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A B S T R A C T   

Precise single tree delineation allows for a more reliable determination of essential parameters such as tree 
species, height and vitality. Methods of instance segmentation are powerful neural networks for detecting and 
segmenting single objects and have the potential to push the accuracy of tree segmentation methods to a new 
level. In this study, two instance segmentation methods, Mask R–CNN and DETR, were applied to precisely 
delineate single tree crowns using multispectral images and images generated from UAV lidar data. The study 
area was in Bavaria, 35 km north of Munich (Germany), comprising a mixed forest stand of around 7 ha char
acterised mainly by Norway spruce (Picea abies) and large groups of European beeches (Fagus sylvatica) with 
181–236 trees per ha. The data set, consisting of multispectral images and lidar data, was acquired using a 
Micasense RedEdge-MX dual camera system and a Riegl miniVUX-1UAV lidar scanner, both mounted on a 
hexacopter (DJI Matrice 600 Pro). At an altitude of approximately 85 m, two flight missions were conducted at 
an airspeed of 5 m/s, leading to a ground resolution of 5 cm and a lidar point density of 560 points/m2. In total, 
1408 trees were marked by visual interpretation of the remote sensing data for training and validating the 
classifiers. Additionally, 125 trees were surveyed by tacheometric means used to test the optimized neural 
networks. The evaluations showed that segmentation using only multispectral imagery performed slightly better 
than with images generated from lidar data. In terms of F1 score, Mask R–CNN with color infrared (CIR) images 
achieved 92% in coniferous, 85% in deciduous and 83% in mixed stands. Compared to the images generated by 
lidar data, these scores are the same for coniferous and slightly worse for deciduous and mixed plots, by 4% and 
2%, respectively. DETR with CIR images achieved 90% in coniferous, 81% in deciduous and 84% in mixed 
stands. These scores were 2%, 1%, and 2% worse, respectively, compared to the lidar data images in the same 
test areas. Interestingly, four conventional segmentation methods performed significantly worse than CIR-based 
and lidar-based instance segmentations. Additionally, the results revealed that tree crowns were more accurately 
segmented by instance segmentation. All in all, the results highlight the practical potential of the two deep 
learning-based tree segmentation methods, especially in comparison to baseline methods.   

1. Introduction 

Forests are important for our ecosystems, providing and regulating 
services for human livelihoods. This includes providing raw wood and 
fresh water, as well as regulating the climate and air quality (Reid et al., 

2005). Furthermore, forests play an important role in the global carbon 
cycle and thus are crucial for the mitigation of global change (Seidl et al., 
2014). In recent years they have faced more frequent and severe dis
turbances that might exaggerate their resilience (Lindner et al., 2010; 
Thom and Seidl, 2016). Due to the crucial services forest ecosystems 
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provide, an accurate monitoring system is of the utmost importance. So 
far, traditional forest inventories have been based on so-called sample 
plots (less than 1% of the total forest area). On these small forest plots, 
individual tree attributes are surveyed by field measurements and used 
for the calculation of statistical indicators for larger management units 
(e.g. forest districts) using statistical models (Heurich, 2006). These 
techniques are very time-consuming because of the enormous amount of 
human resources involved. The accuracy of inventory parameters for 
large spatial units is high (i.e. biomass, growing stock); however, the 
predictions for forest stands show large variability due to the low 
number of sampling units. Instead, remote sensing techniques can pro
vide accurate solutions for seamless calculation of relevant forest in
ventory parameters. 

Remote sensing instruments such as lidar and multispectral cameras 
have been widely used for data acquisition in forest areas (White et al., 
2016). Recently, sensors have been miniaturised for unmanned aerial 
vehicle (UAV) applications. Based on the highly precise sensor data, 
forest structure parameters can be determined with either area-based or 
tree-level approaches. Recently, Latifi et al. (2015) demonstrated that 
single tree-based algorithms can reliably estimate forest structure vari
ables that are useable for forest inventories, studies on biodiversity and 
growth models. Here, techniques for segmentation and detection of 
single trees come into play that provide tree attributes such as position, 
height, crown volume and biomass (Yao et al., 2012). However, an 
imprecise crown delineation with under- and over-segmentation reduces 
the quality of the obtained forest structure parameters (Yu et al., 2010). 

A plethora of single tree approaches can be found in the literature 
(Vauhkonen et al., 2011). In addition to conventional methods like 
watershed segmentation of a digital surface model (DSM) or truly 
three-dimensional (3D) approaches using lidar point clouds, new deep 
learning based methods have been proposed that take advantage of the 
potential of neural networks and, thereby, outperform conventional 
machine learning methods (Ren et al., 2017; Ronneberger et al., 2015; 
He et al., 2017). These new methods are advantageous because they 
extract features fully automatically during the training process (LeCun 
et al., 2015). Furthermore, approaches using the mechanism of 
self-attention (Vaswani et al., 2017) have gained momentum. The 
enlarged receptive field offers an advantage in detecting and segmenting 
large objects, and it has found broad interest in the computer vision 
community (Carion et al., 2020). 

Aerial forest surveys are usually conducted with airplanes or heli
copters. The use of UAVs has thus far been limited to smaller areas, 
because without getting special permission, drones can only be used in 
visual flight. However, due to their low flying altitude, drone flights can 
achieve extremely high resolutions in recorded data, and thus they have 
the capability recording forest structures in great detail. Copter drones 
equipped with powerful batteries or vertical take-off and landing-UAVs 
are particularly suitable for data acquisition over small forest areas or 
control plots, which should be recorded with a high resolution. Because 
of the new potential applications, multispectral sensors and lidar in
struments have been specialized for UAV applications. Today, a plethora 
of sensors are available. Among them are the well-known multispectral 
cameras, such as RedEdge-MX (2020) and Sentera6X (2019), and lidar 
sensors such as YellowScanVoyager (2022) and RIEGL (2020). If 
mounted to a drone, these sensors enable a highly detailed recording of 
the forest canopy, which is key for a detailed reconstruction of single 
trees. 

The contributions of this study are as follows. First, we introduce a 
novel transformer-based network for individual tree delineation from 
multispectral imagery and high-resolution lidar data that are simulta
neously recorded by a drone. Furthermore, we show how this type of 
network is adapted for this task and discuss its challenges and benefits. 
The study area was in Bavaria, 35 km north of Munich, Germany. It 
comprises deciduous, coniferous and mixed forest areas with a stem 
density of around 230 stems/ha. Second, we optimize the enclosing 
polygons of delineated single trees using instance segmentation; thus, 

we reduce the proportion of neighboring trees in the delineated tree 
segment. We proved that instance segmentation using optical imagery 
slightly outperforms lidar-based segmentation. Moreover, the perfor
mance of tree crown segmentation by instance segmentation is clearly 
superior to conventional baseline methods. Regarding detection rate and 
quality of tree crown delineation, all four baseline methods showed 
worse performances. 

1.1. Related work 

In the following, we subdivide methods for single tree detection into 
three categories. The first category comprises raster-based methods 
using lidar-based canopy height models (CHMs). These methods were 
developed from the 1990s to the 2010s and are known for working well 
on dominant trees and failing in detecting understory trees (Heurich, 
2008). For instance, the approach of Silva et al. (2016) generates tree 
segments using local maxima from CHM and centroidal Voronoi 
tessellation. The research site comprised an open canopy longleaf pine 
(Pinus palustris) forest area located in southwestern Georgia (USA). The 
authors reported an overall F1 score of 83% on 15 test plots. However, 
tree detection accuracy is greatly affected by the parameters treetop 
window size that defines the size of the sliding window for searching 
treetops in the CHM and the smoothing window size that defines the 
window size for smoothing the CHM. Dalponte and Coomes (2016) 
detected single trees using a region-growing algorithm in a mixed forest 
located in the Italian Alps. The research site, at an altitude of 900–2200 
m above sea level, is dominated by smaller Norway spruce trees. The 
authors reported a mean detection rate of 30.6% for 47 circular vali
dation plots 15 m in diameter. The method clearly performed better on 
larger trees than on smaller ones. 

The methods in the second category work on the entire lidar point 
cloud. Therefore, in principle, they are not limited to a surface model 
and can detect trees in the understory. Note that the lidar point cloud 
requires sufficient point density to reflect structures below the tree 
canopy. Reitberger et al. (2009) segmented individual trees using 
full-waveform lidar data with a graph-based method called normalized 
cut located in the Bavarian Forest National Park (Germany). The study 
area is characterised by Norway spruce and European beech (Fagus 
sylvatica). For 12 test plots, they reported F1 scores of up to 88%, with 
significant improvements in the intermediate and upper forest layers. 
However, there were only minor improvements in the lower layer due to 
low point density below the canopy. 

In a study from Krzystek et al. (2020), this method was successfully 
applied in a large area in the Bavarian Forest (Germany) and Šumava 
National Park (Czech Republic). The research sites have a stem density 
of around 540 stems/ha and are characterised by Norway spruce and 
European beech. The researchers reported F1 scores up to 87% for 
coniferous and 72% for deciduous forest stands. The results are slightly 
worse than those from (Reitberger et al., 2009), which is due to the 
different forest structures in the test data. The most sensitive threshold 
parameter called NCutmax was observed to depend on the tree species 
(deciduous and coniferous). Therefore, it must be calibrated and applied 
separately. In another study, Dersch et al. (2021) demonstrated an 
adaptive stopping criterion for the normalized cut method that de
couples the most sensitive parameter NCutmax using tree positions 
calculated by an integrated tree stem detection technique. Tree stems 
are automatically located by vertical lines based on a three-stage hier
archical classification process. The study area consisting of mixed forest 
stands (e.g. Norway spruce and European beech) was located in Styria, 
Austria, and had a very high stem density of around 1000 stems/ha. A 
remarkable improvement in comparison to the vanilla normalized cut of 
up to 15% in terms of F1 score was achieved in one mixed and two 
deciduous forest plots. However, a number of tree stems could not be 
detected due to insufficient point density in the lower parts of the forest. 

The approach suggested by Li et al. (2012) segmented individual 
trees in a mixed coniferous forest in the Sierra Nevada Mountains of 

S. Dersch et al.                                                                                                                                                                                                                                  



ISPRS Open Journal of Photogrammetry and Remote Sensing 8 (2023) 100037

3

California (USA), which is dominated by white fir (Abies concolor), 
ponderosa pine (Pinus ponderosa) and black oak (Quercus kelloggii), 
among others. The researchers used a top-down growing approach, 
which selects starting points as the highest points within a predefined 
search radius, and the resulting F1 score was 90%. The researchers re
ported issues with segmenting large deciduous trees with complex 
crowns and elongated branches. The bottom-up segmentation method 
used by Strîmbu and Strîmbu (2015) was based on a weighted graph that 
quantified topological relationships of tree crown components built 
from hierarchical structures of lidar data. The research site was located 
in Louisiana (USA) and comprised mainly coniferous stands (e.g. Pinus 
taeda, Pinus echinata), and the resulting tree detection rate in the upper 
forest layers was 97% for regular tree structures and 89% for complex 
tree structures. However, due to the abstract parameters of the algo
rithm, it was difficult to find the correct parameterization, and they 
needed to be determined for new forest areas. 

In recent years, deep learning-based methods have gained mo
mentum and are represented in many research realms with the prospect 
of better accuracies. In remote sensing, multispectral image data offers a 
suitable data basis for the successful application of convolutional neural 
networks (CNNs). They can be applied to a variety of problems, 
including classifying entire images or detecting and segmenting objects 
inside images (Kattenborn et al., 2021). The latter method is referred to 
as instance segmentation. There are mainly two types of established 
object detectors. First, there are single-stage detectors, such as 
single-shot multibox detector (SSD) (Liu et al., 2016), you only look once 
(YOLO) (Redmon and Farhadi, 2016) and RetinaNet (Lin et al., 2020). 
These detect objects based on features extracted by a backbone and 
regions of interest (ROI) generated by dense grid sampling. They are 
characterised by near real-time detection speeds. 

Second, there are two-stage detectors, such as R–CNN (Girshick 
et al., 2014) or Faster R–CNN (Ren et al., 2017). In contrast to 
single-stage detectors, ROIs are not generated by fixed cells, but rather, 
they are generated by a trained region proposal network (RPN). These 
methods achieve higher accuracy rates but are generally slower than 
single-stage methods. For segmenting objects, the two-stage detector 
Faster R–CNN was extended with a segmentation head for generating 
object masks inside the bounding boxes. The resulting novel method, 
Mask R–CNN (He et al., 2017), is an often used state-of-the-art instance 
segmentation. In addition to the techniques already described in this 
section, novel transformer-based methods, such as the detection trans
former (DETR) (Carion et al., 2020) have been developed for detecting 
and segmenting objects. These take advantage of an enlarged receptive 
field and, as a result, outperform the two-stage detector Faster R–CNN. 

Recently, some of the described deep-learning based object detectors 
have been applied in studies for single tree detection and segmentation, 
thereby forming a third category of new segmentation methods. The 
study by Weinstein et al. (2019) demonstrated individual tree crown 
detection in the form of bounding boxes using the one-stage detector 
RetinaNet and aerial imagery data with a resolution of 0.1 m. The 
research site was located in California (USA) and contained an open 
woodland forest of live oak (Quercus agrifolia) and foothill pine (Pinus 
sabiniana). The labels used for training and validation were generated by 
either a lidar-based segmentation method from Silva et al. (2016) 
or/and by manual annotation. Under the premise of an intersection over 
union (IoU) of at least 50%, they reported an F1 score of 65%. Many of 
the false-positive tree segments were a result of inconsistencies in the 
training data between the unsupervised lidar labels and the hand 
annotation labels. In another study, G. Braga et al. (2020) applied Mask 
R–CNN to segment individual trees in a tropical forest in Brazil using 
WorldView-2 satellite imagery data with a resolution of 0.5 m. They 
achieved an F1 score of 86% on a test plot using reference data gener
ated by visual interpretation. However, over-segmentation is still a 
problem that tends to increase with the size of the tree crown. 

Compared to satellite or aerial data acquisitions, UAV-based mis
sions offer a distinct advantage. The achieved resolutions of the remote 

sensing data are higher and therefore offer much more accurate detail. 
However, only small areas can be surveyed using these drone systems 
(Diez et al., 2021). Chadwick et al. (2020) detected regenerating 
coniferous trees under deciduous trees in leaf-off condition using 
UAV-based imagery. The research site, which is located in the Rocky 
Mountains valley (USA), is dominated by lodgepole pine (Pinus con
torta), white spruce (Picea glauca), and aspen (Populus tremuloides). The 
researchers used RGB images with a resolution of 0.03 m and achieved 
an F1 score of 91% using Mask R–CNN as the segmentation tool. Their 
study showed that regenerating coniferous trees can be detected effec
tively. A method presented by Windrim and Bryson (2020) detected 
single trees in lidar-based images using Faster R–CNN in two New South 
Wales (Australia) pine forest stands (Pinus radiata). The forest stands are 
characterised by stem densities of 400 and 600 stems/ha. They achieved 
detection accuracies with F1 scores of between 76% and 93%. In the 
denser forest stand, the method was clearly inferior to conventional 
watershed segmentation and still has problems with 
under-segmentation. 

Applications of transformer-based approaches for single tree detec
tion and segmentation are rare. For instance, the method used by Chen 
and Shang (2022) counted trees in satellite RGB imagery using a model 
called density transformer (DENT). The data sets collected from 
different locations across the United States contain a variety of different 
tree species, including white oak (Quercus alba) and shortleave pine 
(Pinus echinata). When compared with YOLOV3 (Redmon and Farhadi, 
2018) and Faster R–CNN, DENT achieved mean absolute error values 
that were better by 30% and 50%, respectively. The study from Dersch 
et al. (2022) demonstrated tree detection based on the 
transformer-based object detection DETR. The research site was a 
temperate forest in Germany with a tree density of around 230 stems/ha 
consisting of European beech surrounded by Norway spruce (Picea 
abies). F1 scores were evaluated for a coniferous plot (83%), a mixed plot 
(86%) and a deciduous plot (71%). In the mixed plot, DETR out
performed by more than 15% when compared to YOLOV4. 

In summary, there has been in recent years a focus on deep learning 
based approaches in tree segmentation research due to the potential 
increase in accuracy. One of the most frequently investigated methods of 
instance segmentation is Mask R–CNN. To best of our knowledge, 
transformer-based instance segmentation has not yet been investigated 
for tree delineation. Transformer-based approaches are characterized by 
an enlarged receptive field and a lightweight architecture. Thus, it is 
crucial to determine whether the characteristic transformer mechanism 
of self-attention provides an advantage over well-known instance seg
mentation methods (e.g. Mask R–CNN) in single-tree segmentation, as 
well as the challenges that arise in its adaption and application. More
over, mainly multispectral images are used as input data, and they only 
represent the upper visible forest canopy structure. Therefore, the ma
jority of detected and segmented trees are dominant trees. However, this 
limitation could in principle be mitigated by applying lidar and thereby 
using lidar-based metrics such as point density, CHM, lidar intensity and 
penetration rate. In general, effects such as under-segmentation and 
over-segmentation are still a problem for deciduous and coniferous 
forests. Moreover, the quality of the segmented tree polygons, which are 
potentially better due to using a trained neural network, has not 
addressed and investigated. For instance, Briechle et al. (2021) noted 
that precisely delineated tree polygons are essential for improved tree 
species classification. Most of these studies used only visually generated 
reference data to test the CNN model, without resorting to field mea
surements that allow the tree canopy polygon to be digitized as precisely 
as possible. This is in full accordance with the study from Kattenborn 
et al. (2021), which reported that 62% of publications between 2017 
and 2020 that referred to CNN-based remote sensing methods used 
reference data labelled by visual interpretation. 

The novelty of our study is the application of instance segmentation 
for tree segmentation on multispectral images and lidar data acquired in 
the same study area. We used the neural networks Mask R–CNN and 
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DETR, thereby comparing a conventional and transformer-based 
instance segmentation along with traditional segmentation methods. 
Lidar images reflecting the 3D forest structure are combined with mul
tispectral channels (red, green, blue and near infrared). Because we have 
exact tree crown polygons generated with the help of reference data 
from field measurements, we can investigate the quality of the 
segmented tree crowns as well. 

2. Materials 

2.1. Study area 

Our study area was located 35 km northeast of Munich, near the 
Kranzberg Forest Roof Experiment (KROOF) research site, located at 
11◦39‘42′′ E, 48◦25‘12′′ N. The mixed forest area, administered by the 
Bayerische Staatsforsten, is characterised by spruces and large groups of 
beeches. The stem density in this forest varies in a range of 181–236 
trees/ha, with tree heights between 19 m and 36 m. 

Field measurements were carried out to obtain reference data for 
evaluation. The positions of dominant trees that had a minimum breast 
height diameter (BHD) of 15 cm, were measured by tacheometric means 
with an accuracy of 2 cm. The BHD was measured using a standard 
caliper. The coniferous plot (Fig. 1, Plot #1) was dominated by large 
coniferous trees and partly by some understory trees. The mixed plot 
(Fig. 1, Plot #2) was characterised by 60% coniferous and 40% decid
uous trees. The third plot (Fig. 1, Plot #3) was composed of 76% de
ciduous and 24% coniferous trees of different sizes and ages and is 
referred to as deciduous plot in the following due to the high proportion 
of deciduous trees. The plot characteristics are provided in Table 5. 

2.2. Data acquisition and preparation 

2.2.1. Aerial multispectral data 
We collected multispectral aerial images in August 2020 and July 

2021 using a RedEdge MX dual camera system (RedEdge-MX, 2020) 

attached to a remote-controlled hexacopter (DJI M 600 Pro). Addition
ally, we mounted an upward-facing light sensor for accurate ambient 
light calibration. The camera system captured 10 channels (spectral 
range 475–842 nm) with a focal length of 5.5 mm and a horizontal field 
of view (HFOV) of 47.2◦. In order to achieve a radiometric calibration, 
images of a calibration panel were taken before the flights. The flight 
height for the mission in August 2020 was 90 m and the flight height for 
the mission in July 2021 was 80 m, resulting in ground sample distances 
(GSDs) of 5.93 cm and 5.30 cm, respectively. The flight speed for both 
missions was 5 m/s above ground. The software MetaShape (2010) was 
used for generating true orthophotos (TDOPs). The postprocessing steps 
included (a) radiometric calibration of the images, (b) bundle adjust
ment, (c) point cloud generation and (d) orthomosaic generation. We 
exported four channels (red at 612 nm, green at 560 nm, blue at 475 nm, 
and near infrared at 842 nm) from the multispectral camera and added 
an extra PAN channel by weighting the red, green and blue channels 
with the values 0.2, 0.6, and 0.2, respectively. Finally, a five-channel 
TDOP with a cell size of 5 cm was exported to be available for further 
processing. Table 1 provides the details of the photogrammetric 
campaign. 

2.2.2. Lidar data 
In addition to the multispectral imagery, we collected lidar data 

Fig. 1. RGB true orthophoto (TDOP) showing the research area of KROOF containing three plots: #1, #2 and #3. The remaining forest area was used for training 
and validation. 

Table 1 
Flight parameters of aerial image acquisition and software packages used.  

Multispectral camera RedEdge MX 
SFM - Software MetaShape (MetaShape, 2010) 
Field of View (degree) 47.2 
End lap (%) 90 
Side lap (%) 60 
Acquisition time August 2020/July 2021 
Images 3770/3560 
Flight height (m) 90/80 
GSD (cm) 5.9/5.3  
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using a RIEGL miniVUX-1UAV (RIEGL, 2020) instrument, which was 
also mounted to the drone platform. For each day of flight in August 
2020 and July 2021, three flights were conducted at a 90 m flight height 
with a lidar strip distance of 22 m, resulting in a side lap of more than 
50%. The repetition frequency of 25 kHz added up to an average point 
density of 560 pt/m2. For accuracy reasons, a stationary global navi
gation satellite system (GNSS) receiver was used to provide correction 
data for the subsequent differential GNSS (DGNSS) data processing. 
Moreover, a calibration flight was performed over a large property with 
several buildings to collect data to verify the boresight parameters. 
Furthermore, the buildings’ enclosing polygons were measured by 
DGNSS for the exact transformation of the lidar data into the reference 
coordinate system (=UTM 32N = EPSG 25832). Finally, we aligned the 
lidar strip, taking into account misalignments due to remaining errors in 
the boresight calibration and INS-based drift effects. The processing 
steps to produce the final lidar point cloud were as follows: (a) Boresight 
calibration (b) Generation of lidar data for each mission in the reference 
coordinate system (c) Lidar strip alignment (d) Merging of the lidar 
strips (e) 3D correction of complete lidar data set using reference 
polygons (f) Calibration of lidar intensity. Moreover, the bare ground of 
the forest (DTM) was filtered out of the lidar point cloud using Terrasolid 
software (TerraSolid, 2020). In the last step, we generated a surface 
model from lidar points (DSMlidar) at a grid spacing of 5 cm. For further 
processing, we discarded all lidar points within a height bound of 10 m 
above ground to avoid the impact of bushes and shrubs. Table 2 sum
marizes all of the details of the lidar campaign with reference to the 
software packages used. 

2.2.3. Calibration of lidar intensity 
The full waveform scanner provided waveforms that were decom

posed using GeoCode software (LasTools, 2021), resulting in informa
tion regarding the reflected intensity. Thus, the 3D coordinates (xP, yP, 
zP) of each reflecting object P hit by the laser pulse were obtained in 
combination with the intensity IP. Overall, this decomposition generated 
a point cloud for the forest area represented by the vector Xn(xn, yn, zn, 
In), n = 1, …, N (N is the total number of points in the point cloud). The 
intensity In depends on the traveling distance rn (in one direction) and 
can be calibrated using a data-driven model (Höfle and Pfeifer, 2007). 

Icorr
n =

In

1 + (rn − r0)C1 + (r2
n − r2

0)C2
(1) 

In order to obtain reasonable values for the parameters C1 and C2, 
samples for In (see Eq. (1)) were taken at two flying heights, r1 and r2, as 
the mean value from three small concrete areas (ca. 4 × 4 m2) located in 
the vicinity of the buildings (see Figure A1 in the Appendix). The value 
r0 describes the reference distance of 50 m. Note that the intensity 
correction provided the final lidar point cloud for the entire test site that 
was subsequently used for (1) generating lidar-based images (see 

Subsection 2.3), and (2) calculating tree segments using four baseline 
methods (see Subsection 4.1). Fig. 2 shows the effect of the intensity 
calibration. 

2.3. Data fusion 

The two instance segmentation methods in this study require images 
as input data. Therefore, in addition to the images from the multispectral 
camera, the lidar point cloud based layers were projected into 2D bird’s- 
eye views with a resolution of 5 cm × 5 cm and then all stored together 
in a data cube. First, we generated a canopy model from lidar (CHMlidar) 
and a photogrammetric canopy model (CHMphoto) from the DSMlidar and 
photogrammetric surface model (DSMphoto), each being normalized with 
the DTM. We also generated a data layer point density (P_DENSE) with a 
footprint of 5 cm × 5 cm. Each pixel value represents the number of lidar 
points within the voxel above the footprint from the bottom to the top of 
the CHMlidar, thereby describing the penetration of the laser beam in the 
vegetation. In addition, we processed a data layer mean intensity 
(M_INTEN) representing the mean lidar intensity in a voxel of the same 
dimensions.For our experiments, we defined four channel combinations 
(Table 3). The idea was to generate two optical combinations (RGB, 
CIR), one lidar-based combination (LIDAR) and one combination using 
the optical PAN channel that was converted from channels red (612 nm), 
green (560 nm) and blue (475 nm) and two lidar channels (P + LIDAR). 
Note that all channels were enhanced using histogram equalization. 

2.4. Evaluation data 

The research area was split into three parts for training, validation 
and testing of the networks. Precise tree segments for testing were 
selected in plots #1, #2 and #3, considering the field measurements. 
Training and validation data are required to optimize the instance seg
mentation methods. Therefore, the remaining area was labelled by vi
sual interpretation and used for training and validation. Table 4 shows 
the tree parameters for training and validation. 

2.4.1. Field survey 
The goal of the field survey was to measure tree positions as precisely 

as possible in order to generate accurate testing data. Due to the ex
pected shading effects in dense forest areas using GNSS systems, a survey 
campaign was conducted in April 2021. First, a traverse was measured in 
the area of the three plots #1, #2 and #3. The traverse included seven 
polygon stations and was georeferenced using three geodetic points. The 
instruments used included the Trimble R12i GNSS system and the Leica 
TCRP1203+ total station. Afterwards, tree positions were surveyed from 
the polygon points by tacheometric means. The BHD of each dominant 
tree greater than 10 cm was also measured using a scale bar, and the tree 
group was also documented. In summary, we surveyed 55 trees in plot 
#1, 36 trees in plot #2 and 34 trees in plot #3 (see also Table 5). The 
estimated accuracy of the tree positions was less than 10 cm. 

2.4.2. Labeling of tree crowns 
The reference data are provided in the form of individual tree seg

ments as enclosing polygons. For this purpose, the 3D point cloud and 
the RGB TDOP were used for visualization. For labelling the training 
data, tree segments were first defined in the orthophoto and refined or 
enlarged because of shadows in the RGB TDOP with the help of the 
CHMlidar. This ensured to measure the true outermost crown shape, 
thereby providing a good approximation of the real crown radius. In a 
few cases, the 3D point cloud was also used to separate and delineate 
trees that stood close together because they could not be clearly 
distinguished.The tree positions in the 3D point cloud were visualised to 
provide the test data in oblique view. Tree polygons were then digitized 
in the 3D point cloud and superimposed on the RGB TDOP. This linked 
the precise tree position from the field measurements to an accurately 
measured tree segment and guaranteed high-quality reference data for 

Table 2 
Flight parameters of lidar flight and software packages used.  

Acquisition time August 2020/July 2021 
Scanner type RIEGL miniVUX-1UAV (RIEGL, 2020) 
Platform DJI M 600 Pro 
Spectral wavelength (nm) 1550 
Pulse repetition frequency (kHz) 100 
Beam divergence (mrad) 0.5 
Flight speed (m/sec) 5 
Flight height (m) 90 
Side lap (%) 60 
Point density (pts/m2) ca. 560 
Footprint size (mm) 45 
Area (ha) 6 
Software for strip alignment StripAlign (BayesMap, 2018) 
Software for GNSS/INS Inertial Explorer (Novatel, 2018)) 
Software for lidar georeferencing GeoCode (LasTools, 2021)) 
Software for DTM filtering Terra Scan (TerraSolid, 2020))  
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verifying the accuracy of the segmentation method. Fig. 3 shows an 
example of labelled trees in the lidar point cloud. 

3. Methods 

3.1. Outline of methods 

The basic idea of our approach is the delineation of single trees by 
instance segmentation from multispectral images and images generated 
from lidar data. Fig. 4 shows the complete schematic workflow. Multi
spectral imagery and lidar data were acquired from a low-flying UAV 
with high point density. We combined multispectral imagery and images 
from lidar data into a data cube that stores images separately into 
channels with the same resolution. Three channels were selected from 
the data cube as input data. As instance segmentation methods, we used 

Mask R–CNN and DETR with ResNet-50 (He et al., 2015) as a backbone 
pre-trained on the ImageNet data set (Deng et al., 2009). The best model 
was found using the training and validation data set. Reference segments 
were generated by labelling tree crowns using the lidar point cloud, the 
RGB TDOP and tree positions acquired in the test site by tacheometric 
means. Evaluation metrics such as accuracy, F1 score, recall and preci
sion were calculated using both reference segments, true tree positions 
from field measurements and the detected segments. Furthermore, we 
calculated the segmentation quality using the mean IoU between true 
positive and reference segments. 

3.2. Mask R–CNN 

The instance segmentation Mask R–CNN used in this study is based 
on the two-stage object detection Faster R–CNN Ren et al. (2017), which 
is the second improvement of the original R–CNN Girshick et al. (2014) 
object detection. Unlike the two previous versions, R–CNN and Fast 
R–CNN, Faster R–CNN uses an RPN. Mask R–CNN is based on the Faster 
R–CNN method and has been modified to include a masking head. Each 
detected object is additionally delineated, and thus, a mask is deter
mined. In combination with Faster R–CNN, this instance segmentation 
represents a fully deep-learning based end-to-end trainable pipeline. 
More detailed, the pipeline Mask R–CNN (see Fig. 5) consists of two 
steps. First, region proposals were generated using the backbone CNN 
and the RPN. ResNet-50 was used as backbone and the different stages 
are referred to as c2 through c5, with the resulting feature maps labelled 
p2 through p6. This RPN is a trainable, independent object detector that 
performs class-independent object detection. It is important to mention 
that the CNN features provided by the backbone were used for the RPN 
and the rest of the object classifications. In the second stage, the feature 
maps of the detected region proposals were extracted using the region of 
interest (ROI) alignment in a fixed size. As the last step, the classes, 
bounding boxes and masks of the detected objects were determined. The 
tasks were performed in separate heads. As a result, all target objects in 
the scene were exported as masks and class labels. 

3.3. DETR 

DETR processes global image information using the transformer 
mechanism (Vaswani et al., 2017). This approach considers object 
detection and segmentation as a direct set prediction problem. More
over, it eliminates several sub-tasks that require prior knowledge about 
the problem, such as anchor generation. The global image context and 
the relationship between objects are crucial factors. Predictions can be 
determined in parallel and directly using a small set of learned object 

Fig. 2. Lidar intensities in a profile across a lidar strip captured at a flying height of 60 m. Distance parameters were: r0 = 50.0 m, r1 = 50.0 m, r2 = 90.0 m. (a) Before 
calibration. (b) After calibration. 

Table 3 
Definition of channel combination used in the experiments. Numbers in brackets 
are in nm and indicate wavelength.  

Definition Channel 1 Channel 2 Channel 3 

RGB Red (612) Green (560) Blue (475) 
CIR NIR (842) Red (612) Green (560) 
LIDAR CHMlidar P_DENSE M_INTEN 
P + LIDAR PAN CHMlidar P_DENSE  

Table 4 
Tree parameters of areas for training and validation.  

Parameter Training Validation 

Size (m2) 52635 12364 
Trees 1185 223 
Trees/ha 225 181 
Forest type mixed mixed 
Tree heights (m) 19–36 20–36  

Table 5 
Tree parameters of reference plots for testing.  

Parameter plot #1 plot #2 plot #3 

Size (m2) 2434 1883 1840 
Trees 55 36 34 
Trees/ha 226 191 185 
Forest type coniferous mixed mixed 
Tree heights (m) 19–35 20–34 19–34  
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queries. Fig. 6 shows the main elements of the overall DETR architec
ture. First, ResNet-50 provided features and positional encoding was 
added to the CNN feature map. Finally, the features were transferred to a 
transformer encoder, followed by a transformer decoder that generated 
N object queries. Lastly, the bounding boxes were predicted and the 
associated classes determined using a feed-forward network (Carion 
et al., 2020). Finding and evaluating ground truth and predicted boxes is 
a vitally important task. Bipartite matching, which was solved using the 

Hungarian algorithm (Kuhn, 1955), defined the set prediction. Here, 
ground truth boxes and a larger set of predicted boxes were matched 
efficiently. The loss for matched pairs, called the Hungarian loss, is a 
linear combination of a negative log-likelihood for class prediction, the 
generalized IoU loss (Rezatofighi et al., 2019) and the commonly used l1 
loss.DETR can be extended to perform instance segmentation. The mask 
head can either be trained in parallel with object detection as a one-step 
process, or in a two-step approach, where an object detection model is 

Fig. 3. Labeling of four single coniferous trees in 3D point cloud for test data. Red dots indicate the positions of corresponding reference trees. (a) Side view. (b) Top 
view. The manually digitized segments are circled in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 4. The complete process of segmenting single trees using Mask R–CNN and DETR.  
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trained first, and afterwards, a mask head is trained to discriminate 
between instances and backgrounds within bounding boxes. Subse
quently, all weights are frozen and only the mask head is trained for 
approximately 25 epochs. Studies yield similar results for these two 
approaches. In this study, we trained the object detection head and mask 
head in a one-step process. Therefore, two pre-trained models were 
loaded, one for object detection and one for panoptic segmentation. For 
parallel training, the AdamW optimizer was modified to implement a 
separate learning rate for the segmentation. Thus, both models were 
trained and optimized with optimal learning rates. 

3.4. Choice of parameters 

For instance segmentation Mask R–CNN, we used the Python 
implementation of detectron2 (Wu et al., 2019). We adapted the pa
rameters learning rate to 1e-4, the batch size to 12 and the maximum 
number of epochs to 160.For instance segmentation DETR, we used the 
GitHub repository of Carion et al. (2020) as codebase. Most of the 
hyperparameters correspond to the default configuration. In this study, 
we modified the backbone learning rate, the learning rate of the enco
der/decoder and the panoptic learning rate to 4e-7, 5e-6 and 4e-6, 
respectively. We changed the batch size to 2 and the decay rate to 

1e-4. We selected the best model within 80 epochs, considering over
fitting effects. The models of both instance segmentation methods were 
trained and validated using the data set described in 2.4.2. Random data 
augmentation (horizontal/vertical flip, rotation, bright
ness/contrast/saturation change, image crop) was applied to improve 
the training and, therefore, the model. Both instance segmentation 
methods achieved best results using an unfrozen ResNet-50 backbone. 
Attempts to improve the result using a training strategy using frozen 
backbone layers showed no improvements. 

4. Experiments 

4.1. Experimental setup 

The experiments were divided into several sections. Experiment #1 
focused on the performance of delineating trees by Mask R–CNN and 
DETR. The four channel combinations defined in Section 2.3 (see 
Table 3) were used. The entire test site’s data set was subdivided into 
training, validation and testing, and three areas were selected for 
testing. The remaining data set was subdivided into 80% training and 
20% validation. The total imagery was tiled into 512 × 512 pixel size 
images with 50% overlap. Experiment #2 focused on comparing the best 
results of experiment #1 with four baseline methods, normalized cut 
(NCut) (see Reitberger et al. (2009)), Silva (see Silva et al. (2016)), Li 
(see Li et al. (2012)) and watershed segmentation (WS) (see Roussel and 
Auty (2022)) with area-based evaluation applied (see Section 4.2). 
Moreover, the quality of the segmentation was examined in the third 
experiment. Note that the methods NCut and Li used the entire lidar 
point cloud as input data, while Silva and WS used the data set CHMlidar 
generated from the lidar point cloud.We applied the lidar package lidR 
(Roussel et al., 2020) for methods Silva, Li and WS. The TreeFinder 
software package (PrimaVision, 2022) was used for method NCut. An 
Ubuntu workstation equipped with 256 GB of RAM, an Nvidia RTX 8000 
GPU and an AMD Ryzen Threadripper 3970X processor was used for 
processing the data. 

4.2. Evaluation and accuracy assessment 

The evaluation of the experiments was performed using an area- 
based method that uses the IoU of reference and detected tree seg
ments as a basis. The detected tree is counted as true positive (TP) if the 
IoU value is above a threshold of 50%. The detected tree segments that 
could not be assigned to a reference segment are counted as false posi
tives (FP). It should be noted that tree heights are not considered for 
evaluation in this work. Furthermore, reference trees are marked as false 
negatives (FN) if no corresponding reference tree is found. Finally, the 
metrics of accuracy, recall, precision, F1 score and IoU were calculated 
for each test plot. 

Fig. 5. Schematic overview of Mask R–CNN. Image from Zhang (2022).  

Fig. 6. Schematic overview of the instance segmentation method DETR. Orange box indicates the masking heads. Adapted from the original publication (Carion 
et al., 2020). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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accuracy =
TP

TP + FP + FN
(2)  

precision =
TP

TP + FP
(3)  

recall =
TP

TP + FN
(4)  

F1 = 2⋅
precision⋅recall

precision + recall
(5)  

IoU(A,B) =
|A ∩ B|
|A ∪ B|

(6) 

Finally, in order to show the quality of the segmentation, the mean 
IoU (meanIoU) was calculated for each plot using the sum of the IoUs over 
all TPs divided by the number n of all TPs: 

meanIoU =
1
n
∑n

i=1
IoUi (7)  

4.3. Results 

4.3.1. Instance segmentation using mask R–CNN and DETR 
In experiment #1, we demonstrated the performance of the instance 

segmentation approaches Mask R–CNN and DETR in Fig. 7. The plots in 
the left column (7a, 7d, 7g), middle column (7b, 7e, 7h) and right col
umn (7c, 7f, 7i) show the results of Mask R–CNN, DETR and four 
baseline methods, respectively. The plots in the first row (7a, 7b, 7c), 
second row (7d, 7e, 7f), and third row (7g, 7h, 7i) show the results of test 
plot #1 (coniferous), plot #2 (mixed), and plot #3 (deciduous), 
respectively. 

First, we investigated the image-based channel combinations RGB 
and CIR using Mask R–CNN (see Fig. 7a, d, 7g). The best channel com
bination, CIR, achieved an F1 score of 92% in the coniferous plot, 83% in 
the mixed plot and 85% in the deciduous plot. The precisions in the 
mixed and deciduous plots were about 8%–9% worse than the conif
erous plot. In the coniferous plot, using the channel combination RGB, 
we obtained an F1 score of 92% and an accuracy of 85%. Recall and 
precision also achieved values of 92% and 93%, respectively. Compared 
to the coniferous plot, the mixed and deciduous plots contained a large 
number of deciduous trees. The F1 scores of these plots were 8%–9% 
worse than in the coniferous plot with 83% and 84%, respectively. We 
obtained the worst precision in the deciduous plot with 82%. In sum
mary, we observed that the channel combination CIR achieved the best 
results. 

Comparing the results of Mask R–CNN obtained with the optical 
imagery, we now focused on the outcomes of Mask R–CNN using the 
lidar-based channel combinations LIDAR and P + LIDAR (See two right- 
hand bar combinations in Fig. 7a, d and 7c). The channel combination 
LIDAR, consisting of three solely lidar-based channels, achieved F1 
scores that were similar to the CIR data set in the coniferous forest and 
mixed plot with minor differences of 2%. However, the results differed 
significantly in the deciduous area by about 4%. Finally, we considered 
the channel combination P + Lidar, which uses an optical channel 
combined with two lidar channels (see 3). We found that in the conif
erous and mixed plots, the results were 2% worse for both plots 
compared to the CIR channel combination. However, the significant 
drop in F1 score for this hybrid channel combination is remarkable, with 
10% in the deciduous plot. 

The results obtained by the instance segmentation DETR, summari
zing Fig. 7a and b, were similar to Mask R–CNN in the coniferous plot. In 
the channel combinations RGB and CIR, DETR was about 2% worse in F1 
score. The results of DETR with the channel combinations LIDAR and P 
+ LIDAR are around 2%–3% worse. In the mixed plot (Fig. 7f and e), 
DETR performed 6% and 1% better using the optical channel 

combinations RGB and CIR than the F1 scores of Mask R–CNN. We also 
noted similar results for the channel combinations LIDAR and P +
LIDAR. The results for the deciduous plot (Fig. 7g and h) showed a 
significant deterioration in F1 score using DETR with the channel 
combinations RGB and CIR of about 8% and 4%, respectively. The 
channel combinations LIDAR and P + LIDAR also led to an accuracy 
decrease of about 5%. However, the lidar-based data set results did not 
indicate any significant differences. 

4.3.2. Comparison to existing baseline methods 
In this section, we focus on comparing the two instance segmentation 

methods with four selected baseline methods (see Fig. 7c, f and 7i). Note 
that these methods only use the lidar point cloud as input data. Because 
the baseline methods depend on control parameters, we optimized the 
most important ones in a sensitivity analysis by coarsely varying the 
parameter values within a reasonable range and maximizing the F1 
score in a grid search (see Table A2 in the Appendix). 

The results of the four baseline methods showed that they were 
outperformed in all test plots by Mask R–CNN and DETR. The four 
baseline methods had their best results in the coniferous test plot. 
However, when compared to Mask R–CNN, NCut scored 13% worse, 
Silva scored 38% worse, Li scored 76% worse and WS scored 58% worse 
in the coniferous plot. In the mixed plot, all of the baseline methods 
deteriorated, particularly NCut by 26%, but also Silva by 6%, Li by 2% 
and WS by 17%. As expected, the effect of accuracy deterioration in the 
deciduous plot was even more evident for NCut with 16%, Silva with 1% 
and WS with 5%. However, Li achieved a 4% better result. 

4.3.3. Quality of segmentation 
In the last experiment, #3, we investigated the quality of the seg

mentation results using the meanIoU (see Eq. (7)). For the instance seg
mentations Mask R–CNN and DETR, we limited the analysis to the best 
performing channel combination CIR. As with the experiments discussed 
in Section 4.3.2, we selected NCut as the representative method. Table 6 
shows clearly better values for the instance segmentations Mask R–CNN 
and DETR. More precisely, the two instance segmentations performed 
10%–16% better than the baseline method NCut. In addition, the num
ber of true positives was higher for the instance segmentations and lower 
for NCut. Fig. 8 gives examples of the quality of single tree delineation in 
a mixed forest area. 

5. Discussion 

5.1. Comparison of the instance segmentation results 

The instance segmentations had only minor differences between the 
multispectral channel combinations CIR and RGB and the different 
forest types. Interestingly, the results of the lidar-based combinations 
tended to be worse for Mask R–CNN and DETR in the coniferous and 
mixed plots. However, in the deciduous plot, the results for DETR were 
better than the visual ones for the lidar-based channel combinations. In 
summary, we found no significant differences among either the instance 
segmentations or the optical and lidar-based channel combinations. In 
other words, the lidar-based information in the form of depth images 
(CHMlidar), lidar intensity (M_INTEN) and lidar point density (P_DENSE) 
did not seem to present any added value. Also, the combinations of 
depth images, lidar intensity and PAN channel did not provide any 
improvement. In principle, the point density provides the stem infor
mation to the neural network in case of high lidar point density. We 
suspect that the number of labelled tree stems was insufficient to 
adequately train the highly parameterized network concerning the stem 
information. To overcome this drawback, we could train two backbones 
with multispectral and lidar-based images in parallel and use a feature 
vector merged from both backbones. Alternatively, significantly more 
training data could lead to a more optimized model that better repre
sents the lower forest structures, including the tree stems. 
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Fig. 7. Results of instance segmentation with Mask R–CNN in the left column, DETR in the middle column and baseline methods in the right column. Rows one, two 
and three show the results of test plots #1 (coniferous), plot #2 (mixed) and plot #3 (deciduous), respectively. Y-axis is percentage. 
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We expected that DETR would outperform Mask R–CNN. However, 
the methods had nearly identical performances. We identified the reason 
for this was that the number of training samples was too small to suf
ficiently train the implementation of DETR we used. Moreover, one of 
the most important parameter object queries optimized for the COCO 
data set could not be changed. The authors of DETR reported im
provements in detection accuracy, especially for large objects. This can 
be attributed to the processing of global information by self-attention. 
However, we could not detect any significant improvements in our in
vestigations. In our opinion, this advantage would apply to significantly 
large trees. DETR has a performance loss in detecting small objects 
because of the positional encoding of image feature maps that refer to 
tiles of fixed size. Therefore, the ability to detect smaller objects is 
reliant on the subdivision of the image feature maps. Moreover, in our 
investigations, the parallelization of the training process for object 
detection and panoptic segmentation based on two different models was 
difficult to adjust. Because the segmentation model was overfitted faster 
than the object detection model, we had to apply a separate learning rate 
and match it to the training process of the object detection model. 
However, the DETR architecture is relatively simple and is less complex 
than Mask R–CNN and can therefore be adapted effectively. The 
geometrical characteristics of the detected tree polygon edges seemed a 
bit smoother using Mask R–CNN compared to DETR. However, the 
segmentation results of both methods on coniferous and deciduous tree 
stands were promising, even for nearby trees. An example is shown in 

Fig. 9 for coniferous stands in 9a and deciduous stands in 9b. 
In detail, we noticed in the coniferous plot that Mask R–CNN and 

DETR detected three out of seven small trees (sizes smaller than 15 m2). 
These smaller coniferous trees are often in close range to larger trees, 
making them difficult to distinguish. Mask R–CNN detected all three big 
trees (sizes larger than 60 m2) within the coniferous plot in comparison 
to DETR, which failed to detect one tree. This was caused by a too-low 
confidence score causing the tree not to be recognized. In the decidu
ous plot, we also noticed problems with small trees (sizes smaller than 
15 m2). Out of four small trees, Mask R–CNN recognized one, while 
DETR failed to recognize any of the four trees. There were also issues 
with larger trees (sizes bigger than 60 m2). All six trees in the deciduous 
plot were detected by both methods, but minor artifacts were generated 
in addition to the correctly detected trees. These over-segmentation ef
fects are most present for DETR, with four segments, and less so for Mask 
R–CNN with two segments. In the mixed plot, we observed findings that 
were similar to the coniferous and deciduous plots. Furthermore, there 
were occasional problems in the form of under-segmentation in the 
coniferous and deciduous plots with two trees detected as one. This ef
fect was most pronounced in the mixed plot, with DETR in two cases and 
Mask R–CNN in three cases. We think these adverse effects could be 
reduced with more training data and more diverse tree samples. 

5.2. Comparison of tree segmentation to baseline methods 

The four baseline methods applied to the lidar point cloud performed 
significantly worse than the instance segmentations for all three forest 
types. As expected, the results tended to be best for conifers and worst 
for deciduous trees, as the crowns of deciduous trees merge into a closed 
structure with no clear maximum. 

The baseline methods were unsupervised learning algorithms 
controlled by parameters determined by the sensitivity analysis. The Li 
and NCut methods were used to compute single tree segments based on 
the entire point cloud and model the tree canopy according to specific 
tree parameters that control the tree crown shape horizontally and 
vertically. Both WS and Silva methods were used to estimate single tree 
segments based on a filtered CHM; thus, they depended on a smoothing 
factor. Therefore, these segmentation methods are limited to a few 
control parameters that describe the variety of tree shapes globally but 
not individually based on sensitivity analysis. However, the instance 
segmentation methods were supervised representation learning 
methods that use the characteristic tree crown shapes of the forest area 
contained in the training data set. These neural networks do not depend 
on tree-describing control parameters but on training data prepared by 

Table 6 
Quality of segmentation (see Equation (7)) for instance segmentation methods 
Mask R–CNN and DETR (using the data set CIR) and NCut (using the lidar point 
cloud) as mean value for each plot. Values in brackets indicate numbers of true 
positives. Numbers are in percent.   

Coniferous Mixed Deciduous 

Mask R–CNN (CIR) 77 (50) 78 (29) 75 (28) 
DETR (CIR) 77 (48) 76 (29) 77 (27) 
NCUT 69 (44) 62 (21) 65 (13)  

Fig. 8. Examples of the single tree delineation by Mask R–CNN in yellow, NCut 
in blue and reference tree segments in red. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 9. Example of segmentation results of Mask R–CNN in yellow, DETR in 
purple and reference in red. Coniferous stands example on the left (a) and 
deciduous stands example on the right (b). (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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experts. This leads to an accurate delineation of the tree canopy shape. 
Furthermore, the IoU-based evaluation method, which uses tree 

crown polygons, also has a decisive influence on the achieved segmen
tation accuracies. The area-based evaluation method is more rigorous 
than an evaluation method based purely on tree positions, because it 
incorporates the tree crown shape of the detected tree. Hence, an IoU of 
at least 50% is used as a selection criterion for true positives. Some tree 
segments did not reach the defined minimum threshold of IoU 50% 
required for evaluation as true positives. However, the mean position (i. 
e. the estimated tree stem position) seems to have been partially correct. 

5.3. Segmentation quality 

In this section, we discuss the quality of tree delineation using 
instance segmentation. The instance segmentations Mask R–CNN and 
DETR delineated single trees much more accurately up to 16% given 
that the baseline methods are much worse at delineating tree crowns in 
the surface model. Here, the advantage of neural networks clearly comes 
into play, as they learn the local forest structure via the labelled training 
data. Obviously, cast shadows did not play a significant role in the op
tical images used in this study. In contrast, the baseline methods were 
based on control parameters that can only be adapted to the respective 
forest structure after an even more elaborate sensitivity analysis. It 
should be noted that the enclosing polygons of the trees were measured 
by visual interpretation of the orthophotos and the 3D point clouds. We 
assume that the accuracy of this measurement method can be compared 
to the conventional method of tree crown mapping using an upwards 
looking mirror system. 

5.4. Comparison to related work 

First, we compared the results of our work with two recent studies 
using the area-based evaluation method (IoU bigger than 50%). Wind
rim and Bryson (2020) attained Faster R–CNN Ren et al. (2017) in two 
pine forest stands with stem densities of 400 stems/ha and 600 stems/ha 
F1 scores of 93%–76%, respectively. The data set for the present study 
consisted of lidar-based images, such as vertical density, CHM and 
average return. For the coniferous plot with a lower stem density of 400 
stems/ha, the resulting 93% F1 score was approximately the same as our 
result of 92% for a stem density of 226 stems/ha. Note that this study 
utilized object detection based on Faster R–CNN (i.e. bounding boxes). 

The study by Hao et al. (2021) applied Mask R–CNN to detect indi
vidual trees in a tree plantation using UAV-based imagery. Here, 
different multispectral channel combinations with at least one channel 
containing height information were investigated (specifically, red, 
green, blue wavelengths and digital surface model). The GSD of 0.3 cm 
was smaller, as in our study. The F1 score results for the total six channel 
combinations were between 72% and 85%. We achieved slightly higher 
values in the coniferous plot. It should be noted that the trees of that 
study’s test site grow in a tree plantation with clearly different forest 
structures than our study site. 

Second, we reviewed the study by Krzystek et al. (2020) that re
ported on experiments conducted at the research site in the Bavarian 
Forest National Park. In this mixed temperate forest, the percentage of 
conifers was 43% and of deciduous trees was 57%, with an average stem 
density of approx. 550 stem/ha. The tree segmentation method 
normalized cut from Reitberger et al. (2009) was applied to the test area 
using parameters determined by separate sensitivity analyses for de
ciduous and coniferous stands. F1 scores for coniferous plots reached 
87% and were slightly worse in deciduous plots at 78%. Comparing 
these results with our experiments, we note that the two instance seg
mentation methods attained F1 scores around 91% in the coniferous plot 
and around 83% in the deciduous plot. Clearly, these numbers are 
significantly better than the results of the study from Krzystek et al. 
(2020). The evaluation in this study was based on a distance threshold 
between reference trees and segmented trees. Trees with the smallest 

distance between the center of a detected tree and a reference tree po
sition were matched. If we applied this point-based evaluation proced
ure to our test plots, the relevant numbers change to approximately 92% 
and 72%. The still evident differences between our study and the study 
by Krzystek et al. (2020) may be attributed to different stem densities 
and tree species distributions. 

Next, we want to address the efficiency and completeness of the 
current study. The approach required a significant number of manually 
labelled training samples, although transfer learning was used. In our 
experience, a TDOP is sufficient for coniferous areas. The labelling in 
deciduous areas was possible without a 3D laser point cloud, but in some 
cases, 3D information about the forest structure can help separate 
closely spaced tree groups. Obviously, field measurements support the 
complete process of labelling and accuracy assessment. Concerning 
control parameters, Mask R–CNN and DETR require three primary 
hyperparameters (i.e. learning rate, batch size and number of training 
epochs) to be optimized in the learning process. Our experiments 
required around 9000 iterations for Mask R–CNN and 19,000 iterations 
for DETR using the workstation described in Section 4.1. 

Finally, we would like to address the limitations of the methodology. 
Both instance segmentation methods only detect trees that are visible in 
the TDOP, thereby missing regeneration and smaller trees standing in 
the lower forest layers. Potential solutions could be based on new 3D 
instance segmentation methods that are based only on airborne lidar 
point clouds if sufficient point density is available in the lower forest 
layers. However, these methods still need to be developed. In addition, 
the lidar-based Pdense layer primarily only represents the tree positions 
of a few coniferous trees. In contrast, no laser point returns can be found 
on deciduous trees, because their dense tree canopy prevents the 
penetration of laser beams (see Figure A3 in the Appendix). Thus, the 
stem information in our data set is insufficient to adequately train the 
large number of weights of the neural network with regard to tree stems. 
Second, it turns out that the training process needs a considerably large 
area of forest to sufficiently train the whole network. We assume that 
1000–1500 trees of different species, composition and sizes seem to 
satisfy the requirements to train and validate the network. For larger 
forest inventories, this seems to be acceptable. However, for small forest 
areas captured by a drone in a 15 min flight, the effort exceeds the 
benefit. A remedy would be more general network models that can be 
applied to various forest areas with different forest structures. Note that 
our study does not address the transferability of the neural network to 
other forest structures. 

6. Conclusions and outlook 

We presented a study examining the potential of a novel transformer- 
based instance segmentation approach DETR for single-tree segmenta
tion in a mixed forest area. For the first time, we successfully showed 
how this new type of network could be adapted and extended for precise 
instance segmentation of individual trees. Furthermore, we demon
strated that the quality of the single-tree delineation could be signifi
cantly optimized. All experiments were compared using a state-of-the- 
art instance segmentation Mask R–CNN and four baseline methods for 
single-tree segmentation. In detail, using reference data collected by 
field measurements and visual interpretation, the experiments showed 
that the two instance segmentations hardly differ in accuracy and 
perform significantly better than baseline methods. The best results 
were achieved using the CIR channel combination. Interestingly, the 
inclusion of height information did not increase the accuracy. The su
periority of instance segmentation was particularly evident in the 
quality of the segmentation that was up to 16% better than baseline 
methods. Moreover, we could not show that images from lidar data 
increased the accuracy despite tree stems being visible in the lidar data 
in some parts of the study area. Note that in the case of a high point 
density, lidar images could be used along with a separate second back
bone to generate additional features that represent the stem information 
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and are combined with the feature set of the first backbone. Further
more, a lidar flight mission conducted in a leaf-off condition increases 
the point density below the tree canopy. Modifications of the DETR 
methodology to decrease the number of parameters could be achieved 
by reducing the number of the encoder–decoder layers. In addition, the 
loss calculation could be improved using the complete IoU (Zheng et al., 
2021). Deformable DETR (Zhu et al., 2020) could improve the perfor
mance in small trees by using a multi-scale deformable attention mod
ule. Finally, sufficiently trained networks using our approach could be 
applied to generate reference data for large-scale forest inventories in 
the same forest area using aerial or satellite images with lower resolu
tion than UAV-imagery. 
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APPENDIX

Fig. A1. Three small concrete areas (red polygons) providing mean values In for calibration of lidar intensity.   

Table A2 
Control parameters of baseline methods Li et al. (2012) (=Study #1), Silva et al. (2016) (=Study #2), Reitberger et al. (2009) (=Study #3) and 
Roussel and Auty (2022) (=Study #4) for tree segmentation applied to lidar data. Note that all other control parameters were set to default.  

Study #1 Study #2 

R1[m] dt1[m] dt2[m] chm[m] window size [m] max_cr[m] 
2.0 1.5 2.5 0.5 2.0 0.6 

Study #3 Study #4 

NCut σxy σz th_tree tol ext 
0.09 1.35 11.0 2.0 0.5 2.0   
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Fig. A3. Sections of mainly coniferous (a,c) and deciduous (b,d) trees. Lidar-based layer P_DENSE containing tree stem locations visible as red dots (a) and without 
clearly visible tree stems (b). Corresponding orthophotos are shown in (c) and (d). 
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