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Abstract

This thesis investigates the various factors influencing the day-ahead electricity prices

in the NO2 bidding zone of Norway, with a special focus on the effect of cross-zonal

connections.

Utilizing a Ordinary Least Squares regression model, the study analyzes an extensive

dataset from 2015 to 2023, including variables such as production data, load, precipita-

tion, wind, temperature, gas prices, CO2 prices, coal prices, transmission levels to other

regions and geopolitical and economic uncertainty indexes.

A significant discovery of this thesis is the pronounced effect of natural gas prices on

electricity costs in the NO2 zone. This correlation highlights the deep interconnection

between global commodity markets and regional energy prices, illustrating how inter-

national market fluctuations and geopolitical events can directly impact local electricity

prices. Conversely, other anticipated influencers, such as coal and CO2 prices, did not

show significant effects, possibly indicating a shift in energy market dynamics due to

evolving policies, technological advancements, and the growing penetration of renewable

energy sources.

The research further explores the nuanced role of electricity transmission and its com-

plex interplay with price formations, revealing that while transmissions have a notable

impact, they account for only a small portion of price variation. This finding underscores

the importance of understanding cross-border electricity flows within market frameworks

to understand price driving dynamics.
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1 Introduction

Electricity distribution originally functioned as a monopolistic utility system, where dis-

tinct regional utilities were responsible for the generation, transmission, and distribution

of electricity. Governed by rate-of-return regulation, these utilities managed all aspects

of electricity provision centrally. Over recent decades, global electricity markets have

increasingly deregulated, leading to the establishment of competitive trading systems

(Mayer & Trück, 2018).

In Norway, the 1990 Energy Act catalyzed reforms inspired by early adopters like

the UK and New Zealand, introducing competitive markets like Nord Pool and its spot

market (Bye & Hope, 2005).

Simultaneously, the work for a single pan European cross zonal day-ahead electricity

market has progressed, launching the North Western Europe Price Coupling in 2014

(“ENTSO-E - Single Day-ahead Coupling (SDAC)”, n.d.). Norway’s interconnections

to the European continent are all localized in the Norway South/South West, or NO2,

bidding area. This study focuses on the NO2 electricity prices in the period 2015 to 2023.

The first 6 years have been characterized by low prices, with some peaks and fluctuations

as seen in Figure 13.

However, In the second half of 2021, an unprecedented situation emerged. Norway,

traditionally insulated from significant volatility by its hydro-powered self-sufficiency and

comparative low electricity prices, found itself in uncharted territory seeing electricity

prices on historic highs. In the same period an energy shortage arose across Europe,

further catalyzed by the geopolitical unrest stemming from the invasion of Ukraine in

2022 and the subsequent sabotage of the Nord Stream pipeline, drove electricity prices to

unprecedented levels. Combined with Europe’s dependency on Russian gas, this triggered

a widespread energy crisis across the continent, reverberating through the industrial

sectors and household economies alike. In the middle of this crisis, Norway opened two

new interconnections to both Germany/Luxembourg (2021) and Great Britain (2022).

These interconnections have come under great scrutiny by the media, and have by

several been pointed out as one of the main reason for the soaring electricity prices in

parts of Norway (Rognsvåg, 2022; Solli, 2022; Stavrum, 2021). This has fueled further
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debate as strong differences within Norway’s five bidding areas have emerged in the later

years, leading to cases of daily average price differences up to 21 000% between NO2

and its more northern counterparts (Ertesvåg, 2022). In 2023 the Norwegian Ministry of

Energy established an expert panel to assess the current market situation. The expert

panel investigated the current market structure and, among other, the potential effects

of removing the foreign cross-zonal connections. They concluded that the current market

structure was the best option. However even this report contributed to differing views

on the drivers of electricity prices and especially the role of the interconnections (“Har

vurdert en rekke strømpris-forslag”, 2023).

Despite the abundance of opinions and speculations, there exists a gap in the literature

addressing the quantitative impact of cross zonal connections on electricity prices. This

thesis aims to help bridge this gap by providing a comprehensive analysis of the drivers

affecting electricity prices in NO2, with a particular focus on the role of these cross-zonal

connections. This empirical investigation serves both as a tool for policy makers and has

practical usage for market operators, such as electricity producers.

We have assembled a comprehensive dataset, which after reviewing existing literature,

we believe to be unique due to its wide range of variables. To analyze the quantita-

tive impact of these variables we have used an OLS-regression model. We’ve chosen

an OLS-regression model to analyze the quantitative impact of these variables due to

its robustness, simplicity, and interpretability. OLS-regression allows us to estimate the

relationship between our independent variables and the dependent variable, providing

a clear understanding of how changes in the predictors are associated with changes in

the response. By capitalizing on the advantages of OLS-regression, we aim to evaluate

the influence of various variables in our dataset, particularly those associated with the

transmission of electricity in and out of NO2.

This thesis is structured to first lay the groundwork with an overview of the electricity

market, followed by a literature review to frame the research within the context of existing

studies. It then outlines the research methodology employed to investigate the research

question, proceeding to analyze the data and present findings. Ultimately, it aims to shed

light on the intricate dynamics of electricity pricing, offering evidence-based insights that

could inform policy decisions and market strategies moving forward.
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2 Electricity Market

In this chapter we will go through how the European and the Norwegian electricity market

are connected, going from state driven monopolies to liberalized markets. Today’s Nordic

market structure will be described with focus on price setting mechanisms as well as how

market integration is made possible through different market operations. Finally, we will

delve into the merit order and the concept of water value to understand the price driving

dynamics of electricity prices in NO2.

The European electricity market is characterized by a diverse energy mix and ambitious

sustainability goals, but are still heavily reliant on non-renewable energy sources such as

coal, nuclear and gas - as seen in Figure 1.

Figure 1: Electricity generation by source, Europe 2021 (“IEA - Energy Mix”, n.d.)

However, over the last years Europe have seen a rapid development in introducing more

wind and renewables to its energy mix, illustrated in Figure 2.

This development is expected to continue with the EU’s binding renewable targets

of a minimum of 42.5% of the total energy mix by 2030 (“European Commission - 2030

Targets”, n.d.). The introduction of intermittent renewable energy such as wind and solar

introduces some challenges for the market. The inability to store electricity coupled with

the unpredictable production from renewable sources complicates forecasting, increasing

the probability for price spikes.
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Figure 2: Evolution of electricity generation by source in GWh, Europe 2000-2021 (“IEA

- Energy Mix”, n.d.)

Within the context of renewables, the Nordic countries, and Norway in particular,

emerge as pivotal players due to their unique position in hydropower - a position often

referred to in Norway as ‘Europe’s battery’ (“How Norway can become Europe’s battery”,

n.d.) due to the ability to store water in reservoirs and regulate production - meaning

that when solar and wind production is low, Norway can export electricity and import

when it is the other way around - consequently flattening the price curve.

Roughly 90% of Norway’s total production stems from hydro-power (“Om magasin-

statistikken - NVE”, n.d.). The hydro-production is spread throughout Norway, but

majority of it resides in the south of Norway, also known as the NO2 price area. In 2023

NO2 produced 50TWh, or 33% of the total production, while only 35TWh consumption

26% of the total of 136TWh (“Statnett - Report 2023”, 2024). This excess of electricity is

why most of the interconnections to the European markets are localized in NO2, as seen

in Figure 3.
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Figure 3: Interconnections NO2 (“Tall og data fra kraftsystemet”, 2024)

.

2.1 Nord Pool and an Integrated European Market

In Norway the new Energy Act of 1990 laid the legal foundation for Norway’s electricity

reform. This was a consequence of generation capacity considerably exceeding electricity

demand. Pioneering countries as the UK and New Zealand fueled inspiration for the

market reform, laying ground for the introduction of Nord Pool and its spot market (Bye

& Hope, 2005).

In 1996 the Nord Pool was established as a Norwegian-Swedish power exchange. In

the following years both Finland and Denmark joined the exchange making it a fully

integrated Nordic market. As of 2023, 370 companies from 20 countries trade on the Nord

Pool markets, and Nord Pool is appointed as Nominated Electricity Market Operator

(NEMO) in 16 European countries, including the Baltics, Netherlands and Germany.

This liberalization of energy markets set the standards for the rest of Europe, and as of

2023 all European countries are using Power exchanges. In 2023 a total of 1 104 TWh

was traded through Nord Pool’s platforms making it Europe’s leading power exchange

(Mayer & Trück, 2018; “Next - Power Exchanges”, n.d.; “Nord Pool - Figures 2023”, n.d.;

“Nord Pool - History”, n.d.; “Nord Pool - Our business”, n.d.).
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2.2 The Day-Ahead Market

The Day-Ahead Market (DAM), as the primary venue for power trading in the Nordic

region, sees the highest volumes traded on Nord Pool. This market involves hourly

contracts for next-day physical power delivery. Orders must be submitted between 08:00

and 12:00 CET daily, with Transmission System Operators (TSOs) required to publish

capacities for each bidding area by 10:00 CET, which are defined based on electrical grid

constraints (“Nord Pool - System price and Area price calculations”, n.d.).

After the auction closes at 12:00 CET, an aggregated supply curve for each hour and

bidding area is created from all anonymous block orders. Prices for each hour of the next

day are then calculated based on these orders and the available transmission capacity,

and are then published at 13:00 CET (“Norwegian Ministry of Energy - Power Markets”,

n.d.) (“Nord Pool - System price and Area price calculations”, n.d.). Nord Pool calculates

two prices in the day-ahead market: the System Price and Area Prices.

2.2.1 The System Price

The System Price within the Nordic electricity market represents a benchmark, serving as

an unconstrained market-clearing reference price across Norway, Sweden, Denmark, and

Finland. Defined by Nord Pool, this price is calculated under the theoretical condition

of infinite transmission capacity, effectively ignoring any congestion within the Nordic

transmission grid (“Nord Pool - System price and Area price calculations”, n.d.) This

approach facilitates a unified price across the Nordic region and serves as a reference

price in standard financial contracts within the region. This aspect helps align financial

transactions with the underlying physical market dynamics.

The calculation of the System Price takes into account electricity flows between the

Nordic countries and their European neighbors, including the Netherlands, Germany,

Poland, and the Baltic states, based on the outcomes of area price calculations (“Nord

Pool - System price and Area price calculations”, n.d.).

The day-ahead calculation of the System Price by Nord Pool is predicated on the

equilibrium between supply and demand, where bids from producers and consumers are

matched to determine the marginal cost of electricity production. This equilibrium pricing

mechanism ensures that the cheapest available energy resources are deployed to meet the
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demand, optimizing the cost-efficiency of electricity supply within the Nordic market.

External factors, such as Norway’s significant trading capacity and the prices of global

energy commodities, exert a pronounced influence on the System Price. Additionally, the

high proportion of hydropower in the Nordic energy mix introduces variability to the Sys-

tem Price, with fluctuations in hydrological conditions directly affecting electricity prices.

Similarly, the integration of wind power and temperature-driven demand variations fur-

ther compound the price sensitivity to renewable energy production and consumption

patterns (“Norwegian Ministry of Energy - Power Markets”, n.d.).

2.2.2 Area Prices

In the Nordic and Baltic electricity markets, Area Prices address grid congestion and

ensure efficient electricity distribution across regions. TSO-defined bidding areas are

delineated based on the grid’s capacity and congestion issues, stemming from supply-

demand imbalances (“Nord Pool - System price and Area price calculations”, n.d.).

Figure 4: Overview of bidding areas NordPool (“Nord Pool | Day-ahead map”, n.d.)

Electricity flows from areas with lower prices or surplus supply to areas with higher

demand and prices, influenced by the transmission capacity between these regions. Insuf-

ficient capacity leads to different area prices, reflecting local electricity values based on

supply and demand dynamics (“Nord Pool - System price and Area price calculations”,
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n.d.). For instance, high demand and prices in foreign areas incentivize exports from re-

gions like NO2, while the reverse occurs during low-price, high-production periods. This

is an interesting dynamic and is why we have included transferred electricity to adjacent

bidding areas as variables in our model.

Figure 5: Price determination in Bidding areas (“Nord Pool - System price and Area price

calculations”, n.d.)

Area Prices, determined by aggregated supply and demand curves intersecting with

net flow dynamics, serve as the payment standard for all transactions within the bidding

zone. This mechanism aligns electricity generation and consumption financially according

to market conditions (“Nord Pool - System price and Area price calculations”, n.d.).

Furthermore, bidding zones and Area Prices signal power deficits and surpluses, guid-

ing optimal adjustments in generation and consumption. This influences long-term in-

frastructure planning by indicating where new capacities or consumption sites might be

needed. However, without capacity constraints in the Nordic grid, Area Prices tend to

harmonize across regions, aligning with the System Price and indicating a unified market

free from congestion (“Norwegian Ministry of Energy - Power Markets”, n.d.).

In our study we operate with one price-variable. This is the sum of the Area Price of

NO2 and the System Price, which is the wholesale electricity price paid within the NO2

area.

2.2.3 The Single Day-Ahead Coupling (SDAC)

The SDAC aims to integrate day-ahead markets across the continent into a unified, effi-

cient trading platform. This integration optimizes electricity trading by facilitating effec-
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tive competition, enhancing market liquidity, and ensuring the efficient use of generation

resources across Europe (“ENTSO-E - Single Day-ahead Coupling (SDAC)”, n.d.). By

incorporating cross-border transmission capacities into the trading algorithm PCR EU-

PHEMIA, SDAC efficiently allocates these resources, thereby maximizing social welfare

and contributing to the creation of a cohesive pan-European electricity market.

Figure 6: Participating countries in the Single Day-Ahead Coupling (“ENTSO-E - Single

Day-ahead Coupling (SDAC)”, n.d.)

The Price Coupling of Regions (PCR) algorithm, known as the Pan-European Hybrid

Electricity Market Integration Algorithm (EUPHEMIA) is the operational backbone of

SDAC. It plays a pivotal role in calculating electricity prices across Europe and implicitly

allocating cross-border capacities through auction mechanisms. PCR EUPHEMIA con-

siders a wide array of inputs including network capacities and constraints from TSOs and

bids and offers from NEMOs, it then executes a calculation that addresses the matching

problem (“ENTSO-E - Single Day-ahead Coupling (SDAC)”, n.d.) - ensuring an optimal

match between demand and supply while maximizing social welfare.

Market statistics highlight the substantial impact of SDAC, with 98.6% of EU con-

sumption now coupled through this mechanism, facilitating 1 530 TWh/year in a unified

market solution and handling an average daily value of matched trades amounting to 200

million euros. (“ENTSO-E - Single Day-ahead Coupling (SDAC)”, n.d.).

PCR EUPHEMIA is the foundation for the market integration in NO2, by managing

transmission constraints and enhancing market liquidity. This in principle could lead to

converging prices across borders, and highlights the importance of data on transmission
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to neighbouring bidding areas in our model.

2.2.4 The Price Coupling of Regions (PCR)

The PCR initiative underpins the SDAC through the PCR EUPHEMIA algorithm, em-

phasizing three core principles: employing a unified algorithm, ensuring robust opera-

tions, and maintaining individual power exchange accountability (“Nord Pool - What is

Price Coupling of Regions?”, n.d.).

PCR facilitates the anonymized sharing of orders and network constraints via the PCR

Matcher and Broker service, enabling precise calculations of bidding zone prices, reference

prices, and net positions. This ensures a balance between collective efficiency and the

accountability of individual exchanges within the European electricity market.

Operated collaboratively by eight power exchanges - EPEX, GME, HEnEx, Nord Pool,

OMIE, OPCOM, OTE, and TGE - the initiative’s significant contribution is the devel-

opment of the EUPHEMIA, enhancing market integration (“Nord Pool - What is Price

Coupling of Regions?”, n.d.).

2.2.5 Flow based capacity calculation

The Nordic region plans to switch from Available Transfer Capacity (ATC) to Flow-

Based (FB) capacity calculation starting in early 2024 (“Nord Pool - Flow Based”, n.d.).

While the fundamental principles for calculating the Nordic System Price, such as incor-

porating hourly electricity import and export values from neighboring areas, will remain

unchanged, the shift to FB could alter electricity flows across the nine Nordic borders

with the SDAC (Core/Baltic). This change stems from FB’s enhanced ability to reflect

actual physical constraints and transmission capabilities, which may affect cross-border

electricity flows and the dynamics of the System Price in the Nordic market (“Nord Pool

- Flow Based”, n.d.). As the efficiency of managing transmission constraints increases

through the FB capacity calculation, a plausible outcome is that of further price conver-

gence between bidding areas.

18



2.3 The Merit Order

The merit order is a principal that guides the dispatch of electricity generation in a

manner that prioritizes cost efficiency. By ranking available generation units by their

marginal costs, the cost of producing one additional unit of electricity, in a supply stack.

The merit order curve ensures that the lowest-cost sources are utilized first to meet

demand, and where the two curves cross the Market Clearing Price (MCP) is formed.

This system not only promotes economic efficiency, but also has profound implications

for the integration of renewable energy sources and the overall dynamics of electricity

pricing (Next Kraftwerke, n.d.).

Figure 7: Supply stack as illustrated by Weron, 2007

Renewable energy sources such as wind and solar power, which have negligible marginal

costs, reside at the bottom of the merit order curve due to free "fuel" sources like sun-

light and wind, reducing operational expenses. Nuclear energy also occupies a favorable

position on this curve because of its low running costs. This cost-effectiveness hierar-

chy is evident in the Nord Pool electricity market, where a diverse array of generation

technologies with varying costs is organized into a step wise marginal cost curve. This

configuration facilitates optimized electricity dispatch that meets demand efficiently, re-

flecting the economic rationale of the merit order in energy markets (Huisman et al., 2014;

“Next - Merit Order”, n.d.). The merit order in combination with the interconnections to

other countries highlights the need for price data on energy sources such as coal, oil, gas

and CO2 - making them a natural inclusion in our model.
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Price spikes, common in deregulated electricity markets, result from the volatile supply-

demand interplay, often precipitated by sudden demand increases or operational con-

straints in generation assets. These spikes highlight the merit order’s role in stabilizing

the market during fluctuations caused by seasonal variations, unexpected weather events,

and the operational traits of generation technologies (Weron, 2007).

Figure 8: Introduction of renewables, “Next - Merit Order”, n.d.

The integration of renewable energy significantly affects the merit order, lowering

wholesale electricity prices as seen in markets like Germany and Belgium. However,

the reduction in wholesale prices does not fully translate to lower consumer costs due

to taxes, levies, and tariffs embedded in electricity bills, illustrating the complexity of

converting market efficiencies into consumer benefits (“Next - Merit Order”, n.d.).

Additionally, the merit order influences operational strategies by dictating the flexibility

and response capabilities of different generation technologies. For instance, gas-fired

plants, despite higher costs, provide essential flexibility for peak demand, whereas nuclear

and hydroelectric plants offer consistent base-load power due to their lower costs but

limited flexibility. This demand for flexibility highlights the importance of Norway’s

position as "Europe’s battery" (“How Norway can become Europe’s battery”, n.d.). This

ordering ensures a strategic, reliable deployment of resources to match demand (Weron,

2007).
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2.3.1 Water Value

The concept of water value emerged from the liberalization of the Norwegian electricity

market, reflecting the alternative value of using water for hydropower today versus its

future utility. This dynamic valuation requires sophisticated approaches for managing

hydropower reservoirs (Førsund et al., 2005).

The establishment of the Nord Pool spot market ended state monopolies on electricity

export/import, integrating various power sources like thermal, nuclear, and wind into the

market (Førsund et al., 2005). In this context, the inherently low marginal costs of wind

and hydropower highlight the cost-effectiveness of renewable resources. The variability of

water availability introduces opportunity costs, affecting decisions on immediate power

generation or reserving water for future use, thereby making hydropower’s marginal cost

dynamic (Huisman et al., 2014).

Norway, with nearly half of Europe’s water reservoirs, holds a strategic position in the

European energy landscape. The complex and uncertain task of calculating water value is

crucial for producers navigating water availability and fluctuating electricity prices. This

calculation involves factors like current reservoir levels, potential overflow, and expected

future prices, requiring a decentralized approach where local knowledge is essential (Gran

et al., 2023).

Overall, water value serves as both a marginal cost in the short term and a broader

economic principle for optimizing the use of Norway’s extensive hydropower resources,

balancing immediate benefits against future water value in a sustainable, efficient manner.

Since water value calculations are proprietary for the producers, it is not included in our

model. However we have included reservoir levels for the NO2-area, as we see them as a

possible driver of electricity prices.

2.4 The Intraday Market

In the real-time electricity market, Nord Pool facilitates intraday trading across 14 coun-

tries, complementing the day-ahead market to help market participants adjust their po-

sitions closer to the physical delivery time. This is crucial as the rise of intermittent

renewable energies complicates post-day-ahead market balance (“Nord Pool Intraday”,
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n.d.). Trading is available continuously, with transactions possible up to one hour before

delivery, allowing for dynamic capacity adjustments by TSOs based on day-ahead market

outcomes and intraday trade volumes (“Nord Pool Intraday”, n.d.).

Despite these mechanisms, unforeseen events can still disrupt market balance. As the

system operator in the Nordics, Statnett ensures stability by leveraging balance markets

to adjust production and consumption levels as needed (“Norwegian Ministry of Energy

- Power Markets”, n.d.).

2.4.1 The Single Intraday Coupling (SIDC)

The SIDC initiative represents an advancement in the European electricity market, facil-

itating a unified cross-zonal intraday electricity market across the European Union. This

framework enables market participants to engage in electricity trading up to the day of

delivery, enhancing the overall efficiency of intraday trading (“ENTSO-E - Single Intra-

day Coupling (SIDC)”, n.d.). The integration of intraday markets across Europe serves

multiple objectives, including the promotion of competition, augmentation of market liq-

uidity, and facilitation of shared energy generation resources. Moreover, it provides a

mechanism for market participants to adjust for unforeseen changes in consumption and

outages effectively. (“ENTSO-E - Single Intraday Coupling (SIDC)”, n.d.).
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3 Literature review

3.1 Drivers of Electricity Prices

Understanding the drivers of electricity prices is crucial for stakeholders across the energy

sector, including policymakers, energy companies, and consumers. The aim of our study

is to investigate the effect of electricity transmission between regions in the NO2 bidding

area, however electricity prices are influenced by a complex interplay of factors ranging

from the fundamental dynamics of supply and demand, weather and hydrology, to reg-

ulatory policies and market prices. In recent years, the integration of renewable energy

sources has added another layer of complexity to this dynamic. With this in mind, we

review the existing literature focusing on electricity price drivers in the following sections.

Burger et al., 2014 introduced the following framework to illustrate the interplay of

fundamental drivers for both the demand- and supply side.

Figure 9: Electricity price drivers Burger et al., 2014

The demand side is subject to seasonality and its different weather conditions. Escrib-

ano et al., 2011 highlights that electricity demand is heavily influenced by seasonality in

both business activities and weather conditions. Voronin et al., 2014 argues that “elec-

tricity demand is higher when the atmospheric temperature rises or falls from a base

‘comfortable level’ ”. This is relevant for the NO2 price area which, as the rest of the
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Nordic, experiences significant drops in temperature during winter - and the demand for

heating increases. However, in the model proposed by Voronin et al., 2014, the effect

of temperature and other weather related variables were incorporated in the electricity

demand. In Norway, households accounts for 32% of the total electricity consumption,

where as industry accounts for 46% (“Statistisk Sentralbyrå”, n.d.). As difficult weather

conditions are typical for the Nordic region, extreme weather conditions may cause an in-

crease in the electricity demand, this in turn can lead to higher electricity prices because

more expensive production sources must be activated (Voronin et al., 2014). In addition

to seasonality, Burger et al., 2014 found that electricity consumption varies significantly

depending on the day of the week, with heightened industrial and service activities on

weekdays and reduced demand on weekends. Public holidays and school holidays, as well

as days adjacent to weekends or holidays, typically see decreased industrial and service

demand but increased household consumption.

Daily electricity usage patterns also shift based on the type of day, such as working

days, weekends, or holidays, mirroring the typical daily routines and activities of those

periods. Weather conditions further affect electricity use, especially for heating and cool-

ing, depending on temperature and, to a lesser extent, wind speeds. Buildings’ thermal

inertia can delay the electrical demand response to temperature changes, while lighting

needs across sectors generally follow global daylight levels (Burger et al., 2014).

Supply, on the other hand, based on the framework of Burger et al., 2014 depends

on the availability and cost of fuels (such as natural gas, coal, and oil), the operational

status of power plants (maintenance, outages), and the capacity to generate electricity,

including from renewable sources like wind and solar, which are inherently variable.

Howison and Coulon, 2009 introduced a foundational model for spot electricity prices,

which is grounded in stochastic processes governing key factors such as fuel prices, power

demand, and generation capacity availability. Through analysis of observed bid data, they

identify significant correlations between bid fluctuations and the associated variations in

fuel prices.

Huisman et al., 2014 discuss the nuanced relationship between fuel and emission prices

and their impact on electricity prices within markets heavily influenced by hydro power,

which is the case for NO2. This research stands as a significant contribution to the
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understanding of how hydroelectric supply dynamics, emanating from hydro producers’

actions, affect competitive electricity markets.

The study reveals that a supply curve incorporating reservoir levels, CO2 emission

permit prices, and natural gas prices can explain a significant portion of the variation in

hourly spot prices. Notably, hydro supply is found to exert a dampening effect on day-

ahead electricity prices, whereas fuel and emission prices contribute to price increases.

Through a detailed subsample analysis, the study highlights the necessity for time-

varying parameters in the supply curve, indicating that the influence of these parameters

on electricity prices shifts with the changing availability of hydro supply. This finding

suggests that market agents’ competitive behaviors vary across different reservoir levels,

altering the competitive landscape of the power market. This is also highlighted by

Førsund et al., 2005, and Gran et al., 2023, as hydro producers determines the water

value based on its future value. The analysis also demonstrates that emission permits

and natural gas prices significantly influence day-ahead electricity prices, especially when

reservoir levels are low, underpinning the increased reliance on thermal power production

under such conditions.

Hirth, 2018 highlights the nuanced impact of Germany’s Energiewende, a policy frame-

work aimed at transitioning to renewable energy sources while simultaneously phasing

out nuclear power. The findings suggest that these two foundational strategies of the En-

ergiewende essentially counterbalanced each other with respect to their effects on power

prices.

Zakeri et al., 2023 investigates the role of fossil-fuelled versus low-carbon electricity

generation in each EU-27 country plus Great Britain and Norway during 2015-2021, and

their findings reveal a paradoxical situation where, despite a decrease in fossil-fuel gener-

ated electricity to 34% of total electricity generation, with natural gas comprising 18%,

fossil fuel based (notably those powered by natural gas) power plants set the wholesale

electricity prices approximately 58% of the time. This dependency of natural gas high-

lights the European vulnerability to price volatility, as well as (or induced by) geopolitical

risks, exchange rate fluctuations. The gap left by coal’s decline has been predominantly

filled by natural gas, exacerbating Europe’s exposure to external energy market shocks

and price volatility. The study notes a shift towards higher electricity import dependency
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in countries like Ireland and Denmark, further intensifying the interconnection between

European electricity prices and broader market dynamics.

Deane et al., 2015 highlights a significant transformation in the dynamics of electricity

markets across Europe is examined over the preceding decade. The integration of Re-

newable Energy Sources (RES) into the grid leads to a rightward shift in the merit order

curve, thereby lowering the spot market price for electricity, a phenomenon known as the

merit order effect. This effect is also found by Spodniak et al., 2021 but in addition he

notes that the stochastic nature of wind generation introduces greater variability between

the actual power generated in real-time and the day-ahead forecasts. This discrepancy

necessitates an increased reliance on balancing services to maintain grid stability (the

ability to maintain correct frequency, transport and deliver electricity, and minimize out-

ages), potentially escalating the costs associated with these services. The merit order

effect is pronounced in the German market, yet Deane et al., 2015 notes that similar

outcomes are observable in other market designs.

The view of renewables lowering electricity prices is supported by Hosius et al., 2023

who studied the impacts of wind energy, distinguished between onshore and offshore,

on the wholesale electricity prices in Germany, Western Denmark, and Great Britain

between 2015 and 2018. Central to their findings was a reduction in electricity prices.

The magnitude of this effect, as highlighted by the study, is contingent upon the steepness

of the supply curve at the juncture of supply and demand, varying significantly across

different regions and times of the day. Notably, the research underscores that offshore

wind energy generally exerts a more pronounced positive impact on wholesale electricity

prices than onshore wind, primarily due to its more stable feed-in patterns and lower

correlation with overall wind feed-in. This stability contributes to reduced price levels

and volatility, underscoring the value of diversifying wind energy sources.

Although several studies highlights the introduction of renewables and the “merit order

effect” Bublitz et al., 2017 dissects the fundamental price drivers that have contributed

to the observed price reduction in the observed years 2011-2015. The findings presented

by Bublitz et al., 2017. challenge the prevailing narrative in the energy economics field.

Through their analysis, they ascertain that the significant fluctuations in wholesale elec-

tricity prices can be attributed to the variations in fuel and carbon prices, rather than
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the expansion of RES like photovoltaics. Specifically, they identify a substantial decline

in coal and carbon emission allowance prices as the primary catalysts for the reduction

in electricity spot prices during the period under review.

Karakatsani and Bunn, 2008 emphasize that the structure and design of the market

are fundamental to the formation of prices, a sentiment echoed by Wolak, 2001 and

Bower and Bunn, 2001. They assert that the specific characteristics of the market must

be accurately represented in models to generate precise predictions and understandings

of market behaviors. They also argue that electricity markets are volatile, subject to

various shocks including fuel prices, demand and supply fluctuations, and regulatory

changes, such as the imposition of carbon dioxide prices in Europe.

The research by Lago et al., 2018b shows that market integration significantly affects

electricity price dynamics, highlighted by the interactions between Belgium and France,

proving the efficacy of EU market integration policies. Meanwhile, Uribe et al., 2020

finds that an integrated market framework allows for better risk sharing across bor-

ders, attributing more price variability to intermarket shocks rather than isolated ones.

This enhances market stability, efficient energy distribution, and resilience against energy

crises, reinforcing the benefits of ongoing market integration efforts.

Market integration and interconnections to neighboring countries is highlighted by

several (Burger et al., 2014, Lago et al., 2018b and Uribe et al., 2020) as having effects

on electricity prices. As we’ve already concluded that the inherent European and Nordic

market design is designed for this very interconnectivity - we find it surprising given the

last years political discussion that there, to our knowledge, exists almost no literature on

its effects on the NO2 bidding zone.

3.2 Electricity Price Modeling

Electricity price modeling plays a pivotal role in the energy sector, guiding decision-

making processes for utility companies, regulators, investors, and consumers. Different

modeling and prediction methods have long been employed to predict electricity prices,

leveraging historical data and statistical techniques to estimate future price movements.

This section will delve into different studies on predicting methods, providing insights

into how they have been applied to anticipate electricity price trends and their relevance

27



in today’s rapidly changing energy landscape. The literature on modeling and predicting

electricity prices is interesting to us as the literature showcases not only different methods

for modeling electricity prices, but importantly also different sets of predictors, which is

also related to the purpose of our study.

There is no consensus in the literature to define what is the short-, medium- and long-

term electricity, but short-term EPP (Electricity Price Prediction) generally forecasts

from a few minutes up to a few days ahead (Weron, 2014), which will be the focus

for studies included in this literature review - as the thesis focuses on the day ahead

electricity price modeling. We did not want to limit the included studies to solely focus

on the Nordics or NO2, first and foremost because of gaps in the literature, but also as

we’ve touched upon earlier, markets across the world, and especially Europe, is getting

liberalized and increasingly integrated.

3.2.1 Proposed Taxonomies

Aggarwal et al. (2009) proposed a categorization of forecasting methodologies into three

main categories; Game theory models, Time series models, and Simulation models:

Figure 10: Classification of price-forecasting models as illustrated by Aggarwal et al.,

2009.
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This categorization faced some criticism by Weron, 2014, especially as to the statistical

models included both time series and artificial intelligence models. In the same article

Weron, 2014 proposed the following taxonomy for electricity price models which will be

the basis for the following literature review.

Figure 11: The taxonomy proposed by Weron, 2014.

The main categories is defined by Weron, 2014 as follows:

• Multi-agent models: Simulate the operation of a system of heterogeneous agents

(e.g., generating units, companies) interacting within a market, building the price

process by balancing demand and supply.

• Fundamental models: Describe the dynamics of electricity prices by modeling

the impacts of key physical and economic factors.

• Reduced-form models: Characterize the statistical properties of electricity prices

over time, focusing on derivatives evaluation and risk management.

• Statistical approaches: Apply statistical techniques directly for load and price

forecasting or implement econometric models tailored to power markets.

• Computational intelligence techniques: Integrate learning, evolution, and

fuzziness to adapt to complex dynamic systems, often considered as ’intelligent’

approaches.
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In our thesis we will use a standard regression-based technique that falls into the

‘statistical’ category and to which we refer to as ‘Traditional forecasting’. However, we

will also follow the ‘computational intelligence’ literature as they represent the recent

trends in predicting electricity prices and we will refer to that category as ‘Machine

Learning’.

3.2.2 Traditional Forecasting

Based on econometric models traditional forecasting methods encompass approaches such,

as time series analysis, regression models and Auto-Regressive Integrated Moving Average

(ARIMA) models. These techniques, refined over the years, play a role in understanding

the complexities and fluctuations of electricity prices. This section aims to discuss the

strengths and limitations of forecasting techniques shedding light on their evolution and

relevance amidst advancements in capabilities and emerging forecasting strategies.

Weron and Misiorek, 2008 conducted a study to assess the effectiveness of 12 different

time series forecasting methods designed for predicting short term (day ahead) spot prices,

in auction based-electricity markets. Their analysis covered two markets; California,

where they used spot prices and system wide load data as well as their day-ahead forecasts

and the Nordic market, where they utilized hourly spot prices along with air temperature

data. Their findings showed that models that incorporate system load as a factor generally

outperform models based on price in terms of predictive accuracy particularly in the

California market. The impact of air temperature as an exogenous variable on forecasting

performance is not as distinct, underscoring the variable’s lower predictive strength for

electricity prices compared to system load.

In their study, Karakatsani and Bunn, 2008 investigates the effectiveness of price mod-

els, in predicting day ahead electricity spot prices in the British market. They utilize two

modeling techniques; a time varying parameter (TVP) regression model that adapts to

changing pricing structures due to factors like agent behavior and shifts in regulations

and market frameworks and a regime switching regression model that addresses pricing

inconsistencies stemming from variations and scarcity events. Fuel prices were omitted

from the model due to their slow evolution over the 10-month sample period. Karakatsani

and Bunn, 2008 also includes ‘demand volatility’ in their model, acting as an expression of
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temporal weather and consumption patterns - similar to Weron and Misiorek, 2008. The

study demonstrates that models incorporating market fundamentals with time varying co-

efficients outperform other forecasting methods, including models with similar coefficient

dynamics. Kristiansen, 2012 presents an approach to predicting the day ahead electricity

prices in the Nord Pool market building upon the foundation laid out by Weron and Mi-

siorek, 2008. This model distinguishes itself by streamlining the complexity of the model

consolidating 24 parameter sets into one and incorporating Nordic demand and Danish

wind power generation as key external factors. Rather than implementing a dependence

on the minimum price on the previous day as proposed by Weron and Misiorek, 2008,

Kristiansen, 2012 introduced a dependence on the maximum price from the previous day.

The modifications introduced by Kristiansen, 2012 by emphasizing the maximum price

from the previous day as a predictor diverging from Weron and Misiorek, 2008 reliance

on the minimum price, significantly improves the model’s accuracy, in an out-of -sample

forecasting framework. As Kristiansen, 2012 sees the Nordics as one, his inclusion of

wind generation and demand is similar to what we are doing in our thesis with regards to

NO2. However, as the European electricity markets get increasingly more integrated one

can argue that the lack of interconnections to other regions makes Kristiansen’s study

outdated. We solve this by including all interconnections to other price regions as well

as the actual flow of electricity on these interconnections.

In the study by Kristiansen, 2014, the focus is on developing and evaluating spot

price forecasting models for the Nord Pool market, contrasting with the commonly uti-

lized Electricity Market Planning and Simulation (EMPS), or ‘Samkjøringsmodellen’ and

stochastic dual dynamic programming (SDDP) models, which are complex, proprietary,

and often considered ’black box’ due to their inaccessibility. Kristiansen, 2014 introduces

three models that are more transparent and straightforward, leveraging historical spot

prices, futures prices, and hydrological data (inflows and reservoir levels) to predict future

prices with high precision. These models include a regression model that utilizes historical

data to forecast prices with a high degree of accuracy. The effect of hydro reservoir levels

is also discussed by Huisman et al., 2014 who suggests that market agents’ competitive

behavior changes with different levels influencing the price, making it a natural inclusion

in our model.
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Voronin et al., 2014 present a hybrid model designed to predict electricity prices in the

Finnish spot market. What sets this model apart is its focus on both price fluctuations and

sudden spikes in prices. The methodology involves analyzing the electricity price data

in layers to separate price trends from spike behaviors using different data processing

methods for each to adjust for trends and seasonal patterns.

The effectiveness of the model was compared to eight forecasting techniques showing

better accuracy in forecasting regular market prices and a satisfactory level of accuracy

in predicting spikes. This progress is credited to the models’ capacity to blend non-linear

predictive skills, as well as its innovative method, for forecasting spikes.

Karabiber and Xydis, 2019 conducted an examination of predicting day electricity

prices in Denmark West, utilizing various methods over a 212-day period beginning in

early 2017 with data from 2016 for training. Variables included in the model and their

correlation coefficient is presented in Table 1.

While our study includes historical data on the same variables, we hope to add to the

list of explanatory variables that should be included in similar models in the future by in-

cluding variables such as interconnections to neighbouring bidding areas and geopolitical

uncertainty.

Table 1: Explanatory Variables, (Karabiber & Xydis, 2019)
Explanatory Variable Correlation with price

Temperature 0.057

Consumption Prognosis 0.430

Production Prognosis 0.005

Wind Prognosis 0.368

Oil Prices 0.259

Natural Gas Prices 0.293

Hydro Reservoir Levels 0.313

Sirin and Yilmaz, 2020 delve into the dynamics within the Turkish electricity market

between May 2016 and May 2019. They investigate the rise of variable renewable energy

sources (VRE) and their interplay with market prices and remuneration mechanisms. As

the share of renewable energy sources like wind and run-of-river hydro has climbed, the

conventional wisdom surrounding electricity market economics and pricing mechanisms

has been challenged. The study employs a quantile regression model to dissect the merit-
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order effect - a phenomenon where increased renewable energy supply leads to lower

average day-ahead market prices.

The research uncovers a significant, albeit variable, negative merit-order effect at-

tributable to wind and hydro technologies. This variability is closely tied to fluctuating

demand, differing price levels, and the specific technology in question.

In their analysis, Sirin and Yilmaz, 2020 consider an array of factors influencing whole-

sale electricity prices, including forecasted demand, renewable production, and fuel prices,

alongside variables such as interconnection capacities and international energy trade.

They meticulously account for the exogenous nature of demand and the negligible short-

term price elasticity, using day-ahead demand forecasts and projected VRE generation as

critical variables. Notably, the study sidesteps distributed generation and conventional

energy sources that might skew market price responses due to endogeneity concerns.

The analysis incorporates natural gas prices and temporal variables like weekly and

seasonal patterns to comprehensively capture price determinants. The approach also

respects the integrity of electricity price spikes as vital market signals, rejecting any data

manipulation that might obscure the underlying market dynamics.

Biber et al., 2022 conducted an analysis using logistic regression models to explore

the impact of various factors on the occurrence of low and negative electricity price

events. These factors included the generation mix, fuel and emission allowance prices,

and temporal variables, with the models being finely tuned and validated against data

spanning from 2019 to 2021. The findings underscore the role of fluctuating renewable

energies, such as wind and solar, in increasing the probability of these price phenomena.

The presence of flexible generation sources like gas-fired power plants, coupled with high

grid demand and traditional energy production, was associated with higher and more

stable market prices.

The study also observed that an increase in CO2 allowance prices tends to mitigate

the frequency of negative prices, attributing this effect to the operational flexibility of

gas power stations - which emit less CO2 compared to their coal-based counterparts.

Notably, the COVID-19 pandemic exerted a significant influence by reducing grid load in

2020 and 2021, thereby exerting downward pressure on electricity market prices.
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The study identified key independent variables influencing electricity price formation,

including the generation source, fuel prices, CO2 emission allowances, grid load, and

temporal factors. The analysis leveraged dummy variables to capture temporal depen-

dencies, distinguishing price events across day/night, weekdays/weekends, and seasonal

transitions, thereby illustrating the dynamic nature of electricity pricing.

While the inclusion of variables is similar to our own model, Norway and the NO2

bidding zone is highly hydro-dominated in terms of electricity production and does not

display the same range of generation sources as the German market. However, considering

the connection between the German market and NO2, we expect to see an influence of

gas prices due to Germany’s dependence on gas-fired plants.

Tselika, 2022 delves into the effects that intermittent RES exert on electricity price dis-

tributions and their volatility in Denmark and Germany. Harnessing hourly data span-

ning from 2015 to 2020, this investigation uses the innovative Quantiles via Moments

(MMQR) methodology for a panel quantile analysis. This approach marks a departure

from prior studies that predominantly relied on aggregated daily data within a time-series

framework. The rationale behind employing a panel method that integrates both tem-

poral and cross-sectional dimensions of electricity prices is underscored by the significant

intra-day fluctuations in electricity price formation and renewable energy output. Such a

methodology enables the isolation of time-invariant characteristics specific to each hour,

thereby uncovering market dynamics that unfold throughout the day.

By analyzing the effect of RES, particularly wind and solar power, on different price

quantiles while factoring in market dynamics, this research sheds light on the diverse im-

pacts these energy sources have on electricity price distributions. The study underscores

the occurrence of the merit-order effect in both countries, with wind and solar generation

influencing the price distribution differently. Additionally, the paper explores the inter-

action between RES and demand levels, revealing how wind generation amplifies price

volatility under low demand conditions yet mitigates it when demand is high, particularly

in Germany where solar power plays a stabilizing role for high demand levels.
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3.2.3 Machine Learning

Machine learning (ML), with its ability to learn from and make predictions on data,

offers a promising alternative to conventional statistical methods. It excels in handling

large datasets, recognizing patterns, and adapting to new information without explicit

programming for each change in market conditions. This subsection reviews seminal

and recent studies that have applied various ML algorithms, including neural networks,

decision trees, and support vector machines, to predict electricity prices. It examines

the methodologies employed, compares their performance, and discusses their practical

implications for the energy sector.

Tan et al., 2010 presents a technique for predicting electricity prices that combines

wavelet transform with ARIMA and Generalized Auto-Regressive Conditional Heteroscedas-

ticity (GARCH) models. This approach excels at handling the non-stationarity, non-

linearity and volatility commonly found in electricity market data - aspects that tradi-

tional forecasting methods often struggle with. By breaking down the price series into

components this combination method achieves higher accuracy in predicting MCPs for

Spain and locational marginal prices (LMP) for the Pensylvania, New Jersey and Mary-

land (PJM) market surpassing several contemporary forecasting approaches. This study

demonstrates how blending machine learning principles with time series analysis can en-

hance accuracy in volatile markets, like the electricity sector.

Keles et al., 2016 set out to develop an artificial neural network model (ANN), for fore-

casting hourly electricity prices in the EPEX day ahead market. Their approach involved

selecting and preparing input data using algorithms and optimizing various aspects of

the ANN configuration, such as the activation function, training algorithm, learning rate

and momentum. This preparation ended up in including parameters such as time lagged

hourly electricity prices, gas price of previous day, different data on residual demand

among others. This resulted in the validation of their ANN model against prices demon-

strating its superior forecasting accuracy compared to traditional models like seasonal

ARIMA and other ANN applications in electricity price prediction studies.

Panapakidis and Dagoumas, 2016 also explore the field of predicting electricity prices

for the day using ANN models. They investigate both models and hybrid systems that

combine ANNs with algorithms. This study is notable for its examination of data sets
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with price trends and many outliers posing a challenge to the reliability of forecasting

models. The hybrid models show flexibility by dividing the training data into groups

each analyzed by a customized ANN predictor. The comparison of model performances

suggests a preference for cascading networks underlining the significance of having an

input dataset that extends beyond historical price information to encompass variables

like natural gas costs renewable energy generation capacities and cross market energy

prices.

Lago et al., 2018a explore the emerging field of deep learning (DL) in predicting electric-

ity prices by introducing four DL models designed to improve prediction accuracy. Their

study fills a gap in research literature as the use of deep learning for electricity price

forecasting was still limited despite its success in other areas. The research conducts

a benchmark analysis comparing these DL models with 27 used methods in electricity

price forecasting to assess the effectiveness and positioning of DL techniques in predictive

modeling for electricity prices. Key findings from the study include the Deep Neural Net-

work (DNN) model excelling in accuracy, demonstrating the effectiveness of deep learning

in electricity price prediction. Compared to traditional statistical forecasting, machine

learning techniques provide more accurate results, indicating their potential to shape fu-

ture price prediction methods. Additionally, the study finds that models incorporating

moving average components and hybrid models do not consistently outperform simpler

models, prompting a reassessment of the effectiveness of these components in models.

Lago et al., 2018b present an exploration into the future by exploring how market

integration can boost the accuracy of electricity price predictions. They introduce two

models that use data from connected markets to enhance local market forecasting, using

data from the Belgian market. The first model is a network that incorporates external

features from neighboring markets while the second model predicts prices for two markets

simultaneously to take advantage of their combined effect on forecasting accuracy.

A key aspect of their research is the development of a unique feature selection algo-

rithm. This algorithm, which combines optimization and functional analysis of variance

carefully evaluates how different features impact the model’s performance helping dif-

ferentiate between irrelevant variables. Integrating features from connected electricity

markets into the Belgium forecasting model lead to an improvement in predictive ac-
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curacy. The progress made not only emphasizes how well the models work, but also

showcases the role that incorporating markets play in influencing changes in electricity

prices. Furthermore, the research emphasizes the significance of precise price forecasting

in enhancing grid stability. By pinpointing the value of accurate predictions, it reveals

the critical role they play for energy companies, enabling more effective grid imbalance

management by operators. The increased integration of renewable energy sources into

the grid amplifies electricity price volatility, which in turn makes the behavior of market

agents less predictable. This dynamic leads to a higher likelihood of abrupt changes in

power generation and consumption, intensifying the discrepancies between production

and consumption which elevates the risk of instability in the electrical grid.

Castelli et al., 2020 venture into improving the forecasting of electricity prices by

utilizing an approach in machine learning known as Local Search Genetic Programming

(LSGP). This method stands out for its awareness in the search process and the inclusion

of a local search optimizer to speed up the learning phases convergence. By analyzing

real world data from energy markets in the EU they compare the LSGP model with

established techniques for forecasting tasks.

The LSGP model considers various factors affecting electricity prices, such as weather

conditions, and prices of oil and CO2 emission quotas to predict prices 24 hours in

advance. The findings show progress over existing prediction methods demonstrating

that the LSGP model offers greater accuracy in predicting future electricity prices.

Heijden et al., 2021 explore how the integration of markets impacts the DAM price

predictions, specifically focusing on the Dutch market. Their research indicates that

incorporating factors can result in overfitting leading to a decline in model performance.

To address this issue, they introduce an algorithm that carefully selects relevant European

features from potential countries to enhance the accuracy of DAM price prediction models.

This approach can be adapted for regression and machine learning frameworks. The study

applies this algorithm to develop prediction models for the Netherlands by analyzing data

on the electricity market to choose suitable candidate countries. The addition of these

elements greatly improves the accuracy of forecasting for the Dutch market. Through

further analysis it is confirmed that European features significantly enhance the accuracy

of predictions.

37



Tschora et al., 2022 delve into the realm of machine learning methods to improve the

accuracy of electricity price predictions. Their approach involves integrating elements,

such as the historical prices of neighboring countries, which significantly enhances forecast

precision. This study highlights the importance of these features during periods of market

changes.

Tschora et al., 2022 also discuss areas for research such as incorporating additional

electricity price forecasting (EPF) features like coal, oil, carbon prices and data from ad-

ditional countries. They also explore different machine learning models such as Gaussian

processes, nearest neighbors, multi kernel support vector regressions (SVR) to enhance

the forecasting accuracy. Tschora et al., 2022 highlight the importance of including real

time price data and transfer capabilities to improve the understanding of energy move-

ments across borders. Additionally, they propose investigating time series machine learn-

ing models and Graph Neural Networks (GNN) to effectively handle the complexities of

forecasting multiple countries simultaneously.

Trebbien et al., 2023 explore the possibility of predicting electricity costs, in Germanys

day-ahead-market using a machine learning method that goes beyond the traditional

merit order approach. This unique blend allows for an understanding of the ever-changing

factors that influence electricity prices bypassing the constraints of conventional market

models based on the merit order principle.

While the merit order principle serves as a foundation for understanding market dynam-

ics in perfect market conditions, it oversimplifies how dispatchable power plants marginal

costs interact with residual load overlooking the complexities of real-world market fluc-

tuations.

The methodology of Trebbien et al., 2023 avoids these simplifications by integrating

a range of variables into their model to capture the diverse drivers behind price shifts.

Their analysis sheds light on how factors like load, wind power and solar energy play roles

in shaping prices with wind power having a significant impact compared to solar energy.

Additionally fuel prices and generation ramps from sources such as nuclear and lignite

are identified as crucial elements that influence prices, in intricate and nonlinear ways.

The use of SHapley Additive exPlanations (SHAP) values in their model analysis signi-

38



fies progress in enhancing the interpretability of machine learning models. By measuring

the impact of each feature on price predictions, SHAP values provide insights into how

market factors and circumstances influence price dynamics going beyond just relying on

the merit order principle for explanations. This approach not only improves the trans-

parency of the model but also fosters a deeper comprehension of the cause-and-effect

relationships within the market although its recognized that conducting a more explicit

causal analysis would require additional assumptions and methodologies.

3.2.4 The Future of Electricity Price Forecasting

Jedrzejewski et al., 2022, studies the inconsistencies found in predicting electricity prices

shedding light on the lack of evaluation methods that often lead to biased outcomes

and conclusions. They raise concerns about the absence of tests to determine accuracy

differences between models casting doubt on the reliability of analyses. The study also

highlights issues with how data is divided for training, validation and testing purposes

well as determining optimal input features and model settings crucial for reproducibil-

ity. Additionally, it emphasizes the oversight of computational linked to implementing

forecasting techniques, which is a critical aspect for real time electricity price forecasting

applications.

Furthermore, Jedrzejewski et al., 2022 underscore the inconsistency in model recalibra-

tion practices, especially in benchmark comparisons, where new models are recalibrated

frequently, whereas benchmarks may not be, skewing accuracy metrics in favor of newer

models. To mitigate these issues, they propose a series of best practices aimed at en-

hancing reproducibility and enabling meaningful comparisons within the electricity price

forecasting community. These include utilizing a diverse and extensive test dataset, em-

ploying multiple evaluation metrics including the relative mean absolute error (MAE),

applying statistical testing for performance differences, and ensuring transparent report-

ing of data splits, model inputs, and computational costs.

Lago et al., 2021 identified a gap in the research on predicting electricity prices. They

propose a standardized approach to evaluating new predictive algorithms. The authors

point out shortcomings in the field such as relying on non-public and unique datasets,

limited testing in specific markets and overlooking comparisons with simpler, yet effective,
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benchmark models. They argue that these practices have made it challenging to deter-

mine which methods excel in predicting electricity prices and what should be considered

best practices.

To address these issues, Lago et al., 2021 conducted a comparison of deep learning

methods over multiple years and markets. Their contribution involves establishing prac-

tices for research on predicting electricity prices emphasizing the importance of sizes,

accuracy metrics and statistical testing to validate differences in model performance.

Their analysis shows that deep neural networks generally outperform Local Expansion

and Reduction (LEAR) methods, in accuracy though LEAR models are preferred for time

decisions. Ensemble methods, which combine models often produce much better results

compared to individual models. The study questions the reliability of Mean Absolute

Percentage Error (MAPE) as an accuracy measure and emphasizes the importance of

statistical testing to draw meaningful conclusions in EPF research. This is important as

MAPE is used as an accuracy measure in several of the studies in the field.

Maciejowska et al., 2022 provide an analysis of the changing landscape of predicting

electricity prices emphasizing the obstacles and methodological trends influencing this

area. They highlight the emphasis on short term predictions, driven by the need for power

systems to maintain a balance between generating and consuming electricity. External

factors like weather conditions impacting both supply (due to fluctuations in energy

sources) and demand, as well as shifts in business activities affecting demand further

complicate this requirement.

The research emphasizes the difficulties posed by the integration of renewable energy

sources, which are not adequately addressed by advancements in storing electricity or

updating grids. These market dynamics call for forecasting methods to adapt to the

unpredictable nature of electricity prices. In terms of methodology, Maciejowska et al.,

2022 pinpoint three trends in studies on predicting electricity prices:

1. Expansion of Forecasting Methods; There is a shift towards not only single point

forecasts but also probabilistic ones (including interval and density forecasts) and path

forecasts. This shift reflects an increasing acknowledgment of the importance of capturing

uncertainties in predicting electricity prices offering detailed insights for decision makers.
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2. Advancement towards Machine Learning; The field is gradually shifting from models

to more complex statistical and machine learning approaches. This change is driven by the

need for models that despite being intricate provide flexibility and accuracy in predicting

outcomes.

3. Moving Beyond Standard Error Metrics; While traditional error measures are still

crucial for evaluating models there is a growing recognition of the importance of consider-

ing the consequences of forecasting errors. Recent studies are increasingly incorporating

real world case studies to assess the profitability of strategies developed from forecasting

models indicating a shift towards practical research approaches.

In addition to the advancements and direction of future research highlighted by Ma-

ciejowska et al., 2022, we believe that adding new types of price-drivers is needed in the

field of electricity price forecasting and that our study contributes to this advancement.

3.3 Contribution to Existing Literature

In this study, we aim to add to the existing body of academic literature by specifically

examining the NO2 bidding area. This region is distinct due to its strategic intercon-

nections with adjacent countries and other domestic bidding zones, coupled with its

significant hydro-resource endowment. Our review of the literature has not revealed any

prior studies that simultaneously consider the same range and combination of variables

that our thesis proposes to explore. Accordingly, we believe our research provides a novel

contribution to the field, addressing a gap in the current understanding of the price-

dynamics within the NO2 bidding area and especially the possible impact of cross-zonal

connections.
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4 Research Methodology

In this section, we provide a fundamental overview of the dataset, highlighting the data

collection process and the sources from which the data was gathered. Additionally, we

will delineate the statistical tests and models that have been utilized in the course of our

research.

4.1 Data

In our thesis we are examining the drivers of the electricity price in the Norwegian NO2

Market. The original dataset used in this thesis include 109 variables each containing

72.768 observations. The dataset has an hourly resolution and stretches from 01.01.2015

to 20.04.2023, thus equaling 3032 observations for each hour.

Some of the variables in the dataset has a daily resolution. For those variables we have

used the last known observation to consolidate the dataset. In such instances, the daily

observation is attributed to every hour of that day. Given our setup (to be described

later) and the market price creation, this procedure will not lead to a look-ahead bias in

our predictive regression.

An overview of the variables in the dataset is presented in Appendix A.

4.1.1 Data Selection

Nord Pool Power Price

In line with the research questions we aim to address, price data represents one of the

most significant variables in our dataset. Nord Pool has provided price data for NO2 from

01.01.2015 to 20.04.2023 for this thesis. The data is presented in an hourly resolution

and denoted in Norwegian Krone (NOK).

For this thesis the price variable will be denoted as Pt,h.

Production

Our dataset incorporates seven production variables, all of which have been sourced from

ENTSO-E for the period 01.01.2015 to 20.04.2023. These variables encompass production

from various sources including fossil gas, hydro, waste, onshore wind, and others. All

variables are presented on an hourly basis and illustrate the actual aggregated amount,

42



and we use only aggregated amounts of production in our analysis.

The European Network of TSOs for Electricity (ENTSO-E) is the association for the

cooperation of the European transmission system operators, bringing together the unique

expertise of the interconnected power system (“Entso-E - Mission Statement”, n.d.). The

organization works on “ensuring the security of the interconnected power system in all

time frames at pan-European level and the optimal functioning and development of the

European interconnected electricity markets” (“Entso-E - Mission Statement”, n.d.).

To simplify the analysis we chose to sum up all production variables into one variable.

By consolidating the production variables, we were able to retain important information

for the analysis, while simultaneously making the data easier to handle.

For this thesis the aggregated production variable will be denoted as PRODt,h.

Load

From ENTSO-E we have also procured hourly data that exhibits both the load and

forecasted load for the period 01.01.2015 to 20.04.2023. Load refers to the consumption

of electricity, and reflects the demand side of the electricity market.

For this thesis the load and forecasted load will be denoted as LOADt,h and FORCt,h,

respectively.

Electricity Transmission NO2

The Norwegian NO2 zone is equipped with six cables that have the capacity to transport

electricity to or from other zones, as depicted in Figure 3. It has four international

cables, extending to Great Britain, Denmark, the Netherlands, and Germany, along with

two national cables that connect to the Norwegian NO1 and NO5 zones. These cables are

capable of bi-directional electricity transport, albeit not simultaneously. For our dataset,

we have procured data for both import and export across all these cables, presented in

an hourly time resolution, from ENTSO-E for the period 01.01.2015 to 20.04.2023.

In addition to retaining these original variables, we have also calculated several new

variables: international import, international export, national import, national export,

total import, total export, and net flow. The net flow is calculated by subtracting the

total import from the total export. These additional variables provide an overview of the

electricity transmission dynamics, both within and between countries and zones, while
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also offering a measure of the net electricity flow.

The denotations for electricity transmissions are specified in Table 2. We have not

denoted the net electricity transmission as we will not use this in our model fit.

Table 2: Denotation Electricity Transmissions
Connection Import Export

Denmark IDKt,h EDKt,h

The Netherlands INLt,h ENLt,h

Great Britain IGBt,h EGBt,h

Germany/Luxembourg IDEt,h EDEt,h

Norway Zone 1 INO1t,h ENO1t,h

Norway Zone 2 INO5t,h ENO5t,h

National NATIt,h NATEt,h

International INTIt,h INTEt,h

Weather and climate

Weather data is an important factor when trying to understand or predict the electric-

ity market (Burger et al., 2014). We have downloaded data on wind, precipitation and

temperature for the period 01.01.2015 to 20.04.2023 from the Frost-Api driven by The

Norwegian Meteorological Institute (MET). The MET was established in 1866 and fore-

casts weather, monitors the climate and conducts research (“MET - About Us”, n.d.).

The observations have been gathered from a total of 36 weather stations in different

parts of the NO2 zone, with 16 of those weather stations providing data for precipi-

tation, 10 weather stations providing data for wind and 10 stations providing data on

temperature.

To simplify the analysis and reduce the dimensionality of the dataset, we decided to

consolidate each category into a single variable. This resulted in the creation of three

new variables, each representing the average value of its respective category: temperature,

precipitation and wind. This aggregation process not only streamlined the dataset, but

also maintained the essential information from each category for further analysis.

For this thesis wind and precipitation will be denoted as WNDt,h and PRCt,h, respec-

tively.

Pardo et al., 2002 analyzed the non-linear relationship between temperature and elec-
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tricity demand. They utilized a population-weighted temperature index and introduced

heating degree days (HDD) and cooling degree days (CDD) to distinguish between the

effects of cold and heat on electricity usage.

The relationship between electricity demand and temperature is non-linear, with de-

mand increasing for both decreasing and increasing temperatures, due to the use of heat-

ing appliances in winter and air conditioners in summer. A neutral zone around 18°C

was identified where demand should be inelastic to temperature changes.

To better analyze this non-linear relationship, two temperature-derived functions, HDDs

and CDDs, were introduced. These functions measure the intensity of cold or heat in

winter and summer days, respectively, and help to separate the winter and summer data,

with a potential for more accurate linear model estimations.

We have also split our temperature data accordingly into heating degrees (HD) and

cooling degrees (CD), as these variables, when inserted into a linear regression model,

have the potential to capture the non-linear dependency between electricity demand and

outside temperature.

For calculating Cooling Degrees we have used this equation:

CDt =

Ct, if Ct ≥ 18 [◦C]

0, if Ct < 18 [◦C]

(1)

Similarly for the Heating Degrees:

HDt =

Ht, if Ht < 18 [◦C]

0, if Ht ≥ 18 [◦C]

(2)

For this thesis the heating degrees and cooling degrees will be denoted as HDt,h and

CDt,h, respectively.

Hydropower constitutes the majority of Norway’s power supply, accounting for roughly

90% of the total capacity. Of the approximately 1400 lakes in Norway regulated for

power production, around 490 are utilized to compute the reservoir statistics (“Electricity

production”, n.d.; “Om magasinstatistikken - NVE”, n.d.). This statistic is also computed
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for all five distinct price zones. We have downloaded the statistics specific to the NO2

from The Norwegian Water Resources and Energy Directorate (NVE) for the period

01.01.2015 to 20.04.2023. The NVE is a directorate under the Ministry of Petroleum and

Energy. NVE’s mandate is to ensure that the development of Norwegian hydropower

is environmentally friendly and beneficial to the Norwegian society (“NVE - About Us”,

n.d.).

We have incorporated the reservoir statistic into our dataset; however, we have chosen

to exclude it from our analysis due to its unsuitability for our regression model. This

decision was influenced by the high autocorrelation within the data and the challenges

associated with differentiation. Given the long-term nature of the changes in this statistic,

it is not expected to have a short-term impact on prices.1

Market Variables

The analysis of commodity prices plays a significant role in the examination of power

prices, given the interconnected nature of these markets (Burger et al., 2014; Huisman

et al., 2014). Commodity prices affect the cost of electricity generation as they directly

influence the operational costs of power plants and the competitiveness of various energy

sources. In our research, we have incorporated the closing prices of natural gas, oil, and

coal, as these are deemed to be critical variables in the literature on electricity markets

(Bublitz et al., 2017; Burger et al., 2014; Gran et al., 2023; Huisman et al., 2014). In

addition, we have included the spot prices for European Union Allowances, which we

refer to as CO2 or CO2 prices.

For the period 01.01.2015 to 20.04.2023 data for gas, oil and coal have been provided

by the Intercontinental Exchange (ICE), while data for CO2 has been procured from

European Energy Exchange (EEX).

We’ve denoted these market variables as follows:

• Gas Price - GASt • Oil Price - OILt

• CO2 Price - CO2t • Coal Price - COALt

1We executed the model, adding the reservoir statistic as an independent variable. However, no

significant results were observed across any observations.
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Foreign exchange markets

The dataset in use contains variables expressed in multiple currencies: Norwegian Krone

(NOK), US Dollar (USD), and Euro (EUR). However, the dependent variable for the

regression model is configured in NOK. Instead of recalculating the USD and EUR vari-

ables into NOK, the exchange rates for NOK/USD and NOK/EUR have been included

as independent variables in the model.

This approach holds significance for several reasons. Firstly, it enables the model to

naturally accommodate fluctuations in exchange rates, which may impact the relation-

ships between the variables. Secondly, it maintains the original monetary units of the

variables, which is crucial for interpretation and understanding the economic context in

which the data were gathered. Additionally, it allows the model to capture potential

interactions between the exchange rates and other variables, which might be overlooked

if all variables were simply converted to NOK. Moreover, this approach facilitates the

separation of the effect of commodity price changes from exchange rate changes.

The data for the Foreign exchange markets has been downloaded from the Central

Bank of Norway (NB) for the period 01.01.2015 to 20.04.2023.

For this thesis the NOK/USD and NOK/EUR exchange rates will be denoted as USDt

and EURt, respectively.

Economic Uncertainty

Economic uncertainty mirrors the economic conditions, investor sentiment and likely also

electricity markets. For example, in periods of heightened geopolitical risk the demand for

commodities and energy commodities might increase, which in-turn might also increase

marginal costs for some power plants that run on gas and oil - perhaps not in Norway

directly, but in interconnected areas. If that is the case, the increased price in those areas

will lead cheaper electricity producers from Norway to supply more electricity to those

areas which in turn might also increase, albeit in smaller manner, the electricity price in

Norway. To this end, we have incorporated data on political uncertainty from various

indexes, providing a broad perspective on global political uncertainty and its potential

effects on power markets.
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• Geopolitical Risk and Geopolitical Uncertainty

The inclusion of the Geopolitical Risk Index, constructed by Caldara and Iacoviello,

2022, and the Global Economic Uncertainty Index, constructed by Baker et al.,

2016, allows us to capture the general political and economic uncertainties that can

influence power markets. These indexes are widely recognized and used in economic

research, providing a reliable measure of global uncertainties.

• Twitter-based Uncertainty

The Twitter-based Uncertainty Indexes as used in this thesis were constructed by

Baker et al., 2021. They constructed four different indexes, all of which are included

in the dataset for our thesis. The indexes are calculated and weighted differently

to incorporate different aspects of the Twitter-verse.

• VIX-index

The VIX index, often referred to as the fear index, was presented in 1993 to provide

a benchmark of expected short-term market volatility and provide an index upon

which futures an options contracts on volatility could be written (Whaley, 2009).

When the VIX Index is high, it implies that there’s significant uncertainty and fear

among market participants, often due to expected major market moves. Conversely,

a low VIX Index suggests a period of relative calm and confidence in the market.

It is important to note that the VIX is forward looking, as it measures volatility

that investors expect to see (Whaley, 2009).

For the variables covered under Economic Uncertainty we have chosen to summarize

Geopolitical Risk Index, Global Economic Uncertainty Index and the Twitter-base Un-

certainty indexes. By consolidating these diverse measures of uncertainty into a single

variable, our goal is to create a comprehensive indicator of global political and economic

uncertainty. This consolidation simplifies the modeling process and reduces the potential

for multicollinearity, a common issue when multiple correlated variables are included in

a regression model (Hanck et al., 2024). We will refer to this variable as GEPU-indicator

going forward. Data for these indexes have been downloaded from “GPR”, n.d. and “EPU”,

n.d. for the period 01.01.2015 to 20.04.2023.

For this thesis the GEPU-indicator and VIX-index will be denoted as GPUt and V IXt,

respectively.
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Calendar Effects

Finally, we have included variables for weekday, month, holiday, daylight hours and trend.

These variables serve to capture temporal and contextual influences and patterns in

the data. It will enable us to account for daily and monthly patterns, the impact of

holiday effects, the variation in energy demand related to daylight hours and the long-

term economical trend.

The weekday variables are denoted as MONt, TUEt, ..., SUNt, and the month variables

are denoted as JANt, FEBt, ...., DECt.

The data for the holiday variable in the model is derived from “Norsk Kalender”, n.d.

and encompasses both hard and soft holidays. Hard holidays are typically public holidays,

which are officially recognized and often involve a complete shutdown of work and school

activities. On the other hand, soft holidays refer to less formal holiday periods such as

summer, winter, and fall breaks, which may not involve a complete stoppage of activities

but can still influence daily routines and consequently, energy consumption patterns.

For this thesis holiday effects will be denoted as HDEt.

The methodology adopted for calculating daylight hours in the model is derived from Do

et al., 2021. Their paper presents a robust and empirically tested approach to quantifying

daylight hours, a variable that can significantly influence electricity demand patterns.

According to Do et al., 2021, daylight hours represents a deterministic function, dependent

on both the latitude of a specific location and a particular day of the year, as indicated

by the Julian calendar. Let Jt denote the day of a Julian calendar, the angle of the sun

is calculated as follows:

λt = 0.4102 sin

(
2π(Jt − 80.25)

365

)
(3)

Then, based on the angle of the sun, the following equation is calculates daylight hours:

DLt = 7.72 arccos

[
− tan

(
2πδ

360

)
tan(λt)

]
(4)

For our thesis we have use latitude 58.5, which is an average of the latitude for the

north and south part of NO2.
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The inclusion of this daylight hours calculation in the model highlights the importance

of considering natural light availability in power demand forecasting, particularly in re-

gions where daylight variation can significantly impact energy consumption behaviors.

The daylight hours variable will be denoted as DLt for this thesis. Finally, we added a

time trend variable denoted as TRt.

4.2 Models and statistics

In this section we will explain our research design and delineate the specifications of the

models intended for addressing our research inquiries. We will also give a brief explanation

of the different statistical measures used in this thesis.

4.2.1 Multiple Regression Model

Multiple regression model is a fundamental statistical method used for estimating the

unknown parameters in a linear regression model. The equation for the model is:

Yt = β0 + β1Xt,1 + β2Xt,2 + ...+ βpXt,p + ϵt (5)

The Ordinary Least Squares (OLS) regression model makes several key assumptions,

including linearity, independence, homoscedasticity, and normality. If these assumptions

are violated, the OLS-estimates may be inefficient, biased, or inconsistent. Despite these

potential issues, OLS-regression remains a popular method due to its simplicity, inter-

pretability, and the extensive theory developed around it. It is widely used in economet-

rics, finance, and other fields where causal relationships between variables are of interest.

It provides a foundation for understanding more complex regression techniques and serves

as a key tool in empirical research.

We have decided to use OLS-regression for our models and to address the assumptions

inherent in OLS-regression, we will test for the presence of serial correlation and het-

eroscedasticity in residuals. If one of those is present, we will estimate standard errors

of regression coefficients via the Newey and West, 1986 variance-covariance estimator

with automatic bandwidth selection procedure of Newey and West, 1994 and quadratic

spectral kernel weighting scheme as introduced by Andrews, 1991.
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Our interpretation of OLS-results will focus on the coefficient of determination, R2,

and the regression coefficients. R2 is a fundamental statistical measure used in regression

analysis. It quantifies the proportion of the variance in the dependent variable that can

be attributed to the independent variables (Hanck et al., 2024). R2 provides an indication

of the goodness of fit of a statistical model and is expressed as a value between 0 and 1.

A value close to 1 suggests that the model accounts for a large proportion of the variance

in the outcome variable. Conversely, a value near 0 suggests that the model explains very

little of the variability.

Regression coefficients provide valuable insights into the relationships between the pre-

dictor and response variables. In the context of OLS-regression, these coefficients are

estimated such that they minimize the sum of the squared residuals, thus providing the

best linear unbiased estimates (Hanck et al., 2024). Each coefficient represents the ex-

pected change in the response variable per unit change in the corresponding predictor

variable, assuming all other predictors are held constant. The sign of the coefficient

indicates the direction of the relationship; a positive sign denotes a direct relationship,

while a negative sign indicates an inverse relationship. The magnitude of the coefficient

illustrates the strength of the relationship. The interpretation of these coefficients is con-

tingent upon the scale of the variables and the assumptions of the regression model being

met.

4.2.2 Research Design

In the preceding chapter, we conducted a comprehensive examination of our dataset.

To address our research inquiries, we have devised specific methodological approaches.

Recall from Section 2.2 that prices for every hour of day t+ 1 are set at 12:00am at the

previous day t. It follows, that in order not to subject our analysis to a look-ahead bias,

our predictive regressions need to model the electricity price two-days ahead, i.e. using

information from day t to predict prices at day t+2 instead of t+1. The reason is, that

when data (e.g. daily temperature, production, market prices) at day t are revealed on

afternoon, electricity prices for next day are already set, i.e. publicly known, as illustrated

in Figure 12.
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Figure 12: Timeline of model predictions and price setting mechanisms

We fit two regression models with different inclusion of the electricity transmission

variables. If we let h denote a specific hour and t a specific day, the first specification is

as follows:

Pt+2,h = α + ϕT
hPt,h + βTCt + γT

h Lt,h + δT
hMt +

= ζT
h Wt,h + ηT

hGt + κT
hFh,1 + ϵh,t (6)

The column vectors ϕ,β,γ, δ, ζ,η,κ contain regression coefficients, and following col-

umn vectors control potential price drivers. Specifically, prices are stacked into the fol-

lowing vector:

P T
t,h = [Pt,h, Pt−5,h, Pt−12,h, Pt−19,h, Pt−26,h] (7)

The lags we employ utilize the fact, that electricity prices have weekly seasonality. There-

fore using lag Pt−5,h to predict Pt+2,h means that we are predicting electricity price using

price from the same hour, but seven days ago.

Calendar effects are stacked into the following vector:

CT
t = [MONt, TUEt, ..., SUNt, JANt, FEBt, ...., DECt, DLt, HDEt, TRt] (8)

Production, load and forecasted load are stacked into the following vector:

LT
t,h = [PRODt,h, LOADt,h, FORCt,h] (9)

Market variables are stacked into the following vector:

MT
t = [OILt, GASt, COALt, CO2t, USDt, EURt] (10)
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Weather and climate variables are stacked into the following vector:

W T
t,h = [HDt,h, CDt,h,WNDt,h, PRCt,h] (11)

Economic Uncertainty are stacked into the following vector:

GT
t = [GPUt, V IXt] (12)

Electricity transmissions are stacked into the following vector:

F T
h,1 = [IDKt,h, EDKt,h, INLt,h, ENLt,h, IGBt,h, EGBt,h,

IDEt,h, EDEt,h, INO1t,h, ENO1t,h, INO5t,h, ENO5t,h] (13)

Our second specification closely mirrors the first, albeit with modifications to the vector

encapsulating electricity transmission, denoted as F T
h,1. In this revised specification, the

variables are arranged within the vector as follows:

F T
h,1 = [INTIt,h, INTEt,h, NATIt,h, NATEt,h] (14)

The purpose of the revised specification is to examine electricity transmissions at an

aggregated level, which are divided into national and international segments. The aim is

to identify any significant effects that might not be immediately noticeable when analyzed

at a more detailed level.

Given the extensive nature of our dataset, which comprises hourly observations, we

have opted to implement separate models for each hour. This approach is specifically

tailored to our task of predicting electricity prices, as it aligns with the market’s hourly

mechanisms and enables us to capture the nuanced variations in price dynamics within

distinct time intervals.

53



4.2.3 Descriptive statistics

MMinimum (Min)

The minimum value in a dataset represents the lower extremity or bound of the obser-

vations. It is a crucial measure in descriptive statistics as it provides insights into the

range and potential limitations of the data. However, like the mean, the minimum can

be influenced by outliers and may not always reflect typical data behavior.

Maximum (Max)

The maximum value, conversely, represents the upper bound of a dataset. It is as crit-

ical as the minimum in understanding the range of the data. The maximum value can

highlight potential outliers or unusual observations within the dataset.

Mean

The arithmetic mean, commonly referred to as ’the average’, is a fundamental concept in

statistics and represents the central tendency of a dataset. It is calculated by summing

all observations and dividing by the count of observations:

x̄ =
1

n

n∑
i=1

xi (15)

While it is a useful measure, it is sensitive to extreme values or outliers, which can

distort the mean and may not accurately reflect the central tendency.

Median

The median is a measure of central tendency that represents the middle value in a sorted

dataset. Unlike the mean, the median is not affected by outliers or extreme values, making

it a more robust measure of central tendency for skewed distributions. If the dataset has

an even number of observations, the median is the average of the two middle numbers.

Skewness

Skewness quantifies the degree and direction of asymmetry in a probability distribution.

A distribution with zero skewness is perfectly symmetrical. Positive skewness indicates

a distribution with a longer or fatter right tail, while negative skewness signifies a longer

or fatter left tail.
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The equation for skewness as calculated in this thesis is as follows:

Skewness =
1
n

∑n
i=1(xi − x̄)3(

1
n

∑n
i=1(xi − x̄)2

) 3
2

(16)

Skewness is a crucial measure as it can influence statistical analyses and the selection

of appropriate statistical models.

Kurtosis

Kurtosis measures the tailedness or extremity of outliers in a distribution. The following

equation has been used for calculating kurtosis in this thesis:

Kurtosis =
1
n

∑n
i=1(xi − x̄)4(

1
n

∑n
i=1(xi − x̄)2

)2 − 3 (17)

High kurtosis indicates a distribution with heavy tails and a sharper peak, suggestive of

more extreme outliers. Conversely, low kurtosis indicates lighter tails and a flatter peak,

suggestive of fewer or less extreme outliers. Kurtosis is a critical measure in assessing the

risk of certain statistical models.

Autocorrelation

Autocorrelation, also known as serial correlation, is a statistical property where a given

time series is linearly related to a lagged version of itself. The equation for autocorrelation

is as follows:

ρk =

∑T
t=k+1(Yt − µ)(Yt−k − µ)∑T

t=1(Yt − µ)2
(18)

Autocorrelation is a key characteristic in many time series models. It can indicate

the presence of trend or seasonality in the data. To test the significance of the serial

correlation we will us the test of Escanciano and Lobato, 2009.
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Stationarity

Stationarity is a critical property for many time series models, implying that the statis-

tical properties of the series (like mean and variance) do not change over time (source).

Specifically, in time-series the assumption is less strict, expecting time-series to be co-

variance stationary, having a constant mean, variance and auto co-variance only.

The Augmented Dickey-Fuller (ADF) test is a unit root test used to determine the

stationarity of a time series. The ADF test uses an autoregressive model and optimizes

an information criterion across multiple different lag lengths. The null hypothesis of

the ADF test is that the time series possesses a unit root and is non-stationary. If the

ADF test statistic is less than the critical value, the null hypothesis can be rejected and

the time series can be considered stationary. This test is critical in the model selection

process of time series analysis and helps ensure that the assumptions of chosen models

are met. We employ the ADF-test on all variables to assess stationarity. If any variable

is found to be non-stationary, we will differentiate it with an appropriate lag.

The first step when performing the unit root test was to categorize the variables into

different groups based on their characteristics. The variables were divided into ’common’

and ’hourly’ based on whether they remained constant across hours or varied with each

hour. The ’common’ variables included days of the week, months, and certain economic

indicators, while the ’hourly’ variables included temperature, wind, precipitation, and

energy metrics. Additionally, variables were identified as:

• Dummies

• Seasonal - not dummy variables, but seasonal

• Normal - not dummy variables and not seasonal

The proper classification helped simplify the process of doing appropriate statistical

tests and analysis on each variable.

The ADF unit root test was performed at various lag lengths until a model devoid of

serial correlation was identified. If a variable was found to have a unit root, implying

it was non-stationary, a transformation was applied to make it stationary. This means

differentiating the variable, a process that help stabilize the mean of a time series by

removing changes in the level of a time series, and hence eliminating trend and seasonality.
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Escanciano and Lobato Portmanteau test for serial correlation

The Escanciano and Lobatos automatic Portmanteau test is an advanced statistical tool

used to identify the presence of serial correlation in a time series data set. The test

was developed by Escanciano and Lobato, 2009, as an improvement over the traditional

Ljung-Box Q test. Unlike the Ljung-Box test, which requires specification of a maximum

lag length, the Escanciano and Lobatos test is automatic, meaning it determines the

optimal lag length based on the data.

The test uses a consistent estimator of the long-run variance, making it robust to

heteroskedasticity and applicable to a wider range of data sets. This feature allows for

more accurate and reliable detection of serial correlation, particularly in financial and

economic time series where variance can change over time.

Volatility break identification procedure

In an effort to further dissect the price series, we have made the decision to separate it

into distinct price regimes. Rather than depending on arbitrary break dates, this method

employs an endogenous algorithm that utilizes the data itself to pinpoint breaks.

The algorithm in question is the Iterative Cumulative Sums of Squares (ICSS) algo-

rithm, developed by Inclan and Tiao, 1994. This algorithm is particularly effective in the

identification of abrupt changes in the variance of a time series. The ICSS algorithm is

not only sensitive to the presence of breaks, but also their timing and quantity.

Within the ICSS algorithm, we have chosen to apply the test proposed by Sanso et al.,

2003, specifically the κ2 test. This test provides a powerful tool for detecting multiple

breaks in the variance of a time series. The κ2 test is especially useful in situations where

the break dates are unknown and need to be estimated from the data. The implementa-

tion of this method follows the procedure that is publicly available from Baumöhl et al.,

2011. Baumöhl et al., 2011 provides a guide to the implementation of the ICSS algorithm

and the κ2 test.
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5 Data Analysis and Findings

5.1 Preprocessing

The preprocessing phase is divided into three sub-sections, each focusing on a different

group of variables.

5.1.1 Unit Root Test - Common Variables

The unit root test was performed at various lag lengths until a model devoid of serial

correlation was identified. In the conducted unit root tests, a total of six variables were

found to be non-stationary and hence needed differentiating. Variables that have been

differentiated will be labeled with ∆ in the preliminary analysis.

5.1.2 Unit Root Test - Seasonal Hourly Variables

The second stage of the analysis revolved around the ’hourly’ variables that demonstrated

seasonal patterns. Seasonality refers to periodic fluctuations in the variable that occur at

regular intervals, such as daily, weekly, or annually. Analyzing seasonal variables can be

challenging because their patterns repeat over time, which can complicate the modeling

process.

Table 3: Highest Observed Values of Auto Correlation
Variable Q3AC Hour Max AC Hour Transformation

Mean Temperature 0.373 12:00 0.864 04:00 NO

Mean Wind 0.364 11:00 0.905 12:00 NO

Mean Precipitation 0.299 06:00 0.862 03:00 NO

Heating Degrees 0.371 15:00 0.675 16:00 NO

Cooling Degrees 0.379 15:00 0.864 04:00 NO

Production 0.342 00:00 0.921 01:00 NO

One common approach to deal with seasonality is to examine the autocorrelation of

the time series. Autocorrelation measures the relationship between a variable’s current

value and its past values. In the context of seasonal variables, a high autocorrelation

might indicate a strong seasonal component.
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Seasonal data are seasonal in several dimension. The higher-level is annual and the

lower level is weekly seasonality that we account for in our model. We therefore examined

the auto-correlation of the hourly data at a given day but for different years. This leads

to many, but short-time series with only eight observations, which is not suitable for

any unit-root test. However, we examined the auto-correlation coefficient as for non-

stationary data, these tend to be close to 1 or −1. Apart from few cases (which can be

random by nature) we have found that most of the first-order auto-correlation coefficient

show limited persistence, as seen in Table 3, which led us to conclude that these variables

cannot be considered co-variance non-stationary.

5.1.3 Unit Root Test - Non-seasonal Hourly Variables

The third segment of the analysis was dedicated to conducting unit-root tests on the

’hourly’ variables that did not demonstrate seasonality. In the process of conducting this

analysis the results showed no indications of non-stationarity. Based on this, all variables

were kept in their original form.
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5.2 Preliminary Analysis

In this section, we will present the descriptive statistics for various components of the

dataset. This analysis aims to provide a comprehensive overview of the key quantitative

characteristics and distributions within the dataset, serving as a foundational exploration

of the data’s central tendencies, variability, and distributional properties.

Despite the inclusion of the automatic portmanteau test from the study of Escan-

ciano and Lobato, 2009 in the descriptive tables, this section will not provide a detailed

discussion on it. It is worth noting that the test results are significant for nearly all

variables, with only a few exceptions. Consequently, this leads to the dismissal of the

null hypothesis, which implies the detection of serial correlation in these variables.

5.2.1 Price - PT
t,h

In the following Figure spanning the period 01.01.2015 - 20.04.2023 we present the price

path of the variable of interest, the electricity price in NO2 in NOK. The marked dates

in Figure 13 correspond to significant events that could have potentially influenced elec-

tricity prices (see Appendix B). These events are categorized into five different groups:

Environmental(M), Geopolitical(G), Political(P), Financial (F), and Energy-related(E).

The resurgence of the COVID-19 pandemic, the war in Ukraine, and extremely low gas

reserves are mentioned as examples. Particularly relevant to this study is the official

opening of the overseas cable to Germany/Luxembourg on March 31st 2021 (E5) and the

cable to Great Britain on September 10th 2022 (E7). The opening of these cables has

linked the Norwegian energy market more closely with those in Germany, Luxembourg,

and Great Britain, making it more susceptible to price fluctuations in these markets

(Burger et al., 2014; Lago et al., 2018b; Uribe et al., 2020).

From the plot, it can be observed that the prices remain relatively stable during the

years 2015-2020. However, from 2021 onwards, there is a noticeable increase in volatility,

with extremely high peaks emerging from the fall of 2021. While there are fluctuations

in the 2015-2020 period as well, these are comparatively insignificant when juxtaposed

with the volatility displayed from 2021 onwards.
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Figure 13: Time Series Plot - Price NO2

The ICSS algorithm, as delineated in section 4.2, identifies two volatility shifts, occur-

ring on October 4, 2016, and August 8, 2021. Descriptive statistics for the NO2 price

over these three periods are provided in Table 4. Notably, these periods exhibit signifi-

cant disparities, particularly the final period spanning from August 8, 2021, to April 20,

2023, which displays a substantial increase in both range and standard deviation (SD).

The first quartile (Q1) value from this last period surpasses the maximum value from the

initial period. Moreover, the median value for the final period is nearly equivalent to the

maximum value for the second period. Even when inflation is factored in, the significant

surge in price levels cannot be attributed solely to this factor.
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Table 4: Price NO2 Periodic Split
Period Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7)

01.01.2015 - 03.10.2016 192 62.2 9.29 157 205 225 912 1.01 9.82 0.97 0.78

04.10.2016 - 07.08.2021 318 158 -19.2 246 313 418 1399 0.06 0.43 0.99 0.91

08.08.2021 - 20.04.2023 1731 1110 -19.7 1062 1383 1969 8225 1.81 3.65 0.98 0.86

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order, while Skew. and Kurt. are skewness and kurtosis, respectively.

Statistics are computed over the whole sample of 72.768 observations, starting from January 1st, 2015,

and ending on April 20th, 2023.

In summary, these statistics illustrate a significant change in price dynamics between

the three periods. This highlights the evolving nature of the electricity market and under-

scores the importance of considering temporal changes in market behavior for accurate

price analysis and forecasting. The marked increase in price volatility during the last pe-

riod indicates a period of increased uncertainty and risk in the electricity market. Finding

out which factor are the main drivers behind this change is something we will look more

into in the following chapters.

Table 5 shows the descriptive statistics for Price NO2 per hour in the observed period.

The highest observed mean value at hour 9 indicates a tendency for power prices to be

elevated during this specific hour. This observation aligns with the findings of Burger

et al., 2014, who attribute the surge in power consumption to the commencement of

daily routines for businesses and individuals. Hour 9 also has the lowest autocorrelation

suggesting that the price at this hour is less dependent on the price of the same hour

from the previous day, compared to the other hours. This could indicate that the other

factors influencing the price at this hour has a larger impact, making the price at this

hour more difficult to predict. This is also reflected in the high SD at this hour.
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Table 5: Descriptive Statistics Price NO2
Hour Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL

00:00 555 740 1.40 208 295 497 6238 3.39 14.3 0.97 0.92 ***

01:00 550 734 0.50 203 291 492 6475 3.40 14.5 0.96 0.90 ***

02:00 528 692 -0.45 198 284 481 6037 3.30 13.8 0.96 0.90 ***

03:00 515 674 -10.3 194 279 474 5967 3.31 14.0 0.96 0.89 ***

04:00 505 657 -19.2 191 277 469 5718 3.27 13.6 0.95 0.89 ***

05:00 508 658 -19.7 194 280 466 5816 3.28 13.9 0.95 0.89 ***

06:00 530 695 -10.1 204 287 481 6441 3.40 15.0 0.95 0.90 ***

07:00 563 745 0.10 213 305 508 6619 3.45 15.2 0.95 0.91 ***

08:00 613 831 0.80 222 324 545 7280 3.44 14.7 0.94 0.90 ***

09:00 645 883 4.11 227 342 583 7326 3.35 13.6 0.93 0.89 ***

10:00 634 861 7.86 227 338 564 7036 3.33 13.4 0.94 0.89 ***

11:00 615 820 9.04 225 333 547 6569 3.34 13.6 0.94 0.90 ***

12:00 598 788 9.26 223 325 537 6927 3.38 14.2 0.94 0.89 ***

13:00 579 750 9.41 220 319 526 6534 3.32 13.7 0.94 0.88 ***

14:00 567 731 7.29 218 315 520 6323 3.35 14.1 0.94 0.88 ***

15:00 560 727 3.05 216 309 515 5999 3.41 14.6 0.94 0.88 ***

16:00 570 748 5.88 215 311 522 6208 3.43 14.8 0.94 0.88 ***

17:00 592 788 6.59 217 322 533 6454 3.42 14.6 0.95 0.88 ***

18:00 624 846 9.13 221 334 557 7028 3.44 14.6 0.96 0.88 ***

19:00 639 879 10.4 223 335 559 7835 3.44 14.5 0.96 0.90 ***

20:00 636 892 10.0 222 327 547 8225 3.55 15.5 0.97 0.91 ***

21:00 620 871 8.81 221 320 527 8129 3.57 15.6 0.98 0.93 ***

22:00 603 831 8.81 220 315 523 7554 3.50 15.0 0.98 0.93 ***

23:00 585 793 4.15 217 307 516 6820 3.44 14.6 0.98 0.93 ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. Statistics are computed hourly with 3032 observations starting from January 1st, 2015, and

ending on April 20th, 2023.

Next, the highest SD at hour 20 indicates that the variability in power prices is greatest

at this time. A high SD suggests that prices are spread out over a larger range, meaning

there are days when the price is significantly higher or lower than the average. This could

be due to fluctuations in supply and demand effecting the equilibrium price as described

in Escribano et al., 2011. For example, in the evening, people return home and start using

electrical appliances more intensively, leading to a spike in demand. If the supply doesn’t

increase correspondingly, prices could surge, contributing to the high SD. The maximum

price is also being observed at hour 20, which could be a result of this heightened demand

outstripping supply.
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The highest skewness at hour 21 suggests that the distribution of prices during this hour

is positively skewed. This means that the tail on the right side of the distribution is longer

or fatter than the left side. In other words, there are a few instances of exceptionally high

prices during this hour, which pull the mean upwards. Similarly, the highest kurtosis at

hour 21 suggests that the distribution has heavier tails and a sharper peak. High kurtosis

indicates that data are subject to heavy tails or outliers, which means that there is

tendency towards extreme values. This could be due to sudden surges in demand or

supply constraints during this hour.

Time-series plots for Price NO2 for all hours can be found in Appendix B.

5.2.2 Production - LT
t,h

The time series plot for power production in NO2, as shown in Figure 14, illustrates a

noticeable seasonal pattern, with increased production during late autumn and winter

months corresponding to higher power demand due to heating and reduced daylight

hours. Conversely, lower production is observed during warmer months when demand

decreases (Escribano et al., 2011). The load plot in Figure 15 mirrors this seasonal

pattern, demonstrating the balance between supply and demand as we would expect

according to Chapter 2.

This link between consumption and production is also apparent when looking at the

hourly descriptives for the production variable as shown in Table 6. Firstly, there appears

to be a clear pattern in power production, with a peak during the late morning and early

afternoon hours, followed by a gradual decline towards the evening. This pattern aligns

with the skewness values, which also show a slight right skew during the morning and

early afternoon hours. This indicates that the majority of power production values are

clustered towards the lower end, with a tail extending towards higher values. Conversely,

a slight left skew during the evening and night hours suggests that most production values

are concentrated towards the higher end, with a tail extending towards lower values. In

simpler terms, right skewness implies that there are more lower production values with a

few exceptionally high values, while left skewness indicates the opposite, with more high

production values and a few exceptionally low values.
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Figure 14: Time Series Plot - Production NO2

The rather low skewness values are also reflected in the relationship between the mean

and median values. When the mean and the median follow each other closely like for this

variable, it generally indicates that the data is symmetrically distributed with minimal

skewness. In a symmetric distribution, the mean and median are close in value and may

even be equal, suggesting that the central tendency of the data is consistent. This implies

that there are minimal outliers or extreme values pulling the mean away from the center

of the distribution.

An interesting observation regarding the research questions in our thesis is that the

mean and median values for all hours are consistently higher for the production variable

than for the load variable (Table 7). This suggests that, on average, the production of

power in NO2 exceeds the load requirements throughout the observed period.
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Table 6: Descriptive Statistics Production NO2
Hour Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL

00:00 5267 1585 1039 4138 5075 6380 9562 0.26 -0.45 0.82 0.63 ***

01:00 4889 1609 730 3776 4738 5960 9169 0.26 -0.42 0.83 0.63 ***

02:00 4638 1626 698 3522 4472 5710 9198 0.30 -0.39 0.83 0.64 ***

03:00 4501 1636 706 3370 4322 5557 9284 0.33 -0.40 0.82 0.64 ***

04:00 4441 1653 714 3294 4274 5502 9274 0.34 -0.41 0.83 0.64 ***

05:00 4526 1702 704 3328 4354 5656 9134 0.30 -0.48 0.83 0.66 ***

06:00 4882 1787 707 3593 4770 6135 9413 0.20 -0.62 0.82 0.69 ***

07:00 5574 1950 903 4119 5448 7095 9891 0.03 -0.78 0.76 0.74 ***

08:00 6151 2058 932 4611 6066 7870 10259 -0.12 -0.83 0.73 0.78 ***

09:00 6401 2023 999 4891 6345 8109 10439 -0.21 -0.74 0.73 0.78 ***

10:00 6448 1982 975 4992 6440 8109 10386 -0.25 -0.63 0.76 0.76 ***

11:00 6395 1983 925 4981 6378 8044 10455 -0.25 -0.59 0.78 0.76 ***

12:00 6272 1993 853 4871 6228 7886 10429 -0.21 -0.58 0.79 0.76 ***

13:00 6129 2005 751 4746 6054 7747 10499 -0.16 -0.60 0.80 0.76 ***

14:00 6016 2026 460 4640 5926 7657 10440 -0.13 -0.63 0.80 0.76 ***

15:00 5959 2045 451 4553 5846 7596 10327 -0.10 -0.67 0.81 0.77 ***

16:00 6011 2066 466 4550 5934 7664 10370 -0.09 -0.73 0.83 0.78 ***

17:00 6167 2058 530 4698 6108 7864 10516 -0.11 -0.78 0.84 0.79 ***

18:00 6402 2002 1035 4891 6359 8110 10772 -0.16 -0.81 0.85 0.79 ***

19:00 6512 1897 1092 5041 6492 8074 10610 -0.14 -0.83 0.85 0.77 ***

20:00 6483 1782 1224 5067 6495 7906 10200 -0.07 -0.82 0.85 0.73 ***

21:00 6289 1713 1273 4962 6206 7608 10247 0.01 -0.78 0.84 0.69 ***

22:00 6087 1679 1166 4828 5957 7381 10029 0.07 -0.70 0.83 0.67 ***

23:00 5737 1616 1162 4557 5568 6954 9880 0.16 -0.57 0.82 0.64 ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. Statistics are computed hourly with 3032 observations starting from January 1st, 2015, and

ending on April 20th, 2023.

The surplus in power production suggests that the trend of electricity transmission

in NO2 is oriented more towards export than import, supporting the idea of Norway as

"Europes Battery" (“How Norway can become Europe’s battery”, n.d.). We will examine

this further when looking at the descriptive statistics for Electricity Transmission in

Chapter 5.5.

In general, Table 6 offers a statistical examination of the NO2 production for every hour

in a day. Looking at the statistical measures the mean NO2 production varies throughout

the day, with the lowest average production observed at 03:00 and the highest at 19:00.

The SD also fluctuates, with the smallest at 23:00 and the largest at 16:00.
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The minimum and maximum values provide the range of the NO2 production, which

spans from 451 to 10772. The 1st quartile (Q1), median, and 3rd quartile (Q3) values

provide a snapshot of the data distribution at each hour. These values change throughout

the day, reflecting the changing distribution of production in NO2.

The autocorrelation values at lag 1 and 7 (ρ(1) and ρ(7)) are moderately high, in-

dicating a significant positive correlation between the NO2 production values and their

respective values at 1 and 7 days prior. This suggests a temporal dependency in the

NO2 production data. The lowest observed autocorrelation appears at 08:00 and 09:00.

This could mean that during these hours, other external factors exert a greater impact

on NO2 production. This is also supported by the SD for those hours, which are close to

the maximum observed values.

5.2.3 Load - LT
t,h

As mentioned in section 5.2.2 the load variable follows a clear, seasonal pattern closely

mirroring the production variable as seen in Figure 15. In addition, this figure provides

insights into the energy consumption habits of the Norwegian population. It shows that

energy usage is not constant throughout the year, but varies in response to seasonal

changes as highlighted by Burger et al., 2014.

Figure 15: Time Series Plot - Load NO2
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As indicated in the literature review, we anticipate observing correlations between

electricity load and prices (Burger et al., 2014). The electricity market is intricate, and it

will be interesting to investigate whether the impact of the load is substantial or if other

factors have a greater influence on price trends in the day-ahead market.

Figure 15 also illustrates the pattern of the forecasted load. As anticipated, this pattern

aligns with that of the load variable. Given the unique mechanisms of the electricity

markets, as detailed in Chapter 2, it is expected that these variables will follow each

other closely. Therefore, we will not conduct a more detailed investigation of this variable

within this section.

Table 7 provides a statistical analysis of NO2 load for each hour of the day. The mean

NO2 load fluctuates across the day, with the lowest average load observed at 03:00 and

the highest at 10:00. The SD also sees fluctuations, with the lowest at 00:00 (630) and

the highest at 07:00. As with the production variable, there is a clear link between high

SD and low autocorrelation in the morning hours from 07:00 to 09:00. This confirms the

strong connection between the production and load variables, and further underscores

the heightened impact of external factors during these hours. The autocorrelation values

at lag 1 and 7 in general are high, suggesting a strong positive correlation between the

NO2 load values and their respective values at 1 and 7 days prior.

The minimum and maximum values, ranging from 1595 to 8700, indicate the range of

the observed load in NO2. For example, at 03:00, 25% of the values are below 3124 (Q1),

50% are below 3664 (Median), and 75% are below 4218 (Q3). These quartile values shift

throughout the day, reflecting the changing distribution of NO2 production.

The data distribution is mostly symmetrical with fewer outliers, indicated by positive

skewness and negative kurtosis values. The positive skewness suggests higher production

values, with a tail towards lower values. The negative kurtosis implies that extreme values

are rarer, and data points are more clustered around the mean.
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Table 7: Descriptive Statistics Load NO2
Hour Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL

00:00 3813 630 2488 3247 3761 4318 5920 0.37 -0.74 0.97 0.90 ***

01:00 3742 633 2630 3170 3698 4248 5735 0.36 -0.77 0.97 0.90 ***

02:00 3712 641 2481 3132 3668 4214 6901 0.39 -0.56 0.95 0.89 ***

03:00 3706 640 2156 3124 3664 4218 5733 0.32 -0.82 0.97 0.90 ***

04:00 3726 656 2324 3122 3706 4252 5811 0.30 -0.84 0.97 0.89 ***

05:00 3799 688 2376 3176 3775 4346 6039 0.29 -0.85 0.96 0.90 ***

06:00 4013 751 2273 3353 3988 4606 7363 0.32 -0.60 0.93 0.89 ***

07:00 4253 820 2142 3572 4198 4893 8515 0.34 -0.35 0.88 0.88 ***

08:00 4347 813 1898 3663 4296 4974 8700 0.38 -0.25 0.89 0.88 ***

09:00 4360 777 1860 3696 4322 4957 8674 0.43 -0.12 0.91 0.88 ***

10:00 4364 757 1621 3695 4323 4944 8067 0.41 -0.32 0.93 0.88 ***

11:00 4326 745 1753 3673 4261 4904 8106 0.47 -0.16 0.93 0.88 ***

12:00 4291 729 1771 3649 4225 4866 7520 0.43 -0.42 0.94 0.89 ***

13:00 4261 724 1595 3632 4180 4830 7435 0.41 -0.51 0.93 0.89 ***

14:00 4247 722 1855 3628 4161 4820 7233 0.41 -0.60 0.94 0.89 ***

15:00 4243 738 2203 3602 4143 4833 7085 0.41 -0.71 0.93 0.90 ***

16:00 4267 764 2211 3600 4148 4888 7508 0.41 -0.71 0.94 0.90 ***

17:00 4274 774 2242 3580 4154 4912 8076 0.43 -0.60 0.95 0.89 ***

18:00 4274 769 2746 3574 4182 4917 8191 0.42 -0.55 0.95 0.89 ***

19:00 4264 748 2940 3584 4194 4870 8130 0.42 -0.41 0.95 0.88 ***

20:00 4225 724 2985 3572 4178 4798 8151 0.45 -0.15 0.94 0.87 ***

21:00 4164 696 2918 3537 4128 4700 8044 0.46 -0.05 0.94 0.86 ***

22:00 4064 661 2914 3467 4026 4579 7606 0.47 -0.18 0.95 0.86 ***

23:00 3928 635 2760 3355 3884 4423 7000 0.45 -0.43 0.95 0.87 ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. Statistics are computed hourly with 3032 observations starting from January 1st, 2015, and

ending on April 20th, 2023.
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5.2.4 Weather and Climate - WT
t,h

Figure 16 presents a time series plot for three key meteorological variables: precipitation,

wind speed, and temperature, as elaborated in Chapter 4.1.1.

Figure 16: Time Series Plots - Weather NO2

As depicted in Figure 16, these variables behave as anticipated, exhibiting signs of

seasonal fluctuations, particularly in the temperature plot. Both wind and precipitation

demonstrate indications of outliers, potentially symbolizing extreme weather events.

For the sake of brevity, we have opted to present the descriptive statistics for selected

hours only for these variables, as seen in Table 8. We have chosen hours 04:00, 09:00,

16:00, and 20:00 as they exhibit the most interesting characteristics from our analysis of

Price, Production and Load, while also covering different periods of the day.

The temperature data shows a predictable daily fluctuation, with cooler temperatures

at night and warmer temperatures during the day. The distribution appears symmetric, as

indicated by low, negative skewness and kurtosis values. High autocorrelation is observed,

as expected. Heating Degrees follows the average temperature’s daily pattern but has

fewer observations due to NO2’s climate conditions, resulting in extreme skewness and

kurtosis values. Cooling Degrees aligns with the Mean Temperature, with no significant

deviations beyond what is expected.
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Table 8: Descriptive Statistics Weather and Climate
Name Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL

Panel A: Hour 03:00 - 04:00

Mean Temperature 5.36 5.71 -13.0 1.44 5.21 10.1 20.9 -0.30 -0.39 0.91 0.74 ***

Mean Wind 4.60 2.17 1.18 2.97 4.10 5.72 15.4 1.17 1.46 0.40 0.10 ***

Mean Precipitation 0.17 0.40 0.00 0.00 0.01 0.16 6.72 5.20 43.5 0.16 -0.01 ***

Cooling Degrees 0.02 0.61 0.00 0.00 0.00 0.00 20.9 31.9 1021 0.30 0.00

Low Degrees 5.35 5.69 -13.0 1.42 5.20 10.0 17.8 -0.31 -0.40 0.90 0.73 ***

Panel B: Hour 08:00 - 09:00

Mean Temperature 6.45 6.32 -12.4 2.12 5.98 11.9 23.4 -0.18 -0.53 0.94 0.79 ***

Mean Wind 4.74 2.08 1.02 3.20 4.37 5.85 14.4 1.05 1.22 0.38 0.07 ***

Mean Precipitation 0.17 0.37 0.00 0.00 0.01 0.16 3.72 4.23 24.1 0.13 0.01 ***

Cooling Degrees 0.26 2.22 0.00 0.00 0.00 0.00 23.4 8.60 72.3 0.47 0.11 ***

Heating Degrees 6.19 6.18 -12.4 1.88 5.66 11.7 17.9 -0.21 -0.60 0.88 0.73 ***

Panel C: Hour 15:00 - 16:00

Mean Temperature 8.59 6.63 -9.93 3.53 8.17 14.3 25.9 -0.04 -0.75 0.96 0.84 ***

Mean Wind 5.53 2.06 1.22 4.06 5.23 6.68 18.2 0.92 1.44 0.35 0.01 ***

Mean Precipitation 0.16 0.33 0.00 0.00 0.01 0.16 3.28 3.45 15.1 0.10 0.01 ***

Cooling Degrees 1.48 5.23 0.00 0.00 0.00 0.00 25.9 3.29 8.90 0.75 0.40 ***

Heating Degrees 7.12 6.13 -9.93 2.26 6.58 12.7 18.0 -0.01 -0.96 0.82 0.59 ***

Panel D: Hour 19:00 - 20:00

Mean Temperature 7.36 6.59 -11.6 2.52 6.85 13.1 25.2 -0.09 -0.66 0.95 0.83 ***

Mean Wind 5.13 2.14 1.24 3.56 4.76 6.28 18.2 1.09 1.80 0.34 0.03 ***

Mean Precipitation 0.17 0.36 0.00 0.00 0.01 0.16 3.23 3.70 16.9 0.08 0.02 ***

Cooling Degrees 0.82 3.92 0.00 0.00 0.00 0.00 25.2 4.61 19.4 0.65 0.31 ***

Heating Degrees 6.54 6.23 -11.6 1.78 6.11 12.2 18.0 -0.10 -0.79 0.85 0.67 ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. Statistics are computed hourly with 3032 observations starting from January 1st, 2015, and

ending on April 20th, 2023.

Wind patterns follow a similar cycle, but have positive values in skewness and kurtosis

indicating a certain degree of asymmetry in the distribution. The autocorrelation is

notably lower, which is logical considering the greater day-to-day variation we anticipate

in wind patterns.

Unlike temperature and wind, precipitation does not exhibit a consistent daily pattern.

The median value stands at 0.01, implying that approximately half of the days experience

virtually no rainfall. Consequently, the high maximum values contribute to elevated

skewness and kurtosis values. The autocorrelation, as anticipated, is low.
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5.2.5 Market Variables - MT
t

Figure 17 presents the time series for key financial variables oil, gas, coal, and CO2

prices. These variables have been identified as significant drivers of electricity prices in

the existing literature (Bublitz et al., 2017; Gran et al., 2023; Huisman et al., 2014; Weron,

2014). While the plot displays the actual variables, the analysis will utilize differentiated

variables as discussed in chapter 5.1.

Figure 17: Time Series Plots - Market Variables

The time series data reveals a substantial price increase across all financial instruments

from 2020 to 2021, a period known for a similar surge in electricity prices as seen in

Section 5.2.1. This concurrent rise suggests potential causal relationship. Particularly

for Coal Price and Gas Price, the parallels with the plot for Electricity Price are markedly

evident.

The figure also contains exchange rates for Euro and US Dollar against the Norwegian

Krone (NOK) as discussed in section 4.1.1. These plots exhibit a comparable trend in

their valuation relative to the NOK.
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Table 9 shows descriptive statistics for the differentiated variables, as apparent by their

mean and median values. The SDs vary across the variables, with Coal Price showing

the highest variability (SD = 5.23) and the NOK/EUR exchange rate showing the lowest

(SD = 0.05).

Table 9: Descriptive Statistics Market Variables

Name Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL ADF

Gas Price 0.01 3.92 -66.6 -0.15 0.00 0.16 45.4 -1.64 78.5 0.12 -0.09 *** ∆

Oil Price 0.01 1.36 -16.8 -0.24 0.00 0.41 12.1 -0.97 18.1 -0.03 -0.10 *** ∆

Co2 Price 0.03 0.99 -16.1 -0.04 0.00 0.07 8.14 -1.56 41.7 -0.01 -0.03 *** ∆

Coal Price 0.02 5.23 -96.7 -0.15 0.00 0.20 122 1.47 200 -0.05 0.02 *** ∆

NOK/EUR 0.00 0.05 -0.29 -0.01 0.00 0.01 0.62 1.23 19.1 -0.02 0.07 ∆

NOK/USD 0.00 0.06 -0.45 -0.02 0.00 0.02 0.70 0.59 13.9 0.00 0.02 ∆

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. ∆ denotes a variable that was differentiated because it was not considered to be stationary as

indicated via our testing procedure. Statistics are computed over the whole sample of 72.768 observations,

starting from January 1st, 2015, and ending on April 20th, 2023.

Negative skewness values for gas, oil, and CO2 prices suggest left-skewed distributions,

potentially indicating a concentration of higher values and longer left tails. In contrast,

the positive skewness for coal, NOK/EUR, and NOK/USD suggests right-skewed dis-

tributions, potentially indicating a concentration of lower values and longer right tails.

The kurtosis values shows higher kurtosis values for gas, oil, and CO2 prices indicate

heavy-tailed distributions with potential outliers and more extreme values. The very

high kurtosis for coal price further emphasizes the heavy-tailed nature of its distribution,

suggesting significant potential for extreme price movements.

5.2.6 Economic Uncertainty - GT
t

The plots presented in Figure 18 show the VIX-index and GEPU-indicator over the

observed period.

The time series under consideration serve a common purpose, yet they exhibit differ-

ences in the aspects they reflect. While the plots reveal similarities in their trends, they

do not precisely follow each other. Notably, both plots exhibit a distinct peak in January
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Figure 18: Time Series Plots - VIX-index and GEPU-indicator

2020, coinciding well with the onset of the official COVID-19 outbreak. Furthermore, the

GEPU-indicator displays a prominent peak in June 2016, aligning with the period of the

Brexit referendum.

The observed similarities and divergences in the time series plots indicate both shared

and unique underlying drivers influencing the variables of interest. Despite the overall

resemblance in their developments, the deviations suggest the presence of additional

factors that contribute to the dynamics of each series. In relation to our thesis including

both these variables will give a better understanding of the effect of economic uncertainty

on the price of electricity in NO2.
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Table 10: Descriptive Statistics GEPU and VIX

Name Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL

GEPU-indicator 1000 487 336 671 876 1237 7298 2.34 13.7 0.89 0.83 ***

VIX-index 18.8 7.54 9.14 13.4 17.2 22.5 82.7 2.30 10.4 0.95 0.89 ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. Statistics are computed over the whole sample of 72.768 observations, starting from January

1st, 2015, and ending on April 20th, 2023.

Table 10 presents the descriptive statistics of the GEPU-indicator and VIX-index.The

mean value of the GEPU-indicator is 1000, with a SD of 487, indicating a considerable

dispersion in the data. The minimum and maximum values are 336 and 7298, respectively,

highlighting the broad range of the data. The skewness and kurtosis values of 2.34 and

13.7, respectively, suggest a positively skewed and leptokurtic distribution, indicating a

greater likelihood of extreme values than in a normal distribution.

The VIX-index has a mean value of 18.8 and a SD of 7.54, reflecting a lower level of

dispersion compared to the GEPU-indicator. The minimum and maximum values are 9.14

and 82.7, respectively. The skewness and kurtosis values of 2.30 and 10.4, respectively,

again suggest a positively skewed and leptokurtic distribution.

Both variables exhibit elevated autocorrelation values, signifying a substantial level of

serial correlation.

5.2.7 Electricity Transmission - FT
h,1

Figure 19 presents a time series plot of the net electricity flow between the NO2 region

and all interconnected countries and national zones. The net flow is calculated by adding

together all inbound electricity per hour in one variable and all outbound electricity per

hour in another variable. The inbound variable is then subtracted from the outbound

variable. Consequently, when the net flow variable is positive, it indicates that the export

from NO2 exceeds its import from other areas.

This figure provides a visual understanding of the situation in the NO2 region. As

can be seen, the net flow variable predominantly resides on the positive side, suggesting
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that NO2 has a surplus of power and leans toward export of electricity to other regions.

However, there are notable periods dominated by import, particularly in the years 2019

and 2022.

Figure 19: Electricity Transmissions NO2

Moreover, a relatively distinct seasonal pattern is evident in the plot. The export of

electricity is considerably higher in the colder months, reflecting the increased demand for

heating during this period and a lower production capacity in solar power. Conversely,

the net flow tends to approach zero or become negative during the summer months,

indicating a decrease in export or an increase in import. This could be attributed to

the lower demand for heating and the potential increase in renewable energy production,

such as solar power, during these months.

Given that hydroelectric power accounts for 90% of the production in the NO2 region

(“Om magasinstatistikken - NVE”, n.d.), it is reasonable to assume that lower reservoir

levels also could significantly influence this scenario. Hydroelectric power generation is

heavily dependent on the water levels in the reservoirs. In periods of low reservoir levels,

the capacity for hydroelectric power generation may be reduced, potentially leading to

decreased electricity exports or increased imports.
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This could particularly impact the net electricity flow in months when the demand for

electricity is high, and the reservoir levels are low due to less rainfall or lack of snowmelt.

Conversely, during the wetter months, when reservoir levels are typically replenished, the

capacity for hydroelectric power generation can increase, potentially leading to higher

electricity exports (Gran et al., 2023; Huisman et al., 2014).

Figure 20: Time Series Plots - Aggregated Flows

Figure 20 provides a more detailed breakdown of the net electricity flow, dividing

it into smaller categories. International Import and Export depict the flow through

overseas cables, while National Import and Export represent the electricity flow within

the Norwegian price zones.

When examining the export and import from other countries, intriguing patterns

emerge. The time series data appear much more balanced, suggesting that the inter-

nal connections within Norway are primarily responsible for the frequently positive net

flow. This is further corroborated when we examine the national flow, where export

shows broader and longer-lasting peaks. Although the import has the same volume at its
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peak, it appears to be much more transient.

Additionally, there is a seasonal variation in the national flow. We see more national

export during the winter months, likely due to the higher demand for electricity for

heating purposes. Conversely, we observe more import during the summer months. This

could be attributed to potentially lower production in NO2 due to reduced hydroelectric

power generation as reservoir levels may be lower during these drier months.

Another factor that becomes apparent in this figure is the export limitation in the

overseas cables up until 2021. It is noticeable in the time series for foreign export that

there has been a maximum limit of around 2250 during this period. There is a clear line

at the top up until 2021, indicating this cap on foreign export.

Subsequently, we observe an increase in export, which aligns with the opening of the

new overseas cable to Germany and Luxembourg in the spring of 2021, and later to Great

Britain in the fall of 2022. This development in the international energy infrastructure

has likely played a significant role in the observed increase in foreign export.

This underlines the importance of infrastructure capacity in influencing electricity

flows. The opening of these cables has linked the Norwegian energy market more closely

with those in Germany, Luxembourg, and Great Britain, increasing the capacity for elec-

tricity export. This highlights the need for considering infrastructural developments and

capacity constraints when analyzing and forecasting electricity market dynamics.

For electricity transmissions we have again decided to present descriptive statistics for

selected hour only. Table 11 presents the descriptive statistics for total import and export

variables, further divided into international and national flows. It is observed that the

sum of national and international exports approximates the total export value, barring

minor discrepancies attributable to rounding errors.
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Table 11: Descriptive Statistics Electricity Transmission
Name Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL

Panel A: Hour 03:00 - 04:00

Export 1687 1000 0.00 917 1606 2308 5000 0.50 -0.22 0.74 0.53 ***

Import 1065 813 0.00 401 957 1543 4693 0.93 0.98 0.68 0.50 ***

International Export 1059 1023 0.00 146 706 1684 4858 1.09 0.84 0.70 0.48 ***

International Import 610 801 0.00 0.00 160 1106 4693 1.51 2.57 0.63 0.36 ***

National Export 628 772 0.00 0.00 264 1100 3652 1.20 0.66 0.81 0.60 ***

National Import 455 630 0.00 0.00 173 649 3059 1.60 1.75 0.82 0.63 ***

Panel B: Hour 08:00 - 09:00

Export 2523 1128 0.00 1744 2514 3416 6019 -0.09 -0.65 0.68 0.65 ***

Import 618 681 0.00 150 370 871 4630 1.84 3.93 0.62 0.57 ***

International Export 1528 947 0.00 730 1555 2041 4727 0.52 0.35 0.60 0.53 ***

International Import 258 584 0.00 0.00 0.00 103 4630 3.01 10.8 0.46 0.54 ***

National Export 996 952 0.00 41.5 792 1773 4130 0.63 -0.73 0.81 0.69 ***

National Import 360 475 0.00 33.0 216 445 3078 2.26 5.43 0.79 0.68 ***

Panel C: Hour 15:00 - 16:00

Export 2327 1157 0.00 1446 2239 3226 5936 0.12 -0.79 0.76 0.65 ***

Import 711 749 0.00 176 443 1056 4513 1.58 2.42 0.64 0.54 ***

International Export 1299 939 0.00 666 1259 1907 4702 0.69 0.43 0.64 0.49 ***

International Import 407 696 0.00 0.00 0.00 650 4137 1.99 3.84 0.54 0.34 ***

National Export 1028 944 0.00 91.8 846 1768 4419 0.61 -0.69 0.83 0.66 ***

National Import 304 433 0.00 0.00 162 400 2651 2.36 5.99 0.79 0.66 ***

Panel D: Hour 19:00 - 20:00

Export 2638 1078 0.00 1852 2614 3497 5427 -0.04 -0.70 0.77 0.57 ***

Import 563 588 0.00 159 372 753 3378 1.66 2.65 0.70 0.57 ***

International Export 1716 934 0.00 1050 1716 2140 4848 0.65 0.52 0.70 0.50 ***

International Import 168 432 0.00 0.00 0.00 0.00 3250 3.22 11.6 0.46 0.23 ***

National Export 921 917 0.00 0.00 686 1645 3654 0.68 -0.66 0.87 0.71 ***

National Import 396 484 0.00 67.0 245 491 2714 2.06 4.33 0.83 0.71 ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. Statistics are computed hourly with 3032 observations starting from January 1st, 2015, and

ending on April 20th, 2023.
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Across all hours and for all variables, export values exceed import values, reaffirming

Norway’s role as Europe’s battery, as referenced in “How Norway can become Europe’s

battery”, n.d.

A noteworthy pattern emerges in the export variables in Panels B, C and D, where both

mean and median values see a significant upswing compared to Panel A. This surge can

likely be attributed to the increased production and load demand during waking hours,

as indicated in Tables 6 and 7.

Contrastingly, the import variables exhibit an inverse trend, with higher mean and

median values typically recorded during the hour of 04:00 as opposed to the remaining

selected hours.

The kurtosis of the data is predominantly lepotkurtic, with the exception of the to-

tal export and national export variables, which exhibit platykurtic tendencies across all

hours, save for the national export during the 04:00 hour. This implies that the total

export and national export variables are subject to a lower frequency of outliers.

Table 12 provides descriptive statistics for national electricity transmission in Norway,

focusing on import and export variables during selected hours. The variables are further

divided based on the regions NO1 and NO5. The table gives interesting insights into the

internal mechanisms in the Norwegian electricity market. Upon examining the data, we

discern a significant disparity between NO1 and NO5 in their relation to NO2. For NO1,

the mean export value consistently surpasses the mean import value across all hours,

indicating a predominant trend of exporting electricity. Conversely, NO5 demonstrates

the opposite pattern, with the mean import value generally exceeding the mean export

value.

Moreover, the overall volume for NO5 is considerably lower than that for NO1, sug-

gesting a lesser degree of electricity transmission activity in the former region.

Additionally, the SD is notably high for all hours in both regions. This high variability

implies a substantial fluctuation in volume, indicating that the quantity of electricity

imported and exported is not constant but varies significantly across different hours.
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Table 12: Descriptive Statistics National Electricity Transmission
Name Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL

Panel A: Hour 03:00 - 04:00

Import NO1 265 488 0.00 0.00 0.00 343 2390 2.00 3.20 0.82 0.64 ***

Export NO1 568 714 0.00 0.00 206 1034 3296 1.19 0.66 0.81 0.59 ***

Import NO5 191 211 0.00 0.00 117 348 925 0.84 -0.39 0.75 0.53 ***

Export NO5 59.9 107 0.00 0.00 0.00 81.2 552 1.86 2.59 0.70 0.46 ***

Panel B: Hour 08:00 - 09:00

Import NO1 131 352 0.00 0.00 0.00 0.00 2423 3.20 10.3 0.76 0.66 ***

Export NO1 968 936 0.00 0.00 784 1729 4130 0.61 -0.79 0.82 0.69 ***

Import NO5 229 202 0.00 24.0 200 381 864 0.54 -0.76 0.73 0.56 ***

Export NO5 27.2 74.0 0.00 0.00 0.00 0.00 534 3.24 10.6 0.50 0.35 ***

Panel C: Hour 15:00 - 16:00

Import NO1 111 318 0.00 0.00 0.00 0.00 1909 3.40 11.5 0.77 0.67 ***

Export NO1 987 918 0.00 10.0 819 1704 4293 0.59 -0.72 0.83 0.67 ***

Import NO5 193 193 0.00 0.00 149 333 851 0.72 -0.54 0.75 0.54 ***

Export NO5 40.7 87.0 0.00 0.00 0.00 20.0 456 2.34 4.78 0.58 0.34 ***

Panel D: Hour 19:00 - 20:00

Import NO1 145 361 0.00 0.00 0.00 0.00 2273 2.92 8.21 0.82 0.70 ***

Export NO1 899 903 0.00 0.00 670 1614 3465 0.66 -0.74 0.87 0.71 ***

Import NO5 251 203 0.00 60.0 230 408 918 0.41 -0.83 0.79 0.57 ***

Export NO5 21.8 65.4 0.00 0.00 0.00 0.00 450 3.60 13.4 0.58 0.31 ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. Statistics are computed hourly with 3032 observations starting from January 1st, 2015, and

ending on April 20th, 2023.

The skewness and kurtosis of the data reveal that the distribution of import and export

variables is skewed towards higher values, with a few exceptions. The Import NO1 and

Export NO5 variables exhibit high positive skewness and kurtosis values, suggesting a

higher frequency of outliers.

In terms of autocorrelation, the ρ(1) and ρ(7) values are generally high across all

variables and hours, indicating a strong correlation between the current and past values

of these variables. The exception is Export NO5 which shows a moderate autocorrelation

during waking hours. A lower autocorrelation infers that this variable experiences swift

alterations, which is further evidenced by high skewness, kurtosis, and SD.
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Table 13: Descriptive Statistics International Electricity Transmission
Name Mean SD Min Q1 Median Q3 Max Skew. Kurt. ρ(1) ρ(7) EL

Panel A: Hour 03:00 - 04:00

Import DK 415 551 0.00 0.00 0.00 850 1623 0.95 -0.64 0.57 0.34 ***

Export DK 468 580 0.00 0.00 21.5 980 1633 0.78 -0.96 0.56 0.33 ***

Import GB 162 329 0.00 0.00 0.00 6.00 1150 1.85 1.93 0.59 0.33 ***

Export GB 398 483 0.00 0.00 3.00 694 1400 0.68 -1.08 0.76 0.52 ***

Import NL 95.3 215 0.00 0.00 0.00 0.00 732 2.11 2.89 0.58 0.39 ***

Export NL 347 313 0.00 0.00 398 704 707 -0.00 -1.80 0.71 0.56 ***

Import DELU 208 427 0.00 0.00 0.00 41.5 1447 1.86 1.89 0.55 0.23 ***

Export DELU 537 513 0.00 0.00 470 989 1407 0.42 -1.29 0.50 0.16 ***

Panel B: Hour 08:00 - 09:00

Import DK 168 391 0.00 0.00 0.00 0.00 1615 2.36 4.41 0.39 0.31 ***

Export DK 785 577 0.00 69.5 876 1286 1635 -0.17 -1.43 0.45 0.36 ***

Import GB 103 267 0.00 0.00 0.00 0.00 1150 2.68 6.15 0.57 0.28 ***

Export GB 450 481 0.00 0.00 280 699 1400 0.49 -1.26 0.75 0.58 ***

Import NL 29.4 124 0.00 0.00 0.00 0.00 732 4.55 20.1 0.23 0.31 ***

Export NL 465 284 0.00 204 615 704 707 -0.75 -1.11 0.65 0.60 ***

Import DELU 130 342 0.00 0.00 0.00 0.00 1446 2.66 5.82 0.37 0.16 ***

Export DELU 628 504 0.00 132 585 1102 1407 0.23 -1.33 0.45 0.24 ***

Panel C: Hour 15:00 - 16:00

Import DK 256 455 0.00 0.00 0.00 359 1617 1.63 1.31 0.46 0.23 ***

Export DK 623 584 0.00 0.00 584 1160 1633 0.28 -1.45 0.48 0.28 ***

Import GB 98.6 273 0.00 0.00 0.00 0.00 1399 2.81 6.85 0.50 0.29 ***

Export GB 507 497 0.00 0.00 574 1050 1400 0.31 -1.41 0.69 0.59 ***

Import NL 59.5 173 0.00 0.00 0.00 0.00 732 2.93 7.32 0.45 0.41 ***

Export NL 424 300 0.00 0.00 505 704 707 -0.47 -1.52 0.68 0.61 ***

Import DELU 256 455 0.00 0.00 0.00 328 1432 1.53 0.76 0.40 0.24 ***

Export DELU 466 477 0.00 0.00 364 776 1407 0.67 -0.84 0.46 0.22 ***

Panel D: Hour 19:00 - 20:00

Import DK 128 339 0.00 0.00 0.00 0.00 1623 2.83 7.09 0.42 0.19 ***

Export DK 845 570 0.00 290 950 1332 1633 -0.28 -1.33 0.52 0.24 ***

Import GB 43.4 175 0.00 0.00 0.00 0.00 1099 4.46 20.0 0.39 0.24 ***

Export GB 587 500 0.00 2.00 694 1086 1400 0.04 -1.46 0.79 0.65 ***

Import NL 8.46 61.7 0.00 0.00 0.00 0.00 731 8.77 83.6 0.28 0.08 ***

Export NL 524 255 0.00 424 703 705 707 -1.22 -0.03 0.81 0.66 ***

Import DELU 72.6 246 0.00 0.00 0.00 0.00 1436 3.74 13.72 0.38 0.17 ***

Export DELU 763 489 0.00 404 761 1221 1407 -0.18 -0.18 0.47 0.15 ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respectively; ρ(.) is

the autocorrelation of the given order; EL represents the p-value of the (Escanciano & Lobato, 2009)

automatic portmanteau test of serial correlation, while Skew. and Kurt. are skewness and kurtosis,

respectively. Statistics are computed hourly with 3032 observations starting from January 1st, 2015, and

ending on April 20th, 2023. For DELU and GB statistics are computed starting from January 1st, 2021,

and ending on April 20th, 2023.
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Table 13 illustrates the descriptive statistics for international electricity transmission,

focusing on import and export variables during selected hours. The variables are fur-

ther divided based on the regions of Denmark (DK), Great Britain (GB), Netherlands

(NL), and Germany/Luxembourg (DELU). This table offers a detailed overview of the

international electricity market dynamics involving Norway NO2.

A critical observation from the data reveals distinct patterns in the relation of these

regions to NO2. All areas import more electricity from NO2 than they export to it,

once again reinforcing Norway being referenced as "Europes Battery" (“How Norway can

become Europe’s battery”, n.d.). Notably, the overall volume for GB and NL is lower

than that for DK and DELU, suggesting a lesser degree of electricity transmission activity

and capacity in the former regions.

The SD is high for all hours in all regions, implying substantial fluctuations in volume.

This suggests that the quantity of electricity imported and exported is not constant but

varies significantly across different hours.

Furthermore, the skewness and kurtosis of the data reveal that the distribution of

import and export variables is skewed towards higher values, with a few exceptions. For

example, Import GB and Import NL exhibit high positive skewness and kurtosis values,

suggesting a higher frequency of outliers.

The autocorrelation values, ρ(1) and ρ(7), are generally high across all variables and

hours, indicating a strong correlation between the current and past values of these vari-

ables. This suggests a significant degree of temporal dependency in the import and export

activities.
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5.3 Baseline Model Results

In this subsection will present the baseline results for selected hours. We will first analyze

the performance of hour model, and then go through the result for the variables in our

model. For the variables we will illustrate the results using plots that show the coefficients

over all hours while highlighting hours with significant results. Significance is measured

at a 5% level.

We will start by reviewing the models performance, then the different variables. Results

for trend, GEPU-indicator and VIX-index will not be shown as they yielded no significant

results. Results are attached in Appendix C.

Daylight Hours and Holiday effects will be commented under Panel A and Panel B,

respectively. Subsequently, Panel D and Panel F will not be commented specifically.

Tables 14, 15 and 16 show results from the regression model for selected hours. These

are meant as examples, and we’ve used the same hours as previously in the thesis.

Table 14: OLS-regression Selected Hours Part I
Variable 04:00 09:00 16:00 20:00

Panel J: Model characteristics

ρ(1) 0.36 0.36 0.40 0.41

ρ(7) -0.04 0.03 0.03 -0.02

R2 0.89 0.87 0.87 0.92

AdjustedR2 0.89 0.87 0.87 0.92

Serial correlation (EL-test) *** *** *** ***

Breusch-Pagan *** *** *** ***

Notes: SD denotes standard deviation; Q1 and Q3 are quartiles, 25% and 75% respec-

tively; ρ(.) is the autocorrelation of the given order; EL represents the p-value of the (Es-

canciano & Lobato, 2009) automatic portmanteau test of serial correlation, while Skew.

and Kurt. are skewness and kurtosis, respectively. Statistics are computed hourly with

3032 observations starting from January 1st, 2015, and ending on April 20th, 2023.

These notes are also applicable for Tables 15 and 16.
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Table 15: OLS-regression Selected Hours Part II
Variable 04:00 09:00 16:00 20:00

Constant 124 233 294 89.3

Panel A: Prices

Price NO2 0.66 *** 0.46 *** 0.57 *** 0.73 ***

Price Lag 7 0.20 *** 0.34 *** 0.31 *** 0.19 **

Price Lag 14 0.10 0.12 * 0.00 -0.02

Price Lag 21 -0.07 -0.03 0.00 0.07

Price Lag 28 0.07 0.02 0.00 -0.05

Panel B: Weekdays

Monday -38.0 * 89.0 *** 47.0 * 79.2 ***

Tuesday 6.69 136 *** 70.8 *** 66.2 ***

Thursday -23.8 * -9.86 -17.4 0.36

Friday -23.6 8.87 -24.5 0.03

Saturday -24.5 -49.0 ** -69.9 *** -21.1

Sunday -42.2 ** -75.0 *** -61.2 *** 16.3

Panel C: Months

January -114 -181 * -159 * -220 ***

February -88.9 -161 ** -126 ** -186 ***

March -19.9 -71.4 -43.6 -79.2 *

April 45.4 4.27 33.5 25.4

May 92.2 66.7 86.3 118 *

June 150 * 139 138 * 167 *

July 142 * 147 122 * 149 *

August 134 * 171 * 128 ** 146 **

October -63.9 -110 -82.5 -110 *

November -76.6 -116 -89.4 -139 *

December -124 -197 * -146 -253 **

Panel D: Other control variables

Daylight Hours -17.3 -19.9 -19.8 -26.2 *

Holiday -28.6 -86.6 *** -83.7 ** -34.9 *

Trend 0.03 0.03 0.03 0.02
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Table 16: OLS-regression Selected Hours Part III
Variable 04:00 09:00 16:00 20:00

Panel E: Market Variables

Gas Price 12.4 *** 12.2 *** 8.77 ** 7.10

Oil Price -10.9 ** -11.9 * -8.58 -5.42

Coal Price 1.53 4.61 2.75 2.41

Co2 Price -3.68 -9.47 1.43 -1.97

NOK/EUR -270 -140 -121 18.9

NOK/USD 86.5 13.7 -65.0 -57.4

Panel F: Global Uncertainty

VIX-index -0.02 -2.16 -1.08 0.24

GEPU-indicator -0.00 0.04 0.00 -0.00

Panel G: Weather and Climate

Heating Degrees 0.48 -4.87 -3.22 3.40

Cooling Degrees -0.44 -2.03 -0.61 4.25

Mean Wind 5.90 * 6.80 4.04 2.99

Mean Precipitation -12.7 -37.3 * -25.9 -19.6

Panel H: Production and Consumption

Production 0.01 0.03 0.02 0.00

Load -0.01 -0.08 -0.02 0.01

Forecasted Load 0.02 0.05 0.00 0.05

Panel I: Electricity Transmission

Import DK 0.02 0.04 0.01 0.06 *

Export DK -0.01 -0.06 ** -0.04 * -0.01

Import GB -0.16 -0.13 0.10 -0.06

Export GB 0.05 -0.03 0.14 * 0.16 ***

Import NL -0.03 -0.16 * -0.08 * -0.15 *

Export NL -0.02 0.03 -0.01 -0.05

Import DELU 0.02 0.19 * 0.13 * -0.07

Export DELU -0-04 0.06 -0.07 -0.04

Import NO1 0.04 0.16 ** 0.10 0.09 *

Export NO1 0.00 0.00 0.01 -0.00

Import NO5 -0.03 0.00 0.04 -0.10 *

Export NO5 -0.03 -0.25 ** -0.11 * -0.18 **
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Panel J - Model characteristics: The model shows a high level of fit, as indicated by

the R2 and adjusted R2, which are all above 0.87. The EL-test for serial correlation and

the Breusch-Pagan test results both yield significant findings, leading to the rejection

of the null hypothesis of no serial correlation and homoscedasticity in residuals. We

therefore relied on the Newey-West method to estimate coefficient standard error and

consequently the p-values.

Figure 21 shows the accuracy of the regression model over all hours as presented by R2.

In general, the plot shows an acceptable accuracy for the model, with R2 ranging from

0.862 to 0.947. The model shows a higher accuracy at evening and night, while there is

general decrease in R2 between hours 07:00 and 19:00. This reflects the variations seen

in price, production and load in Chapter 5.2.7.

Figure 21: Accuracy of OLS-model

Figure 22 illustrates the precision of the model for selected hours. The black lines

represent the actual values of the price variable, while the red lines depicts the predicted

values.
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Figure 22: Predicition of OLS-model for Selected Hours

This is an in-sample prediction, and it is evident that the two plots mirror each other

closely. However, it’s also observable that the model encounters difficulties in accurately

predicting the peaks and valleys possibly highlighting the difficulties of more RES entering

the system. This is also observable from the drop in R2 during daytime hours.

Panel A - Prices: The coefficients of ’Price NO2’ and ’Price Lag 7’ are significant at

the 0.1% level across all the time slots, suggesting a strong positive relationship between

these variables and the selected hours. ’Price Lag 14’ is only significant at the 5% level

for the 09:00 slot. The remaining price lag variables show no significant relationship.

Figure 23 illustrates the computed impact of various price lags, with today’s price

exerting the most substantial effect. Notably, the price variable exhibits a higher influence

during the evening and night hours, diminishing to a lower level between 06:00 and 18:00.

Price Lag 7 displays a converse trend, demonstrating a significant peak during these same

hours.

As for the magnitude of the coefficients, a downward trend is observed for the different

lags. The coefficients for today’s price range approximately from 0.50 to 0.80. In contrast,

for Price Lag 7, the coefficients range roughly from 0.10 to 0.35. For Price Lag 14, the
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Figure 23: Effects of Price Variables

range is from -0.05 to 0.15.

The results for both the current Price and Price Lag 7 are statistically significant across

all hours at a 5% level. For Lag 14, there are three significant observations, while for Lag

21, only one significant observation is noted. Lag 28 yields no significant observations.

This pattern suggests a declining trend in both the number of significant observations

and the magnitude of coefficients as we move further back in time.

Panel B - Weekdays: During peak hours, the prices on Mondays and Tuesdays tend

to be higher compared to Wednesdays, while the prices over the weekend tend to be lower.

However, during the off-peak period from at 04:00, the pattern changes and almost all

days display lower price levels than Wednesday. All days, except Friday, yield significant

findings, with the weekends and the beginning of the week being particularly noteworthy.

The variable ’Holiday’ shows a negative relationship with the 09:00, 16:00 and 20:00 slots

being significant at the 0.1%, 1% and 5% level respectively.
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The plots for weekdays as shown in Figure 24 indicates that electricity prices are notably

lower on Saturdays and Sundays, and also during the night transitioning from Sunday to

Monday. However, a significant surge in prices is observed from Monday morning through

Tuesday, with the coefficients being markedly higher.

Figure 24: Weekday Effects

The latter part of the week shows a slight dip, with Thursday and Friday exhibiting

somewhat lower coefficients. Interestingly, Friday presents a peak during working hours,

where the prices rise above the general trend for the day.

The lower weekend prices could reflect reduced commercial and industrial activity, while

the surge on Monday and Tuesday corresponds with the resumption of these activities.

The peak on Friday during working hours further underscores the influence of business

activity on electricity prices.

The Holiday variable show significant effects throughout the day, underscoring the

reduced industrial activity and the possible change of consumption patterns related to
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public and soft holidays.

Panel C - Months: We observe once again that the patterns of results vary between

off-peak and peak hours. In comparison to September, the months of January, February,

and the Autumn season generally display lower prices. Conversely, the summer months,

spanning from June to August, tend to exhibit higher prices, even during the off-peak

hour slot at 04:00. These findings corroborate that, in addition to weekly seasonality,

there is also a pronounced within-year seasonality in prices, as indicated by the size of

the coefficients, which are measured in Norwegian Krone (NOK). The variable ’Daylight

Hours’ shows a negative relationship with the Price NO2, the 20:00 slot is significant at

the 5% level.

Figure 25: Annual Effects

This distinct seasonal pattern is also observed in Figure 25. From October through

March, all coefficients are negative. The magnitude of these coefficients increases from

October, peaking around December and January, before decreasing towards March. Con-

versely, from April onwards, the coefficients become positive, with June, July, and August
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exhibiting the highest magnitudes.

This contrast between the colder and warmer months is also reflected in the statistical

significance of the results. The winter and summer months essentially show significant

results for all hours, with only a few exceptions. This pattern aligns with expectations,

given that these periods typically experience less variation in weather conditions, leading

to more predictable patterns of electricity demand.

The Daylight Hours variable shows significant results, especially at evening hours where

the effect of more daylight is most pronounced. It has a negative relation to Price NO2

as expected.

Panel E - Market Variables: ’Gas Price’ and ’Oil Price’ both have significant

impacts on the selected hours at all significance levels, indicating that these factors are

important in determining the dependent variable for certain hours. However, ’Coal Price’,

’Co2 Price’, ’NOK/EUR’ and ’NOK/USD’ do not show significant influences.

Figure 26: Effects of Financial Markets
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Interestingly, the gas price is associated with a positive coefficient. This suggests that

a unit increase in the gas price results in an increase in the electricity price by 11.4, 12.2,

and 8.76 for the hourly slots at 04:00, 09:00, and 16:00, respectively. Considering the

approximate exchange rates of 10 NOK/EUR or 9 NOK/USD, these coefficients suggest

a nearly one-to-one transmission from the gas and oil markets. The positive impact of

gas prices is likely due to the fact that gas is used to generate electricity in Europe.

However, the coefficient for the oil price exhibits mixed signs, suggesting a more complex

relationship.

The coefficients for the fundamental market variables reveal distinctive patterns, as

seen in Figure 26. Gas prices exhibit positive coefficients, ranging from 6 to 12. The

coefficients peak at 12 during hours 08:00-10:00, then stabilize between 7 and 9 for the

remainder of the period. This is as expected as natural gas is one of Europe’s primary

sources for energy generation, resulting in high influence on electricity prices in NO2.

In contrast, oil prices display entirely negative coefficients. These vary between -12

and -14 during hours 1 to 12, then decrease steadily to -1 at hour 0.

Coal prices demonstrate a positive trend. Starting at zero at hour 0, the coefficients

increase to between 4.5 and 5 during the morning hours of 07:00 to 09:00. Following

this peak, they decrease steadily until midnight. We would have expected to see more

significant observations, especially due to Germany reactivating coal resources in the

latter years. However, this could be the net effect of the Energiewende, as pointed out

by Hirth, 2018.

CO2 prices fluctuate, but are predominantly negative. The coefficients turn positive

during the evening hours, decrease towards the morning, then rise to a positive peak at

hour 16. They turn negative again at hour 18:00 and then rise once more to 3 at hour

22:00. The pattern that emerges is surprising, and is hard to attribute to any specific

market dynamic. This is contrary to both Bublitz et al., 2017 and Gran et al., 2023.

Panel G - Weather and Climate: ’Mean Wind’ displays a positive and significant

relationship at the 5% level with the 04:00 slot. ’Mean Precipitation’ shows a negative

relationship with the 09:00 slot and is significant at the 5% level. The remaining variables

do not show significant influences.

93



Figure 27: Effects of Weather variables

Interestingly, our analysis yields few significant results for these weather and climate

variables over all hours, as shown in Figure 27. The only significant effects are observed

for wind from 01:00 to 04:00 at night, and for precipitation at hour 00:00, hour 09:00 and

from 21:00 to 23:00. This is in line with Voronin et al., 2014 who argues that weather

effects are already reflected in demand.

Panel H - Production and Consumption: In Table 17 neither Load, Forecasted

Load nor Production show significant results for selected hours.

Looking at all hours in Table 28 there are still no significant results for Load and

Forecasted Load. This could be influenced by both the COVID-pandemic (“Varmt vær

og pandemi førte til mindre energibruk”, n.d.) and the Norwegian government’s support

scheme (Norwegian Ministry of Energy, 2023), resulting in a dampening effect on load.

The Production variable has a few significant observations, but in general these variables

show fewer significant findings than expected. One possible explanation for this is the
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effect of these variables already being reflected in the dependent variable.

Figure 28: Effects of Load and Production

Panel I - Electricity Transmission: Some variables in this panel, such as ’Export

DK’, ’Export GB’, ’Import NL’, ’Import NO1’, ’Export NO5’, and ’Import NO5’, show

significant relationships with the selected hours at the 1% and 5% levels. This suggests

that these electricity transmission factors play a role in the dependent variable.

A detailed analysis of results for electricity transmission will be presented in subsection

5.5.
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5.4 Discussion

Our analysis indicates that time-related variables such as weekly seasonality and annual

trends play a substantial role in electricity pricing in NO2. The model highlights that

during peak hours on weekdays, prices are generally higher, reflecting increased demand

from commercial and residential consumers. This pattern shows the importance of man-

aging peak loads and may suggest opportunities for demand response initiatives that

could smooth price fluctuations, as well as enhancing system reliability and efficiency as

highlighted by Deane et al., 2015.

The annual variation in NO2, with higher prices observed in the summer months,

may reflect a combination of factors including potentially lower water reservoir levels

impacting hydroelectric power generation, higher costs of alternative generation methods

and increased import as seen in Figure 20. Increased solar-production will likely dampen

the price effects during the summer months, known as the merit order effect (Spodniak et

al., 2021). While in other parts of Europe, the load increases due to warmer weather, the

need for cooling in Norwegian households is rather rare (Sørgard et al., 2023). However,

since electricity generally flows from one bidding area with lower price, to areas with

higher prices (Figure 5, hydro-producers in NO2 retains water to produce in periods they

believe prices in other areas will be higher to maximize value (Gran et al., 2023). This

could explain the effect of comparatively higher prices in NO2 during summer, and it is

lower prices during winter - since the NO2 prices has to be lower than prices in adjacent

areas to export. This is also reflected in the increased export during winter months in

Figure 20

Our findings confirm the significant influence of gas and oil prices on electricity prices

within NO2, which aligns both with previous studies indicating the interconnectedness of

global energy markets but also the inherit market structure. The systematically positive

relationship between gas prices and electricity prices highlights the dependency on gas-

fired power generation in periods of high demand or insufficient supply from renewable

sources. However, oil surprisingly shows a negative effect on NO2 electricity prices. One

possible explanation could lie in the Merit Order. As the oil price increases, this increases

the marginal cost of oil and shifts oil-based electricity generation further to the right in

the supply stack, see Figures 7 and 8. As oil only accounts for 1.2% of Europes electricity
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generation (“IEA - Energy Mix”, n.d.), this moves oil to a point where the oil based

generators are not activated, subsequently the market clearing price is set lower. Oil-

prices are though known to be an indicator of the underlying economic activity, which

could be reflected in demand. This effect in the merit order could also drive hydro-

producers in NO2 to not export, if they as a consequence of lower MCP decides to retain

water, reducing the effect of European prices on NO2. Hydro-producers maximizing

profits is part of a possible explanation for the surge in prices, as Gran et al., 2023 notes

high production and export in 2021 followed by record low reservoirs level in 2022 -

drove Norway to rely more on imports in 2022. Interestingly, CO2 price in addition to

coal does not show significant results contrary to Bublitz et al., 2017. This is surprising,

especially due to Germany’s reactivation of coal production during the gas-crisis following

the Ukraine-war and Nord Stream sabotage.

The analysis suggests that global economic and market uncertainties do not indepen-

dently affect electricity prices in NO2, as their effects are likely captured by other more

direct pricing factors such as gas and oil prices. This finding could indicate that the

electricity market in NO2 is more influenced by tangible supply and demand dynamics

than by speculative or external economic factors.

Contrary to initial assumptions that weather and climate might present unpredictabil-

ity in price determination, our model suggests that these factors are effectively anticipated

in the pricing mechanisms, likely through the incorporation of historical weather patterns

and their impact on electricity demand and generation capacity. This observation sup-

ports the utility of advanced weather forecasting and historical data analysis in mitigating

price volatility caused by climatic variations. This lack of significant results aligns with

existing literature, which suggests that the effects of weather and climate variables may be

subsumed by the effects of other variables, such as load and production. In other words,

while weather and climate conditions can influence electricity demand and production,

their direct impacts on prices may be overshadowed by the more immediate effects of

supply-demand dynamics (Voronin et al., 2014). However, with increased investment

in renewable energy sources such as wind or solar in the NO2 area we could see more

significant results on weather in the future.
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5.5 Impact of Electricity Transmission

In the final subsection of this chapter, we turn our attention to one of the main research

questions of our thesis: the flow of electricity in and out of the NO2 bidding zone.

Understanding these transmission dynamics is crucial, as it can provide valuable insights

into the interdependencies between different electricity markets and the impact of cross-

border electricity trade on our specific market.

Just like the previous subsection, we will present a series of plots to visually represent

our findings. These plots will depict the coefficients of variables related to electricity

transmission, with markings to indicate statistical significance. By presenting our findings

in a manner consistent with the previous subsection, we aim to maintain coherence in

our analysis and facilitate easier comparison across different areas of our research.

We will examine the flow of electricity to and from other zones and countries, focus-

ing on the patterns, magnitude, and significance of these flows. We will also explore

the potential factors influencing these transmission dynamics, such as price differentials,

demand-supply imbalances, and policy regulations. This subsection, therefore, not only

contributes to our understanding of the drivers of electricity prices in our specific market

but also broadens our perspective by highlighting the interconnectedness of electricity

markets.

5.5.1 Results - Electricity Transmissions

The analysis of electricity transmission to and from the Norwegian price zone NO2, as

depicted in Figure 29, offers insightful observations. The figure comprises four separate

plots, each illustrating the OLS-regression coefficients against the hours of the day, with

significant results marked at a 5% significance level.

The first plot, representing international import, exhibits primarily positive coefficients.

However, there is a noticeable negative dip between 1 am and 6 am. The peak coefficient

value occurs hour 17:00, standing at 0.04. This means that international imports have the

most impact during daytime and evening, reflecting a traditional consumption pattern.
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Figure 29: Aggregated Electricity Transmission

The subsequent plot illustrates the international export, with coefficients predomi-

nantly negative, barring slight positive deviations at 01:00 and 21:00. The greatest mag-

nitude is observed at hour 11:00, approximately at -0.02. Coefficients for the international

export are generally of small magnitude, ranging between -0.02 and 0.005.

The third plot focuses on national import of electricity. The coefficients are consistently

positive, with distinct peaks at hours 05:00 and 09:00. The range lies between 0.02 and

0.03, with the highest points observed between 8 am and 3 pm, peaking at 0.14.

Lastly, the plot for national export shows that the export of electricity from NO2

to other Norwegian price zones is primarily positive, with a negative dip observed in

the morning and evening, peaking at -0.004. The coefficients displayed in this plot are

generally modest in magnitude, ranging from -0.004 to 0.015.

Interestingly, when examining electricity transmission at this aggregated level, we find

a scarcity of significant results. The sole plot displaying statistically significant outcomes
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is that of national import, which yields significant results at the 5% level during the hours

of 07:00 to 15:00. This time frame encompasses the period with the highest coefficients,

rendering these results both statistically significant and potentially impactful. This po-

tentially highlights an interesting point, that it is not the actual volume or direction of

electricity that influences prices, however this does not necessarily mean that the cross

zonal connections does not have a effect.

Moving forward, Figure 30 provides a more granulated view of the same electricity

flows, allowing us to delve deeper into the intricacies of electricity transmission within

the NO2 zone. We will focus mainly on the plots showing statistically significant results.

Figure 30: Specific Electricity Transmission

For the transmission associated with Denmark, the import displays exclusively positive

coefficients, which fluctuate in magnitude throughout the day. Two significant peaks are

observed at 07:00 and 20:00, with coefficients of 0.05 and 0.06, respectively. These peaks

are also statistically significant.
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In contrast, the export to Denmark presents solely negative coefficients, forming a U-

shaped pattern. The coefficients start from 0.00 at 01:00 - 02:00, dip to -0.05 during 09:00

- 10:00, and then ascend back to 0.00. The results are statistically significant during the

hours of 06:00 to 17:00, coinciding with typical working hours.

For the transmission to Great Britain, there is only one period that yields significant

results. This period falls within the export section from 16:00 to 23:00, with coefficients

ranging from 0.10 to 0.16 and peaking at 19:00. In general, the coefficients for imports are

predominantly negative, while those for exports are mostly positive, with a few exceptions.

In the case of transmissions to and from the Netherlands, significant results are only

observed on the import side and are spread throughout the day. The coefficients for

both import and export are primarily negative, with a few exceptions on the export side.

Notably, the hours with the most significant coefficient magnitudes are also marked as

statistically significant.

In the case of transmissions to and from DELU (Germany and Luxembourg), significant

results are exclusively observed on the import side. The magnitude of the coefficients

exhibits an almost bell-shaped pattern, increasing from 0.00 at 01:00 to a peak of about

0.18 at 09:00. The magnitude then stabilizes at around 0.10 from 09:00 to 16:00 before

decreasing again. The hours between 05:00 and 16:00, excluding 08:00, are all statistically

significant.

While there are a few negative hours on the import side, the coefficients are predomi-

nantly positive. Contrastingly, the export to DELU is characterized by mostly negative

coefficients, with a notable positive peak at 09:00. These findings highlight the complex

dynamics of electricity transmission between NO2 and DELU.

In terms of import and export to and from NO1, all coefficients for import are positive,

forming a bell-shaped curve that rises from hour 2 and gradually falls from hour 12. The

results from hour 7 to 23 are all significant, with the exception of hour 16, implying a

substantial impact from NO1. The export coefficients vary between positive and negative

throughout the day, and the magnitude of these coefficients is relatively small. There are

no statistically significant results in the export data.

For NO5, the coefficients start at -0.07 at hour 1, slowly rise to 0.06 at hour 20, and
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then decline again from hour 17. The coefficients are most negative between 20:00 and

23:00. It is worth noting that there are significant findings at the lowest point at 1:00

and between 20:00 and 23:00.

The export begins at 0.00 at midnight, then gradually drops to -0.25 at 9:00, before

moving toward zero again. The results from hour 7 to hour 22, when the coefficients

exhibit the highest negative magnitude, are all statistically significant. These findings

highlight the intricate dynamics of electricity transmission between NO2 and NO1, and

NO2 and NO5.

Overall, the effects of the cross-zonal connections are small in magnitude, but there are

significant effects across all hours. When quantifying the effect of each hourly coefficient

by leveraging the calculated mean for price and its corresponding variable, the estimated

influence of electricity transmissions, on average, approximated around 1%.

In general we expected to see consistent positive or negative effects on import and

export, due to the described market effects illustrated in Figure 5. With this not being

the case, one could argue that it highlights the intricacies of the electricity market. With

the model predicting prices 2 days in advance (Figure 12), this could also complicate the

interpretation of the quantitative effects.

5.5.2 Volatility Split

In the following section, we will segment the dataset at the 8th of August 2021, following

the volatility test conducted in R as referenced in Chapter 4.2. The ICSS algorithm

identified two volatility shifts; however, we have chosen to focus on the 8th of August as

it aligns with the opening of transmission cables and the subsequent increase in price,

as discussed in the introduction. Our objective is to investigate whether the changes in

the volatility of Price NO2, as observed in Figure 13, are reflected in the transmission

dynamics.

To this end, we will calculate the same regression models for two distinct periods: from

01.01.2015 to 07.08.2021, and from 08.08.2021 to 20.04.2023. By comparing the resultant

plots, we aim to discern any significant changes in the transmission dynamics between

the two periods. This comparison will provide further insights into the impact of price

volatility on electricity transmission within the NO2 zone.

102



Figure 31: Electricity Import - Volatility Split

In Figure 31, we present an overview of electricity import from Denmark, the Nether-

lands, Germany/Luxembourg, Norway Zone 1, and Norway Zone 5. We have intention-

ally excluded the transmission cable data to Great Britain due to its limited availability,

spanning only from the 10th of September, 2022, to the 20th of April, 2023. The figure

is divided into two sections, with the left side representing coefficients prior to the 8th

of August, 2021, and the right side showing coefficients post this date. Results with a

significance level of 5% are emphasized.

The magnitude of the coefficients have increased for all interconnections from the first

period to the second. This escalation is not just nominal but quite significant. Overall, the

coefficients continue to oscillate between positive and negative values throughout the day.

An interesting point is the shift in coefficients for Denmark and Germany/Luxembourg.

These were consistently positive for all hours prior to the split but have transitioned to

containing negative values during the night and evening hours.
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Another important observation is that there are almost no significant observations after

the split. This can also be said of results before the split, but before the split Denmark

and Germany/Luxembourg have significant during the nightly hours.

Figure 32: Electricity Export - Volatility Split

Figure 32 shows the export of electricity from NO2 to Denmark, the Netherlands,

Germany/Luxembourg, Norway Zone 1 and Norway Zone 5. Similar to Figure 31 we

have split our data on 08.08.2021, showing observations prior to this date on the left side

and observations post this date on the right side. Results with a significance level of 5%

are emphasized.

Also on the export side we observe that the magnitude of the coefficients have changed

significantly from the first period to the second period. Examining the export to NO5,

we observe a variation ranging from -0.04 to 0.01 in the initial period. Contrarily, in

the subsequent period, the variation extends from -0.6 to 1.3. This represents significant

alterations between the two periods as can also be seen on all other variables.

104



We observe an increased level of volatility in the data following August 8, which is

as expected. Before the split, the variables exhibited a stable trend, either uniformly

positive or uniformly negative. Variables that were positive maintained their positive

values throughout all hours, while those that were negative remained negative. However,

NO5 is an exception, with a handful of observations deviating in the evening hours.

After the split, all variables display a mix of positive and negative observations, sug-

gesting a more dynamic and complex pattern. In general, there is a broader span in

the observed values post-split, indicating increased variability in the electricity export

patterns. As on the import side, the export side also has fewer significant observations

in the second period.

Summing up, comparing the plots for both electricity import (Figure 31) and export

(Figure 32), several commonalities emerge. In both cases, there is a noticeable increase

in the magnitude of the coefficients from the first period to the second. This not only

indicates a significant change in the transmission dynamics but also suggests a heightened

level of volatility in both the import and export of electricity post the split date of the

8th of August, 2021. This is also highlighted by another shared characteristic; the shift

from consistently positive or negative values for the variables in the first period to a more

complex pattern of both positive and negative observations in the second period.

Furthermore, both plots exhibit a reduction in significant observations in the second

period compared to the first. This could suggest that the changes observed in the trans-

mission dynamics, despite being substantial, may not be statistically significant. This

reduction in significant observations could be attributed to the increased volatility and

broader range of observed values, making it more challenging to identify consistent trends

or patterns with a high degree of certainty. As seen in Figure 13 the number of poten-

tially price driving events occurring increases dramatically for the latter period. This

in combination with fewer observations, could influence the model’s ability to identify

patterns.

Within the context of our thesis, we indeed observe a heightened magnitude of the

coefficients following the split. Nonetheless, the limited presence of significant observa-

tions restricts us from conclusively asserting that the direction or volume of electricity

transmitted are responsible for the surge in prices.
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Despite this, it is evident that there has been a notable shift in volatility. How-

ever, without substantial evidence, we must exercise caution in attributing this increased

volatility directly to the transmission cables. This suggests that while the dynamics of

transmission have undeniably altered, they may not be the principal factor contributing

to the price escalation. Further comprehensive research is required to identify the primary

drivers of these observed changes.

Although we quantitatively can’t attribute the increased prices and volatility to the

volume or direction of electricity transmitted between NO2 and connected regions, it

is critical to acknowledge that the extant market structure would be untenable in the

absence of these interconnections. The existence of these links facilitates the sale of hy-

droelectric power by Norwegian producers in foreign markets, thereby integrating Norway,

and specifically the NO2 region, into a Pan-European energy framework. In a hypothet-

ical scenario where NO2 lacked interregional connections during the period from 2021 to

2023, it is likely that the region would have experienced considerably lower electricity

prices. This raises an interesting question, as these connections let’s Norway serve as

"Europe’s battery" and join a common European project in reducing emissions. How-

ever, as electricity prices become more similar to the rest of Europe exporting industries

in Norway loose their competitive advantage relative to their European counterparts.

In addition, as noted by Gran et al., 2023 Norway’s surplus of electricity will likely be

reduced to zero within 2028 due to the increase in demand outgrowing increase in pro-

duction. This underscores the emerging importance for interconnections due to security

of supply.
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5.6 Limitation of the Thesis

This study, while providing valuable insights, has certain limitations that need to be

acknowledged. One of the primary limitations is the scope of the data used. While we

have incorporated production and weather data from our market of study, Norway NO2,

there are potentially other relevant data that have not been included in this study. Due

to the continuous incorporation of renewable energy sources we believe that weather and

production data from other interconnected markets more dependent on renewable energy

sources could enhance the precision of the model.

This research recognizes the limitations of the OLS-regression model used. While OLS

is a conventional choice for estimating parameters in a linear regression model, it might

not be the most accurate or efficient for this dataset or research question. Alternative

models, such as time series, non-linear regression, or machine learning algorithms, could

potentially offer more precise predictions or better encapsulate electricity price dynamics.

Although our model is multivariate by nature, it does not account for possible non-linear

relationships among variables, which could impact prediction accuracy.

Additionally, the application of out-of-sample predictions could significantly contribute

to the robustness of our study. Out-of-sample predictions test the model’s performance

on data not used in model development, and can provide a more robust and generalizable

measure of predictive accuracy. As OLS-regression models expected values, it could be

the case that transmission only matters for extreme prices. In a quantile regression

model we could observe whether transmission impact extreme price levels only. This is

something to consider in future research.
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6 Conclusion

Our thesis examines the complex dynamics of electricity prices within Norway’s NO2 re-

gion, with a particular spotlight on the impacts of cross-zonal connections. It contributes

to the research on interconnected markets and to the existing literature on price drivers

in general.

In this study, we seek to add to the existing academic literature by focusing specifically

on the NO2 bidding area in Norway. Our review of the literature indicates that there

are no prior studies that have explored the same width and combination of variables that

our research incorporates. Consequently, our thesis is positioned to make a significant

and novel contribution to the understanding of electricity price dynamics within the NO2

area.

Our findings highlight the substantial role of temporal variables, such as time of day,

day of the week, and month, in predicting electricity prices. These factors reflect the

fundamental dynamics of supply and demand that vary with human activity patterns and

seasonal changes. For instance, the increased electricity prices during weekday peak hours

underscore the heightened demand from both residential and commercial sectors, while

the seasonal fluctuations emphasize changes in generation capacity and consumption

habits influenced by weather conditions.

One of the more pronounced outcomes of this study is the significant impact of natural

gas prices on electricity prices within the NO2 zone. This result underscores the intercon-

nectedness of global commodity markets and energy prices, illustrating how fluctuations

in gas prices, driven by international market trends and geopolitical events, directly affect

electricity markets. This dependency highlights the vulnerability of electricity prices to

shifts in the availability and cost of natural gas, a critical input for power generation

during periods of peak demand or when renewable energy sources are insufficient.

Interestingly, other expected market influences such as coal and CO2 prices did not

exhibit a significant impact in our model. This could suggest a possible decoupling of these

factors due to evolving energy policies, technological advancements in energy production,

or the increasing penetration of renewable energy sources which might be reducing the

influence of traditional fossil fuels and carbon pricing mechanisms.
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Our findings reveal that while electricity transmission indeed have significant impacts,

in all examined periods, their overall effect on the mean price is relatively small, ac-

counting for approximately 1% of the price variation. However, the complex interactions

between physical flows and price formations highlights the nuanced role of cross-border

electricity flows, influenced by regulatory frameworks, market conditions, and interna-

tional energy policies. Understanding these transmission dynamics is essential for policy-

makers and market operators as they navigate the challenges of ensuring energy security,

market stability, and economic efficiency in an increasingly interconnected energy land-

scape.

Furthermore, our research methodology and findings could be applicable to other re-

gions and markets, providing a robust framework for analyzing electricity price dynamics.

Our thesis, therefore, not only contributes to the understanding of Norway’s NO2 region

but also offers a transferable model for electricity price analysis in other contexts.

Looking ahead, we see ample opportunities for further research in this area. Future

studies could build upon our work by incorporating different or additional variables es-

pecially on the interconnected regions. With the increasing introduction of renewables

and new technology being developed, this requires a continuous development of research

design. This would further enrich our understanding of electricity prices and the factors

that drive them also in the future.
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8 Appendix

A Overview Variables

Table 17: Overview Control Variables

Variable Denotation Hourly Daily Source

Panel A: Financial Markets

Gas Price GASt X ICE

Oil Price OILt X ICE

Coal Price COALt X ICE

Co2 Price CO2t X EEX

Exchange Rate NOK/EUR EURt X NB

Exchange Rate NOK/USD USDt X NB

Panel B: Volatility and Uncertainty

VIX-index V IXt X ICE

GEPU-indicator GPUt X (“GPR”, n.d., “EPU”,

n.d.)

Panel C: Weather and Climate

Heating Degrees HDt,h X MET

Cooling Degrees CDt,h X MET

Mean Wind WNDt,h X MET

Mean Precipitation PRCt,h X MET

Reservoir Level WLVt X NVE

Panel D: Production and Consumption

Production PRODt,h X ENTSO-E

Load LOADt,h X ENTSO-E

Forecasted Load FORCt,h X ENTSO-E
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Table 18: Overview Control Variables

Variable Denotation Hourly Daily Source

Panel E: Electricity Transmission

Netflow X ENTSO-E

Import X ENTSO-E

Export X ENTSO-E

International Import INTIt,h X ENTSO-E

International Export INTEt,h X ENTSO-E

National Import NATIt,h X ENTSO-E

National Export NATEt,h X ENTSO-E

Import DK IDKt,h X ENTSO-E

Export DK EDKt,h X ENTSO-E

Import NL INLt,h X ENTSO-E

Export NL ENLt,h X ENTSO-E

Import GB IGBt,h X ENTSO-E

Export GB EGBt,h X ENTSO-E

Import DELU IDEt,h X ENTSO-E

Export DELU EDEt,h X ENTSO-E

Import NO1 INO1t,h X ENTSO-E

Export NO1 ENO1t,h X ENTSO-E

Import NO5 INO5t,h X ENTSO-E

Export NO5 ENO5t,h X ENTSO-E
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B Price

Table 19: Overview Events - Economic and Financial
Label Date Description

Panel A: Energy (E)

E1 01.01.2015 The third phase of the European Union Emission Trading System started, impact-

ing power generation costs, especially for fossil fuel plants within the EU.

E2 01.01.2017 Approximately 171.000 migrants and refugees enter Europe by sea during 2017

increasing energy demand and putting a strain on existing infrastructure.

E3 10.08.2019 A major power outage affected almost one million people in England and Wales

due to simultaneous issues at a gas-fired plant and an offshore wind farm.

E4 14.09.2019 Drone attacks on Saudi Arabia’s oil facilities temporarily halved the country’s oil

production, causing global oil price spikes and impacting energy markets world-

wide.

E5 31.03.2021 The undersea power cable connecting Norway (NO2) and Germany/Luxembourg

(DELU) officially becomes operational.

E6 31.12.2021 Germany close down 3 major nuclear plants, with a collective capacity of 4.058

MW.

E7 10.09.2022 The undersea power cable connecting Norway (NO2) and Great Britain (GB) of-

ficially becomes operational.

Panel B: Financial (F)

F1 22.06.2018 OPEC and non-OPEC countries agreed to increase oil production, affecting global

energy markets and pricing strategies.

F2 09.03.2020 The failure to agree on production cuts led to a price war between two of the

world’s largest oil producers, Russia and Saudi-Arabia, causing a fall in the oil

prices.

F3 16.10.2020 Moody’s downgrade the UK’s debt rating to Aa3 causing political and economic

uncertainty.

F4 26.03.2021 The Suez Canal blockage disrupts global trade, potentially impacting energy mar-

kets.

F5 01.08.2021 Historically low gas prices reported in the EU.

F6 06.09.2022 In response to soaring energy prices and supply concerns, the European Union

unveiled a plan to address the energy crisis, impacting energy markets and policies.

F7 19.01.2023 US hits its debt ceiling, causing market uncertainty possibly effecting the energy

markets.
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Table 20: Overview Events - Geopolitical, Environmental and Political
Label Date Description

Panel C: Geopolitical (G)

G1 16.01.2016 The lifting of sanctions on Iran following the nuclear deal increased global oil

supplies, affecting global energy markets and prices.

G2 01.10.2018 Escalating US-China trade tensions in 2018 effects the energy markets, affecting

everything from oil and gas prices to the renewable energy industry. The increased

uncertainty created by the trade war was also a major factor impacting the energy

markets.

G3 31.12.2019 Wuhan Municipal Health Commission, China, reported a cluster of cases of pneu-

monia in Wuhan, Hubei Province. A coronavirus was eventually identified (WHO).

G4 24.02.2022 Russia invasion of Ukraine leads to global sanctions on Russia disrupting global

energy supplies and creating an increase in global energy prices.

G5 30.05.2022 The EU agreed to a partial ban on Russian oil, affecting global energy markets

and accelerating the search for alternative energy sources.

G6 26.09.2022 Nord Stream pipeline is subject to sabotage causing a disruption in energy supply

and increasing political tensions.

G7 10.12.2022 Russian drone strikes leave 1.5 million Ukrainians without power.

Panel D: Environmental (M)

M1 03.08.2015 The U.S. Environmental Protection Agency announced the Clean Power Plan aim-

ing to reduce carbon pollution from power plants.

M2 12.12.2015 The Paris Agreement is adopted, leading to increased investment in renewable

energy across Europe.

M3 12.12.2017 The One Planet Summit in Paris brought together international leaders to discuss

climate action, emphasizing financial initiatives and commitments toward a greener

energy future.

M4 03.07.2020 Germany passes legislation to phase out coal use within 2038.

M5 21.04.2021 The European Climate Law is adopted, making the EU’s goal of net-zero green-

house gas emissions by 2050 legally binding.

Panel E: Political (P)

P1 23.06.2016 The UK voted to leave the European Union, leading to uncertainty in the energy

markets regarding trade, energy policies and nuclear projects.

P2 08.11.2016 Trump’s election led to a shift towards fossil fuels and away from environmental

regulations in the U.S. energy markets.

P3 07.05.2017 Emmanuel Macron’s victory in the French presidential election leads to a push for

more renewable energy and climate-friendly policies in France.

P4 01.06.2017 President Trump announced the intention to withdraw the United States from the

Paris Agreement, affecting global climate initiatives and energy policies.

P5 24.09.2017 Angela Merkel’s party wins the German elections but with a reduced majority,

leading to a push towards more renewable energy policies.

P6 08.05.2018 The US withdraws from the Iran nuclear deal potentially impacting global energy

markets.

P7 10.01.2019 Venezuelan presidential crisis impacts the global energy markets through its effect

on the country’s oil production and exports.

P8 30.01.2020 The Director-General declares the coronavirus a Public Health Emergency of In-

ternational Concern.

P9 31.12.2020 Brexit transition period ends, and the UK formally completes its EU separation.
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Figure 33: Time Series Price NO2 - Hourly - 00:00-11:00
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Figure 34: Time Series Price NO2 - Hourly - 12:00-23:00
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C Findings

Figure 35: Findings GEPU-indicator, VIX-index and Trend
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