.42/11.06, wild boar: 
11.6/10.42).

In our study, a T around 15 s seems to be insufficient to estimate 
the rate of the exponential distribution separately from fitting the 
gamma distribution, even though the precision of the model esti-
mates is high. The trace plots improve as T increases, perhaps be-
cause of strong correlations between parameters when truncation 
is too severe (and λ are highly correlated, but no other correlations 
are close to one). To give more information for estimating the ex-
ponential rate, we need to take a larger value of T. However, the 
larger the value we choose, the greater the risk of contaminating the 
time interval distribution by including new animals or leaving and 
returning animals. This has the effect of widening the tail of the ex-
ponential distribution, which increases the estimated mean retrigger 
delay. The choice of T is therefore a compromise and requires careful 
consideration.

In principle, estimates of the mean time intervals between trig-
gers must show asymptotic values with increasing T. This is also what 
we found in our study. However, as we likely did not have a ‘fully 
clean’ data set with only pairs of the individuals that did not leave 

F I G U R E  4 Population density estimates with CTDS for data sets of PIR sensor-triggered photographs of red deer, roe deer and wild boar. 
The snapshot intervals t was calculated for the reference estimates by truncating the intervals between detections within independent 
events (consisting of photographs with a time difference in <5 min to each other) at the third quartile and computing the mean between 
successive triggers. In the other scenarios, the workflow was the same, but t was set to a different value (indicated in legend as t*), or the 
whole data set was subsampled to a predefined snapshot interval t. Error bars indicate the 95% confidence interval.
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    |  11 of 14KÜHL et al.

the FOV, we consider the asymptotic values of t in this study as too 
large, and we offer suggestions for choosing T below.

4.2  |  Species-specific behavioural differences

Some animal species may in general exhibit fewer micro-move-
ments that can potentially trigger a PIR sensor than others, for 
example short moments where an animal barely moves during 
foraging.

In some cases, animals may, however, also freeze in response 
to camera traps. In our data set, 19% of the roe deer and 34% of 
the red deer events included some form of behavioural reaction to 
the camera trap (Henrich et al., 2022), as well as 16% of wild boar 
events. Failure to account for behavioural responses to camera traps 
can strongly bias estimates of animal density, when they affect the 
staying time or position of animals in the FOV (Bessone et al., 2020; 
Houa et  al.,  2022). While behavioural responses can be corrected 
for when they can be classified as such (Delisle et al., 2023, submit-
ted for publication), their effect on the retrigger delay v in data sets 
of PIR sensor-triggered photographs cannot be directly observed. 
With our proposed approach to estimate t, the effect of species-spe-
cific reactions to camera traps on this parameter can however be 
considered.

4.3  |  Practical considerations and 
implementation effort

Before a survey is started, a series of experiments can be con-
ducted with the camera traps for evaluating the potential range 
of camera recovery times. Camera recovery times likely not only 
differ among camera models (often specified between 1 and 10 s, 
e.g. Palencia et al., 2022) but differ also considerably among cam-
eras of the same type and even within the same camera over time. 
Using all or, if the number of cameras to be used is large, a subset 
of the cameras for assessing variation in recovery time before a 
survey can deliver important information. However, factors that 
potentially influence camera recovery time can be manifold, in-
cluding ambient temperature, humidity, state of memory, writ-
ing speed on memory cards and energy supply. As these factors 
will change during the course of a survey, any exploration of and 
testing before a survey can not replace the correct estimation of 
survey specific mean time intervals between triggers across the 
used set of cameras and under the prevailing field conditions upon 
completion of the survey. Similarly, these experiments should in-
clude the testing of different sensitivity settings of the cameras 
and resulting impact on retrigger delays. Experimental testing 
can help finding a useful setting that avoids both excessive re-
triggering of cameras due to overly sensitive settings and insuf-
ficient retriggering due to sensitivity settings that lead to longer 
delays. In pilot studies prior to the start of a survey, it may also 
be tested, whether animal reactions towards camera traps may 

require including retrigger delay v in the calculation. Ideally, this 
is tested under field conditions, where some occlusion at larger 
distances may occur due to vegetation. Distance-dependent re-
trigger times would require limiting estimation of the mean time 
intervals between triggers of the camera traps to short distances 
to avoid interference with reduced detection probability at large 
distances when estimating animal abundance (i.e. the estimation 
of detection probability as a function of distance). If it is clear, for 
example from prior surveys that there are no behavioural reac-
tions of animals to cameras, retrigger delays from natural behav-
iour are negligible and experimentally derived camera recovery 
time shows little variation under different conditions, it should be 
sufficient to just use the experimentally derived value for t.

While we consider it as appropriate to model the mean time in-
terval between triggers with a common camera recovery time when 
estimating overall density and abundance for a survey, this may re-
quire a different approach when making local scale predictions for 
spatial models. If differences in camera recovery time are large, lo-
cation-specific estimates for camera recovery time may be needed 
to avoid biases in predictions.

After a survey has been completed, the time interval data should 
be manually inspected for each species. This is needed to select a 
suitable truncation time T, which may differ between species. For 
comparison with the statistical estimator of mean time intervals 
between triggers Ê(t), a subset of the time interval data between 
consecutive recordings should be filtered for only those pictures be-
longing to the same animal to get a ‘clean’ time interval distribution 
that is not contaminated with time intervals between pictures be-
longing to different animals. This subset can be further filtered to a 
subset with only short camera–animal observation distances, as we 
did in our study.

This data filtering will help to identify a meaningful truncation 
time T that largely excludes time intervals between consecutive pic-
tures showing different animals but keeps time intervals between 
consecutive pictures of the same individuals that stay in the detec-
tion zone. Even for wild boar, where consecutive photographs were 
most frequently from different individuals because of their larger 
group sizes, the differences between the data sets were small in our 
case study. The careful exploration of the frequency distribution 
will further aid in the identification of a useful truncation time T. 
Furthermore, the repeated estimation of mean time intervals be-
tween triggers ̂E(t) using different values for T will also help to assess 
whether and when Ê(t) starts to asymptote.

The use of the 3rd quartile of the time interval distribution be-
tween consecutive pictures or the value at 50% of the area under 
the curve, as done in our study, requires further investigation. Our 
justification for use was solely based on inspection of the frequency 
distribution of interval data between consecutive pictures (see 
Section 4.5).

The effort to implement the proposed method and to calculate 
the mean time interval between retriggers is minimal. Extracting 
the dates and times from camera trap still images can be done auto-
matically. Running the code provided with this study will take a few 
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12 of 14  |     KÜHL et al.

minutes to hours per species, including calculation of variances, de-
pending on sample sizes and computational resources. The required 
manual effort is only a small fraction compared to other elements of 
the workflow to estimate population density of unmarked species 
from camera trapping data.

4.4  |  Validation of population density estimates

In our field study, true population density is unknown as free-liv-
ing deer cannot be counted directly and the rates of births, deaths, 
immigration and emigration cannot be quantified easily. However, 
estimates of the summer densities of red deer could be directly com-
pared with an independent estimate obtained by spatially explicit 
capture–recapture (SECR) analyses, based on the genotyping of fae-
ces sampled in the same area. Using a mean time interval between 
triggers based on setting T to the third quartile resulted in CTDS 
estimates that were very similar to the SECR estimates, with a high 
overlap of the 95% confidence intervals (Tourani et al., 2023). The 
same was true for REM estimates obtained with the same data set 
and GPS telemetry-derived movement speed estimates (Henrich 
et al., 2022).

4.5  |  Recommendations for future research

The formal approach we presented here is one way towards including 
non-observation times routinely into estimating animal abundance. 
We recommend that users of CTDS with trigger-based recording of 
images include the proposed approach into their estimation of ani-
mal abundance, if it cannot be excluded that animal behaviour leads 
to retrigger delays. It should be tested how much animal abundance 
estimates change by including our approach for deriving values for t. 
It would be very useful to validate CTDS with trigger-based record-
ing of images in populations of known sizes using the proposed ap-
proach. This would help to better understand the magnitude of the 
effect of non-observation times and the usefulness of the suggested 
approach compared to, for example experimental testing of camera 
recovery time.

The absence of an objective criterion for selecting T leaves also 
potential for future research. It would be important to better under-
stand how longer time intervals between triggers are generated. It 
is possible that time intervals, say longer than 40–50 s, are primarily 
not caused by non-moving animals, but by the same animals leaving 
and returning to the camera site. Consequently, these time intervals 
are not relevant for calculating mean time intervals between triggers 
and finding a solution to discriminate between the two would be 
very useful. This could be studied by installing more than one cam-
era at a location to observe animal behaviour and movement from 
different angles. This may also help to understand when estimated 
mean time intervals between triggers asymptote as a function of T. 
Furthermore, the use of AI approaches to remove pairs of images 
with different individuals would help to pre-filter or classify data and 

to make more informed selections of T and thus obtain more accu-
rate estimates of t.

It could also be assessed whether fixing camera recovery time 
to the value derived from an experimental setup and only estimat-
ing v would help in deriving mean time intervals between triggers. 
Similarly, it would be interesting to assess whetherv is distance de-
pendent and animals at larger distances are more likely to go un-
detected because stronger movements are needed to trigger the 
camera traps. Even if technological advancements of camera traps 
potentially reduce the camera recovery time r to a negligible dura-
tion, the issue of retrigger delay v, affected by non-moving animals 
within the FOV, will remain and will need to be considered.

5  |  CONCLUSION

Camera trap surveys relying on PIR motion sensor-based record-
ing of pictures have to deal with non-observation times caused 
by camera recovery times and possibly also retrigger delays due 
to non-moving animals. The estimation of effective survey dura-
tion is critical to avoid underestimation of animal density. The sug-
gested approach helps estimating mean time intervals between 
triggers without time-consuming manual processing of pictures. 
Our findings show that estimated mean time intervals between 
triggers are very similar to empirically derived estimates based on 
manually filtered data sets. Nevertheless, the suggested approach 
still has limitations, as the estimation of the mean time interval 
between triggers is sensitive to the choice of the truncation time 
of interval data. However, the advantages of accounting for non-
observation times will likely offset potential inaccuracies in the 
estimator for reducing underestimation of animal abundance, and 
future development should lead to an improved performance of 
the estimator.
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