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Abstract 

This master's thesis, “Evaluating the impact of sampling frequency on volatility forecast 

accuracy” aims to answer the main problem statement of “how do varying sampling frequencies 

influence the accuracy of volatility forecasts?” The thesis is driven by the idea that better 

prediction accuracy could result from the increased data accessibility brought about by digital 

progress. Some research, like the one conducted by Chan et al. (2010), indicates that higher 

sampling frequencies may not considerably improve forecast precision. Ewald et al. (2023) 

discovered that increased sampling frequencies resulted in enhanced forecasting precision 

compared to others.  The research goal is to determine if higher sampling rates truly improve the 

accuracy of forecasts and if the resulting time and computational demands are justified by the 

increase. Several RealGARCH models using various sampling frequencies are used to assess the 

relationship between sampling frequency and forecasting accuracy, with data from Brent crude 

oil futures. 

Examination of the in-sample results revealed a link between increased sampling rates and better 

model alignment, as evidenced by reduced AIC and BIC values and elevated log-likelihood 

values as sampling frequency declined. This indicates that increasing sampling frequencies may 

boost the precision of the model. The out-of-sample assessment showed a different situation; the 

connection between sampling frequency and forecasting precision was not easy to understand. 

Analysis of visual and regression data indicated that increased sampling rates do not always lead 

to lower forecast errors. The findings indicated that errors decreased when the sampling 

frequency was lowered. This was not in line with the belief that increasing the frequency of 

sampling would lead to more precise predictions. Statistical regression models revealed that only 

a small percentage of the variations in forecast errors could be attributed to changes in sampling 

frequency. Both linear and polynomial regression models yielded comparable results, indicating 

that sampling frequency has minimal effects on forecasting error metrics based on adjusted R² 

values. Negative correlation coefficients between sampling frequency and error metrics (MSE 

and MAE) indicated a small enhancement in forecast accuracy with decreased sampling 
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frequency, contradicting initial assumptions. This was backed by substantial p-values, suggesting 

an actual, albeit small, statistical correlation. 

The results differ from the common view in the literature that increasing the frequency of 

sampling results in improved forecasts. On the contrary, the thesis proposes that there might be a 

case where lower frequency t enhances precision. The connection between sampling frequency 

and forecast accuracy seems intricate and is affected by a variety of factors, such as the model's 

nature and the data set's characteristics. The evaluation pointed out possible problems with the 

data's reliability and the model's suitability, potentially impacting the findings' generalizability. 

Certain data points did not align with anticipated price levels, and the model did not get better 

with higher complexity, possibly because of overfitting or inadequate model specification for 

dealing with the detailed data. 

This thesis highlights the importance of carefully weighing the pros and cons of frequent data 

collection when predicting volatility. It paves the way for additional studies on the most effective 

sampling frequencies for diverse markets and asset categories, prompting more extensive testing 

in different contexts to gain a deeper insight into financial market dynamics by, for example, 

adding more variables to the models. The results could be particularly beneficial for non-

professional traders and researchers who are dedicated to improving the precision of financial 

models.  
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1. Introduction 

1.1 Academic background 

One significant advancement in empirical finance is the creation and prediction of volatility, 

according to Danıelsson, (2011). This is significant mainly because it can capture fluctuations in 

trading prices over time, which is essential for risk evaluation, portfolio oversight, derivative 

valuation, and market supervision. The accurate forecasting of volatility is, therefore, not just of 

theoretical interest, but it is also of importance for market participants, risk managers, and 

policymakers who rely on the forecasts for devising hedging strategies, optimising portfolios, and 

making informed regulatory decisions (Karasan, 2021). 

The volatility of financial assets has mainly been modelled by using GARCH models, whose 

application is considered to have a significant impact on financial methodology (Francq & 

Zakoian, 2010). These models capture the dynamic patterns observed in financial data and are 

widely used in financial econometrics and time series analysis. Since Engle's (1982) 

groundbreaking paper on ARCH models and the further development of GARCH models 

(Bollerslev, 1986), there has been a significant emphasis on studying volatility and advancing 

methodologies for measuring, modelling, and forecasting it. Among the advanced methodologies 

are approaches like the use of volatility measures suited for high-frequency data( Andersen & 

Bollerslev, 1998; Barndorff-Nielsen et al., 2008a; Barndorff-Nielsen & Shephard, 2004) and 

models that integrate realised volatility(Hansen et al., 2012). These advancements have largely 

resulted from observations of the nature of volatility in financial asset returns, or so-called 

stylised  facts, which remain consistent across different assets, asset classes, time periods, and 

countries ( Andersen et al., 2010). Many of the consequent studies in the field have been geared 

toward finding improved models. Many of the subsequent studies in the field have focused on 

finding better models. This is evident in the volume of scholarly papers that propose novel and 

refined models. The performance of 330 GARCH-type models is analysed by Lunde & Hansen 

(2005), showing the extent of model development. Besides innovations within the GARCH 

framework, other models like stochastic volatility models (Harvey & Shephard, 1996) and the 

HAR-RV model (Corsi, 2008)  have also been introduced. Although the mentioned alternative 

approaches are increasingly prevalent in the literature, GARCH models and their variations are 
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still used in many papers. Among the variations of the GARCH model is the log-linear 

RealGARCH model, which is a GARCH model that includes a realised volatility measure. 

Models applying realised volatility have been proven to outperform regular GARCH models 

when using high-frequency data for modelling and forecasting volatility (Hansen et al., 2012; 

Zhang et al., 2019).  

Developments in forecasting volatility have been focused on more than just model innovation. 

The digital age has ushered in a period marked by the increased availability of high-frequency 

data. This abundance of data can be harnessed to improve our understanding of market and 

economic factors, which also opens up new possibilities in modelling and forecasting volatility. 

Recent studies have applied the concept of realised volatility to what appears to be a trend 

moving from the strictly parametric approaches that were previously prevalent. Behind this 

switch lies the realisation that realised volatility, defined as a cumulative summation of squared 

returns over consecutive, small, and fixed time intervals, is a more accurate measure for volatility 

when applying high-frequency data (T. Andersen et al., 2001).  

It has been suggested that the frequency at which data is sampled can impact the characteristics 

and performance of predictive models (Merton, 1980). Luong & Dokuchaev (2016) also highlight 

the presence of a connection between the volatility of a financial instrument and the frequency at 

which it is sampled. Some find that increasing sampling frequency leads to better forecasting 

ability (Ewald et al., 2023). At the same time, others find that increasing sampling frequency has 

no considerable effect on model performance (Chan et al., 2010).  Which is in contrast to the 

statistical principle that more information is generally preferred to less (Aït-Sahalia et al., 2005).  

Part of this contrast is brought on by the complexity of volatility, which is influenced by a myriad 

of factors ranging from market microstructural effects to global geopolitical events. The 

challenge of modelling volatility increases when dealing with high-frequency data. Although 

increased granularity provides a richer information set, it also brings forth challenges such as 

microstructure noise, data quality issues, and a need for computational intensity (Aït-Sahalia et 

al., 2005). This ultimately sets a limit to how high the sampling frequency can go. One approach 

to dealing with these challenges has been to determine an optimal frequency at which to sample 

the data used to calculate realized volatility. But others, while applying different methods to 

mitigate the negative effects of microstructure noise, have pushed the commonly applied 5 min 
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frequency to higher levels.  What remains less explored is the actual accuracy gain from changing 

sampling frequencies. 

Chan et al. (2010) assess the influence of different factors on the accuracy of volatility 

forecasting. The factors examined include sampling frequency, different measures of realized 

volatility, different forecasting horizons, and different types of models. In their findings, 

sampling frequencies are deemed to have little influence on the model's performance. If their 

findings are true, it makes one wonder what the point of all these increased samplings is. 

1.2 Motivation 

As part of my master studies in business analytics and digital management, the course on 

predictive analytics opened my interest in the challenges of predicting stock exchange 

movements. Given the vital role of volatility within the financial sector, improving the accuracy 

of its forecasts is of utmost importance for both private and institutional investors. The 

motivation for this thesis comes from the continued innovation within volatility forecasting, 

where technological improvements have given, us access to more data. The question is whether 

using this data leads to better forecasts or not. It is clear from the literature that increased 

sampling leads to improved measurement of volatility; what isn't clear is whether this also 

translates to improved forecasting accuracy. Many studies that deal with forecasting volatility 

focus on developing new models. While such studies offer interesting insights into the 

measurement, modelling and forecasting of volatility, more attempts have yet to be made to 

assess the role of the different steps involved in the forecasting process. Additionally, the 

dynamic nature of volatility and the differences in markets and assets dictate that findings from 

one setting cannot freely be assumed to be relevant in another without first being tested. Given 

these points, there are opportunities to test previous findings in other settings and continually 

update the literature on the effect of sampling frequency on volatility forecasts.  

1.3 Problem Statement 

One of the strategies given by Furseth & Everett (2022) on how to find workable master thesis 

projects is the strategy of replicating previous research in another time or another context. This 

thesis builds on the research by Chan et al. (2010). The core focus is therefore to contribute to the 

literature on forecasting volatility when using high-frequency data. Since the market 
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microstructure factors influencing realised volatility, such as bid–ask bounce and non-trading, 

differ between different markets and different assets, there is a need to evaluate the prevalent 

findings using different assets and different models. This is supported by (Brownlees & Gallo, 

2010), who point out that results from a study do not automatically extend to other stocks or 

classes of assets. Similarly, (Ewald et al., 2023) express that their findings are only relevant for 

the context used. Such observations suggest that applying different stocks or asset classes to 

previous work contributes to theory development by either extending the scope of relevance or 

yielding new insights.  

 The work by Chan et al. (2010), empirically tests how the choice of the sampling frequency, the 

realised volatility (RV) measure, the forecasting horizon, and the time-series model affect the 

quality of volatility forecasting. This thesis differs from Chan et al. (2010) in the application of a 

different type of model, which is the log-linear RealGARCH. This model is deemed to be better 

at handling high-frequency data than the models evaluated by Chan et al. (2010)(Hansen et al., 

2012). Additionally, Chan et al. (2010) compares time series forecasts with implied volatility, but 

this study stops short of making such comparisons; only realised volatility is used. The emphasis 

in this thesis is laid on evaluating how different sampling frequencies affect forecasting accuracy 

and whether, like Chan et al. (2010) conclude, sampling frequency has a minimal effect on 

forecasts. Chan et al. (2010) uses 4 sampling frequencies: 30 seconds, 1 minute, 3 minutes, and 5 

minutes.  In this thesis, the evaluation is done by estimating several RealGARCH models using 

returns and realised volatilities from 54 sampling frequencies ranging from 1-94 minutes. While 

holding the model’s specifications constant, the parameters and realised volatility will solely be 

dependent on the sampling frequency. Furthermore, a different data set and asset class are used in 

this study, with data from ICE Brent oil futures being applied. 

My goal is not to prove the superiority of one model over another, so no such model comparisons 

will be carried out. Instead, I am focused on assessing the changes in forecasting accuracy when 

different sampling frequencies are used. Relying solely on a 5-minute sampling frequency, as 

many studies do, can result in lost information and potentially inaccurate forecasts. On the other 

hand, higher sampling frequencies involve increased costs in terms of time and computational 

power. The practical significance of this study is to determine if higher frequency sampling is 

crucial for those using log-linear RealGARCH models or, to an extent, dealing with crude oil 
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assets. If the influence of sampling frequency is limited, there would be no need to incur such 

costs. Therefore, it is essential to investigate how different sampling frequencies influence 

volatility forecasts, ultimately addressing the core research question: 

How do varying sampling frequencies influence the accuracy of volatility forecasts? 

Given that the literature seems to advocate for increased sampling frequency, is it the case that 

higher sampling frequencies are associated with increased accuracy? First, I'll look at the 

relationship between sampling frequency and forecast accuracy. It can be said that the 

relationship between sampling frequency and forecasting accuracy, if it exists, may have a cause-

and-effect aspect. Although correlations may exist, they do not imply absolute causation; other 

aspects may be responsible for this relationship. Further, it is also interesting to explore the 

magnitude of the forecasting accuracy gained or lost from changing sampling frequencies.  In this 

study, this is viewed as the magnitude aspect of the effect that sampling frequency has on 

forecasting accuracy. The research question to be explored on this aspect is: how big is the 

change in forecasting accuracy gained or lost from changing sampling frequency? 

1.4 Research context. 

This thesis uses high-frequency transaction-level data from Brent crude oil futures contracts 

traded at the Intercontinental Exchange (ICE) spanning from 2004 to 2021. North Sea crude oil 

market Brent, which is a North Sea crude, is an important benchmark for most internationally 

traded crudes (long 2002, Fattouh& Imsirovic, 2020) The following passage outlines some of the 

characteristics of oil and its trading.  

The trading characteristics of oil are significantly influenced by its physical nature, despite the 

presence of highly standardised paper trading instruments (Long, 1995). Oil, as a commodity, is 

subject to the logistical challenges of transportation, processing, and storage as it moves from the 

producer to the consumer. This causes price fluctuations due to mismatches in the location and 

timing of oil availability, which is in contrast to the instantaneous transferability of financial 

assets(Long, 1995). 

Demand for oil, like other primary commodities, is closely tied to the global economic state, with 

consumption patterns reflecting economic growth rates(Long, 1995). However, demand is subject 

to seasonal fluctuations, with different fuels peaking in demand at various times of the year. 
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While short-term price changes have minimal impact on oil consumption, long-term prices 

significantly influence demand levels. 

On the supply side, matching oil supply with demand has become challenging, particularly due to 

the shift from an integrated oil industry to a scenario where producers aim to maximise output for 

quick returns. OPEC plays a key role in attempting to stabilize prices by adjusting production 

levels, but it faces challenges due to the expansion of non-OPEC production and the seasonal 

nature of oil demand. Despite these efforts, the oil market has experienced periods of significant 

price volatility(Long, 1995). Oil prices are very sensitive to geopolitical shocks and events. Wars, 

trading disputes, pandemics, etc. have been shown to have an impact on oil prices. This 

sensitivity is evident from the recent events during the COVID-19 pandemic and the 2008 

financial crisis, both of which are visible in the data set.  

The structure of the oil market has evolved with the introduction of standardised trading 

instruments like futures and forward contracts, which facilitate liquidity and price transparency. 

These instruments, along with swaps and options, have transformed market operations, extending 

trading horizons and allowing for more effective price risk management over longer 

periods(Long, 1995). 

In ICE Brent Crude futures, the contract with the nearest expiration date, commonly known as the 

front-month contract, is the most actively traded and hence the most liquid. Additionally, the 

price fluctuations of this particular contract are the ones most commonly reported in news outlets 

around the globe(Ewald et al., 2023). The focus of this thesis will therefore be on this contract.  

1.5 An explanation of terms  

ACF – Autocorrelation function 

AIC - Akaike Information Criterion  

ARCH - Autoregressive conditional heteroskedasticity. 

BIC - Bayesian Information Criterion 

GARCH - Generalized Autoregressive Conditional Heteroskedasticity 

HAR - Heterogeneous autoregressive 
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I.I.D.: independent and identically distributed. 

ICE- Intercontinental Exchange 

LLH: Logarithmic Likelihood 

 MAE: Mean Absolute Error 

 MSE: Mean Squared Error  

OPEC: The Organization of the Petroleum Exporting Countries 

 R2 : Coefficient of determination 

RV: Realised volatility 

1.6 This thesis's outline.  

Section 2 starts by presenting related studies that review the role of sampling frequency in 

forecasting accuracy. As sampling frequency on its own is not significant for forecasting, the 

section continues to present the data-driven research framework. This study investigates the 

effects of sampling frequency within this framework.  Other topics in Section 2 include the steps 

undertaken to find relevant literature, which is followed by a review of the literature on the 

different components that are used in forecasting volatility from a RealGARCH perspective. 

Section 3 deals with methods. Here the research design is outlined, followed by the challenges 

encountered while taking on this task. Consequent topics in this section include choice of data 

collection and analysis, data cleaning and preparation, model estimation, and model evaluation. 

Section 4 encompasses the results and discussion; these are divided into an in-sample part and an 

out-of-sample part. The final section of this thesis is the section that gives a conclusion as well as 

potential avenues for future research. 

2.  Literature Review  

2.1 The impact of sampling frequency on volatility forecasting  

Since the ARCH model's inception, most likely even before, sampling frequency has been a part 

of forecasting volatility since at least the inception of the ARCH model. These models were able 

to forecast the conditional variance based on daily, weekly, or monthly returns, etc. The move 
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toward high-frequency data and the intra-daily range of volatility opened the discourse on the 

optimal level of sampling for calculating the realised. There are some similarities between this 

discourse and general statistical theory. In statistical theory, it is often the case that the population 

of interest is too large to be studied in its entirety. In order to be able to make inferences about 

this population, representative samples are used instead. Similarly, in volatility forecasting, 

where the population is represented by the continuous time series, samples of the price level are 

taken at different intervals and used to make inferences about the whole time series (McCrorie, 

2009). In statistical theory, larger samples are often associated with improved accuracy of the 

inferences made about populations. Transferred to the volatility forecasting field, higher sampling 

frequencies, which are related to increasing the sample size, should also lead to improvements in 

the accuracy of forecasts. However, statistical learning involves a central tenet, which is a 

compromise between variance and bias. The issue of noise at higher sampling frequencies is an 

issue that needs to be addressed in statistical learning in general (James, 2013). Similar 

challenges are also present in modelling and forecasting volatility. The results of choosing a 

higher sampling frequency are that these will be permeated by microstructure noise, whereas 

reducing the sampling frequency may lead to a loss of vital insights. This section presents the 

different aspects of sampling frequency achieved in different studies and those that mention its 

role in forecasting accuracy.  

Andersen et al.'s (2000) research on currency trading data highlights the instability of realized 

volatility at extremely high sampling frequencies, such as intervals of 5 and 10 seconds. 

Consequently, Aït-Sahalia et al. (2005) suggested that more reliable estimations of realised 

volatility can be obtained from a 5-minute sampling frequency. On the other hand, some studies 

(Oomen, 2006) using IBM transaction data find that the optimal sampling frequency can be 

reduced to 12 seconds from 2,5 minutes, albeit after incorporating an error correction scheme to 

reduce the microstructure noise. In another study, Hansen & Huang ( 2016) calculated six 

realised volatility measures that differ in terms of sampling frequency, ranging from 15 seconds 

to 20 minutes. They find that the best combination of realised measures and daily returns in the 

RealEGARCH framework is obtained using sampling at a frequency of 2 minutes. These studies 

show that there is variety in the suggested sampling frequency and that catering for 

microstructure noise leads to an even lower sampling frequency. However, the effect of these 

reductions is not clearly addressed in all of them. 
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Amongst the research papers that look at the role of sampling frequency in forecasting volatility 

is the one by Chan et al. (2010) where they explore the factors that influence the accuracy of 

volatility forecasts, with a specific focus on the impact of sampling frequency, the realised 

volatility measure, the forecasting horizon, and the used models. Different measures of realised 

volatility are evaluated: (1) Intraday Volatility, which measures volatility within a single trading 

day and captures high-frequency market movements; (2) Total Volatility measures the sum of 

squared returns over a specific period and provides a comprehensive view of realised volatility; 

this can be classified as the unconditional volatility mentioned above.  (3) Scaled Total Volatility 

is obtained by dividing total volatility by the square root of the number of periods, allowing for 

comparison across different forecasting horizons. (4) Close-to-Close Volatility measures 

volatility between consecutive closing prices. The inclusion of non-trading hours is found to 

significantly influence the distribution of realized volatility and forecasting performance. 

Therefore, the choice of realized volatility is more important than the sampling frequency used to 

calculate it. As a result of their findings, Chan et al. (2010) proceeded to apply a sampling 

frequency of 5 minutes to their study. Considering that it is an established statistical principle that 

when all other things are held equal, more data is preferred to less (Aït-Sahalia et al., 2005). In 

other words, sampling at a frequency of 2.5 minutes or 2 minutes, as achieved by Oomen (2006) 

or Hansen & Haung (2006), should be preferred to the 5-minute frequency employed by Chan et 

al. (2010).  However, the later finds very little improvement in increasing the sampling frequency 

from 5 minutes to 30 seconds. 

In a more recent study, (Ewald et al., 2023) reviewed sample frequency robustness and accuracy 

in forecasting the value at risk for Brent Crude Oil Futures. Accurate estimates of volatility are 

crucial for VaR forecasting, and high-frequency data combined with realised volatility are 

assessed to provide precise volatility estimates. The sampling frequency used to calculate realized 

volatility has been shown to have an impact on the model's performance, with higher frequencies 

generally yielding better results.   

To arrive at sampling frequency, a complete forecasting process must be undertaken. Sampling 

frequency is only a small part of this process. The remainder of this section will review the other 

crucial parts of this process. 
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2.2 Research framework. 

The process of forecasting volatility involves different steps, among which are the collection of 

data, estimation of model parameters, forecasting, and evaluation. Given the latent nature of 

volatility, an important part of the parameter estimation step is the selection of a measure for the 

volatility proxy. There are a multitude of volatility measures; some examples are conditional 

volatility(R. F. Engle, 1982), realised volatility(T. Andersen & Bollerslev, 1998) and realised 

kernels (Barndorff-Nielsen et al., 2008b). Regardless of the volatility measure one chooses 

consideration of the frequency at which it is calculated must also be made. Considerations of 

sampling frequency have been part of volatility forecasting since at least its inception. For 

example, in the ARCH framework, choosing the sampling frequency used to calculate returns 

involved making a choice between data collected at daily, weekly, or monthly intervals. The use 

of higher sampling frequencies has only become possible after technical and theoretical 

developments, with the latter being the invention of suitable measures like realised volatility, as 

in Andersen & Bollerslev (1998) and the former being improvements in computational ability 

and availability of data. The literature on volatility forecasting is vast and encompasses a wide 

range of approaches. Providing an overview of the whole field is beyond the scope of this study. 

However, if an attempt were to be made to group these approaches into a single framework, the 

data-driven research framework (Zou & Xu, 2023) illustrated in Figure 1. would be suitable.  
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As illustrated, the data-driven research framework includes data collection, cleaning and 

preparation, modelling, and interpretation. Research on volatility forecasting generally falls 

within such a framework. This thesis examines the effects of sampling frequency on forecasting 

accuracy.  Different steps must be taken before one is able to undertake such an evaluation, 

which falls under the interpretation point within the given framework above. Before continuing 

on to these steps, I explain how the search for literature was undertaken.  

2.3 Searching for relevant literature 

The aim at this stage consisted of identifying central literature and condensing the main ideas 

from the articles that were examined. This was then followed by identifying important terms and 

findings related to the frequency of sampling and accuracy of volatility forecasts. 

 Figure 1.The data-driven research framework. 
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To find the main theoretical sources, I conducted a search for articles. Access to reading materials 

such as books and magazines is available through sources like Google Scholar, ScienceDirect, the 

Wiley Online Library, and the Oria database. Search words used in locating the most relevant 

literature were “sampling frequency”, “volatility forecasting”, “high frequency”.  

In this study, I conducted a review of the literature relevant to my thesis topic. My main reliance 

is on academic journals and books, not only for their literal content but also for utilizing their 

reference sections to find other important sources. I have also depended on specific blogs and 

news pieces. 

The citation management tool Zotero was used to manage all references. Most of the citations are 

automatically imported from the sources. In specific instances where importation was not 

feasible, I added the references manually. 

 

2.4 Modelling volatility 

 

The roots of modelling the volatility of financial assets can be traced as far back as the early 

1900s to the work of Louis Bachelier, whose process would later be called Brownian motion 

(Mandelbrot 1963). A key building block of Bachelier’s process was the assumption that the 

volatility of an asset remained constant regardless of the asset’s price level.  

Volatility was often presented as a constant parameter in finance textbooks and research papers in 

the 1970s (Degiannakis & Floros, 2015). Modelling volatility based on this assumption of 

constant variance was further adopted into various models; among them are models based on 

ordinary least squares that are commonly used due to their ability to estimate how changes in one 

variable affect other variables (Engle 2001), and the Black and Scholes model (1973), a model 

that was developed to the implied volatility model. This thesis does not explore developments in 

this implied volatility branch.  

The assumption of constant volatility was proven to be incompatible with empiric reality by, 

among others, Mandelbrot (1963) who illustrated volatility’s clustering effect. After the 

clustering phenomenon was established, it became clear that large price changes in a financial 
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asset are likely to be followed by more large price changes (of either increase or decrease), and 

small price changes are likely to be followed by more small price changes. This meant that 

returns were not independent and identically distributed (i.i.d.)(Danıelsson, 2011). If the returns 

had been i.i.d., the size of a price change would not be dependent on the size of the earlier 

change. There was therefore a degree of autocorrelation between changes in returns at a given 

interval and those at earlier intervals. Models that assume constant volatility are hence incapable 

of incorporating this clustering phenomenon.  

One of the early attempts to model volatility that challenged the assumption of constant variance 

was proposed by (R. F. Engle, 1982) through the ARCH model. What Engle proposed was a new 

way to model changes in returns. He suggested that the variability in these didn’t stay the same. 

Instead, it changes, and these changes depend on what had happened previously. The observed 

value of volatility at a given interval was the product of a random error and the square root of the 

conditional variance at that time. 

The ARCH model assumed that the mean changes over time were zero. Further, the changes from 

one interval to the next did not follow a simple, predictable pattern. However, the size of the 

changes could be predicted based on recent past changes. Hence, the variance was serially 

uncorrelated but conditional. Making the ARCH model suitable for modelling the clustering 

phenomenon(R. F. Engle, 1982)   

The ARCH model’s ability to model volatility clustering was a better reflection of reality than 

earlier models. The model also had its shortcomings. Among these was the requirement for 

lengthy lag structures to effectively capture the patterns and persistence of volatility in financial 

time series(Bollerslev, 1986). Such lengthy structures could result in negative variance parameter 

estimates, which is an undesirable outcome since the ARCH processes are based on positive 

coefficients(Bollerslev, 1986). Given these limitations, there was a clear practical need to extend 

the ARCH model to allow for both longer memory (i.e., the ability to account for volatility 

persistence over a more extended period) and a more flexible lag structure. This would enhance 

the model's ability to reflect the complexity and dynamics of financial time series data more 

accurately. 

Tim Bollerslev's (1986) ARCH model expanded by incorporating an autoregressive structure into 

the variance equation, leading to the GARCH(p,q) model. As a result, the GARCH model can 
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combine recent error terms with past volatility to predict current volatility, allowing for both 

short-term shocks and long-term volatility persistence. Which was an improvement to the ARCH 

model. Numerous methods for forecasting volatility are available, though only a few are 

commonly used. Choosing a model involves balancing factors like ease of use and 

reliability(Danıelsson, 2011). The GARCH model and its hybrid innovations that combine 

different features, such as incorporating realised volatility, are prominent in the volatility 

literature.  

Other models have been developed; Corsi (2009) presents the HAR model. Though these models 

proclaim important improvements in their forecasting abilities, the GARCH-related models are 

most prominent in the literature. 

2.5 Volatility measures. 

The following section presents some of the volatility measures that are believed to provide better 

volatility forecasts. Central to this thesis is the realised volatility concept, which has emerged as 

an alternative measure for evaluating volatility forecasts. The focus is given to its evolution and 

why this measure was chosen.  

Volatility is latent and not directly observable; this attribute poses unique challenges in 

measurement and forecasting(Danıelsson, 2011). Unlike other statistical forecasting fields, in 

which model accuracy is assessed by comparing predictions with direct observations, volatility 

remains unobservable even after the fact. The latent nature of volatility means that it must be 

forecast by a statistical model, a process that inevitably entails making some assumptions. As 

stated under the ARCH model, it is generally assumed that the mean return is zero. This 

simplification is due to the significantly smaller size of the daily return mean compared to the 

volatility. Thus, the mean is often disregarded in volatility forecasting (Danıelsson, 2011). 

According to Danielsson (2011) the volatility concept can be divided into two concepts: 

unconditional and conditional volatility. Unconditional volatility refers to the measure of 

volatility over a long period of time. It's the average volatility that an asset experiences over this 

extended timeframe, without considering variations that may occur at specific points within that 

period. Conditional volatility, on the other hand, is the expected volatility at a specific time, 

given the asset's historical return movements up to that time. It's a period-specific measure, 
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reflecting the idea that volatility is not constant but can be influenced by recent events 

(Danıelsson, 2011).  

Depending on the period of interest, whether past, current, or future, (T. G. Andersen et al., 2010) 

specify three volatility terms: notional volatility, instantaneous volatility, and expected volatility. 

Instantaneous volatility refers to the actual volatility at a given instant. Such a measure is 

dependent on the existence of continuous data records. Data is, however, sampled at discrete 

intervals, so the accuracy of instantaneous volatility measurement is limited. Notional volatility, 

in contrast, is based on the quadratic variation, which is used to measure the total variance of a 

process over a specific period. In the case of volatility, this entails summing up squared returns at 

finer intervals. This approximation becomes increasingly accurate as the partitions become 

smaller. Expected volatility refers to the anticipation of future volatility based on present 

information. Unlike notional volatility, which can be determined through observed data without 

the need for a predictive model, expected volatility necessitates forecasting future return 

variations using specific models. However, expected notional volatility can be used to forecast 

future cumulative squared return changes and is a key factor in determining expected return 

volatility( Andersen et al., 2010). 

Realized volatility is an empirical measure reflecting what has occurred and is calculated using 

actual past data. Its calculation involves adding up the squared returns at high-frequency intervals 

within each period. For instance, in a 24-hour trading market, the daily realised volatility, using 

five-minute returns, is calculated by summing each day's 288 squared five-minute returns 

(Danıelsson, 2011). 

Among the first to mention the concept of as-realized volatility (RV), is Robert Merton (1980). 

According to Merton (1980), the precision of a variance measure was influenced by the 

frequency at which the data was collected. This was illustrated by comparing the variability of 

estimates based on annual data to those derived from daily data over an identical period. 

Estimates from the annual data exhibited a variability nineteen times greater than those from the 

annual data. It was further stated that as the observation frequency increased to infinity for any 

fixed interval, the variance rate could be estimated without error (Merton, 1980). However, there 

were practical limitations to making this sampling increase. Opting for increasingly shorter 
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observation periods introduced additional errors that outweighed the benefits of such an approach 

(Merton, 1980). 

Others concluded that realized volatility was a better measure of ex-post volatility. The GARCH 

model had improved conditional volatility modelling and forecasting. In spite of the model’s 

highly significant in-sample parameter estimates, it was deemed to explain little of the variability 

in the squared returns that were used as a proxy for ex-post volatility (T. Andersen & Bollerslev, 

1998). Andersen & Bollerslev (1998) argued that using high-frequency data to calculate the sum 

of intra-daily returns at very short intervals is a measure of ex-post volatility. The realised 

volatility based on these intra-daily returns used to assess the ex-post-performance of the ARCH-

type models gives better model performance. 

 

The realised volatility measure was part of the progressive movement of the volatility literature 

toward the use of higher frequency data(T. Andersen et al., 2000). It was also part of the ongoing 

debate between parametric and nonparametric volatility measurement (T. G. Andersen et al., 

2010). Through this perspective, the realised volatility measure was eventually further presented 

as a viable alternative for volatility forecasting. 

 Parametric volatility measures, such as those within the GARCH family of models, necessitate 

the estimation of model parameters as specified earlier in this text. The forecasting of volatility in 

these cases involves the estimation of coefficients (parameters) that need to be specified based on 

historical returns (Danıelsson, 2011). In their specification, these parameters primarily rely on 

daily squared returns. This approach has later been found to offer a weak estimation of the 

current level of volatility (Lyócsa et al., 2021; Zhang et al., 2019).  

 According (Bollerslev et al., 1994) the beginning of the shift towards nonparametric methods 

was a natural progression caused by the variety of ARCH models. The result was the use of 

various nonparametric techniques, like kernels and Fourier series, to model relationships in 

financial data (Bollerslev et al., 1994). However, the estimation of these nonparametric methods 

was challenging (Bollerslev et al., 1994), and consequently, nonparametric methods were judged 

to perform poorly, so Poon &. Granger (2003) chose to exclude them from their overview of 

different ways used in volatility forecasting.  
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On the other hand, research has found nonparametric models advantageous because they don't 

assume a fixed model structure, relying only on some general assumption of smoothness 

conditions. These assumptions focus on the continuity and gradual change of the data values, 

rather than abrupt jumps. This makes them especially beneficial when there's limited information 

available or when flexibility is needed regarding the underlying model(Zhao, 2008).Realized 

volatility, which is based on intraday return observations, offers a direct and relatively unbiased 

way to measure return volatility with uncorrelated errors T. G. Andersen et al. (2010). This 

approach enables the creation of time-series models for observed volatility. This method 

simplifies the process by avoiding the need to model complex intraday volatility patterns, while 

still leveraging the detailed information available in high-frequency data for understanding 

longer-term volatility trends. However, it's noted that this nonparametric approach to measuring 

volatility might be less statistically efficient compared to using a well-specified parametric 

volatility model. 

The choice between a parametric approach and a nonparametric approach to volatility 

measurement is thus a choice between a simple, nonbiased realised measure or a complex, likely 

biased model estimation. This choice is not necessary since realised variance measures were 

directly introduced into the dynamic volatility specifications in GARCH models (R. Engle, 2002) 

.The more accurate estimation and the forecasting gains associated with the inclusion of realised 

measures into the modelling frameworks inspired a rapidly growing research activity in this area. 

In an ideal market scenario without any frictions, realised volatility is considered the optimal 

measure of volatility (Degiannakis & Floros, 2015). In cases where the market experiences abrupt 

price shifts and trading microstructure noise, different measures that are better suited can be 

adopted. For instance, (Hansen & Horel, 2009) proposed a measure-based Markov chain theory 

that accommodated more of the microstructure noise, eliminating the need to omit data points to 

satisfy certain noise assumptions. On the other hand, Barndorff-Nielsen & Shephard (2004) 

introduced power and bipower variation measures. These were considered stable in the face of 

unpredictable and sudden price changes and were able to distinguish between the effects of 

overall market instability and occasional, major price spikes. Furthermore, they are able to 

maintain accuracy even when faced with sudden changes. Another measure was given by 

(Barndorff-Nielsen et al., 2008a), where they discovered that using kernel functions to smooth 
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the data reduced the influence of market microstructure noise, resulting in a more resilient 

volatility measure. Realized kernels proved to be a more precise measurement of volatility when 

working with high-frequency data. Even though the realized kernel provided a stronger measure 

when dealing with microstructure noise, creating it was a significantly more complex task 

(Barndorff-Nielsen et al., 2008b). All these measures are potential alternative volatility measures 

to realised volatility.  

Although the alternate measure of volatility is used when dealing with microstructure noise or 

abrupt price changes, there are some who consider the realised volatility to be the leading 

example of a high-frequency-based measure of volatility (Hansen & Horel, 2009). The central 

position that realised volatility has in the literature on high-frequency volatility modelling both in 

parametric and non-parametric approaches, and subsequent integration within the GARCH 

framework, makes it the measure chosen for this thesis.  

Despite the challenges of using high-frequency data and realizing volatility, both have continued 

to be used in volatility forecasting. Additional improvements to volatility models can be found in 

the combination of GARCH and realised volatility models, which have been found to outperform 

either model used independently (Zhang et al., 2019).Such a measure, realised volatility, which 

was initially mainly applied as an improved way of assessing model performance, was later 

incorporated into GARCH models, giving improved performance in high-frequency 

settings(Hansen et al., 2012). This approach will be applied in this thesis as it is an improvement 

of the models applied by Chan et al. (2010). Combinations of this kind are deemed better suited 

to handle high-frequency data (Hansen et al., 2012), and thus better suited to assess the effect 

sampling frequency  

 

2.6 Incorporation of realized volatility in GARCH models. 

Volatility exhibits a range of distinct traits, often referred to as stylized facts, which must be 

considered in any forecasting endeavour. Following the recognition of these stylized facts and the 

development of the GARCH model, a lot of research on volatility forecasting has centred on 

enhancing the foundational model or devising alternative approaches. Lunde & Hansen (2005) 

present a list of 330 GARCH-type volatility models, showing the extent of development that has 
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been done in the pursuit of improved volatility forecasts. This section tackles the introduction of 

realised measures into the GARCH model framework.  

Although the GARCH (1,1) is among the simplest and most robust of the volatility models, the 

model can be extended and modified in many ways to accommodate different requirements and 

mitigate some of its shortcomings(R. F. Engle, 2001). Zivot (2008) demonstrates that the basic 

GARCH model, particularly the standard variance equation it uses, generally works well for 

analysing financial data over time. However, this basic model isn't best suited for every situation. 

Sometimes, it needs to be adjusted or expanded to better understand and predict the patterns and 

behaviours of specific financial data series.  

Different methods have been proposed to incorporate realized volatility measures into modelling 

and forecasting processes. One proposition was to estimate a GARCH model that includes a 

realised volatility measure in the GARCH equation, known as a GARCH-X model (R. Engle, 

2002). This was further developed into the more complete model referred to as the RealGARCH. 

RealGARCH (Hansen et al., 2012) was viewed as providing an improved and efficient 

framework for volatility modelling. The main and most important feature of RealGARCH is that 

it is a joint modelling of conditional and realised volatility measures, which makes possible the 

projection of multiple-horizon volatility forecasts. There are a multitude of models within the 

RealGARCH framework, for example, the refined RealGARCH; log-linear RealGARCH in 

Hansen et al. (2012), the RealEGARCH in (Hansen & Huang, 2016) and the most recent 

GARCH@CARR in (Xie et al., 2019). 

Hansen et al. (2012) show that both linear RealGARCH and log-linear RealGARCH perform 

better than the standard GARCH and EGARCH models that only use returns to estimate 

volatility. Using the high-low daily price range as a realised measure, Xie et al. (2019) find that 

the GARCH@CARR also outperforms the return-based GARCH and EGARCH models. 

Although there remains no clear determination of the effects of sampling frequency on these 

models’ performance, there's evidence that RealGARCH-type models provide the possibility of 

improving volatility forecasts. Furthermore, recent literature indicates a rising interest in using 

RealGARCH models. (Huang et al., 2017) obtain an analytical approximation formula for option 

pricing under RealEGARCH. Contino & Gerlach (2017) use the log-linear RealGARCH to 

forecast tail risk. (Banulescu-Radu et al., 2017) use the RealEGARCH model to investigate the 
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volatility during the financial crisis. Wu et al. (2020) propose using RealEGARCH with 

skewness and kurtosis to forecast VaR.  

The question of which variant is more efficient is addressed by Xie & Yu (2020) who compared 

three models within the RealGARCH framework. They find that, in line with the principle of 

parsimony, which states that simpler models usually provide better forecasts than more complex 

ones, the simpler GARCH@CARR outperforms the other two, while the log-linear RealGARCH 

outperforms the RealEGARCH. 

Although the GARCH@CARR model is considered most efficient, the volatility measure it 

applies is derived from the daily price range, which is the difference between the logarithm of the 

day’s highest price and the logarithm of the day’s lowest price. Such a measure of realized 

volatility will not make it possible to assess the effect of different sampling frequencies, which is 

the aim of this thesis. Therefore, the next efficient model, the log-linear RealGARCH, will be 

applied. 

In the studies mentioned above, different sampling frequencies are employed to calculate realised 

volatility. Wu et al. (2020), Contino & Gerlach (2017) use a 5-minute frequency, while Xie & Yu 

(2020) use a daily range. Hansen& Huang (2016) on the other hand, construct six realised 

volatility measures that differ in terms of the sampling frequency, ranging from 15 seconds to 20 

minutes. As mentioned in the next segment, some have managed to sample at lower frequencies 

than the prevalent 5-minute range. 

2.7 Summary  

Thus, one can make the following summation: the measurement and modelling of volatility are 

vital for multiple financial applications. Different models and measurements have been 

developed that improve modelling and forecasting. However, the validity of these approaches and 

findings for different scenarios remains a scarcely explored topic, as most new developments 

tend to introduce novel models, new measurements of volatility, new scenarios, or a combination 

of them. These approaches are dominant compared to those that test the models and 

measurements on other datasets. Furthermore, while many studies use the 5-minute sampling 

frequency as an optimal way to manage eventual microstructure noise, there is evidence from 

others that in some cases this can be lowered, but few examine what they gain from this increase. 
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Chan et al. (2010) looks at this gain and conclude that the sampling frequency has little effect on 

the forecasting accuracy compared to other factors like the inclusion or exclusion of non-trading 

hours in the calculation of the realized variance. Meanwhile, others find that, generally, model 

performance increases when the sampling frequency is increased. More specifically, Ewald et al. 

(2023) find that higher sampling frequencies yield better model performance.  

 

3. Methods 

A research method has been defined by Vilhelm Auberts as “a procedure, a means to solve 

problems and gain new knowledge. Any means that serves this purpose belongs in the arsenal of 

methods. ((Furseth & Everett, 2022 ,137), The translation is my own).  This section provides an 

overview of the steps taken to evaluate the effect of sampling frequency on forecasting accuracy. 

Starting with laying out the research design, then proceeding to data cleaning and preparation, 

involving the construction of different data sets based on the frequency at which they are 

sampled. Subsequently, the model is fitted to the corresponding dataset while keeping the model 

specifications constant to ensure that differences in forecasting performance are due to the data 

frequency, not model specification changes. The result of this forecasting exercise will then be 

evaluated, with the aim of assessing the effect of sampling frequency on forecasting accuracy.  

3.1  Research design. 

The relationship between sampling frequency and forecast accuracy is not quite clear. There are 

those, like Chan et al. (2010), who find the effect minimal in comparison to the effect of 

including or excluding overnight trading hours. However, they use only a couple of sampling 

frequencies to make a definitive conclusion. On the other hand, others find that increasing the 

sampling frequency, while it requires careful monitoring of the microstructure noise, does 

contribute to increased forecasting accuracy (Ewald et al., 2023).  The latter indicates a 

correlation between the sampling frequency used and forecasting accuracy. Additionally, in 

statistical theory, the assumption is often that the bigger the sample, the better the inferences 

made from it. A similar view is adopted in this thesis; the research design adheres to a causal 
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research design as it aims to investigate the effect of sampling frequencies on the precision of 

volatility forecasts.  

According to Walliman (2022), causal design is one of two classes within correlation research 

design, with the other being association, which denotes instances where there is some kind of 

influence on the other but not a cause of change. The relationship between two concepts can be 

non-existent (no correlation), positive (increases in one cause increase in other, decrease results 

in decrease), or negative (increase in one lead to decrease in other, or vice versa).  Following the 

results in (Ewald et al., 2023), the indication is that the relationship  between the sampling 

frequency and forecasting accuracy is positive. On the other hand, the results from  

In research situations where the goal is to determine differences or correlations between two or 

more variables, a popular approach is to use statistical methods to confirm the existence of 

proposed relationships. This involves hypothesis development and testing, which are commonly 

used to assess the correlation between variables in theoretical models(Zou & Xu, 2023). 

Approaches of this kind usually distinguish between independent variables and dependent 

variables. The independent is viewed as having an effect on the value of the dependent. This 

thesis investigates how sampling frequency affects volatility forecasting accuracy. In this case, 

the forecasting accuracy is the dependent variable, and the sampling frequency is the independent 

one. If this view holds true, a model whose parameters are estimated using higher frequencies 

will ultimately have better forecasting accuracy than one estimated using lower frequencies. To 

evaluate this, I built 54 models using the same model specifications, with the only differences 

being the sampling frequencies of the returns and the realized volatility used in estimating the 

models. After having estimated the models and run one-rolling, one-day-ahead forecasts for each 

sampling frequency, I proceeded to compare the forecasting accuracy of these models. This 

assessment provides the answer to whether the sampling frequency has an effect on accuracy. 

This approach shares similarities to that employed by (Lunde & Hansen, 2005). Although they 

compare the performance of different models on the same data set, my approach is to compare 

the same model on the same data set but with different sampling frequencies.  

More complex and systematic analytical methods are becoming more popular because of the 

increasing complexity of research topics(Zou & Xu, 2023). Zou & Xu (2023) present different 

techniques for analysing quantitative data, among them the method of data-driven research. Data-
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driven research refers to the emphasis on utilizing data and data science as tools for conducting 

research. Central to this approach is the progression from data to information to knowledge. The 

combination of abundant data and sophisticated analytical methods has led to the emergence of 

novel interdisciplinary research.  Through data-driven research, scientists integrate data science 

with the distinctive features and requirements of their field of study to facilitate the transition 

from data to knowledge. As alluded to under the theory part, in the context of forecasting 

volatility, in order to arrive at an evaluation of the effect that sampling frequency has on 

forecasting accuracy, other steps have to be accomplished. These steps include cleaning, 

processing the data ready for modelling, fitting the model, forecasting volatility, and then 

evaluating the results from the forecasts. The explained process is quite similar to the different 

steps given by the research-driven framework. Hereafter, in this methods section, I will proceed 

to present the steps taken under the data-driven research framework.  

3.2 Challenges  

In order to evaluate the effect of different sampling frequencies, I decided to create different data 

sets based on sampling frequency. These are intervals of 1-750 respectively. These sampling 

frequencies were then to be used in the estimation of models whose forecasting accuracy would 

subsequently be compared to each other, while the model specifications were held constant. 

While estimating the model, it became apparent that some frequencies would not converge; only 

54 models below 95 minutes could be used, and everything after 95 minutes failed to converge. 

Failures in achieving convergence may result from various factors, such as the use of unsuitable 

solver algorithms when fitting the model, missing values, non-stationary data, or not normally 

distributed data, among others. I conducted tests of stationarity and distribution in addition to 

checking for missing values and outliers to confirm that the returns utilized in defining the 

models and calculating realised volatility meet these criteria. I also decided to utilize the "hybrid" 

solver as advised for the “rugarch” package when fitting models. This algorithm, which serves to 

fit the model parameters, is assessed to prevent many potential convergence issues that may arise 

with other solvers (Ghalanos & Kley, 2023). Despite choosing to do so, the fitting process could 

not invert the Hessian matrix at multiple sampling frequencies. If a Hessian matrix cannot be 

inverted, it can be quite challenging or impossible to fix while still using the selected model and 

data, since the desired inverse simply does not exist(Gill & King, 2004). Most recommend 
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actions like reconsidering the model, making changes to it, conducting the analysis again, or 

collecting additional data. Most, if not all, of these potential fixes were unapplicable.  In order to 

keep the models similar and have sampling frequency as the only difference amongst them, the 

solver algorithm had to remain the same. Getting more data was also not possible, though I could 

extend the number of trading hours included. I therefore decided to drop these sampling 

frequencies. 

3.3 The method chosen for data collection and analysis. 

Data is considered the fundamental and central component of any study(Zou & Xu, 2023). The 

types of data that can be collected in a research setting can be classified into primary and 

secondary data, respectively. The distinguishing factor for which of these categories the data 

belongs is the gatherer’s closeness to the source of information. Primary data is gathered directly 

from the original source using questionnaires, surveys, interviews, or observations. Secondary 

data, on the other hand, often stems from data that has already been collected by others. Such 

data may include financial reports, budget reports, etc.  

In this thesis, the use of primary data is not easily applicable. The likelihood that a primary 

source, which is often a person, can transmit 16 years’ worth of trade data at 1 minute's frequency 

is not existent. Therefore, secondary data is used. Using secondary data adds requirements for the 

user to check the accuracy and reliability of the sources from which the data is collected before 

using them. It is vital for the user to check the relevance of the data for the study in addition to 

accuracy, credibility, and reliability aspects related to how the data were collected, processed, and 

stored(Walliman, 2022). These steps are increasingly relevant as there are reports of increased 

academic scams related to poor vetting of secondary data(Cookson, 2023).  

The data utilised in the thesis is trading data for Brent crude oil from ICE. The University of 

Applied Sciences in Inland, Norway, has been afforded access to this high-frequency data, which 

was sampled at a 1-minute frequency. Despite the lack of oversite on the collection, cleaning, and 

storage processes of the data before I was able to access it, the assumption in this study is that 

since the data is collected and initially handled by the university, it fulfils the accuracy, 

credibility, and reliability requirements. Although the data showed some unusual characteristics 
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that make its reliability doubtful. Specifically, there were some instances where the price of oil 

was registered as equal to zero and others where it was lower than the actual price posted online. 

When it comes to the relevance requirement, the choice of using this data rests on two things: 1) 

the will to do the research in another setting different from those commonly used. A lot of the 

past studies within the volatility forecasting field have used data from currency exchange rates 

(T. Andersen & Bollerslev, 1998; Chaboud et al., 2010) or stock market assets and indexes like 

the Hang Seng Index(Chan et al., 2010) or S&P 500(Buncic & Gisler, 2017; Gulay & Emec, 

2018; Huang et al., 2017).  High-frequency data analysis requires that the data have enough 

transactions to be sampled at high frequency. If an asset has very few transactions taking place, 

then there’s no point sampling at high frequency since the price will not change often enough to 

potentially lead to multiple returns equal to zero. Oil is a highly traded commodity because it is 

the most crucial trade commodity globally. (Ewald et al., 2023). Additionally, the data ranges 

from January 2004 to October 2021 and provides price data sampled at 1-minute. The expanse of 

the data set and the liquidity of oil make this dataset relevant for this study. 

For data analysis, the data-driven research framework has several analytical approaches, among 

which are descriptive analytics, which is a method of statistical analysis used for interpreting data 

and gaining an understanding of patterns within it. Descriptive analytics involves applying 

statistical calculations to give an overview of the data. Further, data visualisations also provide 

insight into exploratory data analysis. This method is primarily used to clean and prepare data. It 

is also applied to evaluate whether the cleaned data is suitable for modelling and meets GARCH 

requirements (centrality and normal distribution). Another method of analysis within the data-

driven framework is time-series analysis. In general terms, this method is usually utilized to 

provide an understanding of patterns or trends and to track fluctuations in a time series. After this 

information is extracted from the data, it may be useful for making forecasts. Time series analysis 

is the central analytical method used in the thesis.  

3.4 Data cleaning and preparation 

The cleaning of data for meaningful analysis is often a necessary requirement, depending on the 

aims of the study. Such data cleaning involves choosing relevant variables, handling duplicate 

values, missing values, outliers, etc.  
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The data set initially has 21 variables. I start by evaluating the information carried by these 

variables and its relevance to the study I want to conduct. In a time series analysis based on the 

price of oil during the period of 2004–2021, only two variables are relevant: the timestamp and 

the recorded prices. I therefore proceed to trim the data and remain with only two variables.  

The trading hours on the ICE are from 00.00 to 22.00.  When examining the data, it became 

evident that some trading hours had missing values. These missing values are mainly 

concentrated between the 01.00 and 09.00. In statistical learning techniques, it is vital to find a 

viable way of handling missing values to prevent possible problems with model fitting. One 

method to address this issue is to remove rows with missing data and analyse the remaining 

complete rows. This can also be seen as excessive and may not be practical, depending on the 

percentage that is missing. Another option for dealing with missing values is to replace them with 

the average of the available data points (James, 2013). To deal with the missing values, I decided 

to focus on the trading hours between 09:30-22:00. This approach is also compatible with Chan 

et al. (2010) who compared realised volatility calculated with the inclusion of non-trading against 

that calculated without. They point out that their decision to exclude non-trading hours had a 

bigger impact on forecasting accuracy than sampling frequency did. Through the exclusion of 

these hours with missing values, which coincide with the non-trading hours excluded in Chan                                                                                                                                                                                                    

et al (2010) allows to focus solely on the effect of sampling frequency on forecasting accuracy. 

The drawback to this is that the characteristics of the underlying asset are not fully represented.  

Another change made to prepare the data pertains to dealing with what can be termed extreme 

values. As is visible from the price evolution plots provided in Figure 2, there was an extreme 

change in oil prices during May 2017, where prices dropped to zero 39 times during that period 

and 3 others around 25 dollars for only 1 minute at a time. 
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From historical data on ICE Brent crude oil, there appears to be no such occurrence of zero oil 

prices during this period, and the price never drops below 45 dollars. (ICE Brent Crude Oil Front 

Month price information - FT.com, u.å.). As these data points are during trading hours and not to 

close to each other, simply removing them or replacing them by the mean wouldn’t be the 

optimal solution in this case. Linear regression is a better solution because it replaces the missing 

values at levels that fit better with the adjacent values.  

 

 

 

 

 

 

Figure 2. Prices before cleaning. 

Figure 3. Prices after cleaning. 
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Having constructed a continuous time series with no missing values, the next step is to create 

different data sets based on the sampling frequency.  The data is originally sampled at 1-minute 

intervals; to create a data set of, for example, a 3-minute frequency, the price is extracted at three-

minute intervals. This creates a data set with missing values that must be omitted. Similar 

sampling is then undertaken for all frequencies, leading to data sets of different lengths.  

The next step is to calculate returns. When analysing financial data, returns are usually the 

primary focus instead of prices. One of the main explanations given for this preference is that 

returns have statistical properties that make them more manageable in time series modelling, such 

as stationarity (Danıelsson, 2011). The literature distinguishes between two types of returns, 

simple and log returns. Simple returns are the difference between the price of an asset at one 

period in time compared to a previous period, for example given 1 minute sampling, returns at 

minute 𝑡 can be calculated by finding the difference in price at time t and the previous minute 

given as 𝑡 − 1. One benefit using of log returns is that they possess a time-additive characteristic 

which lets us present the log returns of multiple periods as the sum of one period. To illustrate, 

given the intraday log returns of a financial asset, one can calculate the daily returns by adding up 

the intraday returns. This characteristic makes it easier to calculate and examine returns across 

different time periods. 

In mathematical terms, logarithmic returns are expressed as shown under  

𝑟𝑡 =  𝑙𝑜𝑔 (
𝑃𝑡

𝑃{𝑡−1}
) =  𝑙𝑜𝑔(𝑃𝑡) −  𝑙𝑜𝑔(𝑃{𝑡−1}) 

Creating a measure of realised volatility is done by adding up the squared log returns from the 

different sampling frequency dataset(T. Andersen et al., 2000). 

𝑅𝑉𝑎𝑟𝑡 = ∑ 𝑟𝑡,𝑖
2

𝑀

𝑖=1
 

 This summation is conducted each day. For instance, given that the data has been restricted to 

12,5 hours a day, the daily volatility calculated from five-minute returns is determined by adding 

up the squared returns of 150 five-minute intervals within each day. This summation makes the 

created datasets eventually have the same length, creating daily returns for 4549 trading days for 
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every sampling frequency. With the returns and the realised volatility for each sampling 

frequency calculated, the models can now be estimated.  

3.5 Model estimation. 

The "rugarch" package by  (Ghalanos, 2023)is used for estimating the models. This package 

provides different solutions that are specifically designed for both univariate and multivariate 

GARCH modelling. In this package, all the methods, from estimation to filtering, forecasting, 

and simulation, have been included. The model designated as the realGARCH model in the 

package is the equivalent of the loglinear realised GARCH model by Hansen et al. (2012. The 

realized GARCH model with a log-linear specification is defined by the GARCH and 

measurement equations shown below. 

 

log ℎ𝑡 = 𝜔 + ∑ 𝛽𝑖log ℎ𝑡−𝑖

𝑝

𝑖=1
+ ∑ 𝛾𝑗log 𝑥𝑡−𝑗

𝑞

𝑗=1
 

log 𝑥𝑡 = 𝜉 + 𝜙log ℎ𝑡 + 𝜏(𝑧𝑡) + 𝑢𝑡 

 

 

In statistical learning, choosing the right model is a balancing act between models that may be 

too simple to not be able to explain the variety in the data, thus underfitting, and models that may 

be too complex and capture more than the information of interest, resulting in overfitting. The 

model specifications in this thesis are kept simple to avoid overfitting. This parsimonious 

approach is behind the choice of the realized GARCH model, where the GARCH component 

consists of GARCH (1,1). On the other hand, the simplicity of this model, given the complexity 

of time series data, could lead to instances of underfitting. Adding ARMA (0,0) to the GARCH 

(2,2) model enhances its complexity. Furthermore, the realGARCH model includes realized 

volatility measures in the variance equation, adding extra parameters. More intricate models, 

which have a greater number of parameters to calculate, are naturally more susceptible to 

overfitting. Overfitting happens when a model includes noise in the data as though it were a real 

pattern, resulting in underwhelming forecasting results on new data(James, 2013). Having a 
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higher number of parameters in a model increases the likelihood of overfitting to the in-sample 

data, capturing noise that does not transfer well to new, unseen data. Nevertheless, the GARCH 

(2,2) and ARMA (0,0) models are quite parsimonious as they focus on achieving more with 

fewer parameters, which can reduce overfitting to some degree.  

A common practice when training models is to divide the data into two such that the model can 

be trained on part of the data and the rest of the data can be used to test the model’s performance. 

The distribution, when splitting the data, often involves allocating 80% of it for training and the 

remaining 20% for testing. The data contains a total of 4549 trading days. By using 3549 days to 

train the model and keeping out 1000 for out-of sample testing, a split of approximately 78% for 

the training data and 22% for the testing data. The models’ performance at predicting the values 

in the testing data determines their out-of-sample performance, or, in other terms, their 

forecasting accuracy. As a result, this accuracy will be attributed to the underlying sampling 

frequency, since all other things are held equal.  

Dividing data into training and test sets is a crucial element in assessing the accuracy of 

prediction models. Two popular methods to accomplish this are: rolling forecasts (moving 

window) and expanding windows. In the rolling forecast, the model is trained by advancing 

through the training dataset while consistently adapting to a set quantity of the latest 

observations. When new data is obtained, the oldest data point is removed from the training set, 

and the new data point is included, keeping the training set size constant. This technique is 

especially valuable for time series data in which recent trends or patterns hold more significance 

for predicting future outcomes(Montgomery et al., 2008). The other method is the expanding 

window method, where the training dataset begins with a small size and gradually increases by 

incorporating additional observations as it progresses. This implies that with each new prediction, 

the model gains knowledge from additional data. The expanding window method is applicable in 

cases where gathering additional data as time progresses can lead to a deeper comprehension of 

the fundamental patterns or when predicting long-term trends is crucial. In situations where the 

price changes rapidly, a moving window is more appropriate. I find that there is no huge 

difference in the outcomes of each model and decide to use the simpler expanding window 

method, which takes less computational power and time. 
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3.6 Model evaluation. 

Model evaluation can be performed through three evaluations: evaluation of model adequacy, 

also known as a diagnostic check; model parsimony; and error criteria(Bonakdari & Zeynoddin, 

2022). These assessments are undertaken to evaluate and quantify the effect of sampling 

frequency on forecasting accuracy.  

Model adequacy evaluation assesses the models’ residuals. The aim is to check whether they are 

normally distributed, independent, and not affected by periodicity, thus fit for modelling 

(Bonakdari & Zeynoddin, 2022).  The inspection of residual plots is undertaken in order to 

confirm that the estimates are unbiased. A test that can be used to determine residual 

independence is the ACF (auto-correlation function).  ACF is a function that calculates the auto-

correlation between a series and its different lags. Components of a time series may include trend, 

seasonality, cyclicality, and residual. When determining correlations, ACF considers all of these 

elements. The different ACF plots provided in Appendix Section 2 indicate that all the models 

have their residuals within 95% significance intervals apart from the first lag, thus showing 

independence in residuals and the adequacy of the developed model.  

One of the objectives of modelling is to create the best-suited models with the simplest structure.  

Such parsimonious models tend to provide more precise predictions due to their lower likelihood 

of overfitting the initial dataset. All the models in this study have the same number of parameters 

and are complexity-wise similar. The only difference amongst them is the sampling frequency 

used to calculate intraday returns and the realized volatility used in their estimation. The Akaike 

information criterion can be used for model selection and model structure simplicity evaluation. 

In addition to model parameters, the AIC also includes model residual variance in its calculation.  

Hence, the metric is applied to assess the effect of sampling frequency on model parsimony. Like 

AIC, the Bayesian information criterion is also used in model selection. For both metrics, the 

model with the lowest value is seen as the most simplistic(Bonakdari & Zeynoddin, 2022). 

Measuring the model’s performance is done by finding the difference between the model’s 

forecasted values and the actual values in the test data set. The differences are often expressed 

using two metrics, the MSE and MAE. The mean squared error is calculated by squaring the 
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errors before adding them up; this method penalizes bigger errors more than smaller ones.  It’s 

mathematically expressed as shown under 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 −  �̂�𝑖)

2
𝑛

{𝑖=1}

 

 

The mean absolute error is calculated by summing up the absolute values of the errors, which 

provides an indication of the average error size. The mathematical equation is given below.  

MAE =
1

𝑛
∑ ∣ 𝑌𝑖 − �̂�𝑖 ∣

𝑛

𝑖=1

 

 

Smaller values suggest the model's predictions are closer to the actual data, indicating a higher 

level of accuracy in the model's performance(Bonakdari & Zeynoddin, 2022) are used in the next 

section where the statistical results of the forecasting exercise are presented.  

 

 

 

4. Results and discussion. 

 

Based on the data that is split into a training and testing set, forecast accuracy can be assessed for 

both in- and out-of-sample performance from these two sets. In this section, I will present and 

examine the forecasting findings within and outside the sample. 
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4.1 In sample results 

Insight into how changes in model fitting are affected by sampling frequency can be gained by 

understanding the correlation between these metrics and sampling frequency. A graph displaying 

the AIC and BIC metrics at different sampling frequencies is shown in figure 4. The sampling 

frequency is seen to have an effect on both AIC and BIC. Observably, lower AIC and BIC values 

are seen with increased sampling frequencies and these increase as the frequencies recedes. 

 

 

 

 From the diagram that displays the log-likelihood values, it can be seen that the log likelihood 

goes up as the sampling frequency increases. A greater log-likelihood typically suggests a model 

that more accurately captures the data. This indicates that higher frequencies could be gathering 

additional data, thereby increasing the model's fit. 

 

 

  Figure 4. Changes in Akaike and Bayes Criteria 
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The table below contains the Spearman correlation coefficients for AIC, BIC, LogLikelihood, 

and sampling frequency. The findings indicate a significant relationship between sampling 

frequency and both AIC and BIC metrics. The loglikelihood results show a clear inverse 

relationship. These signals suggest that a higher sampling frequency can enhance the accuracy of 

the models. This aligns with research showing that higher sampling frequencies improve the 

accuracy of measuring notional volatility. 

 

 

 

 

 

 

 Figure 5. Changes in loglikelihood. 
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Table 1.Correlation coefficients of fit and sampling frequency. 

 

 

 

4.2 Out of sample results 

 

The main focus of assessing the effect of sampling frequency is the influence it has on a model’s 

out-of-sample accuracy. Out-of-sample performance is based on the model's ability to forecast 

values in data that were not included during the model fitting process. This performance is then 

taken as an indication of the model’s performance on subsequent data sets.  

Having only one observation for each sampling frequency makes it difficult to perform traditional 

statistical tests like ANOVA, which require multiple observations per group to analyse the effect 

of sampling frequency on MSE and MAE. However, I am able to examine how the MSE and the 

MAE evolve with changing sampling frequencies through visual and regression analysis. 

Measure Correlation coefficients 

AIC 0.9464507 

BIC 0.9464373 

Loglikelihood -0.9464339 



 

42 

 

 

 

 

 

 

Figure 1.  

Figure 6.Scattergram of MSE 

Figure 7.Scattergram of MAE. 
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The scattergrams above illustrate the variation of MSE and MAE values at different sampling 

frequencies. When observing visual representations, it seems that at higher sampling rates 

(smaller data intervals), both the MSE and MAE values vary without showing a definite 

connection between changes in sampling rate and changes in forecasting error. As the frequency 

decreases, there seems to be a developing trend where the error measure declines.  This 

observation is better illustrated in figure 8 below with the help of a trendline that shows 

tendencies in the data. 
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Figure 2.  Figure 8.Trendlines of MSE and MAE. 
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The pattern shows that as the sampling frequency decreases, the model errors decrease. The 

visual illustrations can be further supported by correlation coefficient calculations between the 

sampling frequency and the two measures. These are provided below in Table 2. The negative 

signs of the correlation coefficients indicate that when the sampling frequency decreases (longer 

intervals between samples), there is a slight decrease in both MSE and MAE. With the p-value 

being lower than 0.05, the true correlation is not equal to zero in a 95% confidence interval.  

 

Table 2.Correlation coefficients and p-values of MSE and MAE 

Measure Correlation coefficient p-value 

MSE -0.46 0.0004432 

MAE -0.50 0.0001027 

 

Using regression techniques to model the relationship between sampling frequency and error 

metrics allows for further analysis(Walliman, 2022). The goal here is to determine whether there 

is a statistically significant linear trend in the changes in MSE and MAE with sampling 

frequency. It also serves to quantify this relationship and examine the strength of the correlations. 

I generate linear and second-degree polynomial regression models for MSE and MAE as a 

function of sampling frequency. The polynomial regression models are created in cases where the 

relationship between sampling frequency and the MSE or MAE is not linear.  

  

Figure 3.  Figure 9.Linear and Polynomial fit of MSE. 
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Table 3.Adjusted Pearson's R for MSE regression models. 

Regression model Adjusted R2 

Linear model MSE 

Polynomial model MSE 

0.1979 

0.2403 

 

 

 

 

 

Table 4.Adjusted Pearson's R for MAE regression models. 

Regression model    Adjusted R2 

Linear model MAE 0.2395 

Polynomial model MAE 0.2277 

 

The adjusted R² values of the linear regression are around 0.20 for MSE and 0.24 for MAE. 

These indicate that a modest portion of the variability in these metrics is explained by changes in 

Figure 4. Figure 10.Linear and Polynomial fit of MAE. 
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sampling frequency.  The adjusted R² values for the polynomial regression are also quite similar 

to the linear regression values.  Further analysis is therefore focused on the linear regression. 

 The graphs for both MSE and MAE suggest that there is a decrease in the error metrics as the 

sampling frequency decreases. This aligns with the negative correlation coefficients found earlier. 

Further evidence is provided by looking at the summary of linear regression, where MSE and 

MAE are predicted using sampling frequency. Table… below shows the coefficients for sampling 

frequency. The -3.348e-07 for MSE and -2.689e-06 for MAE indicate that for each unit decrease 

in sampling frequency, MSE and MAE decrease by this amount, respectively. The effect 

sampling frequency has on accuracy is better expressed by looking at the coefficients’ values. As 

both P values are considerably low (below a standard alpha level of 0.05), I discard the null 

hypothesis that the coefficient is zero. This implies that there is a statistically significant 

correlation between the sampling frequency and both error metrics. 

 

Table 5.Summary linear regression MSE and MAE. 

Regression model    Coefficient 

sampling 

frequency 

Standard 

Error 

t-static p-value 

Linear regression MSE -3.348e-07   8.925e-08   -3.752 0.000443 

Linear regression MAE -2.689e-06   6.393e-07   -4.206 0.000103 

 

The results here appear to indicate that as the sampling frequency was reduced, the model was 

able to predict the volatility more accurately. This result is different from what the literature 

indicates, where most point to increased forecasting accuracy as the sampling frequency 

increases. It should be pointed out that the model does not converge after 95 minutes. It is 

therefore unclear whether these results hold for all sampling frequencies in this data set or only 

the interval between 1-95 minutes.  The 54 models that were used in this study represent only 

7,2% of a potential 750 minutes between 09.30- 22.00.  There could be a minimum point that is 

not included in this study, after which the error metrics increase.  



 

48 

 

Other possible causes of this surprising result could be related to the model or the data. Raising 

the sampling rate generally results in a higher number of collected data points. According to the 

bias-variance trade-off (James, 2013), more data points can lead to various outcomes. Increased 

data generally offers a more thorough understanding of the phenomenon being studied, 

potentially improving a model's learning capabilities and decreasing errors in certain situations. 

Nevertheless, increased data points may also lead to an amplified presence of noise or variability, 

particularly when the extra data does not aid in clarifying the fundamental trends. If the model 

complexity is not properly addressed, it could potentially lead to an increase in error metrics. If 

the model lacks complexity to deal with greater variability or patterns from higher sampling 

frequencies, MSE and MAE could rise, as the model cannot capture more subtle variations in the 

data. It is also possible that highly intricate models can cause overfitting, where the model picks 

up on the noise in the training data instead of the true signal. This usually leads to reduced errors 

on the training data but increased errors on unseen or test data. The patterns observed in the in-

sample results and those in the out-of-sample results may be the result of overfitting that gives a 

good fit in-sample and increases error on the test data.  I have tried to apply more complexity to 

the model but haven’t found any improvement. The other issue is the reliability of the data, which 

unexpectedly included prices of oil equal to zero and some instances lower than what the source 

of the data has published online(ICE Brent Crude Oil Front Month price information - FT.com, 

u.å.) 

Chan et al. (2010) points out that the gain in accuracy from increasing the sampling frequency 

from five minutes to 30 seconds is minimal. I look at the percentage change between MSE and 

MEA for the 54 models.  A summary of the percentage changes is given in table… below.  The 

data shows that the conclusion by Chan et al. (2010) could have some value based on the average 

change, which is only 0.117% for MSE and even much smaller for MAE.  Some intervals do 

have large changes, but its challenging for research to find out exactly which interval gives a 

worthwhile improvement. Furthermore, the cumulative percentage change of all 54 models is 

only around 6% for MSE and around -3% for MAE.  
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Table 6. Percentage change summary. 

Measure Mean Median Min  Max 

% Change MSE -0.117    -0.160   -7.510 7.450 

% Change MAE -0.06019 -0.00500 -3.83000 1.79000  

 

 

5. Conclusions 

I set out to explore the effect of sampling frequency on forecasting accuracy. The effect on 

forecasting accuracy was explained to have a cause-and-effect aspect where changes in sampling 

frequency would either increase or decrease forecasting accuracy. In addition to this, the effect 

had a magnitude aspect where the gain or loss would have a significant size to justify the incurred 

computational and time costs. The data research framework, which encompasses a fair share of 

the previous research in the field, was used.  

The cause-and-effect aspect of the relationship between sampling frequency and forecasting 

accuracy was assessed in-sample and out-of-sample. Regarding the in-sample assessment, I was 

able to find evidence that sampling frequency affected how well the model fit. The relationship in 

this case was that the higher the sampling frequency, the better the model fit. Regarding the out-

of-sample assessment, evidence was found that sampling frequency had an effect on forecasting 

accuracy, albeit in a surprising way. The relationship found in this study is that increasing 

sampling frequency negatively affects modelling accuracy.   

As for the magnitude aspect of the changes in sampling frequency, I find that the average changes 

in MSE or MEA are so small that it would be difficult to foresee a significant gain from changes 

in sampling frequency. 

However, doubts related to the reliability of the data and uncertainty about the models reduce the 

possibility of drawing absolute conclusions about the overall effect of sampling frequency and 

forecasting accuracy in this setting. The results and analysis presented are restricted to sampling 

frequencies ranging from one minute to 95 minutes, as well as the dataset used.   
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5.1 Implications and further research  

Although there are limitations to the scope of the results and conclusions in this study, I am able 

to conclude that there is potential for improving the forecasting ability. An area of interest would 

be to redo this study using a different model and perhaps construct a 24-hour whole-day variance.  

The results of the regression analysis showed that sampling frequency accounted for around 20-

25% of the variability in the error metrics.  From the illustration of the data research method in 

Figure 1. it is also clear that there is an opening for the inclusion of other research fields. In this 

study, little input from other fields is used.  This opens an opportunity for future research to 

include other variables that influence, for example, the price of oil and hence play an underlying 

role in the level of volatility. Such fields could include but not limited to, international politics 

(modelling of OPEC decisions), security situations in specific geographical regions, etc.  

This thesis is most likely of little value to professional practitioners (Jacobson, 2020). However, 

the knowledge of how sampling frequency affects the volatility forecasts of different assets could 

prove valuable to nonprofessional day traders.  
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Appendix 

 

1.Link to the dataset  

https://www.dropbox.com/scl/fi/l6vb3tmqkk00z36kfg61s/pt_1min_long.csv?rlkey=mj86i8varyfg

gji5kg7qeadyo&dl=0  

 

https://www.dropbox.com/scl/fi/l6vb3tmqkk00z36kfg61s/pt_1min_long.csv?rlkey=mj86i8varyfggji5kg7qeadyo&dl=0
https://www.dropbox.com/scl/fi/l6vb3tmqkk00z36kfg61s/pt_1min_long.csv?rlkey=mj86i8varyfggji5kg7qeadyo&dl=0
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2. ACF and PACF plots  
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3. MSE &MAE 

 

Sampling frequency MSE MAE 
1 0,000837114 0,0173654 
2 0,000850077 0,01713219 
3 0,000831878 0,01696378 
4 0,000735021 0,01680133 
5 0,000837049 0,01699371 
6 0,000837296 0,01687282 
7 0,000748954 0,01670987 
8 0,000785903 0,01693543 
9 0,000879811 0,01693912 

10 0,000839196 0,01705439 
11 0,000735257 0,01674398 
12 0,000756774 0,01685283 
13 0,000814861 0,01723923 
14 0,000748844 0,01681634 
15 0,000840273 0,01708052 
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16 0,000786699 0,01689655 
20 0,000742448 0,01686042 
22 0,000731823 0,01674151 
23 0,000794962 0,01707588 
24 0,000820319 0,01706748 
25 0,000895523 0,01716658 
26 0,000801111 0,01707314 
27 0,000895559 0,01705687 
28 0,000732965 0,01678631 
29 0,000796471 0,01692102 
30 0,000844093 0,01702324 
31 0,000791837 0,01691658 
32 0,000786125 0,0170246 
33 0,00071273 0,01673273 
35 0,000713567 0,01669651 
36 0,000787504 0,01683633 
39 0,000792323 0,01705795 
41 0,000780797 0,01690891 
45 0,000906077 0,01719232 
46 0,000769247 0,0169314 
47 0,000793908 0,01691666 
48 0,00080751 0,01693422 
49 0,000765753 0,01681905 
52 0,000784727 0,01684822 
53 0,000789748 0,0168946 
54 0,000898471 0,01714267 
56 0,000783936 0,01687245 
58 0,000788463 0,01697469 
59 0,000782992 0,01690619 
64 0,000782412 0,01689451 
66 0,000707088 0,01661104 
70 0,000711984 0,01662304 
71 0,000778221 0,01682899 
72 0,000785511 0,01678617 
78 0,000775274 0,01688978 
82 0,000781778 0,01684781 
91 0,000782564 0,01691845 
92 0,000768194 0,01677449 
94 0,0007573 0,01671145 
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4.Percentage changes in MSE and MAE 

 

Sampling_frequency MSE change MSE_cumulative MAE change MAE cumulative 
1 0 0 0 0 
2 1,55 1,55 -1,34 -1,34 
3 -2,14 -0,59 -0,98 -2,33 
4 -11,64 -12,24 -0,96 -3,28 
5 13,88 1,65 1,15 -2,14 
6 0,03 1,67 -0,71 -2,85 
7 -10,55 -8,88 -0,97 -3,82 
8 4,93 -3,94 1,35 -2,47 
9 11,95 8,01 0,02 -2,44 

10 -4,62 3,39 0,68 -1,76 
11 -12,39 -9 -1,82 -3,58 
12 2,93 -6,07 0,65 -2,93 
13 7,68 1,61 2,29 -0,64 
14 -8,1 -6,49 -2,45 -3,09 
15 12,21 5,71 1,57 -1,52 
16 -6,38 -0,66 -1,08 -2,6 
20 -5,62 -6,29 -0,21 -2,81 
22 -1,43 -7,72 -0,71 -3,52 
23 8,63 0,91 2 -1,52 
24 3,19 4,1 -0,05 -1,57 
25 9,17 13,27 0,58 -0,99 
26 -10,54 2,73 -0,54 -1,53 
27 11,79 14,51 -0,1 -1,63 
28 -18,16 -3,64 -1,59 -3,22 
29 8,66 5,02 0,8 -2,41 
30 5,98 11 0,6 -1,81 
31 -6,19 4,81 -0,63 -2,44 
32 -0,72 4,09 0,64 -1,8 
33 -9,34 -5,25 -1,71 -3,51 
35 0,12 -5,13 -0,22 -3,73 
36 10,36 5,23 0,84 -2,89 
39 0,61 5,85 1,32 -1,57 
41 -1,45 4,39 -0,87 -2,45 
45 16,05 20,44 1,68 -0,77 
46 -15,1 5,33 -1,52 -2,29 
47 3,21 8,54 -0,09 -2,38 
48 1,71 10,25 0,1 -2,27 
49 -5,17 5,08 -0,68 -2,95 
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52 2,48 7,56 0,17 -2,78 
53 0,64 8,2 0,28 -2,5 
54 13,77 21,97 1,47 -1,04 
56 -12,75 9,22 -1,58 -2,61 
58 0,58 9,8 0,61 -2,01 
59 -0,69 9,1 -0,4 -2,41 
64 -0,07 9,03 -0,07 -2,48 
66 -9,63 -0,6 -1,68 -4,16 
70 0,69 0,09 0,07 -4,08 
71 9,3 9,4 1,24 -2,85 
72 0,94 10,33 -0,25 -3,1 
78 -1,3 9,03 0,62 -2,48 
82 0,84 9,87 -0,25 -2,73 
91 0,1 9,97 0,42 -2,31 
92 -1,84 8,13 -0,85 -3,16 
94 -1,42 6,72 -0,38 -3,54 

 

 


