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Abstract Cadmium has appeared as an important 
element for certain types of solar cells and recharge-
able batteries. It is possible that there will be a large 
increase in demand for technical cadmium in the 
future. This is in conflict with environmental poli-
cies for phasing out cadmium from any technical use 
worldwide because of its great toxicity to humans. 
Cadmium toxicity is on par with that of mercury, 
and data suggests that cadmium exposure has no 
safe lower limit. There is no shortage of cadmium to 
extract, and no shortage from lack of cadmium avail-
able in the future zinc flow is to be expected. There is 
a global treaty to ban it from all use. The Integrated 
Assessment Model WORLD7 was used to assess dif-
ferent aspects of the supply of cadmium to society. It 
would be possible to produce at least 250,000 tons/
year; in reality, the 2023 production is about 24,000 
tons/year. The price is about 3500–4500 $/ton and 
is volatile. Because there is a United Nations agreed 

global policy to phase out cadmium from all use, 
demand for cadmium will soon not be met, and there 
will be an actual shortage of cadmium for any use, 
including photovoltaic technologies and semiconduc-
tors. This is good news for nature, but bad news for 
the CdTe and CIGS types of photovoltaic panels. It is 
estimated that only 25% of the planned future capac-
ity may not be available unless good substitutes for 
cadmium can be found.

Keywords WORLD7 · Cadmium · Sustainability · 
Photovoltaics · Environmental pollution · Cadmium 
Toxicity

1 Introduction

Cadmium, a very toxic element, is on the way to 
being phased out of all global use, according to 
the UN/ECE-LRTAP (UN/ECE, 1998). Cadmium 
use is banned by the UN globally at present. It can 
only be used as long as full recovery can be secured 
under special permission (Bakker et  al., 1998; de 
Vries et  al., 1998a, 1998b; Sverdrup, 2001; Sver-
drup & Ashmore, 2001; van der Voet et  al., 2013). 
It is considered to be of great importance for human 
health and environmental impacts that cadmium 
is phased out of all use in human society. The UN/
ECE heavy metals protocol was long in preparation 
and took about 10 years to develop (1988–1998) and 
25 years from first beginning to final implementation 
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(1988–2013). A global ban was not agreed until 2015 
and was not implemented until after 2020 (UN/ECE-
LRTAP 1998, Balali-Mood et al., 2021).

Cadmium has appeared as an important element 
for certain types of solar cells and rechargeable batter-
ies. New technologies for solar panels use cadmium in 
small amounts, such as the cadmium-tellurium tech-
nology (CdTe), and can also occur in the CIGS type of 
solar panel. Bleiwas (2010) explains the basics of this 
technology for cadmium, as well as gallium, germa-
nium, indium, tellurium and selenium, which also are 
used in this technology (International Cadmium Asso-
ciation, 2019, Öhrlund, 2011; Halada et al., 2008; Mar-
wede & Reller, 2014). In the future, a significant part of 
global energy production should come from renewable 
sources to avoid major climate change problems (Gor-
don et al., 2006; Grandell & Höök, 2015; Halada et al., 
2008; Moss et al., 2011; Nassar et al., 2015; Elshkaki & 
Graedel, 2013; Fthenakis et al., 2009; Zuser & Rechen-
beger,  2011). This is assumed to be achieved by using 
a large number of solar photovoltaic panels and wind 
energy, as well as much more efficient technologies help-
ing to reduce energy use. In the available policy plans, 
there is planned a large capacity coming from the use 
of photovoltaic technologies. Earlier research has indi-
cated (Sverdrup & Ragnarsdottir, 2014; Sverdrup et al., 
2024) that the amounts of some of the key materials may 
come in limited supply (silver, indium, germanium, gal-
lium and tellurium), limiting the installed capacity for 
a certain technology (Sverdrup et  al., 2024). Based on 

silver, gallium and indium, it appears that about 23% of 
the demand may be covered with the available material. 
Thus, careful optimization may be needed to have as 
much capacity as possible, looking at a system using all 
technologies exploiting that they have different material 
demands.

The implication is that there is an increasing demand 
for cadmium for use in some types of thin-film solar cells. 
This exposes a goal conflict between phasing cadmium 
out of society because of its great toxicity to humans and 
the use of cadmium to generate much-demanded elec-
tricity by harvesting solar power. In the past, cadmium 
was used for permanent colours like yellow and red 
colours (now forbidden), for electroplating (now forbid-
den), in dental amalgam (now forbidden), in low-meting 
point soldering alloys (now forbidden), as stabilisers and 
chemical additive in polymers and in some industrial 
processes (being phased out), in photocells, light sensors 
(looking for alternatives on-going) and nickel–cadmium 
rechargeable batteries (being phased out).

Figure 1 shows the cadmium production and mar-
ket price in 1900–2022 and data from USGS 2019, 
pieced together from various other websites accessed 
by the authors. Cadmium production peaked in 2018 
(Sverdrup & Ragnarsdottir, 2014; see Fig.  1) and 
is expected to decline to a very low level by 2030 
according to the UN/ECE-LRTAP protocol (UN/
ECE, 1998). If cadmium production has peaked 
remains to be verified, but that should be the result of 
respecting the UN/ECE-LRTAP Århus 1988 Heavy 
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Fig. 1  Cadmium production and market price in 1900–2022. 
Data from USGS Mineral commodity Summaries from 1993 to 
2023 and the ds140 programme. The graphs were made from 

data pieced together from the USGS archives and various other 
websites accessed by the authors
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Metals Protocol, ratified in 2013 and implemented 
after 2020. The price has dropped in the later years, 
possibly because of the collapse of demand for cad-
mium and the policy of phasing cadmium out from all 
uses globally.

2  Objectives and Scope

The first goal was to develop an integrated 
dynamic model for the global market for cadmium 
as a part of building a long-term supply assessment 
tool for technology metals required for new energy 
transition technologies. The WORLD7 model was 
used to simulate mother metal production rates 
of copper, zinc and lead (Sverdrup et  al., 2017b, 
2021). The cadmium sub-model will be vali-
dated and embedded inside the WORLD7 model 
using data for extraction and market price. It will 
be ensured that it can reconstruct the past with 
respect to extraction, recycling, supply and market 
price. In a second step, the WORLD7 model with 
cadmium will be used to assess the long-term risk 
for soft or hard scarcity with respect to important 
new technologies such as thin-film photovoltaic 
technologies and rechargeable batteries. The effect 
of having conflicting goals for the fate of cadmium 
and its use will be investigated.

3  Methods and Theory Used

3.1  Modelling

The main tool employed here is system dynamics model-
ling. For the modelling, we use the standard methods of 
systems analysis. We analyse the system using stock-and-
flow charts and causal loop diagrams. The mass balance 
expressed differential equations resulting from the flow 
charts and the causal loop diagrams were numerically 
solved using the STELLA® Architect modelling envi-
ronment (Meadows et al., 1974; Senge, 1990; Sverdrup 
et al., 2022). We use causal loop diagrams for mapping 
out where the causalities are, to find intervention points 
in the system and to propose policy interventions. This 
method gives more detail, demands more insight and can 
include more factors including recycling rates and pric-
ing. The Integrated Assessment Model WORLD7 was 
used for this study (Sverdrup & Olafsdottir, 2019). The 

reserves and resource estimates for the source metals are 
based on geological estimates, the interpretation of geo-
logical data and the allocation of extractable amounts 
according to ore quality, stratified with extraction costs 
(Mudd et al., 2014; Sverdrup & Olafsdottir, 2019; Sver-
drup & Ragnarsdottir, 2014; Sverdrup & Olafsdottir, 
2019; Krautkraemer, 1988).

The WORLD7 model addresses a large number of 
metals, and they are all in some way linked in their 
extraction. The WORLD7 energy module supplies 
energy from fossil fuels, renewables and nuclear 
power, with a market price generated by supply and 
demand in the model. For cadmium, the price has an 
effect on demand, but not any significant impact on 
the supply, as this is dependent on the source metal 
extraction rate. All modules are interconnected. Fig-
ure 4 shows the flow chart for the sub-model inside 
the WORLD7 model dealing with cadmium, with the 
parent ores and the dependent secondary extraction of 
many technology metals. The price affects demand, 
but it does not have any significant impact on the sup-
ply, as this is dependent on the mother metal extrac-
tion rate. The model as a simple causal loop diagram 
for the system is shown in Fig. 5. The mining rate is 
driven by profit from operations. The price is deter-
mined by how much metal is available in the market 
in the same way as in earlier models (Sverdrup & 
Ragnarsdottir, 2014; Sverdrup et  al., 2017b; Sver-
drup & Olafsdottir, 2019). A high metal price will 
increase profits, promote a larger supply to the mar-
ket and limit demand. More supply to the market will 
increase the amount available and lower the price.

We have made one important assumption for the 
business-as-usual scenario for the assessment of future 
cadmium supply. It was assumed that the use of cad-
mium for photovoltaic solar panels will be permitted 
and exempt from the internationally agreed ban under 
the UN/ECE-LRTAP convention. We have assumed 
this will be politically justified by the great need for 
photovoltaic energy and made contingent on reaching 
a certain level of recycling. If this does not occur, then 
the assessment will show how fast cadmium will dis-
appear from use in society.

3.2  Resource Estimations

Cadmium is found mostly in zinc ores, lead–zinc ores 
and multi-metal Ca-Zn-Pb ores, where it is mostly 
found in the sphalerite mineral, a zinc sulphide 
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(Frenzel et al., 2016; Wellmer et al., 1990; Zhucheng 
et  al., 2007). Cadmium is found in trace amounts 
in some iron ores and in some phosphate depos-
its (USGS, 2022). Phosphate is an important part of 
industrial fertilisers and, through this, an important 
pathway to human exposure. Further literature was 
consulted for numbers (Kelly & Matos, 2014; Brown 
et al., 2015; Idoine et al., 2022).

The estimation of cadmium resources is problematic 
(Mudd & Weng, 2012; Mudd et  al., 2017; Papp et  al., 
2008). There are no cadmium mines and thus no dedi-
cated cadmium mining industry. Cadmium is extracted as 
a by-product of zinc refining, a few copper ores and from 
recycling (Table 1). In this study, some key assumptions 
were made: (1) Cadmium is only extractable in mother 
metals from primary mining. (2) Recycled mother metals 
have very little content of cadmium. (3) Cadmium is only 
available if the ore is hydrometallurgical processed and 
very little technology metals come out with heap leach-
ing methods. Only a few studies make detailed studies of 
the available resources cadmium; Plachy (2009) and the 
Mineral Commodities Summaries of the USGS (USGS 
2015–2022). The supply security of cadmium depends 
on source ores for copper and zinc. There is no earlier 
process-oriented systems dynamics model for cadmium 
available (Busch et al., 2014; Elshkaki & Graedel, 2013, 
2015; Goe & Gustard, 2014; USGS, 2022).

Extraction cut-off is dependent on technology and 
the degree of repetitiveness of the extraction method 
(Krautkraemer, 1988; Singer, 1993, 2007). It is 
composed of different elements: (1) access yield YA 
is the part of the deposits that will be available for 
this kind of extraction. Some deposits lack physical 
or legal access and have a composition that prevents 

extraction. (2) The secondary extraction yield is for 
when the primary extraction operation does not have 
the infrastructure to extract the technology metal 
when the operation is running (YS). The secondary 
yield is the fraction of the potential in the source 
metals that will be extracted. Some methods, such as 
heap leaching do not readily give such a secondary 
substrate. (3) The refining yield is the fraction of the 
metal recovered from the refining substrate (YR). The 
beneficiation yield is sometimes linked to the cut-off. 
The extraction cut-off is dependent on technology, 
extraction costs and the metal price at the time.

where XO is the ore content, XCO is the ore content 
that is not captured, the cut-off, and YB is the benefici-
ation yield. For example, if the ore grade is 1.44%, the 
cut-off is at 0.5%, then the beneficiation yield YB has 
a value of 0.67. If the cut-off is 0.3%, then YB = 0.79. 
The refining yield will be a function of the extractive 
efficiency when treating the ore shipped to the refin-
ery. The material contained below the cut-off grade is 
lost with the waste. The extractable amount depends 
on the difference between the ore grade and the refin-
ing cut-off grade. It is necessary to account for lim-
ited access, the right kind of extraction method, if the 
infrastructure is available, if the ore allows for it to 
be extracted and the extraction yield. The total yield 
is thus

This formula is applied in Table 1 and 2. Table 1 
shows the recoverable resources of source metals 

Y
B
=
(

X
O
− X

CO

)

∕X
O

Y = Y
A
∗ Y

S
∗ Y

B
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R

Table 1  Cadmium resource estimate using source metal resources and contents in zinc used for cadmium extraction

Y is the total yield, YA is the access and mining yield, and YR is the refining yield

Source 1850 million ton 2020 million ton % of 
mother 
metal

Content, ton YA % YS % YB % YR % Y % Extractable, ton

Zn rich 119 19 2,00        380,000 70 80 80 90 40        152,000
Zn high 350 250 1.44 3,600,000 70 80 80 90 40 1,440,000
Zn low 991 791 1.20 9,492,000 70 80 80 90 40 3,797,000
Zn, ultra 1205 1105 0.60 6,630,000 70 80 80 90 40 4,177,000
Zn sum 2665 2165 0.92 20,102,000 40 8,040,000
Cu 4020 2900 0.002        145,000 60 80 80 90 54          78,000
Pb 3200 2600 0.003          78,000 60 80 80 90 54          40,000
Sum 20,247,000 40 8,158,000



Water Air Soil Pollut (2024) 235:247 

1 3

Page 5 of 21 247

Vol.: (0123456789)

in million tons of metal, and this was used as input 
data to the WORLD7 model (Sverdrup & Olafsdot-
tir, 2019; Sverdrup & Ragnarsdottir, 2014; Sverdrup 
et  al., 2019). In addition, experiences learned from 
studying corporate reports and scientific literature 
discussed in the text were reworked into the resource 
data and the estimates of costs of extraction. Cad-
mium is not really scarce. Most of the high and low 
ore grades of zinc have already been mined, and at 
present, cadmium comes from the low-grade zinc ore 
with the highest cadmium content. Not very much 
globally generalizable information is available. For YA 
and YS, there is no data; for YB, there are a few hints. 
Thus, the overall yield is a very approximate esti-
mate, most based on the generic mining experiences 
of the authors; 80% or 90% yield in a single step may 
sound very good, but since many steps are involved 
in the pathway from geological deposits to metal in 
the market, the total yield is 40–50% as can be seen 
in Table 1. In summary, Table 1 shows that the avail-
able zinc resources contain about 20 million tons of 
cadmium; we can only expect to be able to extract a 
maximum of about 8 million tons. This is because of 
limitations in access to substrate, lack of technologi-
cal installations and limitations in yields that are real-
istic. The overall yield for zinc in itself is maybe 80%; 
thus, from the first geological occurrence of metal in 
the market, the total yield for cadmium is perhaps no 
more than 32%.

Table 2 shows a simple cadmium production esti-
mate using source metal resources and contents. The 
global production was about 22,000 tons in 2013 
and about 24,000 tons/year in 2022. There is more 
cadmium in high-grade ores and less in low-grade 
ores, as cadmium closely follows zinc. The cad-
mium extraction rate peaked in 2021 and is now in 
steady decline. The extraction potential is far above 

the actual extraction, and demand is in decline in all 
traditional areas of application. The mother metal ore 
data has been stratified with respect to ore metal con-
tent and relative extraction cost (Phillips & Edwards, 
1976). Cadmium comes almost exclusively from zinc 
ores refining residuals, but historically with small 
contributions from copper and lead refining.

Table  3 shows the cadmium content for how much 
cadmium is needed for different photovoltaic harvest 
technologies in the construction phase, as tons of tech-
nology metals are used per installed MW photovoltaic 
panel capacity (Cesaro et  al., 2018; Cucchiella et  al., 
2015). Table 3 is an important input for any photovoltaic 
panel sustainability assessment. Only the photovoltaic 
panel types using cadmium have been included in the 
table. Another important technical use for cadmium is in 

Table 2  Cadmium production estimate using source metal resources and contents (Feddersen & Lee, 1954)

Cadmium content is copper, which is in general proportional to the zinc content in the ore

Mother metal Mining rate Cd content in ore Cadmium potential, average 
content and range

Y Extract. potential Extracted real

mill. ton/year % ppm ton/year % ton/year ton/year

Zn 14       0.6–1.44 9300 130,250 132,000–202,000 63   81,900 24,000
Cu 22 0.002–0.005 2500   55,000   44,000–110,000 54   29,700 Stopped
Pb 4.5     0.01–0.05 3000   15,750        4500–22,500 55      8660 Stopped
Sum 201,000 120,260 24,000

Table 3  Photovoltaic panels, ton of material per used installed 
MW electricity capacity

Technology CdTe CIGS 
 CuInGaSe2

DS-SC 
sensitised 
dyes

QDSC 
quantum 
dot PV

Ni - - 0.03500 0.035
Ag 0.025 0.025 0.02500 0.025
Au - - 0.00500 -
Co - - 0.01000 -
In 0.015 0.035 - 0.005
Ge - - 0.00075 -
Ga - 0.007 - 0.001
Te 0.060 - - -
Cd 0.060 0.001 0.01200 0.010
Se - 0.018 - 0.008
Pt/Pd - - 0.00020 -
Ru - - 0.00020 -
Sn - 0.0007 0.01000 -
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rechargeable batteries. However, these are being slowly 
phased out, as there are good substitutes.

3.3  Simulation Model Description

The cadmium model is based on differential equa-
tions derived from the mass and energy balances of 
the cadmium system. Figure  2 shows a causal loop 
diagram for the extraction process. The mining of 
zinc is driven by its own economic merit, but supplies 
a waste, the raw material for cadmium extraction. 
Provided the substrate is available and is suitable, it 
will be used for extraction as long as it is profitable. 
Figure  3 shows the market amount to the price dia-
gram used in the simulations. This parameterizes the 
market amount to price relationship used in the model 
(Papp et  al., 2008; Sverdrup & Olafsdottir, 2019, 
2020a, Olafsdottir & Sverdrup 2021, Sverdrup 2019, 
Sverdrup et  al., 2017a,  b). Figure  4 shows the flow 
chart for cadmium in society, and that is represented 
in the WORLD7 model. Red lines are cadmium trans-
action losses. This is a graphical representation of the 
mass balance for cadmium in the metal supply sys-
tem. In the model, we have worked with five different 
uses in society. The use of cadmium in plating and 
colour has traditionally been the two pathways that 
contributed most to human cadmium exposure in the 
past. These have also been the first to be phased out 
because of health concerns.

Figure  5 shows the causal loop diagram for the 
cadmium module made for WORLD7. There are 
three reinforcing loops keeping the system run-
ning. They all involve profit and sales and are run by 

commercial suppliers. The loops marked R1 and R2 
run over recapture, recycling and supplies society, 
and this is shown in blue. Cadmium recapture and 
recycling have been driven by profit in the past and, 
more recently, by environmental legislation. The loop 
marked R3 runs over production from extraction from 
zinc refining residuals, sales and profits and is marked 
in red. The loop is driven by commercial profits of the 
sales of cadmium in the markets. For cadmium, it is 
necessary to distinguish between recapture and recy-
cling. A steadily growing fraction of the recaptured 
cadmium will not be recycled, but put into permanent 
safe storage as a part of removing it from society.

Fig. 2  Causal loop diagram for the extraction process. The 
mining of zinc is driven by its own economic merit, but sup-
plies a waste, the raw material for cadmium extraction. Pro-

vided the substrate is available and suitable, it will be used for 
extraction as long as it is profitable
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Fig. 3  The market amount to price diagram used in the simu-
lations; see also Sverdrup and Olafsdottir (2019)
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Figure  6 shows the cadmium module inside 
WORLD7 as it was developed for this study. It has 
three parts: one for handling cadmium in society, one 
for the market and one for extraction. Figure 7 shows 
an overview of the whole WORLD7 system, version 
7.358 of 1 August 2023. Every red line is one or more 
causal links. Every box contains one or more system 
dynamics modules, as specified in the box.

Table 4 shows some aspects of the parameterization 
of the cadmium sub-model rate coefficients used in the 
WORLD7 model simulations. The WORLD7 has gone 
through a number of development stages since 2011; the 
first version of WORLD7 appeared in 2019 after a major 
reorganisation of WORLD6 by Olafsdottir and Sverdrup.

4  Results

4.1  The Mother Metal Simulations as Input to the 
Cadmium Assessment

Figure 8 shows the simulated copper and zinc pro-
duction using the WORLD7 model. The primary 
extraction of zinc and copper is the basis for cad-
mium extraction. The rates do not include recy-
cling nor secondary sources.

4.1.1  The Business‑as‑usual Simulations 
for Cadmium

The simulated and observed cadmium production 
is shown in Fig.  9. In the calculation for cadmium, 
we have assumed cadmium to be extractable from 
high-grade and low-grade zinc ores, but it does not 
occur in extractable amounts and concentrations in 
ultralow-grade zinc ore. This has to do with the ore 
genesis process.

Figure  9a shows the simulated demand, modi-
fied demand after price feedback, supply, extrac-
tion, removed and recycled cadmium. With time, 
removal replaces recycling as cadmium is phased 
out. Cadmium is fairly abundant and is produced well 
below what is possible as measured by occurrence. 
Cadmium is expected to peak soon, but demand is 
decreasing for its use as pigment (now 16%) in sol-
dering alloys and in other metal alloys because of 
health and environmental concerns. Demand is larger 
than price-modified demand after 1985; this is called 
soft scarcity. Price-modified demand separates from 
supply in 2080, and after that, cadmium will be in 
hard scarcity.

Figure 9b shows the simulated stocks-in-use in dif-
ferent sectors. It can be seen how batteries containing 
cadmium will be phased out, even if this takes time. 

Fig. 4  A flow chart for the 
flow of cadmium in society, 
as it is represented in the 
WORLD7 model. Red lines 
are losses



 Water Air Soil Pollut (2024) 235:247

1 3

247 Page 8 of 21

Vol:. (1234567890)

This is caused by a long lifetime for such batteries 
and a systemic delay. It can be seen that after 2020, 
to use of cadmium will be only for photovoltaic tech-
nologies. It is estimated that at full planned capacity, 
some 240,000 tons of cadmium would be required for 
solar panels alone, which is a substantial amount.

Figure 9c shows the model simulated flow to dif-
ferent cadmium uses. Cadmium use, in general, is at 

present in decline. Note how the full demand for cad-
mium to photovoltaic technologies cannot be deliv-
ered in the future. This is caused by a limitation to 
future production capacity and environmental legisla-
tion according to international agreements (UN/ECE-
LRTAP, 1998).

Figure  9d shows the simulated cadmium flow 
to colours, plating and alloys as compared to the 

Fig. 5  The causal loop 
diagram for the cad-
mium module made for 
WORLD7. There are three 
reinforcing loops keeping 
the system running: R1 runs 
over recycling and supplies 
society and is shown in 
blue; R2 runs over produc-
tion, sales and profits and 
is marked in red; and R2 
runs over recycling and is 
marked in red
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demand for each of them. All show peak behaviour 
due to the intended international UN/ECE environ-
mental policy to phase cadmium totally out of use 
in society.

Figure 9e shows the simulated degree of recycling 
to society and the flow to the permanent final deposit 
of cadmium. The captured fraction of supply exceeds 
the value one when the stocks-in-use declines and as 
cadmium is phased out. This is a sign of cadmium 
being long term removed from the system.

Figure 9f shows the simulated amount lost to the 
environment. First, the cadmium ban creates a col-
lapse of the demand and the price and, later, an 
increase when there is a lack of production capacity.

The amount of cadmium lost to the environment 
from 1900 to 2200 is about 700,000 tons. During the 
same period, about 1 million tons will have been cap-
tured and sent to the final safe repository. Figure 9g 
shows the price simulation for cadmium. Figure  7h 
shows the cumulative amount of cadmium demand, 

Fig. 7  An overview of the whole WORLD7 system, version 7.358 of 1 September 2023
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modified demand, supply and extraction. Note how 
soft scarcity sets in 2020, when demand and modified 
demand separate. Modified demand and supply will 
separate in 2100, signalling hard scarcity.

4.2  Testing the Model

The model has been tested against the recorded min-
ing data derived from the USGS (2022) databases. 
Figure 10a shows a comparison of simulated extrac-
tion as compared to the data. Figure  10b shows the 
cumulative extraction as compared to the cumulative 
simulated amount. The fit is excellent. There is no 
systematic error building up in the model with time, 
suggesting the model gets the mass balances right. 

Figure 10c shows the simulated price as compared to 
the observed data. Figure 9d shows the stocks-in-use 
in kg per capita and supply in kg per capita and year. 
It shows a typical peak behaviour caused by the phas-
ing out of cadmium rather than because of significant 
scarcity. Take note that the cadmium module inside 
the WORLD7 model is not calibrated to any produc-
tion data, but does this up from basic principles of 
trade, economics of supply and demand and mining 
dynamics. This can be seen throughout the results 
section and in the comparisons with data. The model 
does reproduce the observed mining rates satisfac-
torily when the model is driven by market demand 
and price dynamics. All metals, minerals and com-
modities are modelled simultaneously this way in 
WORLD7 without any time-series calibration.

5  Discussion

5.1  Environmental Concerns versus Technical 
Usefulness

The cadmium supply has peaked and is declining 
according to the international plan to phase it out of all 
uses. Cadmium is a technically useful metal, but its very 
significant toxicity is a problem that cannot be ignored. 
Cadmium is one of the metals that will be phased out 
in Europe in accordance with the LRTAP1996 Heavy 
Metals Protocol (UN/ECE-LRTAP, 1998). The use 

Table 4  Parameterization of the cadmium sub-model rate 
coefficients used in the WORLD7 model simulations

Parameter Value set in the model

Society retention, plating 10 years
Society retention, alloys 30 years
Society retention, batteries 15 years
Society retention, PV 30 years
Society retention, colours 10 years
Recycling yield, % 80
Numerical time-step 1/365 year
Numerical integration method 4-step Runge–Kutta
Simulation time 1850–2200
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of cadmium is restricted in Europe because of human 
health risks. Cadmium is very toxic, and a serious 
poisoning has virtually no cure. It is still used in elec-
tric accumulators, but these may eventually be phased 
out. If cadmium can be used for CdTe solar cells on a 
large scale, it appears uncertain; it will be dependent on 
whether a significant cadmium recovery after use can 
be done or not. Unless near recapture of the used cad-
mium in the new technical applications, it would prob-
ably not be permitted. For cadmium, the underproduc-
tion is caused by the environmental policy in Europe 
on cadmium due to its great toxicity (UN/ECE-LRTAP 
1998, Genchi et al., 2020, Nriagu & Pacyna 1988). Cad-
mium supply per person per year is shown in Fig. 9d. In 
the long run, the success of the UN/ECE-LRTAP 1998 
protocol will be determined by the degree of global 
enforcement as well as unintentional and intentional pol-
icy leakage. It must be counted on that lobbying will be 
brought on to make exceptions for cadmium use in alter-
native energy technologies such as photovoltaic panels 
of the CIGS type and some types of batteries. This will 
be argued on the great need for energy and pointing to 
the smaller hazard of using cadmium in photovoltaic 
panels as compared to the damage from large scale use 
of coal for power generation.

5.2  Environmental Impacts of Cadmium Use, 
Pollution and Human Exposure

Figure 9f shows the predicted loss rate to the environ-
ment per year from the technical sphere of the model 
simulations. In total, 970,000 tons of cadmium is lost 
to the environment that originated from mined cad-
mium. Much of the technically lost cadmium ends 
up in the environment. In addition to this comes a 
significant cadmium flow to the environment and 
humans from the use of agricultural fertilisers which 
have cadmium contamination in the phosphate depos-
its (Nriagu & Pacyna 1988, Pacyna & Pacyna 2001). 
This is an issue when sedimentary cadmium is used. 

The main global phosphate resources are of the sedi-
mentary type, such as those from Morocco.

Figure 11 shows the flow chart for the interaction 
between society and the environment for cadmium. 
This system is also contained in the WORLD7 model 
where it interacts with public health, hospitalizations 
and mortality, and with the population model. These 
aspects do not come into this narrative in any detail 
and will be the subject of a later study. Cadmium 
reaches humans through several pathways, the two 
most important being through contaminated food and 
secondarily through environmental pollution. In ear-
lier times, the use of cadmium in consumer products 
caused significant exposure.

Cadmium is a volatile element with low melting 
and boiling points and thus can also escape from tech-
nical environments easily. However, cadmium is not 
long lived the environment. Under anaerobic condi-
tions, cadmium encounters sulphide ions and is very 
strongly bound as cadmium sulphide that will not 
readily redissolve. Recycling of cadmium from tech-
nical uses has challenges, but work is being done to 
improve recycling (Feddersen & Lee, 1954; Marwede 
& Reller, 2012, 2014; Reuter et al., 2013a, 2013b).

Figure  12 shows the dose–response diagram for 
mercury, cadmium and lead as derived many years 
ago from literature data by some of the authors (Bak-
ker et al., 1998; Friberg et al., 2019; Pfitzer & Vouk, 
1979; Sverdrup, 2001; Sverdrup & Ashmore, 2001). 
The authors did a more recent review of some lit-
erature (Balali-Mood et  al., 2021, Bernhoft, 2012; 
Buchet et  al., 1980; Chen et  al., 2006; Chen et  al., 
2019; Choong et al., 2014; Li et al., 2019; Lin et al., 
2018; Lv et  al., 2017; Djordjevic et  al., 2019; Järup 
et  al., 1998; Nishijo et  al., 2017; Perry & Erlanger, 
1974; Proshad et al., 2020; Rani et al., 2014; Satarug, 
2018; Satarug et al., 2000; Yang & Shu, 2015; Kjell-
ström & Nordberg, 1978; Mezynska & Brzóska, 2018; 
VKM, 2015; Food Safety News, 2012; ANSES, 2019; 
Shar et al., 2012), as confirmed the picture shown in 
Fig. 12. The picture was radical in 2001, and in 2023, 
it appears as very appropriate and in line with the lat-
est research on their topic. Cadmium is very toxic, and 
there is no valid lower limit. Take careful note that 
mercury and cadmium show the same dose–response 
system behaviour, despite the fact that the physiologi-
cal mechanisms for effect are different. This stands in 
contrast to lead, where the medical effect disappears 
below 300 µg per day (Fig. 12). This difference arises 

Fig. 9  Results from the WORLD7 model simulations. (a) 
The extraction, loss, supply, recycling and removed from cir-
cularity. (b) The demand to different sectors. (c) The flow to 
cadmium uses. (d) The cadmium stocks-in-use and amount of 
waste in scrap. (e) The price simulation for cadmium. (f) The 
fraction of supply as recycled and how much is captured and 
sent to final deposit. (g) The simulation of the cadmium price. 
(h) The cumulative amount of cadmium demand, modified 
demand, supply and extraction

◂
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from the fact that the body can get rid of lead in small 
amounts through some mechanisms that move cal-
cium in the body. For cadmium and mercury, there is 
no such mechanism. The diagram strongly suggests 
that there is no safe exposure level and that both mer-
cury and cadmium are damaging from the first mol-
ecule of exposure.

Due to the volatility of cadmium and mercury 
and their methylated compounds, cadmium and 
mercury also move freely across any cell barrier, 
including the blood–brain barrier. The half-life 
time for cadmium in the body is 37 years, implying 
that there is no way for a normal grown-up person 
to recover from significant exposure (Kjellström 
& Nordberg, 1978, Chunhabundit 2016). Thus, 
long-term exposure and acute exposure of any kind 
must be avoided. Cadmium is as poisonous to ani-
mals as to humans, and the effects on the natural 

environment are very serious. The response func-
tion shown in Fig.  12 shows why it is urgent and 
necessary to have a total ban on all use of both cad-
mium and mercury (Balali-Mood et al., 2021; Sver-
drup & Olafsdottir, 2020b) and why any excep-
tions to that rule must be so few that any cadmium 
leakage to nature is irrelevant. This dictates that 
the photovoltaic technologies listed in Table  3, as 
using cadmium, cannot be allowed until a recovery 
after use of at least 90% elimination of any leak-
age to nature can be guaranteed (EFSA, 2009). At 
present, the industry is very far from any such goal.

It would be technically possible to produce at least 
250,000 tons of cadmium per year. In reality, the 2023 pro-
duction is about 24,000 tons of cadmium per year in 2022. 
This much cadmium never reaches humans as the environ-
ment is in between, filtering out more than 99% of the cad-
mium pollution as an environmental service. Without this 
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(d) Supply per person and year in kg per person and year and 
stocks-in-use in kg per capita for Cd. The cadmium model cap-
tures the cadmium history with great accuracy
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environmental service, humanity would have been in deep 
trouble. The background cadmium exposure is at about 
3 µg per day per person and is declining.

There is also a consequence for climate change miti-
gation and adaptation. Several metals set limits for how 
much photovoltaic capacity can be installed in the future 
as a compensating effort when fossil fuels are phased out 
from 2025 to 2050. Preliminary calculations (Sverdrup 
& Ragnarsdottir, 2014; Sverdrup & Olafsdottir, 2020b; 
Sverdrup et al., 2024) suggest that the amounts extracta-
ble for indium, gallium, germanium, cadmium, and silver 
are sufficient for about 20–25% of the projected demand 
for solar photovoltaic power. This emphasises renewable 
energy for solar photovoltaics that will not be able to 
replace the energy not made when fossil fuels are phased 
out. For climate mitigation and adaptation measures to be 
successful, a strategy with different new technologies and 
significant reductions in total energy use will be required. 

This is much talked about in preambles and prefaces to 
different strategy documents, but is absent from most 
action plans.

5.3  Sustainability of Supply

In the model, the demand is made on the market, and 
when the market amount goes low, then the prices 
go higher. Figure  10d shows the supply per person 
and year in kg per person and year and stocks-in-
use in kg per capita for Cd. The supply per person 
and year must cover up for wear and losses, use 
for maintenance, and any extra over that can allow 
growth. If less is supplied than the losses, then the 
stock will decline. Higher prices push the min-
ing rate by increasing profits, causing the price to 
increase, which in turn makes the demand decrease. 
The model becomes self-regulating. The market 

Fig. 11  The flow chart 
for the interaction between 
society and the environment 
for cadmium. The natural 
sources are few and small, 
and almost all cadmium 
exposure has some anthro-
pogenic origin. Besides 
food, tobacco can also 
provide cadmium exposure
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dynamics are fully expressed in the present cadmium 
model and that gives a significantly smoother pro-
duction curve and better dynamics. This is the case 
for all minerals, metals and commodities represented 
in the WORLD7 model. In the discussion of sus-
tainability, we should note that recycling can delay 
symptoms of scarcity for a significant time, even 
after the primary production from mines has stopped. 
Supply per person and year reflects the amount avail-
able to compensate for continuous losses and any 
surplus available for growth in the stock-in-use. 
Stock-in-use per person is an indicator of the utility 
gained from the resource, and a decline in stock-in-
use suggests a decline in service provision from that 
resource. The production of the dependent metals is 
limited to some extent by the fact that only a fraction 
of the metal refineries is technically equipped for 
efficient recovery of these metals.

6  Conclusions

The case of cadmium represents a classical con-
flict of goals. Present and future energy needs 
stand in opposition to the protection of the natural 

environment and human health. All types of avail-
able photovoltaic technologies will be required for 
reaching sufficient amounts of renewable energy 
in order to replace fossil fuels before 2050 (Sver-
drup et  al., 2022). At the same time, it is of great 
importance to phase out cadmium, potentially tak-
ing away 25% of the future photovoltaic capacity 
that will be available (Sverdrup et al., 2024). From 
earlier studies (Sverdrup & Ragnarsdottir, 2014, 
Sverdrup et  al., 2022), we do know that indium, 
gallium and silver will limit the photovoltaic tech-
nologies using indium, gallium and silver by 75% as 
compared to the projected activities. This is a very 
serious warning that there is something fundamen-
tally wrong with the projections of future capacity 
for solar electric power on a large scale. All of this 
urges towards doing research to substitute cadmium 
with something less toxic in solar photovoltaic pan-
els and battery technologies.

There is no shortage of cadmium to extract, and 
no shortage from lack of cadmium available in the 
future zinc flow is to be expected. Thus, from a tech-
nical perspective, all cadmium demanded can be sup-
plied. It would be possible to produce at least 250,000 
tons/year; in reality, the 2023 production is about 
24,000 tons/year and declining. This is so low in 
2022 because there is a United Nations agreed global 
policy to phase out cadmium from all use. Techni-
cal demand for cadmium will soon not be met, and 
there will be an actual shortage of cadmium for any 
use, including photovoltaic technologies and semi-
conductors. This is very good news for the environ-
ment and human health, but bad news for those that 
want the CdTe and CIGS types of photovoltaic panels 
to mitigate future energy shortages. There are strong 
arguments against allowing the use of cadmium in 
applications where recycling is problematic. For pho-
tovoltaic panels using cadmium as an ingredient, the 
recycling degree is very poor, far from what must be 
demanded for cadmium.

The environmental policy of the UN/ECE-LRTAP 
Convention has been successful, and it seems like 
cadmium will probably be phased out of all use, 
including photovoltaics. Thus, pursuing research 
towards any technology that uses cadmium does not 
seem to be a good business strategy. A departure from 
the heavy metals policy should only be permitted if 
a better than 95% recapture efficiency can be secured 
for the cadmium used.

Fig. 12  Dose–response diagram for mercury, cadmium and 
lead as derived many years ago from literature data by some of 
the authors (Bakker et al., 1998; Sverdrup & Ashmore, 2001; 
Sverdrup & Olafsdottir, 2020b; Genchi et al., 2020) for use in 
the UN/ECE-LRTAP convention and the 1998 Århus Heavy 
Metal Protocol. Median consumption in the USA was 0.16 µg 
per kg body weight per day
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