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Sammendrag 

Boreale skogområder er under påvirkning av klimaendringer og økt menneskelig aktivitet. I 

dette økosystemet er elgen (Alces alces) en nøkkelart. Elgen er av høy kulturell og økonomisk 

betydning og viktig for livsopphold i bygdesamfunn.  Nedgang i elgbestander flere steder i 

nyere tid kan knyttes til økosystemendringer og mulige effekter av menneskelig aktivitet og 

infrastruktur. I denne avhandlingen har jeg utviklet modeller for å studere effekter av 

forstyrrelse på atferd og energiforbruk til ville elger ved hjelp av biologgingsdata samlet inn 

fra GPS- og akselerasjonssensorer festet på elghalsbånd. I første artikkel brukte jeg 

atferdsobservasjoner av merkede elger i fangenskap til å utvikle en maskinlæringsmodell som 

klassifiserer et gitt intervall i akeslerasjonsdataene til én av syv vanlige atferdskategorier. I 

andre artikkel brukte jeg data fra hjerteloggere og akselerasjonssensorer på elg i fangenskap 

til å predikere hjertefrekvens fra akselerasjonsdata. Jeg illustrerer bruken av denne modellen 

sammen med en publisert ligning som kvantifiserer forholdet mellom elgens hjertefrekvens 

og energiforbruk til å beregne elgens energiforbruk fra akselerasjonsdataene. I tredje artikkel 

brukte jeg modellene utviklet i artikkel I og II til å undersøke i detalj hvordan ville elger 

responderte på eksperimentelle forstyrrelser. Jeg designet en atferdsstudie der jeg 

systematisk nærmet meg ville elger som var merket med halsbånd med GPS- og 

akselerasjonssensorer, enten til fots eller med truger, om sommeren, under elgjakten, og om 

vinteren. Jeg kvantifiserte elgenes atferd og energiforbruk under tilnærmingsforsøket 

sammenlignet med kontrollperioder, og undersøkte effekten av avstand til forstyrrelsen, 

årstid, og tid på døgnet. Tilnærmingsforsøkene førte til at elgen brukte mer tid på forflytning 

og mindre tid på matinntak, spesielt i de første ti minuttene etter forstyrrelsen, med generelle 

endringer i atferd og energiforbruk som varte i opptil tre timer. Elgenes respons varierte med 

årstid; tilnærmingsforsøk med kortere avstand ga en kraftigere fluktrespons om sommeren og 

om vinteren enn i jaktsesongen, mens flukten startet tidligere og varte lenger om vinteren. 

Elgens energiforbruk var høyest etter tilnærmingsforsøk om morgenen sommerstid. Mine 

funn beskriver elgers respons på forstyrrelse på et detaljnivå som ikke er gjort tidligere, og 

belyser de negative effektene av forstyrrelse for ville elgers energibudsjett. Funnene kan 

informere fremtidige studier som tar sikte på å kvantifisere kumulative effekter av forstyrrelse 

og konsekvenser av gjentatte forstyrrelser for ville elger.   
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Abstract 

Boreal forests are experiencing disturbances from climatic changes and increased human 

activity. In this ecosystem, moose (Alces alces) are a keystone species. They are of high cultural 

and economic significance and important for subsistence in rural communities. Recent 

declines in several moose populations have implicated ecosystem changes and potential 

effects from human activity and infrastructure. In this thesis, I developed models to study the 

effects of disturbances on the behavior and energy expenditure of wild moose using 

biologging data collected by collar-mounted GPS and accelerometer units. In Paper I, I used 

behavioral observations on collared captive moose to develop a machine learning model 

predicting one of seven common behaviors for any given interval in the accelerometer data. 

In Paper II, I used data from heart rate loggers and accelerometer collars in captive moose to 

predict heart rate from accelerometer data. I illustrate the use of my model in concert with a 

published equation quantifying the relationship between moose heart rate and energy 

expenditure, to calculate moose energy expenditure from accelerometer data. In Paper III, I 

used the models developed in Papers I and II to investigate the detailed responses of wild 

moose to experimental disturbances. I designed a behavioral response study during which I 

systematically approached collared moose on foot or snowshoes in the summer, during the 

hunting season and in winter. I quantified the behavior and energy expenditure of the moose 

during the approaches relative to control periods and investigated the effect of distance to 

the disturbance source, season, and time of day. The disturbances resulted in increased 

locomotor activity and decreased foraging activity, particularly in the first ten minutes 

following the approach, with overall changes in behavior and energy expenditure lasting up 

to three hours. The disturbance response varied by season; close approaches elicited a 

stronger flight response in summer and winter than in the hunting season, while the onset of 

flight was sooner and lasted longer in the winter. Energy expenditure was highest following 

approaches during summer mornings. My findings describe moose disturbance response in 

unprecedented detail and elucidate the negative effects  of disturbances on the energy budget 

of wild moose. The models I developed in this thesis can improve the study of wild moose 

behavior and energy budgets. They can inform future studies aiming to quantify cumulative 

effects of disturbances and consequences of repeat disturbances on wild moose.   
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Introduction  

Wildlife in the Anthropocene  

Humans have been exerting such large influences on natural systems that they were proposed 

as namesake for the current geological epoch (Crutzen 2002). This epoch, the Anthropocene, 

is seeing a shifting of climatic zones and a steady encroaching of humans and their 

infrastructure on wildlife habitat (Alkemade et al. 2009, Pirotta et al. 2022). The perception of 

human activity by wildlife can resemble the threat they perceive in the presence of a predator 

(Frid & Dill 2002). Wildlife perceiving a threat may try to avoid it by adjusting what they do, 

when they do it, where and how (Lima & Dill 1990). For example, increasing human activity 

can lead to increased nocturnality of animals to minimize temporal overlap, thereby sharing 

space while simultaneously minimizing the chance of an encounter (Gaynor et al. 2018). This 

example illustrates the continuous adjustment of an animal’s decisions in order to survive in 

a “landscape of fear” – a landscape with spatio-temporal variation in perceived predation risk 

(Brown et al. 1999, Laundre et al. 2010, Gaynor et al. 2019). Responding to perceived 

predation risk can lead to risk effects; changes in behavior, space use and energy expenditure 

(Frid & Dill 2002, Preisser & Bolnick 2008, Creel et al. 2009, Suraci et al. 2019). For example, 

increased home range sizes of eagles (Aqulia fasciata) (Perona et al. 2019) and increased 

distances of bighorn sheep (Ovis canadensis nelson) to hiking trails (Longshore et al. 2013) on 

weekends illustrate the “weekend effect”; changes in animal movement and behavior 

resulting from increased risk effects of increased human recreational activity on weekends. 

On a larger scale, changes in wildlife behavior and distribution during the “Anthropause”, a 

period of suppressed human mobility due to lockdown policies during the COVID-19 pandemic 

(Rutz et al. 2020), illustrate the restrictions imposed on wildlife by human activity (Bates et al. 

2021, Tucker et al. 2023).  

Using biologging tools to study wildlife behavior and energetics 

Animal-borne devices that transmit or store information on the animal’s position, behavior 

and physiology are commonly referred to as biologging tools (Rutz & Hays 2009, Wilmers et 

al. 2015) and frequently used in studies of human disturbances effects on wildlife (MacArthur 

et al. 1979, Johnson & Tyack 2003, Tucker et al. 2023). The field of wildlife biologging benefits 



2 
 

from improvements in sensor technology driven by the high demand for personal electronics 

like smartphones and fitness trackers (Wilmers et al. 2015, Majumder & Deen 2019, Fahlman 

et al. 2021). An important type of sensor in personal electronics, accelerometers record fine-

scale movements in a functional principle analogous to the vestibular system in the inner ear 

of vertebrates (Angelaki & Cullen 2008, Khan & Chang 2013, Pfaff et al. 2019). Worn on the 

body, they can be used for a wide range of purposes, for example to count steps and detect 

falls (Presset et al. 2018, Majumder & Deen 2019). In wildlife biologging studies, 

accelerometers facilitate the study of a wide range of phenomena from disease infection in 

cockroaches (Blaberus craniifer) (Wilson et al. 2014) to the heart rate of blue whales 

(Balaenoptera musculus) (Czapanskiy et al. 2022). They can also be used to distinguish 

between active and inactive states and among a range of distinct behaviors in a variety of 

species (Watanabe et al. 2005, Shepard et al. 2008, Wilson et al. 2008, Nathan et al. 2012). 

Furthermore, overall dynamic body acceleration (ODBA) – a signal extracted from the 

accelerometer data – is a metric of body movement that is correlated with energy expenditure 

and can thus be used as accelerometer-derived proxy for energy expended on body 

movement (Wilson et al. 2006, Green et al. 2009, Halsey et al. 2009). For example, a recent 

study deployed collars with accelerometers on wild pumas (Puma concolor) and used overall 

dynamic body acceleration to show that navigating a landscape of fear of humans increased 

puma energy expenditure (Nickel et al. 2021). 

Ecological importance of moose 

Moose (Alces alces) are a keystone species of the boreal forests with a circumboreal range 

(Molvar et al. 1993, Bowyer et al. 1997, McCulley et al. 2017, Schmitz et al. 2018, Leroux et al. 

2020, Petersen et al. 2023). Their English name is derived from Algonquian words describing 

the tendency of moose to eat twigs and bark (Fraser et al. 1984, Reeves & McCabe 2007, 

Jackson 2008), illustrating the importance of browsing activity (the consumption of woody 

vegetation) for this species (Bowyer et al. 1997). Through their browsing activity, moose can 

alter plant composition in their habitats (Pastor et al. 1988, Molvar et al. 1993, Bowyer et al. 

1997, Kielland & Bryant 1998). The high lignin content of their browse promotes rapid passage 

of food through their digestive tract, leading to a high through-put of ingested plant material 

(Schwartz 1992) and a rapid deposition and distribution of excreted nutrients in their 

surroundings (Molvar et al. 1993). The fertilizing effects of moose activity, together with 
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effects of browsing activity on plant growth and community composition, illustrate the 

ecological role of moose as ecosystem engineers (Pastor et al. 1988, Molvar et al. 1993, 

Bowyer et al. 1997, Kielland & Bryant 1998, Persson et al. 2000). Furthermore, moose 

(especially calves) are important prey for many species including bears (Ursus americanus, U. 

arctos), wolves (Canis lupus), red foxes (Vulpes vulpes), ravens (Corvus corvax), wolverines 

(Gulo gulo) pine marten (Martes martes), Eurasian jays (Garrulus glandarius) and goshawks 

(Accipiter gentilis) (Timmermann & Rodgers 2005, Wikenros et al. 2013, Ausilio et al. 2023). 

Moose take advantage of the high productivity of the boreal forests during the short 

vegetation period in high latitudes to deposit fat and protein reserves before entering a period 

of negative energy balance during long, cold winters (Schwartz 1992, Sand et al. 1995). 

Physiological adaptations, including seasonal hypometabolism and reduced activity, lower 

energy requirements during winter (Renecker & Hudson 1986, Risenhoover 1986, Cederlund 

1989, Græsli et al. 2020b). Due to the tight coupling of moose biology to the productivity 

pulses of the boreal forest, moose can be seen as indicator species for the state of this 

ecosystem (Snaith & Beazley 2002, Moen et al. 2006, Gaillard 2007, Gauthier et al. 2015). 

Morphological adaptations of moose 

Many descriptions of moose consider their – in the words of Henry David Thoreau – 

“grotesque and awkward” (Thoreau 1864, Jackson 2008) appearance a trademark of the 

species. Some of the most prominent features of moose are adaptations facilitating survival 

in habitats characterized by high predator abundances and long periods of cold winters and 

deep snow: Their legs are long and jointed in a way that allows a greater range of motion and 

the small hoofs and dewclaws are splayable, together facilitating long-strided locomotion on 

soft substrate and in rough terrain and deep snow (Schwartz 1992, Geist 1999, Bubenik 2007) 

and enabling moose to outperform predators in the obstacle course of uneven terrain 

(McMillan 1954, Lindstedt et al. 1991, Geist 1999, Wirsing et al. 2021). Females accompanied 

by calves with limited locomotor abilities, and moose that sink into deep snow while their 

lighter predators are able to run on the hardened surface, can successfully stand their ground 

and confront predators, aided by their large body sizes (Geist 1999, Ballard & Ballenberghe 

2007) which also reduce heat loss in low temperatures (Geist 1987, Bowyer et al. 1997). Such 

aggressive anti-predator behavior appears to be more prominent in moose in North America 
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compared to moose in Europe, which may result from higher densities of large carnivores in 

North America (Geist 1999, Sand et al. 2006, Ericsson et al. 2015). 

Adaptations that allow moose to thrive in cold conditions, such as their large body size and 

thick, insulating fur, may hamper their tolerance of elevated temperatures. Moose do not 

sweat and thus have to rely on behavioral thermoregulation at high temperatures, such as 

seeking out thermal refuges characterized by shade, wet soil and increased wind speeds 

(McCann et al. 2013, 2016, Thompson et al. 2021, Verzuh et al. 2021, 2023), clearing bed sites 

from plant debris to increase contact with cold soil (Olson et al. 2016) and reducing activity 

(Dussault et al. 2004, van Beest & Milner 2013, Thompson et al. 2021, Verzuh et al. 2023). 

Where a reduction in activity limits time spent foraging, behavioral thermoregulation can 

affect energy intake (Renecker & Hudson 1992, van Beest et al. 2012). The ability to 

adequately adjust behavior to prevailing climatic conditions can affect body condition and 

ultimately survival (van Beest & Milner 2013), emphasizing the importance of availability of 

thermal refuges connected to foraging habitat for moose population health (van Beest & 

Milner 2013, Elmore et al. 2017, Thompson et al. 2020, 2021, Verzuh et al. 2023). 

Impacts of environmental stressors on moose populations 

The availability of browse and thermal cover (such as conifer canopies) limits moose 

distributional range in cold climate zones, and heat and the availability of thermal refuges in 

warm climate zones (Timmermann & McNicol 1988, Karns 2007, Nadeau et al. 2017). Several 

populations in warmer climate zones in North America, often located at the southern edge of 

the distributional range, have declined in recent years (Murray et al. 2006, Lenarz et al. 2010, 

Monteith et al. 2015, Timmermann & Rodgers 2017, Nadeau et al. 2017), likely due to a 

combination of factors: Warmer temperatures can negatively affect female body condition, 

reproductive rates, and calf survival due to increased thermoregulatory costs and accelerated 

vegetation growth in spring (Monteith et al. 2015). Warmer temperatures can also lead to 

increased parasite loads and may interact with disease transmission and malnutrition, 

resulting in lower pregnancy and increased mortality rates (Murray et al. 2006, Jones et al. 

2019). Declining body size and life span of moose in Isle Royal National Park, USA, over the 

last four years were correlated with increasing temperatures (Hoy et al. 2018).  
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Uncertainty around estimated impacts of risk effects on individual moose  

Risk effects from human activity and infrastructure can have effects similar to, and may also 

compound, environmental stressors: Short relative telomere lengths – an indicator of chronic 

stress – were found in moose in southern Sweden in areas characterized by high levels of 

human activity and infrastructure as well as increased temperatures (Fohringer et al. 2022). 

Comparably short relative telomere lengths were found in moose living in extreme 

environmental conditions including deep snow and limited forage availability (Fohringer et al. 

2022). In contrast, moose living in areas with less anthropogenic activity and infrastructure 

and in a less extreme environment had longer relative telomere lengths (Fohringer et al. 

2022). Cortisol concentrations in moose hair – an indicator of stress – were correlated with 

proximity to wolf territories and average temperatures, but not with indicators of human 

activity and infrastructure (Spong et al. 2020). This might suggest that anthropogenic factors 

did not affect the stress levels of moose on this study. However, risk effects from humans may 

be expressed not in hormonally mediated chronic stress but in behavioral changes depressing 

foraging activity and thus causing nutritional stress (Creel et al. 2009), as observed in elk 

(Cervus elaphus) under wolf (Canis lupus) predation in the Greater Yellowstone Ecosystem 

(Creel et al. 2009). The contrasting results of these studies illustrate the uncertainty that 

currently exists regarding long-term impacts of risk effects on individuals. Risk effects can also 

be confounded by other factors (such as climate) (Fohringer et al. 2022), especially when 

exposure to disturbance is inferred from proxies (such as distance to or density of roads and 

settlements) (Spong et al. 2020) rather than explicitly measured (Colman et al. 2017). 

Understanding disturbance effects on individuals is important because disturbance-induced 

changes to behavior and physiology affect individual survival and reproduction, which can 

translate to population-level consequences (DeRuiter et al. 2017, Pirotta et al. 2018). Models 

investigating population consequences of disturbances often use nutritional status (body 

condition) as link between individual disturbance effects and population consequences 

(Nowacek et al. 2016, Pirotta et al. 2018, Gallagher et al. 2021), illustrating the importance of 

understanding how risk effects impact energy acquisition (foraging behavior) and expenditure 

(Creel et al. 2009). 
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Historical importance of moose for humans 

The lives of moose and humans have been intricately linked for thousands of years. Moose 

hunting was a critical source of food for hunter-gatherers and sometimes the main food 

source ensuring survival in the absence of other prey species during winter (Timmermann & 

Rodgers 2005, Reeves & McCabe 2007, LeBlanc et al. 2011, Larsson et al. 2012, Westman et 

al. 2022). This dependence on provisioning by moose was mirrored in the cultural reverence 

of moose throughout their distributional range (Volokitin & Kosinskaya 2002, Ashihmina 2002, 

Reeves & McCabe 2007). Artifacts of apparent ritual nature – staffs ending in the shape of a 

moose head – were found throughout boreal forest in Eurasia and used for thousands of years, 

starting ca. 8000 years ago (Zhulnikov & Kashina 2010). In up to ca. 6500 years-old rock 

carvings and paintings from Fennoscandia, moose were a central and recurring motif (Sognnes 

1998, Bolin 2000, 2010, Blehr 2014). Several depictions even suggest the belief in kinship of 

moose and humans (Bolin 2000, 2010, Hill 2011). Petroglyphs between 2000 and 3000 years 

old featuring moose were also found in North America (Reeves & McCabe 2007). People in 

the Northern Ural and Siberia associated moose with both the sun and earth itself (Ashihmina 

2002, Zhulnikov & Kashina 2010). 

Current importance of moose hunting 

Today, moose are still an important food source for First Nations and rural communities, and 

moose hunting remains a significant cultural and recreational activity (Loring & Gerlach 2009, 

LeBlanc et al. 2011, Priadka et al. 2022, Westman et al. 2022). Where moose browsing inflicts 

significant damage on commercial forestry plantations, hunting is also used as management 

tool for population control (Lavsund et al. 2003, Lykke 2005). In Scandinavia, the meat can be 

sold commercially, and its revenues can exceed those of the timber harvest from the same 

area (Andersen et al. 1996). Scandinavia hosts some of the highest moose densities in the 

world with approx. 0.7 moose/km2 in Norway in 2000 and an estimated population size 

ranging from 90,000-117,000 moose between 1991-2000. (Lavsund et al. 2003, Timmermann 

& Rodgers 2005). Approximately 25% of the population is harvested every year by ca. 56,000 

registered moose hunters, who are the main source of mortality for moose in Scandinavia 

(Solberg et al. 1999, Ericsson & Wallin 2001, Lavsund et al. 2003). Over 50% of hunting 

approaches on moose are unsuccessful, suggesting that a significant proportion of the moose 
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population in Norway experiences a direct hunting attempt during each hunting season 

(Heberlein 2000, Græsli et al. 2020a).  

Effects of non-consumptive disturbances on moose 

While hunting is a popular activity; on a global scale, even more people engage in the non-

consumptive activity of wildlife viewing (Filion 1983, Silverberg et al. 2003). Moose can be 

exposed to people engaged in wildlife viewing or in recreational activities that take place in 

moose habitat but do not directly target wildlife, such as gathering forage, hiking and cross-

country skiing (Neumann et al. 2010a). Such activities are an important part of the 

Scandinavian lifestyle and facilitated by unrestricted access to land and a widespread network 

of forestry roads (Gelter 2000, Gundersen et al. 2006, Helseth et al. 2022). Thus, moose can 

incur a variety of non-lethal anthropogenic disturbances in addition to unsuccessful hunting 

attempts, and the same individuals are likely exposed repeatedly, particularly in areas with 

easy access for people (Neumann et al. 2009, 2010a) 

Previous studies of moose behavioral disturbance response 

In some of the first studies of moose disturbance responses in the mid-1960s, scientists 

approached wild moose and observed their response (McMillan 1954, Altmann 1958). They 

noted that a variety of factors such as nutritional and reproductive status, hunting activity, 

time of day, distance to cover and type of approach can influence the distance at which a 

moose responds to an observer (a metric of the intensity of the disturbance response), but 

their findings were limited to what could directly be observed (McMillan 1954, Altmann 1958). 

Advances in biotelemetry and biologging technology such as the development of radio 

tracking collars that enable tracking with a receiver (Mech 1979) and of implantable heart rate 

monitors and transmitters allowed post-disturbance movement and physiological parameters 

to be monitored (MacArthur et al. 1979, Andersen et al. 1996). Andersen et al. (1996) exposed 

moose bearing radio collars and heart rate transmitters to a variety of disturbances from a 

hiker to a platoon of soldiers, to a variety of vehicles, and even a fighter jet. This study revealed 

a stronger flight and heart rate response (a longer time for heart rate to return to pre-

disturbance level) following approaches of humans compared to mechanical stimuli, and 

among approaches by humans, a stronger response the closer the disturbance stimulus was 

to the moose (Andersen et al. 1996). The development of GPS collars enabled the recording, 
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storage and transmission of frequent locations (Rodgers et al. 1996), disposing of the need to 

place a receiver in the field, thereby facilitating wildlife monitoring by alleviating logistic 

constraints (Dettki et al. 2004). Studies using GPS or radio collars to quantify the response of 

moose to experimental disturbances from hikers or snowmobiles (Neumann et al. 2010b), 

cross-country skiing (Baskin et al. 2004, Neumann et al. 2010a), helicopters (Støen et al. 2010) 

and hunting dogs (Ericsson et al. 2015) generally found increased movement rates during the 

first few hours after the approaches and spatial displacement from the area of disturbance 

immediately following the approach.  

Previous estimates of energetic costs of moose disturbance response 

Neumann et al. (2010 a,b) calculated energy expenditures of moose following experimental 

disturbances, using an estimated moose weight and movement rates (distance moved per 

hour) calculated from GPS positions recorded from the disturbed moose. These calculations 

were based on an equation that links energy expenditure during terrestrial locomotion to 

body mass and movement speed in a wide range of species (also referred to as “Taylor’s 

treadmill menagerie” (Kram 2012)) (Taylor & Heglund 1982). There are several reasons why 

estimates of moose energy expenditure calculated using this equation and substituting 

movement rates for movement speeds are likely inaccurate. First, energy expenditure 

estimates that are derived from an equation that is not species-specific and that substitute 

hourly movement rates for movement speed likely have limited accuracy. Fleeing moose likely 

vary their speed during flight, and higher movement speeds are more energetically costly than 

lower movement speed (Taylor & Heglund 1982, Kram 2012). Second, the calculated 

movement rates (derived from the length of spatial displacement and the time it took to 

achieve this spatial displacement) are influenced by the frequency with which GPS positions 

were recorded, which can also depend on the habitat variables (e.g. canopy cover) (Moen et 

al. 1996). Third, the actual movement path of fleeing moose is likely more tortuous than 

straight-line distances between two GPS locations (Baskin et al. 2004, Græsli et al. 2020a). 

Fourth, moose in flight might try to shake off a pursuing predator in uneven terrain (Geist 

1999) and thereby incur greater energetic costs compared to movement at equivalent speed 

on even terrain or even a treadmill (Halsey 2016). For example, Støen et al. (2010) noted that 

moose fled into rough terrain following approaches with a helicopter. 
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Græsli et al. (2020a) studied the response of moose to approaches by hunting dogs using dual-

axis accelerometers in GPS collars in combination with implanted heart rate logger. The 

accelerometers allowed the distinction between active and inactive behavioral states in the 

moose and revealed overall reduced activity on the days after approaches, suggesting 

increased resting behavior compensating for the energy-consuming flight following the 

approach (Græsli et al. 2020a). Heart rates were higher on the approach day compared to 

controls before and after, but were not used to calculate energy expenditure (Græsli et al. 

2020a). Changes in foraging behavior on the day after the approach might elucidate 

compensation for the energy expend during flight but were not investigated (Græsli et al. 

2020a).  
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Thesis objectives 

The goal of this thesis was to use a combination of biologging tools to advance our 

understanding of the detailed behavioral responses of moose to anthropogenic disturbances, 

and the resulting energetic costs. To this end, I designed a behavioral response study in which 

I systematically exposed collared wild moose to a disturbance: An approaching observer. The 

moose collars collected two data sets: GPS locations and high-frequency tri-axial 

accelerometer data. These data allowed me to not only quantify the intensity of the 

disturbance stimulus (proximity to the observer using the GPS data), but also the response of 

the moose, which was encoded in the accelerometer data. Because accelerometer data sets 

are extremely large and difficult to interpret, I developed models that could analyze the 

accelerometer data and return the information I was interested in. My first two thesis papers 

each concern themselves with one of these models. Predicting the behavior of the moose at 

a given point in time was the goal of Paper I. Quantifying the energy expenditure at a given 

point in time was the goal of Paper II. Applying the models from Papers I and II to investigate 

the behavioral response of collared moose to experimental disturbances, and to quantify 

energetic consequences for the moose, was the goal of Paper III. 
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Methods 

Paper I: Behavioral classification model 

My goal for Paper I was to use a random forest model to predict the behavior of collared 

moose from accelerometer data. Random forest is a type of supervised machine learning that 

enabled me to train a model on accelerometer data with known behavioral context, so that 

the model could then predict behavior from accelerometer data for which the behavior was 

not known. To collect accelerometer data and simultaneously record the behavioral context, 

I conducted behavioral observations on collared captive moose in two facilities: The Kenai 

Moose Research Center (Alaska Department of Fish and Game) in Alaska and the Norwegian 

Moose Center in Norway. All captive moose were equipped accelerometer-GPS collars (Vertex 

Plus, Vectronic Aerospace GmbH, Berlin, Germany) recording tri-axial accelerometer data 

continuously at 32 Hz (Figure 1).  

 

Figure 1: Captive moose with accelerometer-GPS collar during a behavioral observation in spring 2022 at the Kenai Moose 
Research Center, Alaska. 

 

I conducted behavioral observations during different seasons (summer, fall and winter) on 12 

individual moose belonging to two subspecies; 10 female Alaskan moose (A. a. gigas) in 

Alaska, and two European moose (A. a. alces) in Norway (one female, one male). At the start 

of the study, the moose were between 1-18 years old and five were pregnant. The first step 
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of the modeling procedure focused on training the model. I split the accelerometer data into 

regular (three-second-long) intervals and trained the model to predict one of seven behaviors 

for each accelerometer data interval, based on properties of the accelerometer data. The 

seven behaviors of interest are common and important behaviors of moose: Lying with the 

head down or tucked, lying with the head up, ruminating, standing, foraging, walking, and 

running. The second step of the modeling procedure focused on testing the model to evaluate 

its performance in predicting behaviors from accelerometer data. First, I evaluated the overall 

performance of the model by training it on a subset of the data, then running it on the 

withheld data and comparing the behavior predicted for each data interval to the actual 

behavior observed during this interval. Second, I evaluated the generalizability of my model 

to individuals it was not trained on. I achieved this by training and testing the model iteratively, 

with each iteration withholding data from one specific individual during model training and 

using the withheld data for model testing. 

Paper II: Energy expenditure model 

My goal for Paper II was to create a model that could predict the heart rate of collared moose 

from accelerometer data. Together with an existing equation calculating energy expenditure 

from heart rate in moose (Renecker & Hudson 1985), I could then use my model to estimate 

energy expenditure in collared moose from accelerometer data. In order to collect heart rate 

data together with accelerometer data, we implanted heart rate loggers (DST centi-HRT, Star 

Oddi, Iceland) (Figure 2) in eight moose at the Kenai Moose Research Center collared with 

GPS-accelerometer collars (Vertex Plus, Vectronic Aerospace GmbH, Berlin, Germany). All 

moose were non-pregnant and non-lactating females and between 2-13 years old at the start 

of the study. These loggers calculated heart rate every 30 seconds on three consecutive days 

per season in early and late summer, fall and spring. The sampling periods coincided with the 

behavioral observations conducted for Paper I. I quality-checked the heart rate data by 

manually validating the logger-calculated heart rates with raw electrocardiograms recorded 

prior to each sampling period. I included in the final analysis only those measurements that 

an internal algorithm in the loggers categorized as high-quality measurements, and only those 

that fell within the range of values that I could manually validate. To link the heart rate data 

from each moose to the accelerometer data recorded by the collar, I calculated the overall 

dynamic body acceleration from the accelerometer data recorded at the time of each heart 
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rate logger measurement. Then, I used a generalized additive mixed model to quantify the 

effect of overall dynamic body acceleration and several other variables on moose heart rate.  

 

Figure 2: Surgical implantation of a heart rate logger in an anesthetized captive moose at the Kenai Moose Research Center, 
Alaska (Alaska Department of Fish and Game Division of Wildlife Conservation Institutional Animal Care and Use protocol no. 
0086-2020-40). Image credit: Alaska Department of Fish and Game. 

 

Paper III: Behavioral response study 

My goal for Paper III was to evaluate the effect of disturbance on the behavior and energy 

expenditure of wild moose. To do so, we immobilized eight wild female moose from a 

helicopter in winter and spring 2021 in Innlandet county, Norway, to deploy GPS-

accelerometer collars (Vertex Plus, Vectronic Aerospace GmbH, Berlin, Germany). The collars 

remained deployed for one year, recording accelerometer data continuously and transmitting 

their GPS location regularly via the GSM mobile service network, which allowed me access to 

the locations of the moose. Using these locations, I conducted experimental approaches on 

the moose in summer, fall and winter of 2021/2022. Fall approaches were conducted in the 

middle of the hunting season (October 18-29, 2021). I approached each moose twice per 

season, once in the morning, and once in the afternoon. The approaches followed a 

standardized protocol: I approached the last known position of the moose from 1 km away in 

a linear fashion at normal walking speed (using snowshoes in the winter). Once I passed the 

last known position, I proceeded another 500 m. I tried to minimize additional disturbance 

when leaving the area. I recorded my track using a handheld GPS unit. Once we retrieved the 
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collars, I had access to both the GPS and the accelerometer data recorded during the 

approaches. From the GPS data, I calculated the distance between the observer and moose 

every second during the approach, to identify the time when the observer passed the moose 

(the minimum distance between the moose and the observer, which I defined as contact 

distance). From the accelerometer data, I predicted behavior and energy expenditure of the 

moose, using the models from Papers I and II. To understand how an approach changed the 

behavior and energy expenditure of the moose, I compared each individual’s time budget 

(how much time they spent engaging in each of the seven behaviors) and energy expenditure 

during the approach to the same time period on the day before, which I considered the control 

period (Neumann et al. 2010a). Specifically, I investigated changes relative to the control 

during different time periods leading up to and following contact with the observer (for 

example, 60 min to 30 min before contact, 30 min to 10 min before contact, 10 min before 

contact to contact etc.), to investigate changes in the disturbance response over time. I 

compared my findings of energy expenditure during the first hour following contact with 

published estimates of moose energy expenditure during other approach studies. I also 

investigated the effect of contact distance on moose flight behavior (the amount of time they 

spent running after contact with the observer).  

Ethical statement 

Animal handling followed established protocols as cited in the individual manuscripts. Collars 

were deployed without anesthesia in Alaska, and with anesthesia in Norway. Heart rate 

loggers were surgically implanted and removed in captive moose at the Kenai Moose Research 

Center following anesthesia. The surgeries resulted in a mild infection and subsequent 

rejection of the logger in one animal presumably due to a foreign body reaction, which has 

also been documented in other species (Mayer et al. 2022). In Norway, two moose died shortly 

after chemical immobilization for collar deployment or removal (one wild moose, one captive 

moose at the Norwegian Moose Center). While cause of death could not conclusively be 

established, mortality within 30 days after capture is considered capture-related (Arnemo et 

al. 2006, Hampton & Arnemo 2023). During capture efforts of wild moose in Norway, some 

collared moose were captured repeatedly (with approximately one year in between capture 

events), in order to remove an old collar and deploy a new collar. The capture team observed 

hair loss at the top of the neck of the moose, where the animals likely experiences the highest 
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pressure due to weight from the collar, suggesting the hair loss resulted from friction or weight 

of the collars (Hampton & Arnemo 2023).  
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Results 

Paper I: Behavioral classification model 

I collected over 390 hours of behavioral observations as training data for the behavioral 

classification model (Figure 3). Predictive performance of the model varied among the seven 

behaviors and, as is common for random forest models (Pagano et al. 2017), was higher for 

behaviors with a higher sample size. At least 80% of predictions of the most common 

behaviors (lying with the head elevated, ruminating and foraging, each constituting at least 

21% of the training data) were correct. The behavior with the most misclassifications (72%) 

was running (lowest precision), which was the behavior with the lowest overall sample size (< 

1%), and which was most often confused with walking. Similarly, generalizability of the model 

to other individuals was variable and generally related to the amount of training data I had 

collected for each individual.  

 

 

Figure 3: Raw data from a tri-axial accelerometer collar deployed on a captive moose. The corresponding behavior is predicted 
from the random forest model (top labels) and compared to the behavioral observation (bottom label). The start of a new 
behavior is indicated by a vertical line. 
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Paper II: Energy expenditure model 

I collected 224,973 high-quality measurements of moose heart rate within the manually 

validated range between 17 and 154 beats per minute from seven individuals (one logger was 

rejected during the deployment and not recovered). Average heart rate was 34 bpm (beats 

per minute) in the fall, 39 bpm in the spring and 57 bpm in the summer. The heart rate model 

predicted an effect of overall dynamic body acceleration, season, time of day and individual 

on heart rate. The model likely underestimated the energy expenditure at the high values of 

overall dynamic body acceleration commonly recorded during running behavior (Figure 4).  

 

Figure 4: Smooths of the general additive mixed model predicting heart rate from accelerometer data in captive moose. 

 

Paper III: Behavioral response study 

I conducted 50 approaches on eight collared wild moose. Forty-eight approaches resulted in 

a contact distance less than 600 m (range: 17-266 m) and were included in the analysis (Figure 

5).  
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Figure 5: Location of the study area on the southern border of Norway and Sweden. Passing positions of 50 experimental 
approaches conducted on collared moose are color-coded by season. 

 

The general response of the moose to the approaches was a clear increase in locomotor 

activity, particularly running, in the first 10 min after contact, and a decrease in foraging and 

ruminating activity (Figure 6). Over the course of the first hour, running and walking activity 

decreased but remained elevated compared to the control period (Figure 7). In contrast, 

foraging activity remained lower compared to the control during the first two hours after 

contact. Energy expenditure varied over the course of the approaches. It was highest in the 

first half hour after contact, particularly during summer morning approaches, with an average 

increase of 25% in the first 10 min after contact compared to the control period. Compared to 

studies estimating energetic costs of moose disturbance response from movement rates, I 

estimated much lower relative increases in energy expenditure during the first hour after 

contact (Table 1). 
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Table 1: Energy expenditure calculated from predictions of heart rate from accelerometer data during first 10 min and first 60 
min after contact for 48 approaches on wild collared moose (highlighted in grey) compared to results from other studies 
estimating energy expenditure from movement rates *(Neumann et al. 2010b) ^(Neumann et al. 2010a). Moose silhouette 
from Colourbox. 

 

 

The behavioral response to the approaches varied by season and contact distance. In summer 

and winter, close approaches (short contact distances) triggered a stronger flight response 

compared to approaches with longer contact distances. I observed the opposite trend in the 

fall, when long contact distances elicited an intense flight response (comparable to that of 

moose fleeing from a close approach in the summer), and close approaches elicited a much 

less intense running response (Figure 8). 

 

Figure 8: Proportion of running behavior predicted from accelerometer data on wild collared moose during different time bins 
before and after contact during experimental approaches relative to the control period on the same time of day the day before. 
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Discussion 

Effects of disturbances on moose behavior and energy budget 

It is evident from my data that increased locomotor activity (flight) during the first hour after 

contact occurred at the cost of time spent foraging and ruminating. The behavioral 

classification model had the highest performance for these behaviors, suggesting that 

misclassifications are unlikely to be responsible for this trend. I did not observe a 

compensatory increase in foraging activity during the 24 hours following the approaches, 

suggesting that either the overall time for foraging that was lost during these approaches did 

not have significant impacts on the energy budget of the moose, or the compensation 

occurred more than 24 hours after the disturbance.  

Assuming a weight of 300 kg for the moose in my study (Milner et al. 2013), their energy 

expenditure during the first hour after contact in summer was on average ca. 60 kJ higher 

compared to the control. Renecker & Hudson (1986) determined a summer maximum daily 

energy expenditure of 940 kJkg-0.75h-1, which translates to 2,883 kJh-1 for a moose of 300 kg. 

Based on this data, the locomotor response of moose weighing 300 kg to an approach in the 

summer increased its energy expenditure in the first hour after contact by ca. 2%, suggesting 

a small overall impact of the disturbance on the energy expenditure of the moose. However, 

the actual energy expenditure resulting from locomotor activity is likely higher than this 

estimate, as my model tended to underestimate heart rates predicted for movement falling 

in the high range of ODBA values that I observed in running moose. Still, the overall (absolute) 

range of energy expenditures I calculated matched that calculated from movement rates of 

experimentally disturbed moose (Neumann et al. 2010 a, b). 

Calculating moose energy expenditure from accelerometer data 

My model for estimating heart rate and resulting energy expenditure from accelerometer data 

is an improvement over the more established general model, which quantifies energy 

expenditure during terrestrial locomotion from movement speed (Taylor & Heglund 1982, 

Neumann et al. 2010a, b), by predicting seasonal variation in energy expenditure, an 

important characteristic of moose metabolism (Renecker & Hudson 1986). Furthermore, the 

fine temporal resolution of my analysis revealed previously undocumented high variation in 
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the behavioral and energetic response of moose to a disturbance over time. Importantly, high 

variation in the proportion of locomotor behaviors in the time budget of disturbed moose 

suggests high variation in movement speed and therefore energy expenditure, suggesting that 

averaging energy expenditure over an entire hour following disturbance oversimplifies the 

behavioral response and obscures the true range of the resulting energy expenditure. 

Context-dependence of behavioral disturbance response of moose 

Wildlife disturbance responses depend on many factors, including characteristics of the 

disturbance itself (e.g., type and intensity), characteristics of the animal (e.g., body condition, 

reproductive status), and spatio-temporal context (e.g., type of habitat, overall level of 

predation risk) (Altmann 1958, Stankowich 2008, St Clair et al. 2010, Tablado & Jenni 2017). 

For example, the distance at which Two-banded Plovers (Charadrius falklandicus) moved away 

from humans during experimental approaches depend on whether mammalian predators are 

present in their habitat (St Clair et al. 2010). The response of blue whales to exposure to 

simulated sonar depends on their behavior at the time of exposure (Goldbogen et al. 2013, 

DeRuiter et al. 2017). The disturbance response of the moose in my study appeared to be 

dependent on characteristics of the disturbance stimulus (proximity to the observer) and 

temporal context (season).  

Previous studies of disturbance response on moose observed a positive correlation between 

increased disturbance response (i.e., flight intensity) and characteristics of the disturbance 

stimulus that likely increased the threat perceived by moose (e.g., close proximity of observer, 

high approach speed, high directionality of approach, continued pursuit) (McMillan 1954, 

Andersen et al. 1996, Stankowich 2008, Neumann et al. 2010a). While my observations from 

summer and winter support this trend, my observations of reduced flight intensity during 

close approaches during the hunting season contradict it. Moose that detect a disturbance 

from far away may not be able to discern the type of approaching threat, but they might flee 

as long as sufficient distance to the approaching threat gives them a chance at escape – which 

may be a favorable adaptation in a heavily hunted population where hunting dogs are used to 

detect and pursue moose (Sand et al. 2006, Græsli et al. 2020a). If moose do not detect an 

approaching observer until the observer is close (for example due to unfavorable wind 

conditions, or ground cover muffling the sound of the approach), they may be able to evaluate 
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the level of threat posed by the observer. A single observer (without a dog) may not be 

considered a high-level threat and may therefore not elicit a strong flight response. Given the 

prominence of moose hunting activity in the study area in fall, fleeing in response to a low-

level threat could relocate the moose to an active hunting area with a much higher risk 

(Ericsson & Wallin 1996, Baskin et al. 2004) that they may not know well, which might impede 

their escape (Geist 1999, Little et al. 2016, McLaren & Patterson 2021).  

The seasonal variation in disturbance response of the moose in my study suggests an 

awareness of the larger spatio-temporal context of risk during the hunting season. This 

awareness could be mediated by survival of recent hunting attempts (Heberlein 2000, Græsli 

et al. 2020a), or by an overall increase in the presence and activity of humans and off-leash 

dogs in the area associated with the start of small game hunting season or start of training 

season for baying dogs, which precede the moose-hunting season (Neumann et al. 2009). A 

similar awareness of variation in risk levels has been observed in other species. For example, 

survival rate is higher in male red deer (Cervus elaphus) that abruptly shift their habitat in 

response to the onset of the hunting activity (Lone et al. 2015). White-tailed deer (Odocoileus 

virginianus) exhibit an abrupt reduction in movement, concurrently with an increase of human 

activity on the landscape during the scouting period that precedes the hunting season (Little 

et al. 2016, Marantz et al. 2016). Their movement is reduced during hunting season even in 

hunting-free zones adjacent to hunting areas (Little et al. 2016). The proportion of time that 

elk are vigilant depends on the distance to the nearest wolf pack several kilometers away, and 

to the size of the pack (Liley & Creel 2008).  

Importance of fine-scale investigations of disturbance responses 

I observed large variation in moose disturbance response – within seasons, and within each 

approach in the form a modulation of the behavioral response and energy expenditure over 

time. High variation in disturbance response among individuals and treatments has been 

found in a variety of species (Neumann et al. 2009, St Clair et al. 2010, DeRuiter et al. 2017). 

In fact, the magnitude of this variation can be comparable to the disturbance response itself 

(DeRuiter et al. 2017). Therefore, investigations of disturbance responses on the scale and 

level on which these responses occur (changes in behavior and physiology), as I have 

presented here, improve our understanding of different factors that cause this variation, and 
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improve our assessment of how individual disturbance effects can propagate to population-

level impacts (Pirotta et al. 2021). 
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Conclusions 

In this thesis I demonstrated the use of biologging tools to investigate risk effects of human 

recreational activities on wildlife, using moose as model species. I developed models that 

advance our understanding of moose by enabling a more fine-scale analysis of their behavior 

and energy expenditure. Furthermore, my calibration of accelerometer data with heart rate 

facilitates the estimation of energy expenditure from the collar data of wild moose, reducing 

the need for implanting loggers to record energy expenditure. Applying my models to data 

from experimental approaches, my results illustrate that risk effects from human recreational 

activities affect the energy budget of moose by increasing energetically costly locomotor 

behaviors and decreasing foraging activity. These findings fill in the gaps from previous 

investigations of human disturbance response in moose that were conducted on 

comparatively coarse spatio-temporal scales: My results show that the disturbance response 

is graded; most intense immediately after contact and subsiding over the course of one to two 

hours. The models presented in this thesis improve our understanding of moose population 

dynamics, by providing the link between individual disturbances responses and population 

consequences.  
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Abstract 

Background Monitoring the behavior of wild animals in situ can improve our understanding of how their behavior 
is related to their habitat and affected by disturbances and changes in their environment. Moose (Alces alces) are 
keystone species in their boreal habitats, where they are facing environmental changes and disturbances from human 
activities. How these potential stressors can impact individuals and populations is unclear, in part due to our limited 
knowledge of the physiology and behavior of moose and how individuals can compensate for stress and distur-
bances they experience. We collected data from collar-mounted fine-scale tri-axial accelerometers deployed on cap-
tive moose in combination with detailed behavioral observations to train a random forest supervised classification 
algorithm to classify moose accelerometer data into discrete behaviors. To investigate the generalizability of our 
model to collared new individuals, we quantified the variation in classification performance among individuals.

Results Our machine learning model successfully classified 3-s accelerometer data intervals from 12 Alaskan moose 
(A. a. gigas) and two European moose (A. a. alces) into seven behaviors comprising 97.6% of the 395 h of behavioral 
observations conducted in summer, fall and spring. Classification performance varied among behaviors and indi-
viduals and was generally dependent on sample size. Classification performance was highest for the most com-
mon behaviors lying with the head elevated, ruminating and foraging (precision and recall across all individuals 
between 0.74 and 0.90) comprising 79% of our data, and lower and more variable among individuals for the four 
less common behaviors lying with head down or tucked, standing, walking and running (precision and recall across all 
individuals between 0.28 and 0.79) comprising 21% of our data.

Conclusions We demonstrate the use of animal-borne accelerometer data to distinguish among seven main behav-
iors of captive moose and discuss generalizability of the results to individuals in the wild. Our results can support 
future efforts to investigate the detailed behavior of collared wild moose, for example in the context of disturbance 
responses, time budgets and behavior-specific habitat selection.
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Background
Understanding the behavior of wild animals can facili-
tate effective conservation and management [1–3]. Such 
knowledge can be acquired through direct observations 
of wild animals, which is time-consuming, challeng-
ing and expensive [4]. One alternative is to use location 
data of wild animals to infer their behavior from charac-
teristics of their movement trajectories [5–7]. However, 
behavioral inference is limited by the spatial and tem-
poral resolution of the location data, which in turn can 
be influenced by the behavior itself (e.g. by collar posi-
tion and habitat choice impacting GPS fix rate) [8–11]. 
Advances in biologging technology alleviate this limita-
tion by enabling the recording of near-continuous data 
[12, 13]. In particular, animal-attached accelerometers 
enable a fine-scale biomechanical approach to the study 
of behavior [13–15].

Tri-axial accelerometers quantify inertial forces along 
three orthogonal axes [16, 17]. Attached to an animal, 
they record acceleration that is the result of both static 
or gravitational acceleration reflecting the posture of 
the animal relative to the earth’s gravitational field, and 
dynamic or specific acceleration resulting from changes 
in speed due to movement of the animal [18–20] and 
vibrations due to effects of tag attachment [21, 22]. The 
resulting datasets are large (especially at high sampling 
frequencies) and complex and commonly, machine learn-
ing tools are used to classify the accelerometer data into 
discrete behaviors, using predictor variables that quan-
tify characteristics of the accelerometer traces [14, 23, 
24]. Supervised machine learning algorithms are trained 
by linking behavioral observations to simultaneously 
recorded accelerometer data, thereby creating a labeled 
data set, in order to distinguish the observed behaviors 
based on characteristic differences in the accelerometer 
traces, allowing for the quantification of model perfor-
mance [11, 14, 25]. Such behavioral observations are 
commonly collected on accelerometer-bearing animals in 
captivity to facilitate the interpretation of accelerometer 
data collected on wild, unobserved animals [11, 13, 25].

Moose (Alces alces) are a keystone species of the boreal 
forests and tundra in the northern hemisphere [26–28]. 
Humans highly regard moose for their high cultural sig-
nificance, for trophy and recreational hunting, and as a 
food source [29–31]. However, in some areas, browsing 
damage to commercial forestry plantations and frequent 
moose–vehicle collisions result in management decisions 
aimed at limiting population sizes [29, 32]. Throughout 
much of their range, moose face changes in environmen-
tal conditions and disturbances due to human activi-
ties [33–35]. The effects of these potential stressors are 
not yet well-understood due to our limited knowledge 
of moose physiology and behavior, and of how much 

behavioral plasticity can compensate for stress and dis-
turbances experienced by individuals [36, 37].

Monitoring the behavior of moose in situ can improve 
our understanding of how their behavior is affected by 
disturbances and changes in their environment [38]. 
Most previous studies aimed at remotely monitoring 
moose behavior used radio-telemetry or activity counts 
from dual-axis motion sensors and distinguished only 
between active and inactive periods lasting several min-
utes [35, 39, 40]. Ditmer et  al. validated activity counts 
averaged over 1 min with behavioral observations of a 
single collared captive moose during one season [41]. 
Resulting behavior-specific activity counts were then 
used to improve a model predicting the behavior of col-
lared wild moose from year-round GPS data, assign-
ing one of three potential behaviors (resting, foraging, 
traveling) per 15- or 20-min movement interval [41]. To 
predict moose behavior in greater detail (i.e. to predict 
a higher number of behaviors over multiple seasons), it 
is important to consider the effect of time of year on the 
motion signatures of behaviors [38, 40]. For example, col-
lar fit can vary over the course of the year [21, 38], the 
same locomotor behavior can be associated with vary-
ing activity counts depending on ground cover including 
snow [40, 42], the activity count can vary with seasonal 
changes in insect harassment and resulting movement 
[40, 43], and different types of food consumed over the 
course of the year can be associated with different head 
movements and consequently, activity counts [40, 44, 
45]. Furthermore, it is important to account for inter-
individual variation in the motion signatures of behaviors 
[46–48]. Notably, Herberg used behavioral observations 
conducted on eight collared captive moose during four 
seasons in combination with dual-axis accelerometer 
measurements of moose averaged over 5-min intervals 
as well as GPS-based location data to predict the pro-
portion of time spent resting, foraging or moving within 
each 5-min interval [38]. Activity within most of their 
5-min intervals comprised multiple behaviors associated 
with behavior-specific variations in energy expenditures 
[38, 49], and they proposed the use of continuous acceler-
ometer recordings to improve distinction among behav-
iors and refine the temporal resolution of the behavioral 
predictions [38]. Increasing the temporal resolution is 
important because biologically relevant and energetically 
costly behaviors such as bouts of locomotion or alertness, 
can occur on time scales that are shorter than the record-
ing intervals of the technology previously used for detect-
ing behaviors [35, 39]. Accelerometer sampling frequency 
should be at least twice the frequency of the fastest body 
movement of interest [51–53]. Investigating moose 
behavior on a finer temporal scale and distinguishing 
among a higher number of behaviors can facilitate the 
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early detection of individual responses to changes in the 
environment resulting from anthropogenic activities, 
which can serve as foundation for the assessment of pop-
ulation-level responses [54–56].

Our goal was to train a random forest algorithm to 
classify continuous high-frequency accelerometer data 
collected from captive moose over several seasons into 
discrete behaviors, to detect changes in behavior on the 
temporal scales on which the behaviors can occur. The 
aim was to enable future studies to quantify fine-scale 
disturbance responses, behavior-specific habitat selec-
tion and detailed time budgets in wild moose.

Methods
Data collection
To study moose behavior, we fitted 12 individuals of sub-
species A. a. gigas in Alaska (all female) and two indi-
viduals of subspecies A. a. alces in Norway (one female, 
one male) with Vectronic Vertex Plus accelerometer-GPS 
neck collars (Vectronic Aerospace GmBH; Berlin, Ger-
many), which recorded tri-axial accelerometer data at 
32 Hz with a sensor range of ± 4 g and a resolution of 8 
bit (Additional file 1: Table S1). Accelerometer data were 
recorded continuously, and accelerometer time stamps 
were synchronized with GPS time during GPS fixes 
(every 15 min in collars in Alaska, every 60 min in col-
lars in Norway). We conducted behavioral observations 
on individual collared moose and distinguished 21 mutu-
ally exclusive behaviors, including multiple foraging, 
locomotor, grooming and inactive behaviors, expanding 
on Herberg [38] (Additional file 1: Table S2). The proto-
col for data capture varied between the two locations as 
described below.

Alaska
Twelve captive female moose at the Kenai Moose 
Research Center (Alaska Department of Fish and Game, 
Alaska) were collared without anesthesia three times for 
data collection over the course of 3  years. Deployment 
periods were October 1–11 2020, May 7–November 23 
2021, and March 24–July 14 2022. Collars were fitted 
with a 6-cm gap between the collar and the neck to allow 
for seasonal changes in neck diameter. The moose were 
kept in two large (2.6   km2) enclosures with varying ter-
rain and vegetation consisting of boreal and black spruce 
forest, meadows, bogs and lakes [57]. Supplemental feed 
was provided from January through April. Supplemen-
tal water was provided in one enclosure during June and 
early July when warm, dry conditions depleted the natu-
ral water supplies from wetlands, and in October and 
November when natural water sources were frozen prior 
to adequate snow fall. Each animal was observed for at 
least six hours per observation day during daylight hours. 

During the observations, moose were followed on-foot by 
one of five observers, who logged time-stamped behav-
iors to the nearest second using GPS time on a tablet 
running ArcGIS QuickCapture software (Esri, Redlands, 
CA, USA) and connected to a handheld GPS unit (Bad 
Elf GPS Pro, Bad Elf, West Hartford, CT, USA).

Norway
One female and one male moose at the Norwegian 
Moose Center (Inland Norway University of Applied Sci-
ences, Norway) were collared on November 23 2020, fol-
lowing anesthesia with etorphine and xylazine [58]. The 
moose were kept in a 0.02  km2 enclosure with vegetation 
and undulating terrain, a stream and an artificial water 
station. A salt lick and daily rations of feed pellets were 
provided, as well as supplemental browse every second 
day. The moose were filmed from the outside perimeter 
of the enclosure between November 23 and December 
5 2020, using a Canon XA40 (Canon Europe Ltd, Mid-
dlesex, U.K.) handheld video camera mounted onto a 
tripod. The camera was infrared-enabled to film dur-
ing low-light conditions. On a few occasions, filming 
without tripod was conducted in order to maintain vis-
ibility of active moose during a filming interval. Filming 
each day was opportunistic and depended on the activ-
ity level of the moose, visibility of the moose from the 
perimeter of the enclosure, and available daylight. Film-
ing took place in approximately 1-h intervals, and the 
camera was briefly switched off between intervals. At 
the start and end of each filming interval, the video was 
synchronized with GPS time by filming the screen of a 
handheld GPS unit (GPSMAP 64s, Garmin, Southamp-
ton, U.K.). Each filming interval focused on one moose, 
unless both moose were in close proximity to each other. 
Collars were removed on December 4, 2020 (Mattis, 
male) and December 9, 2020 (Idun, female) following 
anesthesia with etorphine and xylazine [58]. Using the 
software BORIS v.7.9.22 [59], the videos were then tran-
scribed by a single observer with experience in the data 
collection on Alaskan moose to ensure comparability 
between the data sets from the two locations. To avoid 
errors during the transcription process, exclusion criteria 
for mutually exclusive behaviors were set to ensure the 
logical sequence of transcribed behaviors (e.g., standing 
excluded lying).

Data preparation
Behavioral data
Observation data from Alaska were downloaded from 
ArcGIS QuickCapture and checked manually. Duplicated 
entries were removed (e.g. the same button was pressed 
repeatedly by accident). Within observations, time peri-
ods with nonsensical behavioral sequences were excluded 
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from the analysis (e.g. lying followed by running, with-
out any recording of the moose standing up in between). 
Observations with many errors were entirely excluded 
from the analysis. Transcribed observation data from 
Norway were exported from BORIS for further analy-
sis. All behavioral data were imported into R Studio [60] 
v. 2022.7.2.576 running R [61] v. 4.2.2 for subsequent 
analysis.

Accelerometer data
The accelerometer data were downloaded from the 
collars using Vectronic GPS Plus X software v.10.7.2 
(Alaska) or v.10.7.1. (Norway), extracted using Vectronic 
MotionData Monitor software v.1.2.0 and imported into 
R Studio [60]. Inspection of the data revealed a delay 
in the date switching of the timestamps after midnight 
each day. We therefore excluded the first 20 s after mid-
night for all observations. Inspection of the data also 
revealed gaps in the accelerometer data of each collar (< 1 
min) that occurred at least once per 24-h period, due to 
rebooting of the unit, as well as inconsistencies in the val-
ues of consecutive seconds of time stamps assigned dur-
ing GPS time synchronization during GPS fixes. Because 
of these data gaps and the inconsistencies in time stamps 
assigned during GPS fixes, we summarized the 32-Hz 
raw accelerometer data in intervals, rather than correct-
ing each individual time stamp, which also facilitated the 
temporal matching of the behavioral data with the accel-
erometer data intervals. Based on a preliminary analysis 
of the data with interval lengths varying from 1 to 10 s, 
we summarized the accelerometer data in 3-s intervals to 
maintain a high temporal resolution of individual behav-
iors (the shortest mean duration of a behavior in our 
ethogram was two seconds, Additional file  1: Table  S2) 
while maximizing classification performance (i.e. maxi-
mizing recall and precision for the largest number of 
behaviors). Inspection of the data revealed that one collar 
(Individual: Minnie) recorded at 8 Hz, while the remain-
ing accelerometers recorded at 32 Hz. However, because 
we summarized our data into intervals, this data was 
included in the analysis. Opportunistic video recordings 
revealed that two accelerometer axes were reversed in 
the collars from Norway compared to Alaska. The data 
from Norway were adjusted to standardize axis orienta-
tion across all collars (Fig. 1).

From the raw accelerometer data, we calculated vari-
ables that were frequently used in other studies [14, 23, 
25] and did not require continuous time series, to accom-
modate the aforementioned gaps and inconsistencies in 
the data. We then summarized the variables in each 3-s 
interval (Table 1). Most variables described the distribu-
tion of raw accelerometer values within each 3-s interval 
on each axis (X–Z). In addition, pitch (corresponding to 

vertical neck orientation) (Eq. 1) and Minimum Specific 
Acceleration (MSA) (Eq. 2) were calculated from the raw 
accelerometer data in each interval. We also included 
individual metrics which are easy to record in the field: 
Subspecies, sex, body length, girth and season. Such met-
rics could improve the generalizability of our model to 
individuals not seen during model training [25].

Fig. 1 Accelerometer collar on Idun while standing. Arrows 
represent axis orientation of the accelerometers mounted 
in the housing on top of the neck and point towards positive values. 
X: surge (cranio-caudal axis), Y: sway (medio-lateral axis), Z: heave 
(ventro-dorsal axis)

Table 1 Predictor variables in the random forest model

Predictor variables described either the 3-s interval accelerometer data or the 
time and location of data collection and morphometrics of the collared moose 
and were used in the random forest model to predict behaviors from the 
accelerometer data

Predictor variable Number of 
variables per 
interval

Mean (X, Y, Z, pitch, MSA) 5

Median (X, Y, Z, pitch, MSA) 5

SD (X, Y, Z, pitch, MSA) 5

Min (X, Y, Z, pitch, MSA) 5

Max (X, Y, Z, pitch, MSA) 5

Range (X, Y, Z, pitch, MSA) 5

Interquartile range (X, Y, Z, pitch, MSA) 5

Absolute value of skew (X, Y, Z, pitch, MSA) 5

Kurtosis (X, Y, Z, pitch, MSA) 5

Girth 1

Length 1

Season 1

Sex 1

Subspecies 1
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Calculation of pitch [62]:

Calculation of Minimum Specific Acceleration (MSA) 
[19]:

Labeling of accelerometer data
Visual comparison of the start times of recorded behav-
iors with the raw accelerometer data for a subset of the 
data revealed that the recorded start time lagged behind 
the accelerometer signatures. Therefore, we applied an 
offset to all behaviors (1  s for data from Alaska, 2  s for 
data from Norway). The non-overlapping 3-s acceler-
ometer data intervals were labeled with the respective 
behavior recorded during the observations. Intervals 
during which more than one behavior was recorded were 
excluded from analysis. The frequency with which dif-
ferent behaviors were observed varied greatly. Because 
our goal was to obtain a model that could reliably dis-
tinguish the main behaviors of moose, we excluded rare 
behaviors such as head shaking, scratching and urinating, 
which represented 2.4% of observations. We summarized 
all foraging behaviors into a coarser foraging category. 
To identify when the moose were lying with their head 
tucked, which has been reported as their energetically 
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least costly behavior [49], we distinguished between two 
separate lying behaviors based on their head position: 
lying with the head down or tucked (“lying_o”) and lying 
with the head up (“lying_u”) (Additional file 1: Table S2). 
Head position of lying moose was assumed to be up 
unless otherwise noted during the observations (the 
head position was not recorded for moose in Norway, 
and therefore whenever these moose were lying, we con-
sidered the behavior to be “lying_u”). Our final analysis 
included 394.7 h of labeled data (380.4 h of observations 
collected on-foot in Alaska and 14.3 h of annotated video 
footage from Norway) of the following seven behavioral 
categories: Foraging, lying_o, lying_u, ruminating, run-
ning, standing, walking (Table 2).

Predicting behaviors from accelerometer data
To classify the accelerometer data into behavioral cat-
egories, we used a random forest algorithm, which is 
frequently used for the classification of accelerometer 
data [23, 47, 63]. A random forest grows many decision 
trees on bootstrapped subsamples of the data and com-
bines the predictions of all trees to predict the out-of-
bag data that were not used to grow the trees, in order 
to quantify prediction error [64, 65]. Random forest is a 
comparatively fast supervised classification algorithm 
that, through the combination of many decision trees 
and introduced stochasticity in the modeling process, 
increases classification performance and can process 
correlated and interacting predictor variables as well as 
missing values [64–67]. To accommodate the unbal-
anced nature of our dataset, we assigned weights to the 

Table 2 Samples sizes for each individual and behavior

Number of labeled 3-s accelerometer data intervals for each behavior and individual moose used to train the random forest model classifying animal-borne 
accelerometer data into seven discrete behaviors

Animal ID Foraging Lying_o Lying_u Ruminating Running Standing Walking Total

Stella 12,308 3763 19,247 13,242 18 5408 1661 55,647

Babe 15,732 2791 15,832 9787 89 8462 2590 55,283

Wilma 6970 1383 20,242 15,274 16 9465 1474 54,824

Sky 13,126 1354 15,733 15,999 49 5226 1715 53,202

Shiner 7397 1390 23,916 11,784 9 6359 2176 53,031

Cayenne 13,149 732 12,568 12,927 7 8536 2197 50,116

Roxanne 9392 1386 16,271 10,006 41 7243 3716 48,055

Minnie 6349 1678 22,927 8434 28 5253 1988 46,657

Winnie 4326 99 3426 4078 0 1128 266 13,323

Vicky 3205 49 4034 4451 37 709 236 12,721

Mattis 753 0 2729 2036 50 3897 727 10,192

Idun 865 0 2614 929 13 1894 637 6952

Lily 2832 0 1277 2203 7 362 203 6884

Olivia 2303 10 1392 1930 0 1035 121 6791

Total 98,707 14,635 162,208 113,080 364 64,977 19,707 473,678
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observations of each behavior that were inversely pro-
portional to the class size of the respective behavior (i.e., 
we weighed observations so that the weight of observa-
tions of behavior X was equal to the number of obser-
vations of the rarest behavior divided by the number of 
observations of behavior X). Assigning greater weight to 
observations of rare behaviors reduces the error rate of 
classifications of the rare classes [67]. We used the ran-
dom forest implementation from H2O through the h2o 
R package [68] v. 3.38.0.1 with 200 trees. To test the gen-
eralizability of our model to new individuals not included 
during model training, we performed leave-one-indi-
vidual-out cross-validation, where the model was 
repetitively trained on all but one of the individuals and 
evaluated with the labeled data of the remaining, held-
out individual [69–71]. We first ran a random forest with 
the full set of predictor variables. Random forests are 
capable of handling both correlated and non-informative 
predictor variables [65–67] and, while a higher number 
of predictor variables might increase computation time, 
our priority was to maximize behavioral classification 
performance. To assess the effect of variable selection on 
model performance, we then re-ran the model with only 
those predictor variables that had scored the highest vari-
able importance (≥ 3%) in the full model [67]. To evaluate 
classification performance, accuracy is a commonly used 
metric [72]. However, it is a suboptimal metric for evalu-
ating classification performance in imbalanced datasets 
(such as ours) [72–74]. Thus, modeling with the goal of 
maximizing accuracy may not be the best procedure for 
our dataset. Therefore, we focus the discussion of the 
performance of our model on the metrics recall and pre-
cision (but also give accuracy values since this is a com-
mon metric used in other studies) [73].

Results
Model performance
Out of 50 predictor variables in the full model, 16 scored 
a variable importance of at least 3% and were included in 
the reduced model. Recall and precision of most behav-
iors in the full model were slightly higher than or equal 
to recall and precision of the reduced model, except 
for lying with the head down/tucked and ruminating 
(Table  3). Therefore, we focus the description of our 
results and the discussion on the full model.

Across all individuals and behaviors, our model clas-
sified 473678 3-s accelerometer data intervals from 14 
moose into seven behaviors (Fig. 2) with mean recall of 
0.75 (± 0.10) and mean precision of 0.62 (± 0.24) (Table 3).

Across all individuals, classification performance varied 
by behavior and was generally best for the three most com-
mon behaviors (lying with the head up, ruminating, forag-
ing) constituting 79% of our data, with recall and precision 

ranging from 0.74 to 0.90. Model performance was more 
variable among the four rarer behaviors constituting the 
remaining 21% of our data, with recall and precision rang-
ing from 0.28 to 0.79. Among these behaviors, performance 
was best for walking and lying with the head down/tucked, 
while standing had the most misclassifications and was 
most frequently confused with lying behaviors and foraging 
(Table 4).

Among individuals, classification performance was vari-
able with overall accuracy ranging from 0.38 (Mattis, the 
only male in our study) to 0.82 (Sky) (Additional file  1: 
Table  S4). Sample sizes among individuals were highly 
variable, with six moose each contributing less than 3% to 
the total data in this study, and eight moose each contrib-
uting at least 10%. The six individuals with smaller sample 
sizes scored lower mean recall (mean ± SD: 0.67 ± 0.05) and 
mean precision (mean ± SD: 0.55 ± 0.06) values than the 
eight moose with larger sample sizes (mean recall ± SD: 
0.75 ± 0.04, mean precision ± SD: 0.64 ± 0.06).

Among individuals, the rarest behaviors (lying_o, run-
ning) showed the highest variation in classification per-
formance, particularly precision (Table 5, Additional file 1: 
Tables S5–S18).

Variable importance
The most important variable in our model was the stand-
ard deviation of acceleration along the heave axis with an 
overall contribution of 5% to the classification performance 
of the model (Additional file 1: Table S3). Sixteen variables 
contributed at least 3%, of which five were metrics of pitch, 
four metrics of surge and three metrics of heave.

Discussion
Animal-borne accelerometers have wide-ranging appli-
cations, from investigating the energy budget [75–77] 
and health status [78, 79] of individuals to identifying 
behavior-specific habitat use [80, 81]. By facilitating the 

Table 3 Effect of variable selection on model performance

Comparison of model performance between the full random forest model run 
with all 50 predictor variables and subsequent reduced random forest model 
run with only the 16 most important variables

Full RF Reduced RF

Recall Precision Recall Precision

Foraging 0.86 0.90 0.84 0.89

Lying_o 0.78 0.34 0.75 0.41

Lying_u 0.74 0.84 0.74 0.83

Ruminate 0.79 0.80 0.82 0.78

Run 0.74 0.28 0.73 0.24

Stand 0.55 0.56 0.52 0.53

Walk 0.79 0.62 0.79 0.60
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identification of areas important for species conserva-
tion [3, 80] and the assessment of effects of disturbances 
and environmental changes on individual behavior and 
energy balance [56, 75], this technology can improve 
wildlife conservation and management efforts. Here, we 
show that data from animal-borne accelerometers can be 
used to distinguish among the most common behaviors 
in moose.

Classification performance
With the three most prevalent behaviors (lying with the 
head up, ruminating, foraging) scoring the highest recall 
and precision values between 0.74 and 0.90, classification 
performance was generally related to class prevalence, 
which might suggest that the model performed better 
when the training data contained greater variation in the 
ways a certain behavior was expressed. While the most 
prevalent behaviors scored comparable values for both 
recall and precision, the rarest behaviors (running, lying 
with the head tucked/down, walking) scored higher recall 
than precision values. This indicates that our model had 
fewer false negative predictions of these behaviors, which 
means that it was able to identify these rare behaviors 
when the moose were engaging in them, and had a higher 
number of false positive predictions, which means that it 
incorrectly predicted these behaviors when other behav-
iors were occurring. While we assigned greater weights to 
rare behaviors in order to reduce their classification error 
[67], it is possible that the weighting was more effective 
at reducing the number of false negative predictions (and 
thus increasing recall) than at limiting the number of 
false positive predictions (and thus increasing precision). 

Failing to reduce false positive predictions would lead to 
a reduction in precision, particularly for behaviors with 
small numbers of true positive predictions, i.e., behaviors 
with small sample sizes. Increasing the sample sizes of 
rare behaviors might improve classification performance 
for these behaviors but was not feasible in the current 
study.

Behaviors characterized by little body movement can 
be difficult to distinguish based on accelerometer data 
(while predictor variables based on static acceleration 
might facilitate this distinction, we could not calculate 
these in the current study), and attempting to distinguish 
among several inactive behaviors with our model (lying 
with the head down/tucked, lying with the head up, 
standing) comes at the risk of reducing the overall clas-
sification performance [63, 82]. Nonetheless, we did not 
group these behaviors together because we wanted to 
evaluate the performance of our model in distinguishing 
among these important behaviors. Renecker and Hud-
son recorded the lowest heart rates in moose lying with 
the head folded against the abdomen, and an increase 
in energy expenditure of up to 79% during standing 
compared to lying with the head tucked [49]. Therefore 
it was important that our model could distinguish peri-
ods of minimal energy expenditure during lying with the 
head down/tucked from times when moose engage in 
behaviors associated with increased metabolic rates that 
serve other functions such as energy gain (ruminating), 
and increased awareness of and interaction with the sur-
roundings (e.g. during lying with the head up or standing, 
compared to lying with the head down/tucked). Despite 
being one of the rarest behaviors in our study, the recall 

Fig. 2 Example raw accelerometer traces (sampling frequency of 32 Hz) of one captive moose (Stella). Vertical lines indicate the start of a new 
behavior predicted from the 3-s accelerometer data intervals (bold top labels) and observed during the behavioral data collection (bottom labels). 
Tick marks on the top axis indicate the start of a new accelerometer data interval
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of lying with the head down/tucked ranged among the 
highest values of all behaviors, with 78% of all events that 
were labeled as lying with the head down/tucked being 
correctly identified by our model. While the unique neck 
postures during this inactive behavior might facilitate its 
distinction, false predictions of this behavior did occur 
(34% in total) and involved mostly other, more common 
inactive behaviors (lying with the head up, standing, 
ruminating), illustrating the challenges of distinguishing 
inactive behaviors from accelerometer data. We did not 
distinguish lying with the head down/tucked from the 
generally much more common behavior lying with the 
head up during the transcription of videos from Norway 
and therefore labeled all lying behaviors of these moose 
as lying with the head up. As a consequence, some data 
had incorrect labels (the small proportion of data that 
were labeled as lying with the head up when it should 
have been labeled as lying with the head down/tucked) 
that trained the model to incorrectly predict the behav-
ior in these instances as lying with the head up. Similarly, 
some data with incorrect labels (i.e. lying with the head 
up) were used to falsify predictions that were actually 
correct (i.e. lying with the head down/tucked). It is likely 
that this contributed to the comparatively low precision 
of our models’ predictions of lying with the head down/
tucked.

In an accelerometer study on reindeer (Rangifer taran-
dus) that grouped all inactive behaviors (including stand-
ing, sleeping and ruminating) into one behavior class, 
this class had the best classification performance among 
all behaviors [71], which was better than the classifica-
tion performance for any of the inactive behaviors in our 
study. However, the focus of the study on reindeer was 
the distinction among three foraging behaviors (brows-
ing low, browsing high and grazing) [71]. In contrast, we 
grouped three foraging behaviors into one overall forag-
ing class, which in turn had a better classification perfor-
mance than the three foraging behaviors investigated in 
the study on reindeer (precision of foraging in our study 
scored higher than precision of all three behaviors in 
the study on reindeer, and recall of foraging in our study 
scored higher than recall of two out of the three behaviors 
in the study on reindeer) [71]. This comparison illustrates 

the potential effect of grouping of behaviors on model 
classification performance and the behavioral inferences 
that can be drawn from the predictions, emphasizing that 
behavioral grouping needs careful consideration in stud-
ies using supervised classification algorithms to analyze 
accelerometer data.

Classification performance in our model was compara-
ble to that in Martiskainen et al. classifying accelerometer 
data from dairy cows [83]. While their model performed 
better at classifying standing, our model performed bet-
ter at classifying foraging behavior. Similar to our study, 
Martiskainen et  al. reported misclassifications among 
less active behaviors (lying, ruminating and standing), 
which they also suspected was due to the similarities in 
neck posture of the cows during these behaviors [83]. 
Their model confused among the behaviors foraging, 
standing and (lame) walking [83] which is also evident 
in our predictions. During our observations, we consid-
ered a moose to be foraging until it took more than two 
consecutive steps without bites of food; which prompted 
a switch to walking. Consequently, some instances where 
the moose was walking were still recorded as foraging, 
likely contributing to the misclassifications of these two 
behaviors. Furthermore, foraging and walking can occur 
simultaneously in browsing animals, complicating their 
distinction using accelerometer data.

Model generalizability
Given the goal of classifying unlabeled data in wild ani-
mals, cross-validating the model on labeled data from 
unseen individuals, can provide insights into the general-
izability of the model [25, 70, 71]. Therefore, variation in 
classification performances among individuals is a useful 
indicator of the generalizability of our model [69–71].

In an effort to maximize model generalizability, we 
aimed to maximize the amount of variation in our train-
ing data by pooling data from as many individuals as pos-
sible and including individuals from both sexes and two 
subspecies [83]. The lowest overall prediction perfor-
mance (accuracy and mean recall) was observed when 
our model classified data from the only male moose in 
our study (Mattis). A possible interpretation is that our 
model might have limited applicability to male moose. 

Table 5 Behavior-specific individual variation in model performance

Behavior-specific variation in classification performance among 14 individuals of the random forest model classifying seven different behaviors from accelerometer 
data. Mean and standard deviation of precision and recall are given together with the prevalence of the behaviors in the observational data

Performance metric Behavior

Lying_u Ruminating Foraging Standing Walking Lying_o Running

Recall 0.69 ± 0.17 0.74 ± 0.18 0.86 ± 0.04 0.53 ± 0.18 0.73 ± 0.14 0.78 ± 0.15 0.74 ± 0.21

Precision 0.82 ± 0.09 0.78 ± 0.12 0.89 ± 0.07 0.56 ± 0.18 0.57 ± 0.19 0.31 ± 0.31 0.28 ± 0.26

Prevalence (%) 34 24 21 14 4 3 0
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Morphological differences such as the large weight 
of the head due to the presence of antlers and result-
ing increased neck circumference [84] could result in 
different neck posture and movement of male moose 
compared to female moose during the same behaviors, 
precluding the generalizability to male moose of a model 
that was trained on data from female moose to classify 
data from neck-mounted accelerometers. This notion is 
supported by the high total number of false predictions 
of lying with the head down/tucked for Mattis; a behav-
ior characterized by unique neck postures that is con-
fused mainly with behaviors characterized by limited 
body movement where neck posture might be an impor-
tant predictor (standing, lying with the head up and 
ruminating). However, we did find that these misclassi-
fications also occurred particularly often in Shiner, the 
female moose with the largest measured chest girth and 
weight in our study, where a large and heavy head and 
large neck circumference might have resulted in similar 
misclassifications to those observed for a (younger and) 
smaller male with small antlers. This might suggest that 
the reduced performance of our model in classifying 
Mattis’ data did not stem from a lack of generalizability 
of our model to (young) male moose with small antlers. 
Instead, the low sample sizes for several of Mattis’ behav-
iors as well as overall individual variability in model per-
formance, which we discuss below, might have resulted 
in the comparatively low performance of our model when 
classifying his data. However; ultimately, due to our small 
sample size of male moose, we cannot evaluate the gener-
alizability of our model to male moose. European moose 
constituted only 3.6% of the data, hence their predictions 
were largely based on data from Alaskan moose. Yet, 
mean recall and precision of the behavioral classification 
of the one female European moose in our study, Idun, 
were higher than the mean values of Alaskan moose with 
similar sample sizes. While the successful application of 
our model to Idun’s accelerometer data might have been 
facilitated by the similarities in size between Idun and the 
yearling Alaskan moose in our study (Babe, Vicky and 
Winnie), ultimately our sample size is too small to evalu-
ate the generalizability of our model to European moose.

Variation in overall accuracy and behavior-specific 
recall and precision among individuals with comparable 
sample sizes (e.g. Shiner and Sky) suggests the influence 
of factors other than sample size, sex and subspecies on 
model performance. Such individual differences in clas-
sification performance have been observed on a wide 
range of species from penguins [48] to pinnipeds [25, 
47] and caprids [46]. Including individual characteris-
tics as predictor variables might account for some of this 
individual variation and has been shown to increase the 
generalizability of classification models [25]. However, 

individual length and girth had comparatively low vari-
able importance in our model. Other variables such as 
age or weight might have been more important [25] but 
were not included in our model because these metrics 
are difficult to determine in the field when collaring wild 
moose. Furthermore, length and girth were not measured 
on all animals in our study and were inferred from other 
data for several individuals, potentially confounding the 
importance of these metrics on the behavioral classifica-
tion of moose accelerometer data.

Fine-scale differences in placement of the acceler-
ometers among individuals might have contributed 
to the individual variation in the classification perfor-
mance of our model [48, 69]. Because most collars were 
deployed for several months at a time, they were fitted 
to account for seasonal changes in neck diameter, poten-
tially resulting in changes in how the collars responded 
to body movement over the course of the deployments, 
thereby increasing within- and among-individual varia-
tion of the data [22, 38, 85]. Because collar fitting in our 
study was similar to collar fitting on wild moose in the 
field, our training data included such variation. While 
this might have reduced the classification performance 
of our model, it increases generalizability of our model 
to data from wild animals, where some fine-scale dif-
ferences in accelerometer placement among individu-
als can be expected. In our model, season had a variable 
importance of 2%, suggesting that variation in collar fit 
over the course of the deployments, or other seasonal 
variation such as the effect of snow on locomotor behav-
iors, exerted some influence on the classification in our 
model. In addition to within- and among-animal varia-
tion among collar placement, variation may exist among 
the accelerometer units themselves [22]. Addressing such 
variation requires calibration of the units prior to deploy-
ment [22, 86, 87]; but calibration data are often not avail-
able for existing accelerometer data where collars were 
deployed in the field without prior calibration [22].

Limitations of our study and recommendations for futures 
studies
The quality of the time stamps of our accelerometer 
data prevented a time series analysis of the data at a 
sub-second level. It was therefore not possible to distin-
guish between static and dynamic acceleration [17, 18] 
and analyze the frequency composition of the acceler-
ometer signals [14, 18], to calculate predictor variables 
that were among the most important for the classifica-
tion of accelerometer data in other studies [46, 63, 71]. 
For example, frequency analysis of accelerometer data 
using fast Fourier transform can facilitate the distinc-
tion among simultaneous, rhythmic behaviors such as 
foraging and walking [63]. In moose, such a frequency 
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analysis might help distinguish among lying and rumi-
nating, standing, foraging and walking behaviors from 
accelerometer data. Improving the quality of the time 
stamps recorded by the accelerometers built into the 
collars would enable the calculation of these important 
predictor variables, thus offering a promising way to 
further improve the performance of behavioral classifi-
cation models on fine-scale tri-axial accelerometer data 
of moose.

For the sake of this study, we considered postures 
(e.g. lying, standing) as separate categories from behav-
iors (e.g. foraging, ruminating, walking). Postures and 
behaviors are not mutually exclusive as, for example, 
a foraging moose is usually standing. Consequently, 
there was overlap in the accelerometer signatures of the 
behavioral classes, which we considered exclusive. This 
could explain some of the misclassifications among 
these behaviors like for example, foraging and standing, 
and lying with the head up and ruminating. In future 
studies, recording posture and behavior separately 
might facilitate the distinction among these behaviors 
[63]. However, such a distinction is logistically chal-
lenging when logging behaviors in real time in the field.

When applying our model to accelerometer data 
from wild moose, our model will not be able to clas-
sify behaviors that were not included in model training, 
for example swimming which can occur when moose 
are foraging on aquatic vegetation [88]. Instead, such 
behaviors unknown to the model will be misclassified 
as one behavior (or multiple behaviors) known to the 
model based on similarity in the accelerometer vari-
ables [25]. Increasing the sample size of observations 
of male and European moose and of rare behaviors 
would improve the generalizability of our model to new 
individuals.

Conclusions
We demonstrate the use of accelerometer data to dis-
tinguish among seven important behaviors of moose. 
Potential applications include the quantification of the 
time budget of wild moose and, by relating behavioral 
predictions to environmental variables, the investigation 
of behavior-specific habitat selection as done for other 
species [80, 81, 89]. Quantifying behavioral responses 
of moose to changes in their environment can elucidate 
the effect of disturbances on their time budget. Relating 
accelerometer data to metabolic rate could elucidate the 
energetic consequences of behavioral responses of moose 
to disturbances [15, 56].

Abbreviation
MSA  Minimum specific acceleration

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317- 023- 00343-0.

Additional file 1: Table S1. Details on individual moose included in the 
study. Table S2. Ethogram used to record observations of captive moose 
including sample sizes and durations of all behaviors and grouping 
of behaviors to label accelerometer data intervals. Table S3. Variable 
importance of the random forest model. Importance of all predictor vari-
ables of the random forest model used to predict moose behavior from 
3-s intervals of animal-borne accelerometer data. Table S4. Summary of 
the individual classification performance of the random forest model in 
predicting behavior from accelerometer data for each of the 14 moose in 
the study. Tables S5–S18. Confusion matrixes for the 14 moose. Values 
in columns represent the number of 3-s accelerometer data intervals 
predicted for each of the seven behaviors, split into rows based on the 
behavioral labels of the intervals recorded during the observations. Recall 
and precision quantify the classification performance of the model for 
each behavior of each individual. Prevalence indicates the contribution of 
each behavior to the total sample size of accelerometer data intervals for 
the respective individual.

Acknowledgements
We thank Jane Dentinger, Jason Rupp and Eli Smith for assistance with data 
collection. We thank two anonymous reviewers as well as the assistant editor 
and handling editor for their time and comments which helped to improve 
the manuscript.

Author contributions
AE, ALE, BZ, DT, JC, OD and TK conceived the study and planned the experi-
ments. JC, DT, BZ, AE and ALE acquired funding. TK, DT and JC collected the 
data. TK performed the analyses with support from OD and MC. TK wrote 
the manuscript with input from all co-authors. All authors reviewed the 
manuscript.

Funding
Financial support for this study was provided by the Alaska Department of 
Fish and Game (ADFG) Federal Wildlife Restoration Grant (Grant number 
AKW-4 Project No. 1.63). ADFG purchased the collars used in Alaska. The 
Innlandet country council and the municipalities Åsnes, Våler, Elverum and 
Åmot in Norway provided funding for purchase of the collars used in Norway. 
TK was supported by an Erasmus+ traineeship mobility grant.

Availability of data and materials
Data for this project are available upon reasonable request from the Alaska 
Department of Fish and Game and subject to a data sharing agreement.

Declarations

Ethics approval and consent to participate
Animal care and handling procedures in Alaska were approved by the Animal 
Care and Use Committee, Alaska Department of Fish and Game, Division of 
Wildlife Conservation (protocol number 0086-2020-40). Animal handling in 
Norway did not require a permit under the Norwegian Food Safety Author-
ity as the collars were deployed during routine hoof trimming and annual 
veterinary exams.

Consent for publication
All authors agree consent to publish this work to Animal Biotelemetry.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Forestry and Wildlife Management, Faculty of Applied 
Ecology, Agricultural Sciences and Biotechnology, Inland Norway University 
of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480 Koppang, 
Norway. 2 Centre d’Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle 

https://doi.org/10.1186/s40317-023-00343-0
https://doi.org/10.1186/s40317-023-00343-0


Page 12 of 13Kirchner et al. Animal Biotelemetry           (2023) 11:32 

Université, La Rochelle, France. 3 Alaska Department of Fish and Game, Kenai 
Moose Research Center, 43961 Kalifornsky Beach Road, Suite B, Soldotna, AK 
99669, USA. 

Received: 27 June 2023   Accepted: 14 August 2023

References
 1. Roever CL, Beyer HL, Chase MJ, van Aarde RJ. The pitfalls of ignor-

ing behaviour when quantifying habitat selection. Divers Distrib. 
2014;20(3):322–33.

 2. de Gabriel HM, Karamanlidis A, Grivas K, Krambokoukis L, Papakostas G, 
Beecham J. Habitat use and selection patterns inform habitat conserva-
tion priorities of an endangered large carnivore in southern Europe. 
Endang Species Res. 2021;44:203–15.

 3. Dombroski J, Parks S, Nowacek D. Dive behavior of North Atlantic right 
whales on the calving ground in the Southeast USA: implications for 
conservation. Endanger Species Res. 2021;46:35–48.

 4. Altmann J. Observational study of behavior: sampling methods. Behav-
iour. 1974;49(3–4):227–66.

 5. Bailey H, Mate B, Palacios D, Irvine L, Bograd S, Costa D. Behavioural 
estimation of blue whale movements in the Northeast Pacific from 
state-space model analysis of satellite tracks. Endang Species Res. 
2009;10:93–106.

 6. Patterson TA, Parton A, Langrock R, Blackwell PG, Thomas L, King R. 
Statistical modelling of individual animal movement: an overview of 
key methods and a discussion of practical challenges. Adv Stat Anal. 
2017;101(4):399–438.

 7. Hooven ND, Williams KE, Hast JT, McDermott JR, Crank RD, Jenkins G, 
et al. Using low-fix rate GPS telemetry to expand estimates of ungulate 
reproductive success. Anim Biotelemetry. 2022;10(1):5.

 8. Heard DC, Ciarniello LM, Seip DR. Grizzly bear behavior and global posi-
tioning system collar fix rates. J Wildl Manag. 2008;72(3):596–602.

 9. Mattisson J, Andrén H, Persson J, Segerström P. Effects of species 
behavior on global positioning system collar fix rates. J Wildl Manag. 
2010;74(3):557–63.

 10. Shamoun-Baranes J, Bom R, van Loon EE, Ens BJ, Oosterbeek K, Bouten W. 
From sensor data to animal behaviour: an oystercatcher example. PLoS 
ONE. 2012;7(5):e37997.

 11. Wang Y, Nickel B, Rutishauser M, Bryce CM, Williams TM, Elkaim G, et al. 
Movement, resting, and attack behaviors of wild pumas are revealed by 
tri-axial accelerometer measurements. Mov Ecol. 2015;3(1):2.

 12. Kooyman GL. Maximum diving capacities of the weddell seal, Leptonych-
otes weddelli. Science. 1966;151(3717):1553–4.

 13. Yoda K, Sato K, Niizuma Y, Kurita M, Bost C, Le Maho Y, et al. Precise moni-
toring of porpoising behaviour of Adelie penguins determined using 
acceleration data loggers. J Exp Biol. 1999;202(22):3121–6.

 14. Watanabe S, Izawa M, Kato A, Ropert-Coudert Y, Naito Y. A new technique 
for monitoring the detailed behaviour of terrestrial animals: a case study 
with the domestic cat. Appl Anim Behav Sci. 2005;94(1):117–31.

 15. Wilson RP, Börger L, Holton MD, Scantlebury DM, Gómez-Laich A, Quin-
tana F, et al. Estimates for energy expenditure in free-living animals using 
acceleration proxies: a reappraisal. J Anim Ecol. 2020;89(1):161–72.

 16. Whitford M, Klimley AP. An overview of behavioral, physiological, and 
environmental sensors used in animal biotelemetry and biologging stud-
ies. Anim Biotelemetry. 2019;7(1):26.

 17. Wilson RP, Shepard ELC, Liebsch N. Prying into the intimate details 
of animal lives: use of a daily diary on animals. Endang Species Res. 
2008;4:123–37.

 18. Shepard ELC, Wilson RP, Quintana F, Laich AG, Liebsch N, Albareda DA, 
et al. Identification of animal movement patterns using tri-axial acceler-
ometry. Endang Species Res. 2008;10:47–60.

 19. Simon M, Johnson M, Madsen PT. Keeping momentum with a mouthful 
of water: behavior and kinematics of humpback whale lunge feeding. J 
Exp Biol. 2012;215(21):3786–98.

 20. Yoda K, Naito Y, Sato K, Takahashi A, Nishikawa J, Ropert-Coudert Y, et al. 
A new technique for monitoring the behaviour of free-ranging Adelie 
penguins. J Exp Biol. 2001;204(4):685–90.

 21. Dickinson ER, Stephens PA, Marks NJ, Wilson RP, Scantlebury DM. Best 
practice for collar deployment of tri-axial accelerometers on a terres-
trial quadruped to provide accurate measurement of body accelera-
tion. Anim Biotelemetry. 2020;8(1):9.

 22. Garde B, Wilson RP, Fell A, Cole N, Tatayah V, Holton MD, et al. Ecological 
inference using data from accelerometers needs careful protocols. 
Methods Ecol Evol. 2022;13(4):813–25.

 23. Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM. 
Using tri-axial acceleration data to identify behavioral modes of free-
ranging animals: general concepts and tools illustrated for griffon 
vultures. J Exp Biol. 2012;215(6):986–96.

 24. Wilson R, Vandenabeele S. Technological innovation in archival tags 
used in seabird research. Mar Ecol Prog Ser. 2012;11(451):245–62.

 25. Ladds MA, Thompson AP, Slip DJ, Hocking DP, Harcourt RG. Seeing it all: 
evaluating supervised machine learning methods for the classification 
of diverse otariid behaviours. PLoS ONE. 2016;11(12):e0166898.

 26. Kielland K, Bryant JP, Ruess RW. Moose herbivory and carbon turnover 
of early successional stands in interior Alaska. Oikos. 1997;80(1):25–30.

 27. Persson IL, Danell K, Bergström R. Disturbance by large herbivores 
in boreal forests with special reference to moose. Ann Zool Fenn. 
2000;37(4):251–63.

 28. Snaith TV, Beazley KF. Moose (Alces alces americana [Gray Linnaeus 
Clinton] Peterson) as a focal species for reserve design in Nova Scotia, 
Canada. Nat Areas J. 2002;22(3):235–40.

 29. Storaas T, Gundersen H, Henriksen H, Andreassen HP. The economic 
value of moose in Norway—a review. Alces J Devoted Biol Manag 
Moose. 2001;37(1):97–107.

 30. Nelson JL, Zavaleta ES, Chapin FS. Boreal fire effects on subsist-
ence resources in Alaska and adjacent Canada. Ecosystems. 
2008;11(1):156–71.

 31. Priadka P, Moses B, Kozmik C, Kell S, Popp J. Impacts of harvested spe-
cies declines on Indigenous Peoples’ food sovereignty, well-being and 
ways of life: a case study of Anishinaabe perspectives and moose. Ecol 
Soc. 2022. https:// doi. org/ 10. 5751/ ES- 12995- 270130.

 32. Olaussen JO, Skonhoft A. A cost-benefit analysis of moose harvesting 
in Scandinavia: a stage structured modelling approach. Resour Energy 
Econ. 2011;33(3):589–611.

 33. Neumann W, Ericsson G, Dettki H. The impact of human recreational 
activities: Moose as a case study. Alces J Devoted Biol Manag Moose. 
2010;47:17–25.

 34. Jones H, Pekins P, Kantar L, Sidor I, Ellingwood D, Lichtenwalner A, et al. 
Mortality assessment of moose (Alces alces) calves during successive 
years of winter tick (Dermacentor albipictus) epizootics in New Hamp-
shire and Maine (USA). Can J Zool. 2019;97(1):22–30.

 35. Græsli AR, Le Grand L, Thiel A, Fuchs B, Devineau O, Stenbacka F, et al. 
Physiological and behavioural responses of moose to hunting with 
dogs. Conserv Physiol. 2020;8:coaa122.

 36. Lowe SJ, Patterson BR, Schaefer JA. Lack of behavioral responses of 
moose (Alces alces) to high ambient temperatures near the southern 
periphery of their range. Can J Zool. 2010;88(10):1032–41.

 37. Monteith KL, Klaver RW, Hersey KR, Holland AA, Thomas TP, Kauffman 
MJ. Effects of climate and plant phenology on recruitment of moose at 
the southern extent of their range. Oecologia. 2015;178(4):1137–48.

 38. Herberg A. Are Minnesota moose warming up to climate change? A 
validation of techniques for remotely monitoring moose behavior and 
body temperature. [MSc]. University of Minnesota; 2017. http:// conse 
rvancy. umn. edu/ handle/ 11299/ 188796. Accessed 24 Aug 2020.

 39. Cederlund G. Activity patterns in moose and roe deer in a north boreal 
forest. Ecography. 1989;12(1):39–45.

 40. Moen R, Pastor J, Cohen Y. Interpreting behavior from activity coun-
ters in GPS collars of moose. Alces J Devoted Biol Manag Moose. 
1996;32:101–8.

 41. Ditmer MA, Moen RA, Windels SK, Forester JD, Ness TE, Harris TR. Moose at 
their bioclimatic edge alter their behavior based on weather, landscape, 
and predators. Curr Zool. 2018;64(4):419–32.

 42. Fancy SG, White RG. Incremental cost of activity. In: Hudson RJ, White RG, 
editors. Bioenergetics of wild herbivores. 1st ed. Boca Raton: CRC Press; 
2018. p. 143–60.

 43. Bunnell FL, Gillingham MP. Foraging behavior: dynamics of dining out. 
In: Hudson RJ, White RG, editors. Bioenergetics of wild herbivores. 1st ed. 
Boca Raton: CRC Press; 2018. p. 53–80.

https://doi.org/10.5751/ES-12995-270130
http://conservancy.umn.edu/handle/11299/188796
http://conservancy.umn.edu/handle/11299/188796


Page 13 of 13Kirchner et al. Animal Biotelemetry           (2023) 11:32  

 44. Geist V. On the behaviour of the North American Moose (Alces 
Alces Andersoni Peterson 1950) in British Columbia. Behaviour. 
1963;20(3–4):377–415.

 45. Dorn RD. Moose and cattle food habits in southwest Montana. J Wildl 
Manag. 1970;34(3):559–64.

 46. Dickinson ER, Twining JP, Wilson R, Stephens PA, Westander J, Marks N, 
et al. Limitations of using surrogates for behaviour classification of accel-
erometer data: refining methods using random forest models in Caprids. 
Mov Ecol. 2021;9(1):28.

 47. Shuert CR, Pomeroy PP, Twiss SD. Assessing the utility and limitations 
of accelerometers and machine learning approaches in classifying behav-
iour during lactation in a phocid seal. Anim Biotelemetry. 2018;6(1):14.

 48. Chimienti M, Kato A, Hicks O, Angelier F, Beaulieu M, Ouled-Cheikh J, 
et al. The role of individual variability on the predictive performance 
of machine learning applied to large bio-logging datasets. Sci Rep. 
2022;12(1):19737.

 49. Renecker LA, Hudson RJ. Ecological metabolism of moose in aspen-
dominated boreal forests, central Alberta. Can J Zool. 1989;67:1923–8.

 50. Gottardi E, Tua F, Cargnelutti B, Maublanc ML, Angibault JM, Said S, et al. 
Use of GPS activity sensors to measure active and inactive behaviours of 
European roe deer (Capreolus capreolus). Mammalia. 2010;74(4):355–62.

 51. Halsey LG, Shepard ELC, Wilson RP. Assessing the development and appli-
cation of the accelerometry technique for estimating energy expendi-
ture. Comp Biochem Physiol A Mol Integr Physiol. 2011;158(3):305–14.

 52. Hounslow JL, Brewster LR, Lear KO, Guttridge TL, Daly R, Whitney NM, 
et al. Assessing the effects of sampling frequency on behavioural clas-
sification of accelerometer data. J Exp Mar Biol Ecol. 2019;512:22–30.

 53. Chakravarty P, Cozzi G, Ozgul A, Aminian K. A novel biomechanical 
approach for animal behaviour recognition using accelerometers. Meth-
ods Ecol Evol. 2019;10(6):802–14.

 54. Tuomainen U, Candolin U. Behavioural responses to human-induced 
environmental change. Biol Rev. 2011;86(3):640–57.

 55. Pirotta E, Booth CG, Costa DP, Fleishman E, Kraus SD, Lusseau D, et al. 
Understanding the population consequences of disturbance. Ecol Evol. 
2018;8(19):9934–46.

 56. Pirotta E, Booth CG, Cade DE, Calambokidis J, Costa DP, Fahlbusch JA, 
et al. Context-dependent variability in the predicted daily energetic costs 
of disturbance for blue whales. Conserv Physiol. 2021;9(1):coaa137.

 57. Thompson DP, Crouse JA, Barboza PS, Spathelf MO, Herberg AM, Parker 
SD, Morris MA. Behavior influences thermoregulation of boreal moose 
during the warm season. Conserv Physiol. 2021;9:coaa130.

 58. Evans AL, Fahlman Å, Ericsson G, Haga HA, Arnemo JM. Physiologi-
cal evaluation of free-ranging moose (Alces alces) immobilized with 
etorphine-xylazine-acepromazine in Northern Sweden. Acta Vet Scand. 
2012;54(1):77.

 59. Friard O, Gamba M. BORIS: a free, versatile open-source event-logging 
software for video/audio coding and live observations. Methods Ecol 
Evol. 2016;7(11):1325–30.

 60. RStudio Team. RStudio: integrated development environment for R. 
Boston: R Studio PBC; 2022.

 61. R Core Team. R: a language and environment for statistical computing. 
Vienna: R Foundation for Statistical Computing; 2022.

 62. Chimienti M, Cornulier T, Owen E, Bolton M, Davies IM, Travis JMJ, et al. 
The use of an unsupervised learning approach for characterizing latent 
behaviors in accelerometer data. Ecol Evol. 2016;6(3):727–41.

 63. Fehlmann G, O’Riain MJ, Hopkins PW, O’Sullivan J, Holton MD, Shepard 
ELC, et al. Identification of behaviours from accelerometer data in a wild 
social primate. Anim Biotelemetry. 2017;5(1):6.

 64. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
 65. Ziegler A, König IR. Mining data with random forests: current options for 

real-world applications. WIREs Data Min Knowl Discov. 2014;4(1):55–63.
 66. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, et al. Ran-

dom forests for classification in ecology. Ecology. 2007;88(11):2783–92.
 67. Cutler A, Cutler DR, Stevens JR. Random forests. In: Zhang C, Ma Y, editors. 

Ensemble machine learning: methods and applications. Boston: Springer; 
2012. p. 157–75.

 68. LeDell E, Gill N, Aiello S, Fu A, Candel A, Click C, et al. h2o: R interface for 
the “H2O” scalable machine learning platform. 2022.

 69. Rahman A, Smith DV, Little B, Ingham AB, Greenwood PL, Bishop-Hurley 
GJ. Cattle behaviour classification from collar, halter, and ear tag sensors. 
Inf Process Agric. 2018;5(1):124–33.

 70. Ferdinandy B, Gerencsér L, Corrieri L, Perez P, Újváry D, Csizmadia G, 
et al. Challenges of machine learning model validation using correlated 
behaviour data: evaluation of cross-validation strategies and accuracy 
measures. PLoS ONE. 2020;15(7):e0236092.

 71. Rautiainen H, Alam M, Blackwell PG, Skarin A. Identification of reindeer 
fine-scale foraging behaviour using tri-axial accelerometer data. Mov 
Ecol. 2022;10(1):40.

 72. Tharwat A. Classification assessment methods. Appl Comput Inform. 
2020;17(1):168–92.

 73. Leoni J, Tanelli M, Strada SC, Berger-Wolf T. Ethogram-based automatic 
wild animal monitoring through inertial sensors and GPS data. Ecol 
Inform. 2020;59:101112.

 74. Chen C, Liaw A, Breiman L. Using random forest to learn imbalanced data. 
Berkeley: University of California; 2004 p. 12. Report No.: 666. https:// stati 
stics. berke ley. edu/ sites/ defau lt/ files/ tech- repor ts/ 666. pdf. Accessed 18 
Oct 2020.

 75. Pagano AM, Atwood TC, Durner GM, Williams TM. The seasonal ener-
getic landscape of an apex marine carnivore, the polar bear. Ecology. 
2020;101(3):e02959.

 76. Bryce CM, Dunford CE, Pagano AM, Wang Y, Borg BL, Arthur SM, et al. 
Environmental correlates of activity and energetics in a wide-ranging 
social carnivore. Anim Biotelemetry. 2022;10(1):1–16.

 77. Ste-Marie E, Watanabe YY, Semmens JM, Marcoux M, Hussey NE. Life in 
the slow lane: field metabolic rate and prey consumption rate of the 
Greenland shark (Somniosus microcephalus) modelled using archival 
biologgers. J Exp Biol. 2022;225(7):jeb242994.

 78. Wilson RP, Grundy E, Massy R, Soltis J, Tysse B, Holton M, et al. Wild state 
secrets: ultra-sensitive measurement of micro-movement can reveal 
internal processes in animals. Front Ecol Environ. 2014;12(10):582–7.

 79. Tobin C, Bailey DW, Trotter MG, O’Connor L. Sensor based disease detec-
tion: a case study using accelerometers to recognize symptoms of Bovine 
Ephemeral Fever. Comput Electron Agric. 2020;175:105605.

 80. Wilson AM, Lowe JC, Roskilly K, Hudson PE, Golabek KA, McNutt 
JW. Locomotion dynamics of hunting in wild cheetahs. Nature. 
2013;498(7453):185–9.

 81. Suraci JP, Frank LG, Oriol-Cotterill A, Ekwanga S, Williams TM, Wilmers 
CC. Behavior-specific habitat selection by African lions may pro-
mote their persistence in a human-dominated landscape. Ecology. 
2019;100(4):e02644.

 82. Graf PM, Wilson RP, Qasem L, Hackländer K, Rosell F. The use of accelera-
tion to code for animal behaviours; a case study in free-ranging Eurasian 
beavers castor fiber. PLoS ONE. 2015;10(8):e0136751.

 83. Martiskainen P, Järvinen M, Skön JP, Tiirikainen J, Kolehmainen M, Mon-
onen J. Cow behaviour pattern recognition using a three-dimensional 
accelerometer and support vector machines. Appl Anim Behav Sci. 
2009;119(1):32–8.

 84. Lynch GM, Lajeunesse B, Willman J, Telfer ES. Moose weights and meas-
urements from Elk Island National Park, Canada. Alces J Devoted Biol 
Manag Moose. 1995;31:199–207.

 85. Wilson RP, Rose KA, Gunner R, Holton MD, Marks NJ, Bennett NC, et al. 
Animal lifestyle affects acceptable mass limits for attached tags. Proc R 
Soc B Biol Sci. 1961;2021(288):20212005.

 86. Aggarwal P. MEMS inertial sensor errors. In: MEMS-based integrated navi-
gation. GNSS Technology and Applications Series. Boston: Artech House; 
2010. 

 87. Won SP, Golnaraghi F. A triaxial accelerometer calibration method using a 
mathematical model. IEEE Trans Instrum Meas. 2010;59(8):2144–53.

 88. Morris KI. Impact of moose on aquatic vegetation in northern Maine. 
Alces J Devoted Biol Manag Moose. 2002;38:213–8.

 89. Spedener M, Tofastrud M, Devineau O, Zimmermann B. Microhabitat 
selection of free-ranging beef cattle in south-boreal forest. Appl Anim 
Behav Sci. 2019;213:33–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf


 
 

  



II 



 
 

  



Paper II: Energy expenditure model 
 

1 
 

Predicting energy expenditure from dynamic body acceleration in a large boreal 

ungulate 
 

Theresa M. Kirchner1, Olivier Devineau1, Daniel P. Thompson2, Alexandra Thiel1, Marianna 

Chimienti3, Alina L. Evans1, John Crouse2, Ane Eriksen1 

 
1 Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and 

Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480 

Koppang, Norway 
2 Alaska Department of Fish and Game, Kenai Moose Research Center, 43961 Kalifornsky Beach Road, Suite B, 

Soldotna, AK, USA 
3 Centre d’Études Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, La Rochelle, France 

 

 

Abstract 
 

Energy expenditure is a vital parameter in bioenergetic models aiming to quantify the consequences of 

disturbances and changing environmental conditions on wildlife. However, energy expenditure is difficult 

to measure in wild animals. Here, we used biologging data to predict heart rate from accelerometer data 

in moose (Alces alces). We implanted heart rate loggers and deployed accelerometer collars on eight 

captive female moose. We simultaneously recorded heart rate (every 30 seconds) and accelerometer data 

(continuously at 32 Hz) during three-day-long sampling periods in early and late summer, fall and spring. 

At the same time, we conducted behavioral observations in late summer, fall and spring. We fitted a 

generalized additive mixed model to predict heart rate from overall dynamic body acceleration calculated 

from the accelerometer data. Using a previously published equation, we then calculated energy 

expenditure from the predicted heart rates. Using our behavioral observations, we predicted energy 

expenditures for seven different behaviors by season and compared our results to previously published 

values. Season, overall dynamic body acceleration, time of day and individual were important predictors 

in our model and together explained 66% of the deviance in the moose heart rate data. Our model tended 

to underestimate heart rate at high values of overall dynamic body acceleration due to low sample sizes 

and imbalanced sampling for the different behaviors. We observed large seasonal and individual variation 

in the behavior-specific energy expenditure, with lowest energy expenditure during lying in the fall (12.5 

± 4.8 kJ*kg-1*h-0.75) and highest during running in the fall (69.7 ± 46.2 kJ*kg-1*h-0.75). Our range of predicted 

behavior-specific energy expenditure was comparable to published values but slightly lower in the fall and 

summer and higher in the spring. The method presented here facilitates the estimation of moose energy 

expenditure from collar-mounted accelerometers, circumventing the need for surgical logger 

implantation. 
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Introduction 
 

Energy is a central currency in ecology (Brown et 

al. 2004, Butler et al. 2004). Animals expend 

energy on a variety of metabolic functions such 

as maintenance, growth, reproduction and 

movement, and gain energy only through 

foraging (Pontzer & McGrosky 2022). The ability 

of an individual to meet its metabolic demands 

determines its survival (Kleiber 1961). Through 

the effect of maternal condition on recruitment, 

the energy balance of individuals can ultimately 

affect population growth (Bernardo 1996, 

Shallow et al. 2015, Ruprecht et al. 2016); 

individual energy budgets are therefore of 

interest for population management and 

conservation. 

Changing environmental conditions, 

anthropogenic disturbances and predation risk 

effects can affect the energy balance and survival 

of individuals by increasing energy expenditure 

(e.g., increased costs of locomotor activity or 

thermoregulation, increased vigilance) (Fancy & 

White 1987, Feist & White 1989, Dickinson et al. 

2021, Díaz et al. 2024) or reducing energy intake 

(via reduction in foraging activity or forage 

availability) (Creel et al. 2009). For example, in 

recent years, negative effects of climatic factors 

on plant phenology and thus maternal body 

condition were implicated in declining 

recruitment of several ungulate populations 

including woodland caribou (Rangifer tarandus 

caribou) (DeMars et al. 2021), roe deer 

(Capreolus capreolus) (Gaillard et al. 1997, 2013) 

and moose (Alces alces) (Monteith et al. 2015). 

At the same time as caribou recruitment is 

affected by climatic effects on plant phenology, 

anthropogenic landscape change facilitates the 

range expansion of other cervids and their 

predators into the range of endangered 

woodland caribou, increasing predation and 

predation risk effects on caribou (DeMars et al. 

2021). To predict the effect of a multitude of 

factors on population growth, energy use and 

gain are important parameters in population 

models (Nisbet et al. 2000, Nabe-Nielsen et al. 

2014, Pirotta et al. 2022).  

Several methods exist for studying animal energy 

expenditure. Field metabolic rate, the rate of 

energy expenditure under natural conditions 

(Kleiber 1961, Speakman 1999, Weibel & 

Hoppeler 2005), can be measured indirectly from 

doubly labeled water or estimated from heart 

rate (Speakman 1999, Green 2011). In wild 

animals, these methods can be difficult to 

implement as they are invasive and/or logistically 

challenging (Speakman 1999, Butler et al. 2004, 

Halsey et al. 2008). In recent years, 

accelerometry has become a prominent method 

to quantify animal energy expenditure due to its 

comparable ease of implementation (Wilson et 

al. 2006, Halsey et al. 2011). This method uses 

body-mounted accelerometers to quantify the 

movement of an animal’s body resulting from 

energy-consuming muscle contractions (Cavagna 

et al. 1963, Wilson et al. 2006, Halsey et al. 2008, 

Gleiss et al. 2011). To quantify the rate of energy 

expenditure during body movement, 

measurements of body acceleration are 

calibrated with concurrent measurements of the 

rate of oxygen consumption (Wilson et al. 2006, 

Halsey et al. 2008).  

Moose are the largest deer species and occur in 

the boreal forests of the northern hemisphere 

(Karns 2007, Niedziałkowska et al. 2022) where 

they are of high ecological and cultural 

importance (Molvar et al. 1993, Snaith & Beazley 

2002, LeBlanc et al. 2011). A variety of factors 

have been suggested to contribute to recent 

population declines and declines in cow/calf 

ratios observed in several areas, including food 

limitation or nutritional deficits (Lavsund et al. 

2003, Murray et al. 2006, Pettorelli et al. 2007, 

Monteith et al. 2015), increased parasite loads 

(Murray et al. 2006, Jones et al. 2020), increased 

predation (Wikenros et al. 2020) and increased 

energetic costs of thermoregulation (Post & 

Stenseth 1999, Murray et al. 2006, Monteith et 
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al. 2015). Moose in an area with high 

anthropogenic activity and increased 

temperatures had short relative telomer lengths 

– a signs of chronic stress (Fohringer et al. 2022). 

Another study did not find an effect of human 

activity on cortisol concentrations in moose hair, 

another indicator of stress (Spong et al. 2020), 

illustrating that the effect of human disturbance 

on moose health is currently unclear. 

Our goal was to predict moose energy 

expenditure from accelerometer data to 

facilitate future studies of the energy budgets of 

wild moose, for which more direct methods such 

as isotope dilution techniques or heart rate 

measurements are difficult to implement. In 

captive moose, we simultaneously recorded 

accelerometer data as proxy for body movement 

and heart rate as proxy for energy expenditure. 

We first built a model to estimate heart rate from 

the accelerometer data, and then used an 

existing equation quantifying energy 

expenditure from heart rate in moose (Renecker 

& Hudson 1985) to link accelerometry directly to 

energy expenditure. 

 

Methods 
 

Moose husbandry 
 

At the Kenai Moose Research Center (MRC) run 
by the Alaska Department of Fish and Game, 
female captive moose were housed in two 2.6 
km2 enclosures with varying seral states of mixed 
boreal forest, black spruce forest, meadows, 
wetlands, and lakes in varying terrain. Moose 
foraged on natural vegetation throughout the 
year and were provided supplemental pellet 
ration from January to April (ca. 3.5 kg/day; 
Reindeer 13% Pellet, Alaska Garden and Pet 
Supply, Anchorage, AK, USA). Water was 
supplemented in June and early July in one 
enclosure when wetland water sources were 
depleted, and prior to adequate snow fall in 
October and November when natural water 
sources were frozen. The moose were weighed 

approximately once every season (April, October 
and December 2021 and March 2022) on a 
platform scale (MP Series Load Bars; ± 2 kg; Tru-
Test Limited, Auckland, NZ).  
 
Data collection: Heart rate logger implantation 
and programming 
 

Star-Oddi Centi heart rate loggers were 
implanted into 8 female non-pregnant, non-
lactating moose aged 2-12 years (Appendix: 
Table 4) at the Kenai Moose Research Center in 
July 2021 and removed in July 2022. For 
immobilization prior to the surgeries, we used 
Thiafentanil oxalate (0.001– 0.004 mg/kg 
estimated body mass; 10 mg/mL; Wildlife 
Pharmaceuticals Inc., Windsor, CO, USA) and 
Xylazine (0.03–0.05 mg/kg estimated body mass; 
100 mg/mL; Lloyd Laboratories, Shenandoah, IA, 
USA) (Høy-Petersen et al. 2023). Surgeries 
followed the protocol described in Græsli et al. 
(2020b). Loggers were programmed to record 
raw electrocardiogram (ECG) data for 4 seconds 
in summer and 10 seconds in the fall and spring. 
The loggers automatically calculated heart rate 
(HR) in beats per minute (bpm) from R-R intervals 
between consecutive ventricular depolarization 
waves (QRS complexes) detected in the ECG data 
(Bayés de Luna et al. 2007, Star Oddi 2022). The 
loggers assigned a quality index for each heart 
rate measurement, considering factors such as 
the number of detected QRS complexes and 
heart rate variability per 4 second measurement 
interval, with quality index 0 indicating the 
highest and quality index 3 indicating the lowest 
quality (Star Oddi 2022). We programmed each 
logger to record heart rate every 30 for three 
consecutive days in late summer (August 7- 30, 
2021), fall (October 25-November 17, 2021), 
spring (March 25-April 17, 2022) and early 
summer (June 15-July 8, 2022). Loggers recorded 
heart rate once every two hours between the 
three-day sampling periods. Sampling periods 
did not overlap among the loggers deployed in 
each animal; only one logger was recording at a 
time, and the next logger started recording in the 
next animal when the previous loggers stopped 
recording. For manual validation of the logger-
based heart rate calculation, we programmed 
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the loggers to save the raw ECG data in addition 
to the HR data calculated from the ECG as 
follows: All loggers recorded HR and saved the 
raw ECGs every 5 minutes over the course of two 
days between August 4 and August 5. 
Additionally, every logger recorded HR and saved 
the raw ECG data once per hour for 24 hours 
prior to that logger’s high frequency sampling 
period each season. 
 
Data collection: Accelerometer data 
 

Moose with heart rate loggers were also 
equipped with Vertex Plus accelerometer-GPS 
collars (Vectronic Aerospace GmbH, Berlin, 
Germany). For the two deployment periods (May 
7-November 23 2021, and March 24-July 14 
2022), collars were fitted and removed without 
anesthesia. To accommodate seasonal changes 
in neck diameter, a gap of approximately 6 cm 
was left between the collar and the neck. The 
collars recorded tri-axial accelerometer data at 
32 Hz (except for Minnie’s collar; this collar 
recorded data at 8 Hz; however the data was still 
included in the analysis) and one GPS position 
every 15 min, during which the accelerometer 
time stamps were synched with GPS time 
(Kirchner et al. 2023). 
 
Data collection: Behavioral observations 
 

During each heart rate logger’s high-frequency 
recording periods, we conducted behavioral 
observations for a minimum of six hours per day 
during daylight hours. One of five observers 
followed the moose on foot or snowshoes, 
logging start times of behaviors to the nearest 
second in ArcGIS Quick Capture software (Esri, 
Redlands, CA, USA) running on a tablet linked to 
a GPS unit (Bald Elf GPS Pro, Bad Elf, West 
Hartford, CT, USA) (Kirchner et al. 2023). Our 
ethogram consisted of 21 behaviors building on 
Herberg (2017). Only one behavior was recorded 
at any point in time. Additionally, we recorded 
opportunistic video footage of bedded moose 
during observations in summer 2021 and spring 
2022 using a handheld video camera (Canon X40; 
Canon Europe Ltd, Middlesex, U.K.). 
 
 

 
Validation of heart rate measurements 
 

After immobilization of the moose and surgical 
removal of the loggers, we downloaded the heart 
rate data using the program Mercury (Star Oddi, 
Gardabaer, Iceland). We plotted the voltage of 
the raw ECG signal recorded during each 4-
second sampling interval and manually 
calculated heart rate from this data as the mean 
time between the R waves of two consecutive 
QRS complexes. For each logger, we plotted ECGs 
from which the logger calculated low, medium, 
and high heart rates, and manually validated at 
least 5 ECGs for each heart rate category and 
quality index 0 and 1 (HR measurements with 
quality index lower than 1 were not considered 
for inclusion in the analysis). We compared the 
manually calculated HR to that calculated by the 
logger and considered a measurement reliable if 
it did not deviate from the manually validated 
heart rate by more than 10% (Trondrud et al. 
2021). 
 
Time drift correction of heart rate measurements 
 

Prior to deployment, the clock in each logger was 
synchronized with the computer used for logger 
programming. After logger recovery, the time in 
each logger was compared to the time stamp of 
the same computer. From the time difference 
between the computer and the recovered 
logger, we calculated a linear drift correction 
factor for each logger and corrected the time 
stamp of each heart rate measurement for time 
drift. 
 
Preparation of accelerometer data 
 

After removal of the collars, we downloaded the 
data and extracted the accelerometer data 
recorded during heart rate measurement 
intervals using the program Vectronic 
MotionData Monitor (v.1.2.0) (Vectronic 
Aerospace GmbH, Berlin, Germany). We 
calculated static body acceleration for each 
accelerometer measurement as a four-second 
running mean of the raw acceleration in each 
axis to match the heart rate recording interval 
(i.e., ECG length). Dynamic body acceleration was 
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calculated in each axis by subtracting static 
acceleration from raw acceleration recorded in 
the respective axis. For each of the 32 
accelerometer measurements per second, 
overall dynamic body acceleration (ODBA) was 
calculated as sum of the dynamic body 
acceleration over all axes. Because the 
accelerometer data contained time gaps at 
varying length and occasionally also 
discontinuous timeseries data as detailed in 
(Kirchner et al. 2023), we ensured that the 
moving windows used to calculate static 
acceleration and thus ODBA did not span any 
time gaps but were in fact limited to a duration 
of four seconds. 
 
We rounded the start and end time of each heart 
rate measurement interval and each four-second 
moving window used to calculate ODBA and 
calculated the median ODBA for each heart rate 
measurement. For the remainder of this 
manuscript, we will refer to the median value of 
ODBA in each four-second window simply as 
ODBA. 
 
Estimating heart rate from accelerometer data 
 

All analyses were conducted in R (R Core Team 
2023) (v.4.3.1) using R Studio (v.2023.6.1.524) 
(Posit team 2023). Fitting a generalized additive 
mixed (GAM) model using the bam function in 
the mgcv package (v. 1.9-0) (Wood 2011, 2017), 
we modeled heart rate as function of ODBA with 
fast restricted maximum likelihood estimation 
and a scaled t-distribution (scat family) with an 
identity link function to account for heavy tails in 
the distribution of the heart rate data. We used 
a thin plate regression spline with 25 knots on 
ODBA with a random slope by season to account 
for seasonal variation in the effect of dynamic 
body acceleration on heart rate. To account for 
seasonal hypometabolism in moose we included 
season as a fixed effect. We added a smooth with 
a cyclic cubic regression spline with 10 knots for 
time of day (in seconds) to account for circadian 
variation in heart rate, and to address temporal 
autocorrelation in the heart rate data. We 
included a random effect for individual with 
varying intercept by season to account for 

individual differences in the heart rate data, and 
an AR(1) structure to account for observed 
autocorrelation in the residuals. The final model 
structure was as follows: 

                      𝐻𝑅 ~  𝑠(𝑂𝐷𝐵𝐴, 𝑘 = 25, 𝑏𝑦
= 𝑆𝑒𝑎𝑠𝑜𝑛)
+ 𝑆𝑒𝑎𝑠𝑜𝑛
+ 𝑠(𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑎𝑦, 𝑘 = 10, 𝑏𝑠
= cc)
+ 𝑠(𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑏𝑦
= 𝑆𝑒𝑎𝑠𝑜𝑛, 𝑏𝑠 = 𝑟𝑒) 

 
We inspected the value of k using the gam.check 
function and checked for residual 
autocorrelation. To evaluate model 
performance, we used the model to predict heart 
rate from the data used to fit the model, after 
removing the effect of individual on heart rate. 
 
Calculating energy expenditure from heart rate 
data 
 

The next step in predicting energy expenditure 
from ODBA was to use the heart rate values 
predicted from our GAM model to calculate 
energy expenditure using the equations from 
Renecker & Hudson (1985, 1989). 
 

Equation 1:  𝑛𝑜𝑟𝑚. 𝐻𝑅 =
𝐻𝑅

𝑀−0.25  

 
Equation 2:  𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝑟𝑎𝑡𝑒 = 

4.655 × 𝑒0.0071×𝑛𝑜𝑟𝑚.𝐻𝑅 
 
To calculate normalized heart rate (Equation 1), 
we first calculated individual spring mass (M) as 
mean of the weights in April 2021 and March 
2022, and summer weight as mean of spring and 
fall weights (Appendix: Table 4). We used the 
normalized heart rate to calculate metabolic rate 
for each 4-second heart rate estimate (Equation 
2). To assess our estimates of energy 
expenditure, we predicted heart rate from ODBA 
calculated from data recorded during specific, 
observed behaviors, and visually compared the 
resulting behavior-specific energy expenditures 
to the values published in Renecker & Hudson 
(1989). These data were collected on two captive 
female moose (average weight: 320 ± 5 kg, age: 
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2.5 yr) with implanted heart rate loggers 
observed over a 24-hour period once per month 
over the course of a year (Renecker & Hudson 
1989). For our comparison, we combined the 
data for some of the behaviors studied in 
Renecker & Hudson (1989) (see details in 
Appendix section “Predicting energy expenditure 
from heart rate data”). 
 

Results 
 
Validation of heart rate measurements 
 

We recovered seven out of eight implanted 
loggers; one logger was likely rejected over the 
course of the deployment. Another logger (Sky) 
stopped recording in January 2022, the 
remaining six loggers recorded during all 
programmed sampling periods. Due to a 
programming error, the heart rate loggers 
calculated heart rate from four-second ECG for 
all seasons, and ten-second ECG were only used 
during the 24-hour validation period prior to 
each sampling period. During the validation, 
99.5% (n = 543) of 546 manually calculated heart 
rates scored within 10% of the value calculated 
by the logger for quality class 0, and 80.1% (n = 

113) of 141 for quality class 1. A visual inspection 
of the simultaneous recordings of heart rate and 
activity data from observation periods revealed a 
large number of high heart rate measurements 
of quality class one in two moose (Shiner and 
Wilma) during bedded periods. A screening of 
the video footage available for a subset of these 
measurements revealed that these individuals 
were bedded on their left side during these 
periods. In the raw ECG data of these moose 
collected for the logger measurement validation, 
we frequently observed a higher heart rate 
calculated by the logger compared to our 
calculation for measurements of quality class 
one; likely resulting from the logger mistaking 
prominent T-waves in the ECG data for R-waves 
and thus overestimating the number of QRS 
complexes and heart rate. It is likely that the 
placement of the loggers in these moose resulted 
in an exaggeration of the T-waves in the ECG 
when the moose were bedded on their left side. 
For the remainder of the analysis, we used only 
quality 0 measurements within the validated 
range (17-155 beats per minute). An example of 
the variation of heart rate and ODBA over the 
course of 24 hours for one moose in the summer 
is shown in Figure 1. 
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Heart rate measurements 
 

Within the sampling periods, the loggers 
recorded a total of 224,952 measurements; 
66.3% (n = 149,152) were of quality class 0 and 

fell within the validated range of heart rate 
measurements. Heart rate varied by season; 
lowest median heart rate of 33 bpm was 
recorded in the fall, highest median heart rate of 
57 bpm in late summer (Table 1).

 
 

Table 1: Moose heart rate recorded by implanted loggers during four seasons in seven captive moose. A detailed overview is also 
provided over different sample sizes of heart rate measurements depending on data quality: Given are the total number of 
measurements recorded, the size of the subset of measurements belonging to the highest quality class, and within this quality 
class, the number of reliable measurements (those that fell within the manually validated range (17-155 bpm)). The number of 
heart rate measurements within this validated range that were recorded while collar-mounted tri-axial accelerometers recorded 
an overall dynamic body acceleration of less than 3 g are also given.  

Season 

Heart 
rate 

(median 
± SD) 
[bpm] 

Number of heart rate measurements 

Total 
Quality 
class 0 

Quality class 0, 
within validated 

range 

Quality class 0, 
within validated 

range, 
ODBA < 3g 

Spring 38 ± 10 51921 33237 33185 33185 

Early summer 54 ± 10 51907 33343 33307 33307 

Late summer 57 ± 11 60561 42195 42158 42152 

Fall 33 ± 8 60563 40572 40502 40499 

 
 
 
Heart rate predictions 
 

Due to the low sample of measurements at ODBA 
values greater than 3 g (n = 9), we excluded these 
values from our GAM model of heart rate. This 
model explained 66% of the deviance of the 
heart rate data and identified season, ODBA, 
time of day and individual as important 
predictors of heart rate in moose (Table 2). The 
effect of ODBA on heart rate varied across the 
range of ODBA values and by season. Heart rate 
increased with increasing ODBA at low values of  

 
ODBA; this relationship plateaued around 0.2 g. 
Uncertainty in the predictions increased 
dramatically at high values of ODBA (>1) 
concurrent with predicted declines in heart rate 
with increasing ODBA (Figure 2). Keeping all 
other predictor variables constant, the model 
predicted the highest heart rates around 
midnight and the lowest heart rates around 
18:00 (Figure 3). We observed significant 
autocorrelation in the model residuals 
(Appendix: Figure 6). 
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Figure 2: Effect of overall dynamic body acceleration on heart rate in captive moose predicted from a generalized additive mixed 
model with 95% confidence interval. 
 

 

Figure 3: Partial effect of time of day on heart rate in captive moose predicted from a generalized additive mixed model with 95% 
confidence interval. 
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Table 2: Summary of the generalized additive mixed model quantifying the effect on moose heart rate recorded from implanted 
loggers of overall dynamic body acceleration (recorded from collar-mounted tri-axial accelerometers), season, time of day and 
individual. Abbreviations are as follows: ESummer = early summer, LSummer = late summer, day.time = time of day, median_odba 
= median of the ODBA values recorded a the time of each four-second heart rate logger measurement interval. 

 
 
 
We evaluated our model by using it to predict heart 
rate from the training data (Figure 4). The model 
correctly predicted increasing heart rate with 
increasing ODBA values at the low range of the 
predictor variable but underestimated heart rate 
above ODBA values of ca. 0.2 g, illustrating the effect 
of the plateau of the ODBA model smooths on heart 
rate predictions. 
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Figure 4: Moose heart rate plotted against overall dynamic body acceleration recorded in seven captive female moose with implanted 
heart rate loggers and collar-mounted tri-axial accelerometers. Predictions (blue) were derived from a generalized additive mixed 
model of moose heart rate. 

 
 
Behavior-specific measurements of heart rate and 
ODBA  
 

Out of all heart rate measurements qualifying for 
further analysis (quality 0, within manually 
validated range), 22,610 coincided with the 
behavioral observations conducted in fall, spring 
and late summer. We focused the behavior-
specific analysis on seven behaviors constituting 
98% of these observations: Lying (42%), 
ruminating (24%), foraging (17%), standing (11%), 
walking (4%), alert (0.3%) and running (0.03%). We 
recorded increasing ODBA among behaviors from 
lying to running (Figure 5, Appendix: Table 3) but 
also large variation in heart rate at a given value of 

ODBA particularly at lower end of the range of 
ODBA values. Heart rate tended to increase with 
increasing ODBA among behaviors in fall and 
summer but was less dependent on the trend of 
ODBA in spring. Within each behavior, we 
observed seasonal variation in ODBA: For most 
behaviors, ODBA increased from fall to late 
summer except for ruminating, standing, and 
foraging, where lowest ODBA was observed in 
spring, and alert, where ODBA was slightly lower 
in summer than spring. In contrast, within each 
behavior, we observed increasing heart rate from 
fall to summer except for running. Within seasons, 
we observed individual variation in heart rate 
normalized by body weight (Appendix: Table 4). 
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Predicting energy expenditure from ODBA 
 

We visually compared the calculated energy 
expenditure by behavior and season to the 
behavior- and season-specific energy 
expenditures of moose reported in Renecker & 
Hudson (1989) (Figure 7). Overall, our range of 
calculated energy expenditure was comparable 
to the data published by Renecker & Hudson 

(1989). Similar to Renecker & Hudson (1989), we 
observed large individual variation in behavior-
specific energy expenditure. Our calculated 
energy expenditure tended to be lower than that 
reported in Renecker & Hudson (1989) for most 
behaviors and individuals in the fall and summer, 
and higher in the spring.  

 
 

 

Figure 7: Comparison of energy expenditure per season during different behaviors as predicted by our GAM model of moose heart 
rate to values published by (Renecker & Hudson 1989). The published values represent mean energy expenditures calculated using 
Equations 1 and 2 for the heart rate data of each of two individual moose collected over a 24-hour sampling period once per month 
over the course of a year. Note that the data from Renecker & Hudson (1989) was recorded in July, while our summer observations 
were conducted in August.  
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Discussion 
 

Our study is the first to link accelerometry to 

energy expenditure in moose. We found an 

increase in heart rate and resulting energy 

expenditure with increasing overall dynamic 

body acceleration, similar to other studies on a 

variety of species from cormorants and shags 

(Phalacrocorax spp.) (Wilson et al. 2006, Hicks et 

al. 2017), hammerhead sharks (Sphyrna lewini) 

(Halsey et al. 2011) and bovids (Miwa et al. 2015, 

Dickinson et al. 2021) to humans (Homo sapiens) 

(Halsey et al. 2008). For the remainder of the 

discussion, we will refer to both direct (e.g., 

oxygen consumption) and indirect (e.g., heart 

rate) measures of energy expenditure simply as 

energy expenditure. 

 

Heart rate: Range and circadian and seasonal 

variation 
 

The range of heart rate values we were able to 

validate in this study (17-155 bpm) was wider 

than the previously published range of 27-144 

bpm (Renecker & Hudson 1989). This 

discrepancy could in part be explained by our 

short (four seconds-long) ECG recording interval 

from which heart rate was calculated; in 

contrast, Renecker & Hudson (1989) recorded 

heart rate for 10 min. Græsli et al. (2020a) 

manually validated heart rate up to 195 bpm 

from 4-second ECG in a study on physiological 

effects of hunting dog approaches on wild moose 

with implanted heart rate loggers. Our observed 

circadian rhythm of heart rate complements the 

findings by Thompson et al. (2020) of decreasing 

heart rates from early morning to late afternoon 

during the summer. Our findings of seasonal 

variation in heart rate are in agreement with 

reports of seasonal hypometabolism in moose 

(Renecker & Hudson 1986, Græsli et al. 2020b). 

For captive moose in Alberta, Canada, lowest 

metabolic rate was recorded between January 

and April (Renecker & Hudson 1986, 1989); in 

contrast, we recorded the lowest heart rates 

normalized by body weight between October 

and November (for all moose except Roxanne). 

One possible explanation could be climatic 

differences between the study locations and 

years; however, we did not investigate the effect 

of ambient temperature on heart rate. 

 

Other factors affecting moose heart rate 
 

We observed high variation in heart rate and 

resulting energy expenditure at a given value of 

overall dynamic body acceleration after 

accounting for season and time of day, 

suggesting that additional factors affect moose 

energy expenditure. Our model identified 

individual as an important predictor of heart 

rate, and we observed individual variation in 

seasonal median heart rates normalized by body 

weight. These findings are in accord with other 

studies reporting on individual variation in heart 

rate (Careau et al. 2008, White & Kearney 2013, 

Wascher 2021). Causes for such individual 

variation could be individual level of stress, 

hormonal status, personality and costs of 

thermoregulation (Careau et al. 2008, White & 

Kearney 2013, Wascher 2021). Air temperature 

(Renecker & Hudson 1986, Thompson et al. 

2020), and digestive activity (Renecker & Hudson 

1986) affect heart rate in moose. Furthermore, 

internal state or excitability is an important 

determinant of heart rate in both moose 

(Franzmann et al. 1984, Renecker & Hudson 

1989) and mule deer (Odocoileus hemionus) 

(Kautz et al. 1981). Luteal activity affects activity 

and temperature in moose (Høy-Petersen et al. 

2023) and might also affect heart rate. In 

addition to heart rate, future studies could also 

investigate heart rate variability in moose, an 

important indicator of health and stress (Kitajima 

et al. 2021, Moraes et al. 2021, Wascher 2021). 

Behavior also affects the relationship between 

energy expenditure and overall dynamic body 

acceleration; inactive behaviors are associated 

with higher uncertainty of predicted energy 

expenditure (Green et al. 2009) and models that 
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account for behavior-specific slopes of the 

relationship between energy expenditure and 

overall dynamic body acceleration may provide a 

better fit than models without (Green et al. 2009, 

Hicks et al. 2017). Furthermore, the effect of 

overall dynamic body acceleration on heart rate 

during locomotion depends on gait and terrain 

slope (Halsey et al. 2008, Halsey 2016, Dickinson 

et al. 2021).  

 

Seasonal variation in ODBA 
 

We observed seasonal variation in behavior-
specific overall dynamic body acceleration, 
which could result from a variety of factors. 
Collar fit might change with seasonal changes in 
body mass and fur (Herberg 2017, Dickinson et 
al. 2020, Wilson et al. 2021). Furthermore, 
seasonal variation in the accelerometer 
signature of locomotor behaviors may stem from 
seasonal changes in ground cover (i.e., snow) 
(Gleiss et al. 2011). 
 

Low predicted energy expenditure at high values 

of overall dynamic body acceleration 
 

We used a generalized additive mixed model to 

improve model fit over a wide range of values of 

overall dynamic body acceleration and a variety 

of behaviors. However, our sample sizes varied 

dramatically among behaviors. At the highest 

values of overall dynamic body acceleration, the 

behavior we were interested in was running, and 

this was the behavior with the lowest overall 

sample size. Its range of values of overall 

dynamic body acceleration overlapped with that 

of other behaviors which had higher sample sizes 

and were associated with lower heart rates – 

body and head shaking, scratching (during which 

the moose might have kicked the collar 

repeatedly while scratching behind their ears 

with their hoofs) (Appendix: Table 5). It is likely 

that these behaviors affected the model 

predictions of heart rate at high values of overall 

dynamic body acceleration, resulting in an 

underestimation of heart rate during running 

behavior. These data points with high values of 

overall dynamic body acceleration and low heart 

rate likely contributed to the stagnation of the 

relationship between overall dynamic body 

acceleration and heart rate at overall dynamic 

body acceleration values around 0.2 g, which did 

not reflect the trend of increasing heart rate with 

increasing overall dynamic body acceleration 

apparent upon visual inspection of the data. 

 

Additional sources of uncertainty 
 

Due to a programming error, our heart rate 
loggers calculated heart rate from four-second-
long ECGs even in fall and spring when we 
expected moose heart rates to reach their annual 
minima. Because quality class of the heart rate 
measurements is, among other things, 
dependent on the number of QRS complexes 
detected within an ECG measurement (Star Oddi 
2022), we recorded a high number of low-quality 
measurements, reducing our effective sample 
size. It is possible that our lowest validated heart 
rate of 17 bpm does not represent the lowest 
heart rates occurring in moose in fall and spring. 
 
Our model of moose heart rate showed 
significant autocorrelation in the residuals. 
However, other models of ungulate heart rate 
suggested that residual autocorrelation did not 
affect model parameter estimates (Leimgruber 
et al. 2023). Using a different model such as 
generalized additive models for location, scale 
and shape (Rigby & Stasinopoulos 2005, Bann et 
al. 2022, Leimgruber et al. 2023), random forest 
regression or neural network analysis (Oyeleye et 
al. 2022) may improve the fit of our model at high 
values of overall dynamic body acceleration. 
 
Applying the heart rate-energy expenditure 
equation from Renecker & Hudson (1985) to 
individuals not assessed during calibration of the 
equation increases the uncertainty of the 
resulting estimates of energy expenditure (Green 
2011). Quantifying and incorporating the 
associated error is an important next step to 
improve estimates of energy expenditure 
predicted from accelerometer data. 
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Conclusions 
We present a model that enables the prediction 
of moose heart rate from collar-mounted tri-
axial accelerometers and illustrate the 
calculation of energy expenditure from these 
predictions. Our analysis facilitates the use of 
overall dynamic body acceleration in 
bioenergetic models to improve estimations of 
moose energy expenditure, and to enable such 
estimations without the use of implanted heart 
rate loggers. 
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Appendix 
 

Table 3: Overall dynamic body acceleration [g] recorded from collar-mounted accelerometers, heart rate [bpm] recorded from 
implanted loggers, energy expenditure [kJ*kg-1*h-0.75] calculated from heart rate using the equation by (Renecker & Hudson 1985) 
and sample size (n) for seven observed behaviors in seven captive moose. Values are given as median ± standard deviation. 

Behavior Metric Fall  Spring Late summer 

Lying 

ODBA 0.007 ± 0.01 0.010 ± 0.03 0.019 ± 0.06 

HR 30 ± 6.35 35 ± 7.33 53 ± 6.15 

EE 12.52 ± 4.79 14.50 ± 4.25 26.48 ± 7.40 

n 932 4550 4002 

Ruminating 

ODBA 0.028 ± 0.02 0.024 ± 0.02 0.040 ± 0.02 

HR 33 ± 4.44 34 ± 7.83 55 ± 6.20 

EE 13.99 ± 2.19 14.37 ± 4.49 28.18 ± 7.12 

n 819 1197 3426 

Alert 

ODBA 0.010 ± 0.06 0.025 ± 0.08 0.024 ± 0.04 

HR 35.5 ± 1.71 46.5 ± 6.62 60 ± 9.81 

EE 15.10 ± 0.87 19.79 ± 4.67 31.46 ± 14.14 

n 4 18 42 

Standing 

ODBA 0.049 ± 0.21 0.038 ± 0.08 0.054 ± 0.14 

HR 36 ± 12.48 42 ± 11.58 62 ± 12.97 

EE 15.16 ± 15.46 17.70 ± 25.29 33.78 ± 31.51 

n 260 1436 854 

Foraging 

ODBA 0.129 ± 0.08 0.118 ± 0.05 0.177 ± 0.07 

HR 40 ± 8.01 49 ± 10.62 66 ± 10.05 

EE 17.61 ± 10.03 22.06 ± 16.65 39.89 ± 19.53 

n 1014 682 2093 

Walking 

ODBA 0.180 ± 0.10 0.217 ± 0.13 0.235 ± 0.19 

HR 39 ± 11.57 47 ± 11.98 68.5 ± 14.18 

EE 16.68 ± 10.90 20.10 ± 13.02 43.12 ± 33.43 

n 132 253 436 

Running 

ODBA 0.794 ± 0.72 0.994 ± NA 1.294 ± 0.38 

HR 79.5 ± 23.25 59 ± NA 72 ± 12.73 

EE 69.72 ± 46.24 28.09 ± NA 44.97 ± 17.28 

n 4 1 2 
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Table 4: Age, weight [kg], heart rate [bpm] (median ± SD) and heart rate normalized by weight (Norm. HR) [bpm/kg-0.25] (median 
± SD) for seven captive moose with implanted heart rate loggers. One additional logger was implanted in another moose but could 
not be recovered. Summer data combines data from both early and late summer where available (for Sky, only data from late 
summer was available). Spring weight was calculated as mean of weights in spring 2021 and 2022, summer weight was calculated 
as mean of spring and fall weights. 

Individual 
Age in 
2021 
[yr] 

Metric 
Season 

Fall Spring Summer 

Roxanne 12 

Weight 501 447 465 

HR 31 ± 7 29 ± 7 52 ± 14 

Norm. HR 147 ± 32 133 ± 33 241 ± 64 

Minnie 13 

Weight 464 403 423 

HR 36 ± 6 37 ± 7 59 ± 10 

Norm. HR 167 ± 28 166 ± 32 268 ± 45 

Stella 12 

Weight 533 497 509 

HR 36 ± 8 46 ± 9 54 ± 10 

Norm. HR 173 ± 37 217 ± 43 256 ± 47 

Sky 9 

Weight 486 NA 452 

HR 34 ± 7 NA 58 ± 10 

Norm. HR 160 ± 32 NA 267 ± 46 

Babe 2 

Weight 408 339 362 

HR 29 ± 7 39 ± 9 59 ± 10 

Norm. HR 130 ± 32 167 ± 41 257 ± 43 

Wilma 9 

Weight 529 485 500 

HR 29 ± 11 34 ± 9 50 ± 9 

Norm. HR 139 ± 52 160 ± 40 236 ± 43 

Shiner 9 

Weight 560 491 514 

HR 30 ± 7 34 ± 7 53 ± 8 

Norm. HR 146 ± 35 160 ± 32 252 ± 36 

 
 
 

Table 5: Comparison of overall dynamic body acceleration and heart rate during different behaviors with high values of overall 
dynamic body acceleration recorded in spring, summer and fall in seven captive female moose using collar-mounted tri-axial 
accelerometers and implanted heart rate loggers. 

Behavior 
ODBA [g] HR [bpm] Sample 

size Min Median Max Median 

Head shaking 0.01 0.19 1.20 58 18 

Body shaking 0.16 0.20 2.16 63.5 6 

Scratching 0.06 0.40 3.29 59.5 12 

Running 0.25 1.02 1.84 74 7 
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Predicting energy expenditure from heart rate 
data 
 
To compare our behavioral data with those from 
Renecker & Hudson (1989), we calculated the 
energy expenditure in Renecker & Hudson (1989) 
recorded during ruminating as mean of the 
energy expenditure during ruminating while 
standing and while bedded, if both behaviors 
were recorded. If only one ruminating behavior 
was recorded by Renecker & Hudson (1989), we 

used that value as energy expenditure during 
ruminating. We calculated energy expenditure 
recorded by Renecker & Hudson (1989) during 
foraging as mean of the energy expenditure 
during browsing low, medium and high. We 
compared our energy expenditure during 
standing and lying to the behaviors “standing 
alert” and “lying alert” in Renecker & Hudson 
(1989), and investigated the energy expenditure 
during the behavior alert separately.  
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Do you mind? Behavioral responses of moose to experimental disturbance and 

implications for energy expenditure 
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Versluijs1, Alina L. Evans1, Karen Marie Mathisen1, Ane Eriksen1 
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Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstads vei 80, 2480 

Koppang, Norway 
2 Centre d’Études Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, La Rochelle, France 
 

Abstract 
 

Disturbances from human activities can impact wildlife and elicit changes in behavior, movement, and 

physiology. Disturbance effects on individuals can result in population-level impacts if resulting changes in 

behavior and physiology cause negative energy balance or reduced recruitment. Therefore, knowledge of 

wildlife responses to disturbances is important for species and ecosystem management and conservation. 

A keystone species of boreal forests, moose are exposed to a variety of disturbances from human activities 

including forestry practices, hunting and recreational activities. Here we conducted a behavioral response 

study on wild moose bearing GPS-accelerometer collars to quantify the effect of simulated recreational 

activities (hiking and snowshoeing) on moose behavior and energy expenditure. We systematically 

approached nine collared moose in Innlandet county, Norway, and Värmland county, Sweden, during 

summer and hunting season in 2021 and during winter 2021/2022, in mornings and afternoons. Using an 

existing machine learning model, we predicted one of seven common moose behaviors for each three-

second accelerometer data interval during the approaches. Using an existing model together with a 

published equation, we predicted heart rate and corresponding energy expenditure during the approaches 

from the accelerometer data. To investigate detailed temporal variation in the disturbance response, we 

calculated the change in behavior and energy expenditure during different time intervals during the 

approach relative to control periods on the day preceding the approach. In 48 trials we approached the 

moose to a distance between 17-266 m (we defined the minimum distance to the moose during an 

approach as contact distance). Locomotor activity was increased particularly during the first ten minutes 

following contact, coinciding with increased energy expenditure and decreased foraging and ruminating 

behavior. Foraging activity recovered to levels comparable to the controls ca. 2 hours following the 

approach. We observed seasonal variation in the disturbance response; moose responded to close 

approaches with a stronger flight response in summer and winter compared to fall. In winter, locomotor 

activity increased earlier and lasted longer, and contact distances were longer. We suggest that the 

prominence of hunting activity with baying dogs in the study area may be responsible for the muted flight 

response to close approaches during the hunting season, and that increased range of detection during 

winter approaches may have resulted in longer contact distances. We demonstrate negative effects of 

disturbances from simulated recreational activities on the energy budget of moose (increase in energy 

expenditure and decrease in foraging activity) on an unprecedented level of detail. Our results can inform 

bioenergetic models to improve our understanding of disturbance effects on individual moose with 

implications for the wider population. 
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Introduction 
 

Increasing encroachment of humans on wildlife is 

a growing concern for species management and 

conservation (Stankowich 2008, Ciuti et al. 2012). 

Human activity can be perceived by animals as 

predation risk (Frid & Dill 2002), contributing to 

the landscape of fear – spatio-temporal variation 

in perceived predation risk – which wild animals 

navigate (Brown et al. 1999, Laundre et al. 2010, 

Gaynor et al. 2019). This effect of human activity 

on wildlife was demonstrated by expanded 

movement ranges across a diverse range of taxa 

during large-scale restrictions of human activity 

resulting from lockdowns during the COVID-19 

pandemic in 2020 (Bates et al. 2021, Tucker et al. 

2023). Risk effects are costs incurred by animals 

responding to perceived predation risk (Creel & 

Christianson 2008), for example by changing 

their behavior  (Creel et al. 2009), habitat use 

(Heithaus et al. 2009) and energy expenditure 

(Papastamatiou et al. 2023). Risk effects acting on 

individuals can have implications for the size and 

structure of the wider population (Lima 1998, 

Frid & Dill 2002). For example, reduced energy 

intake though a reduction in foraging activity 

(Creel et al. 2009), reduced parental provisioning 

(Dudeck et al. 2018) or increased energy 

expenditure (through increase in vigilance or 

predator avoidance) (Ciuti et al. 2012) can result 

in reduced recruitment (Hik 1995, Creel et al. 

2007, LaManna & Martin 2016, Gallagher et al. 

2021, Allen et al. 2022), emphasizing the 

importance of considering risk effects in wildlife 

management (Perona et al. 2019, Mumme et al. 

2023).  

 

Traditionally, studies investigating the effects of 

disturbances on individuals often focused on 

changes in movement, for example temporary 

increase in movement following a disturbance 

(Græsli et al. 2020a) or displacement from home 

ranges (Faille et al. 2010). However, occurrence 

of spatial displacement might depend on 

availability and connectivity to suitable 

alternative habitat, and thus, a lack of movement 

response to disturbance does not necessarily 

indicate a lack of response to disturbance (Gill et 

al. 2001, Frid & Dill 2002). Alternatively, 

disturbances can result in subtle changes to 

behavior and physiology that may not be 

detectable from location data alone (Andersen et 

al. 1996, Gill et al. 2001), such as interruption of 

foraging behavior (Goldbogen et al. 2013) and 

changes in heart rate (MacArthur et al. 1982, 

Moraes et al. 2021, Williams et al. 2022). 

 

Moose (Alces alces) are a good example species 

for studying the effects of disturbance on wildlife. 

They are a keystone species in boreal forests 

(Molvar et al. 1993, Snaith & Beazley 2002). In 

Scandinavia, which hosts some of the highest 

moose densities worldwide (Timmermann & 

Rodgers 2005), population levels are heavily 

managed in attempts to strike a balance between 

minimizing browsing damage to commercial 

forest plantations and maximizing yield during 

the moose hunt (Storaas et al. 2001, 

Timmermann & Rodgers 2005). Annually, ca. 25% 

of the Scandinavian population is harvested 

(Ericsson & Wallin 1996, 2001, Solberg et al. 

1999). Activities that can disturb moose, 

including hunting attempts of which usually half 

are unsuccessful (Heberlein 2000, Græsli et al. 

2020a), timber harvest and silvicultural practices, 

wildlife viewing, berry and mushroom picking, 

hiking and skiing are of high socio-economic 

importance throughout much of the moose 

distributional range (Lavsund et al. 2003, 

Timmermann & Rodgers 2005, LeBlanc et al. 

2011, Milner et al. 2013, Helseth et al. 2022). 

Globally, some moose populations have 

experienced declining recruitment and 

population health (Monteith et al. 2015, 

Timmermann & Rodgers 2017, Weiskopf et al. 

2019), and recent research suggests that risk 

effects may compound other stressors including 
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thermal stress and increased parasite loads 

(Spong et al. 2020, Fohringer et al. 2022). 

 

Here, we use existing models (Kirchner et al. 

2023) (Paper II) to analyze the fine-scale 

behavioral and energetic response of individual 

wild collared female moose in Norway to 

experimental disturbances simulating human 

recreational activities during three different 

seasons (summer, hunting season and winter). 

We analyzed continuously recorded high-

frequency tri-axial accelerometer data in 

combination with GPS data to quantify changes 

in behavior and energy expenditure before and 

after the disturbance compared to a control day. 

We quantified the disturbance response in 

relation to distance to the disturbance source 

and investigated seasonal and diurnal variation. 

We expected that the disturbance would result in 

increased energy expenditure and decreased 

foraging activity, and that the disturbance 

response would be stronger during the hunting 

season compared to the other seasons. 

 

Methods 
 

Study area 
 

We conducted our study in the Northern 

Finnskogen area on the border of Innlandet 

county (Norway) and Värmland county (Sweden) 

(Figure 1). This area is characterized by stands of 

Norway spruce (Picea abies) and Scots pine 

(Pinus silvestris) interspersed with deciduous 

species (mainly birch (Betula pubescens) and 

aspen (Populus tremula)) and wetlands, and 

heavily influenced by commercial logging and 

forestry practices (Zimmermann et al. 2014, 

Wam et al. 2021). Moose in this area are highly 

managed with an annual harvest between 

September 25 and December 30 during which 

approximately 25% of the population are taken 

(Ericsson & Wallin 1996, 2001, Solberg et al. 

1999, Zimmermann et al. 2015). Hunting occurs 

mainly with baying dogs (Græsli et al. 2020a). 

Wolves (Canis lupus) and brown bears (Ursus 

arctos) are present and prey mainly on moose 

calves (Ausilio et al. 2023). 

 

Collar deployment 
 

We deployed Vertex Plus GPS-accelerometer 

collars (Vectronic Aerospace GmbH, Berlin, 

Germany) on nine wild female moose in 

Innlandet county in Norway between January 

and March 2021. The moose were immobilized 

with a CO2-powered rifle (Dan-Inject, Børkop, 

Denmark) from a helicopter using a combination 

of 50 mg xylazine (Rompun Dry Substance, Bayer 

AG, Leverkusen, Germany) and 4.5 mg etorphine 

(Etorphine HCl 9.8 ml/ml, Vericode Veterinary 

products, Novartis Animal Health UK Ltd, 

Litlington, United Kingdom) and reversed with  50 

mg naltrexone (Naltrexonhydroklorid vet. APL 50 

gm/ml; Apotek Produktion och Laboratorier, 

Kungens Kurva, Sweden) (Evans et al. 2012, Lian 

et al. 2014, Græsli et al. 2020b). The collars were 

programmed to record one GPS position every 

hour and transmit packages of seven positions 

via the GSM network over the course of the 

deployment. They continuously recorded tri-axial 

accelerometer data at 32 Hz.  

 

Experimental disturbances 
 

Experimental disturbances were conducted by a 

human observer approaching the moose in 

summer (July 19-26) and fall (October 18-29) 

2021, and in winter (January 18 - February 7) 

2022. During an approach, the observer followed 

the approach route based on the last known 

position of the moose transmitted via the GSM 

network and recorded their GPS position every 

second using a handheld GPS unit (GPSMAP 64s, 

Garmin, Southampton, U.K.). The approach route 

started at the observer start position 

approximately 1 km away from the last known 

position, passed this position at a 50 m distance 

(the passing position) and continued another 500 

m to the observer end position (Eriksen et al. 
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2022). The straight-line approach route was 

followed as closely as possible, at normal hiking 

speed, on foot or snowshoes. The observer took 

notes of moose sightings (if any) and the overall 

environmental conditions at the three fixed 

positions along approach route (observer start 

position, passing position, observer end position) 

but aimed to minimize the duration of stops. 

When leaving the area, the observer took care to 

minimize repeated disturbance of the moose by 

avoiding approaching moose positions which had 

been transmitted during the approach whenever 

possible. We re-programmed the GPS schedule 

of the collars for the approach day to transmit 

GPS positions every 10 min for 4 hours prior to 

the approach period, every 1 min during a two-

hour approach period, and every 10 min for two 

hours afterwards. We re-programmed the collars 

with the same GPS schedule as the control day on 

the day prior to the approach, to act as control. 

Each moose was approached twice per season, 

once in the morning (10:00-12:00) and once in 

the afternoon (15:00-17:00).  

 

Data preparation and analysis 
 

We retrieved the collars (during re-captures in 

April 2022 or via remote drop command issued 

to the collar, which was then collected in the 

field) and downloaded the GPS and 

accelerometer data from the collars and 

processed them for analysis in R Studio 

(v.2023.6.1.524) (Posit team 2023) running R 

(v.4.3.1) (R Core Team 2023). To match the 

temporal resolution of the observer’s GPS data, 

we fitted a continuous time movement model to 

the moose GPS data during the approach to 

predict the moose positions every second (crawl 

package v.2.3.0) (Johnson et al. 2008). We then 

calculated the distance between the moose and 

the observer every second, to identify the 

shortest distance during the approach, which we 

defined as contact distance (wildlifeDI package 

v.0.5.0, adehabitatLT package v.0.3.27) (Calenge 

2006, Long et al. 2022). To assess the validity of 

these estimated contact distances, we quantified 

their difference relative to contact distances 

calculated only from the 1-minute GPS locations. 

Using an existing behavioral classification model 

(Kirchner et al. 2023), we then classified the 

behavior of the focal moose from the 

accelerometer data at three-second intervals 

throughout the approaches. To apply the 

behavioral classification model, we visually 

inspected and, if necessary, adjusted the 

orientation of the accelerometer axes to match 

that required for model input. We then 

calculated predictor variables from the 

accelerometer data summarized in three-second 

intervals as input for a random forest model 

predicting one of seven behaviors (lying with the 

head down/tucked, lying with the head up, 

ruminating, standing, foraging, walking, or 

running) for each interval (Kirchner et al. 2023). 

To evaluate changes in moose heart rate relative 

to contact distance, we calculated overall 

dynamic body acceleration (ODBA) from four-

second running means calculated over each 

accelerometer axis (Wilson et al. 2006) and 

applied an existing generalized additive mixed 

model to predict heart rate from the median 

values of ODBA for every four-second interval as 

described in Paper II. We calculated energy 

expenditure in every four-second interval from 

the corresponding heart rate prediction using 

Equations 1 and 2 (Renecker & Hudson 1985), 

assuming a weight of 300 kg for all moose in all 

seasons (Milner et al. 2013). 

 

Equation 1: 𝑛𝑜𝑟𝑚. 𝐻𝑅 =
𝐻𝑅

𝑀−0.25  

Equation 2:  𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝑟𝑎𝑡𝑒 = 

4.655 × 𝑒0.0071×𝑛𝑜𝑟𝑚.𝐻𝑅 

 

We summed the energy expenditure calculated 

for each four-second heart rate prediction 

interval to calculate energy expenditure in 

different time bins before and after contact 

(before contact: 60-30 min, 30-10 min, 10-0 min, 

after contact: 0-10 min, 10-30 min, 30-60 min, 1-
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2 hours, 2-3 hours, 3-6 hours, 6-12 hours, 12-24 

hours). This allowed us to investigate fine-scale 

variation in energy expenditure at different times 

before, during and after contact. We calculated 

energy expenditure in the different time bins for 

the approach and control day, and calculated the 

difference in energy expenditure during each 

time bin between the approach and control 

(Neumann et al. 2010a). For these same time 

bins, we also summarized the behavioral 

predictions from the three-second behavioral 

prediction intervals to calculate the proportion of 

time engaged in each behavior relative to the 

control period, standardized by bin length.  

 

Results 
 

We conducted 50 approach trials on nine 

individual moose (Figure 1). In 48 trials, the 

observer approached the moose to a between 17 

and 266 m. In two approaches, observer never 

came closer than 600 m to the moose; we did not 

consider these approaches successful and 

excluded them from further analysis.  Across all 

seasons, the most conspicuous changes in 

behavior in the first 10 min after contact were a 

distinct increase in locomotor activity (walking 

and running), particularly in the mornings, and a 

decrease in foraging and ruminating (Figure 2). 

This trend abated during the first hour, 

concurrent with an increase in standing; foraging 

activity remained depressed until ca. two hours 

after contact, particularly in the fall. In winter, 

locomotor activity increased 30 min prior to 

contact and remained elevated for at least one 

hour after contact, particularly in the mornings.  

 

 

Figure 1: Location of the study area on the southern border 
of Norway and Sweden. Passing positions of 50 experimental 
approaches conducted on collared moose are color-coded by 
season. 
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This is corroborated by the longer contact 

distances in winter (mean ±  standard deviation: 

163 ± 43 m) compared to the other seasons 

(summer: 101 ± 64 m, fall: 110 ± 47 m). We found 

large seasonal variation in the disturbance 

response that was at least partly related to 

contact distance (Figure 3): The closer the 

contact, the stronger the flight response in 

summer and to a lesser degree also in winter. In 

fall, we observed the opposite: The closer the 

contact, the lower the proportion of running 

behavior. This is reflected in the large proportion 

of predictions of running for a summer approach 

with a contact distance of 52 m (Figure 4), and 

the large proportion of running, walking and 

standing for a summer approach with a contact 

distance of 113 m (Figure 5). In contrast, for a fall 

approach with a contact distance of 40 m, we 

predicted a low proportion of running behavior 

and much higher proportion of stationary 

behaviors (Figure 6). 

 

 

 

Figure 3: Proportion of running behavior predicted from accelerometer data on wild collared moose during different time bins 
before and after contact during experimental approaches relative to the control period on the same time of day the day before. 
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The contact distances calculated from the moose 

GPS positions were 15 ± 23 m (mean ± standard 

deviation) greater than those of the movement 

model (range of differences: 0-98 m). The 

greatest difference was determined for the 

approach with the shortest contact distance (17 

m) where no GPS data was recorded for 10 min 

during the contact phase of the approach. 

Overall, we recorded the highest increase in 

energy expenditure relative to the control during 

the first 10 min after contact during summer 

mornings, with an average increase of 25 % (from 

5.2 to 6.5 kJkg-1h-1) (Figure 7). 

 

 

 

Figure 7: Change in energy expenditure calculated from overall dynamic body acceleration recorded during experimental 
disturbances on collared wild moose in Norway relative to the control period during the same time of day the day before. Time 
indicates time to/since minimum distance to the observer.  

 

Energy expenditure relative to control days was 

generally highest during the first 0-30 min after 

contact, and higher and more persistent in 

mornings than afternoons, likely due to the 

increased locomotor activity. This circadian 

difference was most pronounced in the summer 

and least in the fall. In winter mornings, energy 

expenditure relative to control days was higher 

from the hour before to the first hour after 

contact. The opposite occurred in winter 

afternoons, where energy expenditure was not 

elevated until 30 min to three hours after 

contact. This is likely explained by increased 

locomotor activity during winter morning 
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approaches before and just after contact, while in 

winter afternoons locomotor activity was less 

prominent but more persistent (Figure 2).  

 

We compared our estimates of changes in energy 

expenditure during the first ten minutes and the 

first hour after contact (relative to the controls) 

to published values of moose energy expenditure 

during hiking, skiing and snowmobile approaches 

(Neumann et al. 2010 a, b). These published 

values were calculated from rates of movement 

between successive GPS positions using a general 

equation calculating energy expenditure during 

terrestrial locomotion as a function of body mass 

and speed of movement (Taylor & Heglund 1982, 

Neumann et al. 2010 a, b) (Table 1). Relative 

increase in energy expenditure during the first 

hour after the approaches (relative to the 

controls) was much higher in these studies. 

However, the relative increase in energy 

expenditure we calculated for the first ten 

minutes after contact for summer approaches 

was comparable to the published values of 

energy expenditure for the first hour after 

summer hiking approaches (Neumann et al. 

2010b).

 

 

Table 1: Energy expenditure calculated from predictions of heart rate from accelerometer data during first 10 min and first 60 min 
after contact for 48 approaches on wild collared moose (highlighted in grey) compared to results from other studies estimating 
energy expenditure from movement rates (Neumann et al. 2010b* a^). Moose silhouette from Colourbox. 

Approach 
method 

Season 

Energy expenditure (mean ± SD) [kJkg-1h-1] 

0-10 min since contact 0-60 min since contact 

Approach Control 
Relative 

increase [%] 
Approach Control 

Relative 
increase  [%] 

Hike Summer 6.0 ± 0.8 5.3 ± 0.5 14.6 ± 19.7 5.4 ± 0.6 5.2 ± 0.4 4.5 ± 13.0 

Hike Fall 3.1± 0.2 2.9 ± 0.2 6.8 ± 11.7 2.9 ± 0.2 2.9 ± 0.2 1.0 ± 8.2 

Snowshoe Winter 3.3 ± 0.1 3.3 ± 0.2 0.3 ± 7.5 3.4 ± 0.1 3.3 ± 0.2 1.8 ± 5.3 

Hike* Summer 

 

4.3 ± 0.2 3.7 ± 0.1 16 

Ski^ Winter 5.4 ± 0.5 3.6 ± 0.1 48 

Snowmobile* Winter 4.4 ± 0.1 3.7 ± 0.1 19 

 

 

Discussion  
 

Using a published model to predict behaviors 

from collar-borne accelerometer data (Kirchner 

et al. 2023), we detected behavioral responses in 

wild moose to experimental disturbances. 

Specifically, as expected, we observed an 

increase in locomotor activity and a decrease in 

foraging and ruminating. Our findings illustrate 

that moose perceived the approaching observer 

as a disturbance, and that the resulting response 

was energetically costly due to both an increase 

in energy expenditure and a decrease in energy 

gain.  

 

Among approaches, we found large variation in 

contact distances as well as changes in behavior 

and the rate of energy expenditure in response 

to contact. Such high variation is common in 

wildlife disturbance response studies and may be 

mediated by a combination of many factors that 

can be hard to tease apart, including perceived 

level of threat or type of perceived stimulus, 

seasonal variation in body condition and 

reproductive status, time of day, habitat, 

proximity to cover, behavior at time of 
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disturbance, prior experience with disturbance 

and overall individual personality (Altmann 1958, 

MacArthur et al. 1982, Andersen et al. 1996, 

Goldbogen et al. 2013, Sih 2013).  

 

Seasonal variation in disturbance response 
 

We found strong seasonal variation in contact 

distance and behavior during the first 10 min 

after contact. In winter, contact distances were 

longer – likely because the onset of locomotor 

activity occurred earlier before contact, and 

moose ran less after contact. One explanation is 

that the snowshoeing observer was audible over 

longer distances, facilitating an earlier and 

therefore less intense disturbance response.  

The range of contact distances in summer was 

comparable to that in fall; however, the 

behavioral responses to contact at the upper and 

lower end of this range were reversed between 

the seasons: At close contact distances, moose 

ran more in the summer and less in the fall. This 

is in contrast to our expectation of stronger 

disturbance responses in the fall. One 

explanation for intense response to close 

distances in summer is that approaches with a 

short range of detection (facilitated by for 

example, ground cover that muffled sound, no 

wind or the observer approaching from 

downwind of the moose) resulted in close 

approaches that startled the moose into running. 

Alternatively, close contact distances in summer 

may have resulted from heat-stressed moose 

avoiding increased activity levels from a response 

to the encroaching observer until they felt 

increasingly threatened and started to run. This 

notion is supported by a higher proportion of 

locomotor activity following contact in summer 

mornings compared to afternoons when 

temperature is usually higher and overall moose 

activity lower (Thompson et al. 2021). 

Alternatively, the moose may have avoided a 

flight response due to the presence of a young 

calf. Increasingly close contact may have allowed 

the cow to identify the species of intruder and 

rule out fast-running natural predators targeting 

the calf, which eventually enabled flight together 

with the calf.  

In fall, the moose ran when they detected an 

encroaching threat that was still far away, 

potentially because immediate flight increases 

their chance of escape from hunting activity with 

baying dogs (Sand et al. 2006, Græsli et al. 

2020a). In contrast, when they did not detect the 

observer until the observer was near, their 

response was not to flee but to stay put, by either 

hiding so as to not reveal their location (Ericsson 

& Wallin 1996), or preparing to stand and fight 

(Ericsson et al. 2015). An alternative explanation 

for less running at close contact distances in the 

fall is that a human intruder (not accompanied by 

a dog) during the hunting season may have been 

perceived as less threatening compared to a dog 

or an intruder with a dog. In the hunting season, 

undisturbed habitat is likely rare (Ericsson & 

Wallin 1996), and initiating flight in response to a 

perceived low-level threat could potentially 

displace the moose into a higher-risk area with an 

active hunt (Baskin et al. 2004). Accordingly, an 

important consideration in the study of wildlife 

disturbance response is that wildlife may not 

leave an area of disturbance if no suitable 

alternative habitat is available (Gill et al. 2001, 

Frid & Dill 2002, Ericsson et al. 2015). Repeating 

approaches with a leashed dog accompanying 

the observer may reveal whether the mere 

presence of a dog induces flight in moose 

independent of contact distance and whether 

there are seasonal differences, ultimately 

elucidating the ability of moose to distinguish 

approaching intruders and adjust their 

behavioral response according to species of 

intruder and seasonal context. Longer depression 

of foraging and browsing activity following 

contact in fall may suggest increased (auditory) 

vigilance of moose that did not flee when 

approached (Lynch et al. 2013) but instead 

carefully monitored and continuously assessed 

the disturbance situation; however some authors 
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suggested that (visual) vigilance is possible while 

ruminating (Fortin et al. 2004). 

 

Comparison to other studies 
 

Neumann et al. (2010b) calculated increased 

movement by female moose for 1-2 hours 

following hiking disturbance in the summer and 

snowmobile approaches in the winter; this is a 

longer flight duration than that estimated from 

our summer approaches based on the behavioral 

predictions. This discrepancy may stem from the 

comparatively coarse resolution of GPS positions 

(ca. two per hour) used for the calculation of 

displacement, which could lead to an 

overestimation of flight duration. From these 

movement rates, Neumann et al. (2010b) 

calculated a 16% (hiking) and 19% (snowmobile) 

increase in the rate of energy expenditure during 

the first hour after flight initiation compared to 

the control, using a general equation quantifying 

energetic costs of terrestrial locomotion 

depending on body mass and movement speed 

(Taylor & Heglund 1982). These estimates are 

much higher than our estimated rates of energy 

expenditure in the first hour after contact (5% 

increase in energy expenditure in summer and 

2% in winter) (Table 1). Calculating the rate of 

energy expenditure from movement rates rather 

than movement speed assumes constant speed 

and straight-line movement between GPS 

positions. However, the speed of the moose likely 

varies over the course of their flight, and their 

flight path can be tortuous (Ericsson et al. 2015, 

Græsli et al. 2020a). Our fine-scale analysis of 

energy expenditure revealed variation in the rate 

of energy expenditure within the first hour of the 

flight, with higher initial rates suggesting higher 

movement speed in the first 10 min after contact. 

During this time, our calculated increase in the 

energy expenditure in the summer (15%) 

matches that calculated by Neumann et al. 

(2010b) for the first hour following an approach. 

However, is possible that energy expenditure 

particularly during the intense locomotor activity 

in the first 10 min after contact was even higher 

than what we calculated here. We suspect that 

our model predicting heart rate from ODBA 

introduced a systematic underestimation of 

heart rate and therefore energy expenditure at 

exactly the high range of ODBA values associated 

with fast locomotor activity (Paper II).  

 

Despite these uncertainties around our 

estimates, the average rate of energy 

expenditure of our winter controls is only 0.3 

kJkg-1h-1 less than that of the controls estimated 

by Neumann et al. (2010a). Different moose 

weights used in the calculations may have 

contributed to these differences (Neumann et al. 

(2010a) used an estimated weight of 390 kg). 

Calculating energy expenditure using the general 

equation for terrestrial locomotion does not 

consider seasonal variation in metabolism. 

Hence, this equation may be more useful for 

quantifying the variation in the rate of energy 

expenditure among treatments, than for 

quantifying the absolute energy expenditure in a 

given time or resulting from a given treatment. In 

contrast, our estimates of the rates of energy 

expenditure during the controls vary among 

seasons as expected for moose with seasonal 

hypometabolism (Renecker & Hudson 1989, 

Græsli et al. 2020b). 

 

We distinguished contact distance from the flight 

initiation distance (FID) quantified in other 

studies (Græsli et al. 2020a, Versluijs et al. 2022) 

to avoid both the implication that every approach 

elicited a flight response, and the assumption 

that the time of contact coincided with the onset 

of flight. An increase in distance to the observer 

moving along the approach route could stem 

from either flight of the moose or solely from the 

movement of the observer, and flight could be 

initiated before or after the time of minimum 

distance to the moving observer. However, we 

considered these metrics comparable as they 

quantify the closest proximity of the observer 
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permitted by the approached animal. Our 

average contact distance in the winter was only 3 

m greater than the average flight initiation 

distance of female moose approached by an off-

trail backcountry-skiing observer (Neumann et al. 

2010a), validating the accuracy of our estimates 

and suggesting an ecological relevance of these 

contact distances.  

 

In the study by Neumann et al. (2010a), the skiing 

approaches and subsequent tracking of the focal 

moose elicited a flight response resulting in 

increased spatial displacement during the first 

three hours after contact, from which a 48 % 

increase in the rate of energy expenditure in the 

first hour was calculated. This much higher 

response compared to the approaches on 

snowmobiles (Neumann et al. 2010b) and our 

snowshoeing approaches likely resulted from the 

tracking that was conducted after the initial 

skiing approach (Neumann et al. 2010a). 

Movement directionality is an important 

predictor of ungulate flight response, and the 

persistent tracking may have more closely 

resembled a predatory pursuit than our 

comparatively transient disturbance (Stankowich 

2008, Neumann et al. 2010a, Harris et al. 2014). 

Similarly, tracking duration is an important 

determinant in behavioral response of moose to 

pursuit by baying dogs (Ericsson et al. 2015, 

Græsli et al. 2020a). Accordingly, our 

observations suggest that, within the same 

approach route, an accidental repeated approach 

of the focal moose after initial contact seemed to 

trigger another strong running response even 

when it may have occurred at greater distances 

(Figure 5), although we did not collect observer 

positions sufficiently long after the end of the 

approach route to quantify contact distances 

after the observer reached the observer end 

position. 

 

 

 

Sources of uncertainty 
 

 

Our behavioral classification model was not 

trained to predict vigilance behavior. We expect 

that at least some moose were alert during parts 

of the approaches, and that the behavior during 

these times was classified as inactive behavior 

with a posture that resembled that assumed by 

vigilant moose - standing or lying with the head 

held high. As shown during model testing, these 

two behaviors were also occasionally confused 

for each other (Kirchner et al. 2023). Behavioral 

classification models based on accelerometer 

data may confuse behaviors with similar 

accelerometer signatures, particularly when they 

involve little body movement (Graf et al. 2015, 

Fehlmann et al. 2017). 

 

Our quantification of energy expenditure from 

body acceleration is limited to changes in energy 

expenditure resulting from changes in physical 

activity. In addition to physical activity, metabolic 

factors such as temperature (Thompson et al. 

2020) and non-metabolic factors such as 

excitability (e.g., alertness, stress) (MacArthur et 

al. 1982, Franzmann et al. 1984, Brouwer et al. 

2018) affect heart rate and energy expenditure. 

Because our information about energy 

expenditure was limited to body acceleration, we 

may have underestimated total energy 

expenditure during the approaches.  

 

By quantifying the disturbance effect as change 

relative to the behavior and energy expenditure 

the day before the approach, we are assuming 

that the moose were not disturbed during the 

control periods. By linking the approach to 

energy expenditure over the course of 24 hours 

after the approach, we are also assuming that the 

moose experienced no further disturbance 

during this time. However, these assumptions 

might be naïve, since recreational activities are 

likely common in the study area, particularly 

during the hunting season in the fall. In fact, we 

observed berry pickers during one of our 



Paper III: Behavioral response study 
 

16 
 

approaches, heard dogs barking during several 

approaches, and noticed cues of recent hunting 

activity (gunshots, footprints imprinted in the 

bog and flags marking the hunting area) prior to 

or during two other approaches. Furthermore, 

several approaches were conducted in the 

vicinity of cabins, houses an active logging 

operations, where moose are likely to encounter 

human activity. Especially in the winter, several 

moose were within close proximity of each other, 

and the approach on one day might have affected 

the control for a moose on another day.  

 

In addition to improving the accelerometer-

based model of energy expenditure, future 

studies could compare this method to other 

methods quantifying energy expenditure. For 

example, a time budget derived from 

accelerometer- or GPS- based behavioral 

predictions (Ditmer et al. 2018, Kirchner et al. 

2023) could be combined with behavior-specific 

estimates of energy expenditure (Jeanniard-du-

Dot et al. 2017). This would also enable an 

assessment of the effect of anaerobic exercise 

during intense flight on the heart-rate based 

estimation of energy expenditure, which 

assumes a physiological steady state and 

therefore no anaerobic metabolism (Green 

2011). Neumann et al. (2010a) based their 

calculations of energy expenditure during moose 

approaches and tracking on a general equation 

quantifying the energetic costs of terrestrial 

locomotion depending on body mass and 

movement speed (Taylor & Heglund 1982). 

Applying this method to a path reconstructed 

from ca. 30 min GPS positions as in Neumann et 

al. (2010a) assumes a constant speed during each 

30 min path segment and does not consider path 

tortuosity, which may characterize the flight path 

of moose (Ericsson et al. 2015, Græsli et al. 

2020a). Using our more frequent GPS positions 

combined with the continuous-time movement 

model would allow for a more realistic 

reconstruction of flight path, movement distance 

and speed, and could improve the resulting 

estimates of energy expenditure. A comparison 

of our estimations of flight duration from 

increased proportion of locomotor behaviors 

compared to control would benefit from a 

comparison of movement distances calculated 

from the GPS data and movement model.  

 

Conclusions 
 

We used fine-scale GPS and accelerometer data 

and existing models to investigate on an 

unprecedented level of detail the behavioral 

responses of moose to experimental 

disturbances mimicking common recreational 

activities. Our data clearly demonstrated a 

negative effect of the disturbance on the energy 

budget of the moose through an increase in 

locomotor activity and decreased foraging and 

ruminating behavior. We showed that moose 

perceive human recreational activity as threat 

that contributes to their landscape of fear and 

has corresponding risk effects. Our detailed 

analysis revealed spatio-temporal variation in the 

disturbance response that has important 

implications for models of moose energy 

budgets. Our analysis can improve parameter 

estimates in bioenergetic models aiming to 

quantify the impact of repeat disturbances and 

cumulative impacts of disturbances and climatic 

changes on the energy budget of individual 

moose and how these may translate to 

population-level consequences.  
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