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Abstract 

This master's thesis investigates how high-frequency data and automatic feature 

selection can enhance volatility and Value-at-Risk (VaR) forecasts for Brent Crude Oil futures. 

The research identifies a significant gap in the utilization of these advanced data analytics 

techniques in improving financial risk management predictions. The primary objective of this 

study is to determine the effectiveness of integrating high-frequency data and machine 

learning feature selection to refine forecasts of volatility and VaR. A comprehensive 

methodology combining statistical analysis and machine learning models, including neural 

networks and regression analyses, is applied to high-frequency trading data. The findings 

reveal that feature selection significantly improves the accuracy of volatility forecasts. In 

addition, models incorporating high-frequency data outperform traditional forecasting 

models, demonstrating more precise risk assessments and better decision-making tools for 

financial analysts and traders. The study concludes that employing high-frequency data and 

automated feature selection can significantly affect risk management strategies, offering 

robust tools for more accurate forecasting in financial markets. These advancements provide 

a foundation for future research aimed at integrating more complex algorithms and data 

sources to further enhance predictive accuracy in financial risk management. 

 

 

 

 

 

 

Keywords: Value-at-Risk (VaR), Realized Volatility, Machine Learning, Model Selection, Brent 

Crude Oil Futures  



 
 

 
 

vi 
 

Sammendrag 

Denne masteroppgaven undersøker hvordan høyfrekvente data og automatisk 

funksjonsvalg kan forbedre prognoser av volatiliteten og Value-at-Risk (VaR) for Brent-

Råoljefutures. Forskningen identifiserer et betydelig gap i bruken av disse avanserte 

dataanalyseteknikkene for å forbedre prediksjoner til bruk i finansiell risikostyring. 

Hovedmålet med denne studien er å undersøke verdien av å integrere høyfrekvente data og 

maskinlæringsfunksjoner til prognoseformål for volatilitet og VaR. En omfattende metodikk 

som kombinerer statistisk analyse og maskinlæringsmodeller, inkludert nevrale nettverk og 

regresjonsanalyser, blir testet på høyfrekvente handelsdata. Funnene viser at automatiske 

funksjonsvalg forbedrer nøyaktigheten av volatilitetsprognoser betydelig.  I tillegg viser 

resultatene at modeller som baserer seg på høyfrekvente data er mer nøyaktige sammenlignet 

med modeller som baserer seg på tradisjonelle prognoseteknikker, og er et godt utgangspunkt 

for presise risikovurderinger og bedre beslutningsverktøy for finansanalytikere og 

beslutningstakere i denne sektoren. Studien konkluderer med at bruk av høyfrekvente data og 

automatisert funksjonsvalg kan påvirke risikostyringsstrategier betydelig, og tilbyr robuste 

verktøy for mer nøyaktige prognoser i finansmarkedene. Resultatene gir videre et grunnlag for 

fremtidig forskning rettet mot å integrere mer komplekse algoritmer og datakilder for å 

ytterligere forbedre predikativ nøyaktighet i finansiell risikostyring. 
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1 Introduction 

1.1 Background 

Risk management in financial markets, especially in commodity trading, relies heavily 

on accurate volatility forecasting and Value-at-Risk (VaR) estimation (Kambouroudis et al., 

2016). Brent Crude Oil market dynamics are shaped by diverse factors, and the precise 

prediction of volatility and VaR plays a pivotal role in the decision-making processes of traders 

and financial institutions. This study delves into the intricate dynamics of volatility in financial 

markets, with a specific focus on Intercontinental Exchange (ICE) Brent Crude Oil futures. One 

critical question underpinning this research is identifying which components of volatility, 

calculated from various sampling frequencies, play a pivotal role in crafting accurate forecasts 

for volatility and VaR for Brent Crude Oil futures. This inquiry is vital for both theoretical 

understanding and practical applications in financial risk management. 

To address this question, the study endeavours to uncover how leveraging high-

frequency data, alongside automatic feature selection techniques for machine learning, can 

substantially refine the accuracy of volatility and VaR predictions for Brent Crude Oil futures. 

By systematically exploring the interplay between data granularity and advanced analytical 

methodologies, the study aims to contribute to the optimization of forecasting models. This 

approach not only holds the potential to advance the precision of financial forecasts but also 

to offer invaluable insights into the mechanisms driving market volatility, thus supporting 

more informed decision-making processes in the volatile domain of commodity futures. 

The primary research inquiry guiding this study is: How can high-frequency data and 

automatic feature selection techniques for machine learning be leveraged to enhance 

forecasts of volatility and VaR for Brent Crude Oil futures? By addressing this query, the aim is 

to unveil novel insights into refining forecasting models within the commodity trading domain 

(Kambouroudis et al., 2016). The utilization of high-frequency data allows for a more granular 

comprehension of market movements, capturing subtle patterns and fluctuations that 

traditional methods may overlook. Additionally, automatic feature selection techniques for 

machine learning provide a systematic methodology for identifying the most influential 

variables driving volatility and risk in Brent Crude Oil futures trading. 
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The study holds promise for enhancing risk management practices by providing traders 

and financial institutions with improved forecasts of volatility and VaR, potentially leading to 

more accurate and timely insights. Through harnessing high-frequency data and automatic 

feature selection, market participants can gain a competitive edge in navigating the intricacies 

of commodity markets, empowering them to make well-informed decisions, and effectively 

mitigate risks (Louzis et al., 2014). 

In the subsequent sections of this study, an in-depth exploration of the methodologies 

employed, the analysis of high-frequency data, the application of automatic feature selection 

techniques, and the implications of the findings on volatility and VaR forecasting for Brent 

Crude Oil futures will be presented. This research endeavours to contribute valuable insights 

to the realm of financial risk management and to establish a foundation for more robust and 

reliable forecasting models in commodity trading markets. 

1.2 Contribution of the Study 

The present study systematically uncovers the strengths and intricacies of volatility 

forecasting within the financial sector, particularly focusing on Brent Crude Oil futures. It 

makes several important contributions to the field by empirically evaluating traditional and 

more recently developed modelling approaches and integrating these models to 

comparatively examine the robustness of volatility analysis. This study also provides several 

practical implications for model optimization for risk management, as well as advancing the 

theory of both traditional and neural network-based approaches. 

By empirically evaluating the performance of traditional econometric models and 

juxtaposing them with the prowess of machine learning algorithms under a spectrum of 

market conditions, this study enriches the empirical literature with fresh insights and 

evidence. Next, by providing a robust comparative analysis that highlights the unique 

advantages and constraints of econometric methods and machine learning techniques in the 

context of volatility forecasting, this research marks a significant stride in integrating these 

methodologies. By offering a granular analysis of model performance in real-world trading 

scenarios, this study contributes to the optimization of risk management practices, aiding 

practitioners in making more informed and strategic decisions in the dynamic landscape of 

commodity trading. Finally, by delving into the comparative merits of models like generalized 
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autoregressive conditional heteroskedasticity (GARCH) and autoregressive integrated moving 

average (ARIMA) versus neural network-based approaches such as long short-term memory 

(LSTM), this study expands the theoretical framework informing commodity trading 

forecasting and fosters a deeper understanding of these methods’ capabilities to capture 

market volatility and risk. 

In essence, the study contributes to bridging theoretical gaps in financial risk 

management by integrating traditional econometric models with modern machine learning 

techniques. By comparing the predictive capabilities of models like GARCH, ARIMA, and LSTM 

under various market conditions, the study offers insights into the trade-offs between model 

complexity and forecasting accuracy, advancing the theoretical understanding of volatility 

forecasting and VaR prediction. Furthermore, the research provides empirical evidence of the 

models' performance, highlighting the importance of integrating established theories with 

cutting-edge technologies to enhance risk assessment and decision-making in financial 

markets. Overall, the study not only bridge theoretical gaps by exploring the strengths and 

limitations of different modelling approaches but also paves the way for practical 

advancements in financial risk management by offering valuable insights for model selection 

and risk quantification in dynamic market environments. 

1.3 Objectives of the Study 

The objectives of this study address the multifaceted nature of volatility in financial 

markets, with a focus on the following areas: 

1. High-frequency data utilization: Harnessing the power of high-frequency trading 

(HFT) data to capture the nuances of market volatility, aiming to improve the accuracy and 

reliability of predictive models for Brent Crude Oil futures. 

2. Predictive model evaluation: Evaluating a diverse array of forecasting models, from 

well-established econometric models to cutting-edge machine learning algorithms, to 

ascertain their predictive accuracy and robustness. 

3. Feature selection and optimization: Employing sophisticated feature selection 

techniques to distil the most relevant predictors from the data, thus enhancing the models' 

forecasting precision. 
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4. Risk management strategies: The ultimate objective is to translate the analytical 

findings into actionable strategies for risk management, particularly for entities involved in 

commodities trading, offering a competitive edge in the high-stakes arena of futures markets. 

By achieving these objectives, the study aims to contribute substantially to the existing 

body of knowledge and to the operational methodologies employed within the financial 

trading community. 

1.4 Research Questions 

How can high-frequency data and automatic feature selection be used to improve 

forecasts of volatility and VaR for Brent Crude Oil futures? 

This question focuses on enhancing the accuracy of forecasting models for both 

volatility and VaR in the context of Brent Crude Oil futures trading. The study will elaborate on 

the ways in which high-frequency data and automatic feature selection can be leveraged to 

improve these forecasts. 

1.4.1 High-Frequency Data 

High-frequency data plays a pivotal role in enhancing the understanding of price 

movements and market dynamics by providing detailed insights at more frequent intervals, 

such as intra-day or tick data. This granular level of data allows analysts to capture short-term 

fluctuations and patterns in asset prices, leading to increased precision in forecasting volatility 

and VaR. By leveraging high-frequency data, analysts can make more accurate predictions, 

enabling them to react swiftly to changing market conditions and to make informed decisions 

promptly. This real-time access to market updates empowers traders and risk managers to 

stay ahead of market trends and adjust their strategies effectively in response to dynamic 

market environments (Virgilio, 2019). 

1.4.2 Automatic Feature Selection 

Automatic feature selection algorithms play a crucial role in identifying the most 

relevant variables or features that significantly contribute to forecasting models, thereby 

reducing the dimensionality of the dataset, and improving model efficiency and 

interpretability. By selecting the most informative features, automatic feature selection 

enhances the predictive power and generalization capabilities of forecasting models, 

ultimately leading to improved model performance (Khaire & Dhanalakshmi, 2022). 
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1.4.3 Forecasting Volatility 

The combination of high-frequency data and automatic feature selection techniques 

offers a powerful approach to modelling volatility dynamics in Brent Crude Oil futures markets. 

By leveraging high-frequency data, analysts can capture the intricate and dynamic nature of 

volatility, allowing for a more nuanced understanding of market behaviour. Automatic feature 

selection plays a key role in this process by identifying relevant features from the high-

frequency data, enabling forecasting models to incorporate crucial market information that 

directly affects volatility patterns. This integration of data-driven insights and feature selection 

enhances a model’s ability to adapt to changing market conditions and make more accurate 

predictions regarding volatility in Brent Crude Oil futures markets (Chen et al., 2020; Du et al., 

2023). 

1.4.4 Forecasting Value-at-Risk  

Value at Risk is a widely used risk management measure that quantifies the potential 

loss in value of a portfolio over a specified time horizon and at a given confidence level. It 

provides a comprehensive assessment of the maximum loss that a portfolio could incur under 

normal market conditions. For traders and financial institutions, improved forecasts of VaR 

that use high-frequency data and automatic feature selection are essential for effective risk 

management. By accurately estimating VaR, market participants can make informed decisions 

regarding capital allocation and risk mitigation strategies. From a regulatory perspective, 

precise VaR forecasts are crucial for compliance with risk management standards and 

regulatory guidelines. Regulatory authorities often require financial institutions to maintain 

sufficient capital reserves to cover potential losses, and accurate VaR calculations play a vital 

role in ensuring adherence to these regulatory requirements. In summary, VaR serves as a 

critical tool for both risk management practices and regulatory compliance in the financial 

industry (Fallon, 1996). 

By integrating high-frequency data and automatic feature selection techniques into 

the forecasting process for volatility and VaR of Brent Crude Oil futures, market participants 

gain a competitive edge by enhancing the accuracy of their risk assessments and decision-

making capabilities. This integration enables traders and financial institutions to delve deeper 

into market dynamics and risk factors, leading to more informed decisions, effective risk 

management strategies, and optimized trading approaches. The utilization of advanced data 
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analysis techniques not only improves the precision of forecasts but also empowers market 

participants to proactively respond to market fluctuations and capitalize on opportunities with 

a heightened understanding of the underlying factors influencing Brent Crude Oil futures 

(Laopodis, 2021). 

1.5 Methodology Overview 

This study employs a comprehensive methodological framework that integrates 

various statistical and computational techniques to investigate volatility forecasting in 

financial markets. The research begins with a meticulous data acquisition process, focusing on 

collecting HFT data to precisely capture the intricacies of market movements. An extensive 

descriptive analysis follows, ensuring a profound understanding of the data's characteristics 

before delving into complex predictive modelling. Finally, the study aims to comprehensively 

compare the forecasting performance of traditional econometric models such as GARCH and 

ARIMA with advanced machine learning algorithms like LSTM and neural networks.  

Through feature engineering techniques, the methodology enhances the predictive 

models by selecting only the most relevant variables for inclusion. Robust findings are ensured 

through rigorous model validation techniques, including out-of-sample testing and cross-

validation. The study utilizes risk assessment metrics, such as VaR, to evaluate the efficacy of 

forecasting models. In addition, to further enhance the understanding of volatility dynamics, 

the expected shortfall (ES) metric is utilized, which provides a comprehensive view of risk 

management by considering extreme losses, risk-adjusted returns, varying risk levels over 

time, tail risks, and downside risk scenarios (Mehta, & Yang, 2022). This multifaceted 

methodological approach is designed to provide a nuanced understanding of volatility 

dynamics and offer valuable insights into risk management practices in the financial sector. 

1.6 Structure of the Study 

The study is structured to guide readers through the research process, starting with 

the Introduction that establishes the research background, significance, and objectives. The 

Literature Review offers a comprehensive overview of existing theories and research, 

contextualizing the study within the academic landscape. The Methodology section describes 

the research design, data collection methods, and analytical techniques used to fulfil the 

study's objectives. The Empirical Analysis provides a thorough exploration of the data, applies 
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selected models to the data, and evaluates their predictive performances (Forman, 2003). The 

Results section then presents the study's findings, providing crucial insights into the 

effectiveness of various forecasting models. Finally, the Discussion segment interprets the 

results, drawing connections with established literature and highlighting both theoretical and 

practical implications derived from the research. 

The recent integration of HFT in commodities, with a specific focus on crude oil trading, 

signifies a significant transformation within the financial landscape. The incorporation of high-

frequency data in this sector is driven by its crucial role in enhancing risk management 

practices, refining derivative pricing mechanisms, and optimizing portfolio selection 

strategies, thereby capturing the attention of energy researchers, market participants, and 

policymakers (Ewald et al., 2023). This surge in the prevalence of HFT has not only 

revolutionized the operational dynamics of trading activities but has also paved the way for 

novel avenues of exploration and innovation in financial markets, fostering a climate ripe for 

advanced research endeavours and strategic development initiatives. 

1.7 Ethics Consideration 

In conducting this research on HFT data for Brent Crude Oil, ethical considerations have 

been paramount to ensure the integrity and social responsibility of analytical processes. Given 

the sensitive nature of the data and its potential implications on market behaviour, the study 

adheres strictly to ethical standards. First, the study ensures data privacy and confidentiality. 

To protect the privacy of the data sources and maintain the confidentiality of market-sensitive 

information, all datasets utilized in this study have been anonymized and aggregated. No 

identifiable information pertaining to the data providers, such as specific transaction details 

or trader identities, has been used or disclosed. The study employs data encryption and secure 

data storage techniques to safeguard against unauthorized access and ensure that the data 

integrity is maintained throughout the research process (Dinev & Hart, 2004). 

Second, this study ensures regulatory compliance by complying with all applicable 

financial regulations and ethical guidelines set forth by relevant financial oversight bodies. 

These include adherence to the principles of responsible data handling as outlined by the 

Securities and Exchange Commission (SEC) and other regulatory entities that govern financial 

markets. Before the commencement of the study, all necessary permissions were obtained 
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from data providers and regulatory authorities to ensure compliance with legal standards 

(Bessembinder & Maxwell, 2008). 

3. Impartiality and objectivity: The methodologies and analyses presented in this study 

are designed to be impartial and objective. The choice of models and techniques was based 

on ensuring accuracy and fairness in drawing conclusions about market behaviour and 

predicting volatility (Kahneman & Tversky, 1979).  

4. Mitigation of market impact: Given the impact that study findings can have on 

market behaviours, especially in volatile commodity markets such as crude oil, the 

dissemination of results has been approached with care and consideration. This sensitivity 

acknowledges the potential influence that the research outcomes may have on market 

participants, ensuring that the information is shared responsibly to mitigate any unintended 

consequences or disruptions in the market. The study avoids speculative assertions and is 

presented with cautionary notes regarding its applicational limits to prevent misuse of the 

data or findings that could lead to market manipulation (Barberis et al., 2005). 

By adhering to these ethical principles, the study not only contributes valuable insights 

into the volatility of crude oil markets but also ensures that these contributions do not 

compromise ethical standards or market integrity. This approach underscores the 

commitment to conducting financially impactful research within a framework that prioritizes 

social responsibility and ethical rigor. 
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2 Theoretical Framework and Literature Review 

2.1 Theoretical Foundation 

2.1.1 The Theory of Volatility 

To analyse and understand volatility in financial markets, various models and theories 

have been developed. These models are designed to uncover the underlying patterns, drivers, 

and characteristics of volatility, offering valuable insights into the behaviour of asset prices. 

The overarching framework that underpins this study is the theory of volatility. In financial 

markets, the theory of volatility pertains to the degree of variation or dispersion of returns for 

a specific asset or market over a certain period. It describes the concept of asset value 

fluctuation within a given timeframe (Patton, 2011). This fundamental concept is essential for 

comprehending asset price dynamics and implementing effective risk management strategies, 

and it serves as a critical metric for assessing risk and uncertainty in financial markets. This 

measure significantly influences investment decisions, portfolio management strategies, and 

the pricing of derivatives. For investors, traders, and financial analysts, a deep understanding 

of volatility theory is crucial for evaluating and mitigating the risks associated with price 

fluctuations (Haugom et al., 2014). 

2.1.2 Financial Asset Pricing and Returns  

Financial asset prices reflect the value of an asset at a given point in time. For assets 

traded on an exchange, the reported prices could be bid prices, ask prices, an average of bid 

and ask, opening prices, closing prices, the highest or lowest price recorded over the trading 

day, or an actual transaction price. According to Taylor (2005) asset prices should be defined 

using one price per period and recorded with a constant frequency such as the market’s close. 

Formally, the price of a given asset at time 𝑡 can then be defined as: 

 𝑃𝑖,𝑡, (1) 

 

where P is an asset’s price at sub-period 𝑖 on day 𝑡 at the daily close of the market. It can also 

be the price recorded at the end of each week, month, or year. In recent years, much of the 

trading takes place at the intra-day level, and the asset price then reflects sampling 

frequencies within the day. 
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These temporal price fluctuations mean that price series are almost always non-

stationary, which makes prices inappropriate to use in many statistical applications. The 

preferred choice when conducting empirical investigations of financial assets involves returns 

instead of prices themselves. There are several reasons for this. First, returns reflect complete 

and scale-free summaries of investment opportunities. Returns are also easier to handle than 

price series because of their statistical properties (Campbell et al., 1997).  

The distributional properties of returns are fundamental in understanding volatility 

dynamics and forecasting, underscoring their importance in financial modelling and risk 

management. A key aspect is the second moment structure of the conditional return 

distribution, which evolves over time and significantly influences risk assessment (Thomakos 

& Wang, 2003). Analysing return distributions provides valuable insights into the trade-off 

between risk and return, optimal portfolio allocation strategies, and the likelihood of 

significant fluctuations in portfolio value. Moreover, the distribution of returns plays a pivotal 

role in pricing financial instruments, assessing portfolio performance, and guiding strategic 

decisions in financial markets. 

The distributional properties of returns encompass several key aspects: 

1. Conditional distribution of returns: This property involves examining the distribution 

of asset returns based on specific information or conditions. Understanding the conditional 

distribution is essential for modelling volatility and making precise forecasts. 

2. Excess kurtosis: This property measures the deviation from the expected shape of a 

normal distribution. Excess kurtosis impacts volatility forecast accuracy and may need to be 

quantified and corrected for during various data generation processes. 

3. Non-normality of returns: Addressing the non-normality of returns is crucial, as asset 

returns frequently deviate from a normal distribution. This non-normality can affect volatility 

modelling and forecast precision, particularly in handling extreme observations or irregular 

data patterns (Patton, 2011). 

There are several ways to measure returns, with the most basic being simple returns. 

The simple returns equation is typically calculated as the difference between the current price 

and the previous price, divided by the previous price: 
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𝑅𝑖,𝑡 =  

𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1

𝑃𝑖,𝑡−1
, 

(2) 

where 𝑅𝑖,𝑡 is the simple return for sub-period 𝑖 on day 𝑡, 𝑃𝑖,𝑡 is the price at time 𝑡 for sub-

period 𝑖, and 𝑃𝑖,𝑡−1 is the price at time 𝑡 − 1 for sub-period 𝑖. This formula calculates the 

percentage of change in price from one period to the next. The calculation of simple returns, 

representing the percentage change in asset prices over a single period, is fundamental in 

financial modelling. Understanding the nuances of simple returns aids in analysing asset 

performance and constructing predictive models (Louzis et al., 2014; Wang, & Chan 2007). 

Another commonly used measure of returns is the log returns equation, which is used 

to calculate the percentage change in the price of an asset over a specific period 

(Kambouroudis et al., 2016): 

 
𝑟𝑡 = ln (

𝑃𝑡

𝑃𝑡−1
) 

 

(3) 

The daily logarithmic returns of a financial asset, denoted as 𝑟𝑡 , are defined as the difference 

between the logarithmic asset price observed at day t (denoted as 𝑃𝑡) and the price observed 

at day t-1 (denoted as 𝑃𝑡−1).  

The log returns equation offers several advantages that make it commonly used in 

financial modelling and analysis. One key advantage is its ability to capture the impact of 

lagged returns on correlations, which is crucial for assessing market volatility and 

interdependencies between assets and allowing for the examination of asymmetric effects in 

market relationships. By incorporating lagged returns and indicator functions, the equation 

provides a framework to assess how past returns influence current correlations, shedding light 

on the dynamics of market interactions. This feature is particularly valuable in understanding 

the nuanced behaviour of financial assets and can help in identifying patterns of asymmetry 

that may not be evident through traditional modelling approaches. Additionally, the 

equation's flexibility in accommodating different variables and specifications makes it a 

versatile tool for studying complex relationships in futures markets, enhancing the depth and 

accuracy of financial analyses (Thomakos & Wang, 2003).  

In the modelling process, the daily return 𝑟𝑡 is described as a combination of a 

conditional mean µ𝑡 and an error term 𝜀𝑡, which can be represented as the following equation: 
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 𝑟𝑡 =  µ𝑡 +  𝜀𝑡 =  µ𝑡 +  𝜎𝑡𝑧𝑡, (4) 

 

where 𝑧𝑡 follows a standard normal distribution, denoted as 𝑧𝑡 ~ 𝑁(0,1). 

To address the inherent serial autocorrelation in financial asset returns, modelling the 

conditional mean should be done using an autoregressive model of order 1 (AR(1)) 

specification (Tsay, 2010). This specification assumes that the expected value of the current 

return 𝑟𝑡 given the information available up to the previous period 𝐼𝑡−1 is a linear function of 

a constant C and the lagged return 𝑟𝑡−1 multiplied by a coefficient 𝜙𝑡. Mathematically, this 

can be expressed as: 

 𝛦(𝑟𝑡|𝐼𝑡−1) = C + 𝜙1𝑟𝑡−1 (5) 

The use of these equations and a thorough understanding of asset pricing, returns, and the 

nuances of the distributional qualities of returns are critical in further modelling and 

evaluating market risk and volatility. 

2.1.3 Volatility and Risk 

2.1.3.1 Volatility in financial markets reflects the degree of fluctuation or variation in 

the prices of financial instruments over a specific period. Volatility is commonly used as a 

measure of risk because higher volatility suggests the potential for significant price 

movements, both upward and downward. Investors and traders closely monitor volatility 

because it can affect their investment decisions. When investors assess risk in the financial 

markets, they often look closely at volatility, which serves as a crucial indicator of the potential 

risks and uncertainty associated with an investment. This uncertainty can lead to both higher 

potential gains and higher potential losses for investors (Poon & Granger, 2003). 

Investors consider volatility as a key factor in understanding the level of risk associated 

with a particular asset or portfolio. By analysing volatility, investors can gauge the potential 

impact of price fluctuations on their investments (Peters, 1996; Shiller, 1992). High volatility 

implies a more dynamic market environment where prices can change rapidly and by 

significant amounts. This dynamic nature of high volatility introduces a level of unpredictability 

that investors must navigate when making investment decisions. Furthermore, high volatility 

prompts investors to carefully evaluate their risk tolerance levels. Different investors have 

varying degrees of risk tolerance based on factors such as investment objectives, time horizon, 
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and financial circumstances. Assessing volatility helps investors align their risk tolerance with 

the level of volatility present in the assets they are considering. This alignment is crucial for 

ensuring that investors are comfortable with the potential risks and rewards associated with 

their investment choices. 

In addition to risk tolerance considerations, understanding volatility plays a vital role 

in portfolio diversification. By including assets with different levels of volatility in their 

portfolios, investors can spread risk and reduce the impact of extreme price movements on 

their overall investment performance. Portfolio diversification across assets with varying 

levels of volatility is a fundamental risk management strategy that helps investors mitigate the 

impact of market uncertainties and fluctuations, thereby managing risk (Poon & Granger, 

2003). Investors working to diversify their portfolios aim to balance the volatility of their 

portfolio to effectively mitigate overall risk exposure. Assets with low correlation in volatility 

are particularly valuable in this context because they can help reduce the overall risk of a 

portfolio. When assets exhibit low or negative correlations in their volatility patterns, they are 

less likely to move in the same direction simultaneously. This diversification approach ensures 

that if one asset experiences high volatility or a price decline, another asset with low volatility 

correlation may remain stable or appreciate, thereby smoothing out the portfolio's overall 

volatility and enhancing risk management (Poon & Granger, 2003). 

Moreover, the consideration of volatility in portfolio diversification involves a careful 

evaluation of the risk–return trade-off. Investors seek to strike a balance between risk and 

return by including assets with varying volatility levels. High-volatility assets may offer the 

potential for higher returns, but they also come with increased risk. By diversifying across 

assets with different volatility characteristics, investors can potentially enhance returns while 

safeguarding against the impact of market volatility on their portfolio's performance. Asset 

allocation within a diversified portfolio is also influenced by volatility considerations. Investors 

may opt to allocate a larger proportion of their portfolio to assets with lower volatility to 

provide stability and reduce overall risk while limiting exposure to assets with higher volatility 

to manage downside risk effectively. In essence, volatility's role in portfolio diversification is 

pivotal, enabling investors to construct resilient investment portfolios that align with their risk 

tolerance and financial objectives (Poon & Granger, 2003). 
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Volatility serves as a crucial factor in the development of trading strategies for market 

participants. Traders utilize volatility as a key metric to assess the potential risks and 

opportunities in the market. Some trading strategies are specifically crafted to capitalize on 

high volatility levels, aiming to profit from significant price fluctuations. These strategies often 

involve techniques such as momentum trading or volatility breakout strategies, where traders 

seek to exploit the rapid price movements that accompany high volatility. On the other hand, 

there are trading strategies designed to minimize risk during volatile market conditions. These 

strategies focus on risk management and may involve techniques like hedging or using stop-

loss orders to protect against adverse price movements. By incorporating volatility analysis 

into their trading strategies, traders can adapt to changing market conditions and optimize 

their trading approach based on the level of volatility present (Oladipupo et al., 2023). 

Volatility also plays a critical role in option pricing models, such as the renowned Black-

Scholes model. In options trading, volatility is a key input parameter that influences the pricing 

of options contracts. Higher volatility levels lead to higher option prices because of the 

increased likelihood of significant price movements within the option's lifespan. This 

relationship between volatility and option pricing is captured by the volatility component in 

option pricing models, reflecting the market's expectation of future price volatility. Traders 

and investors use volatility estimates to assess the fair value of options and make informed 

decisions regarding their options trading strategies. By understanding the impact of volatility 

on option prices, market participants can adjust their options positions based on their volatility 

outlook and risk preferences, enhancing their ability to manage risk and potentially capitalize 

on market opportunities (Poon & Granger, 2003).  

By comprehensively understanding and analysing volatility, investors and traders can 

make more informed decisions about their investments and trading activities. By considering 

volatility as a key factor in trading strategies, market participants can tailor their approaches 

to suit different market conditions, whether aiming to profit from high volatility or mitigate 

risks during turbulent periods. Moreover, recognizing the influence of volatility on option 

pricing enables traders to accurately assess the value of options contracts and optimize their 

options trading strategies based on volatility expectations. Ultimately, incorporating volatility 

analysis into investment decisions empowers individuals to navigate the complexities of 

financial markets more effectively, balancing potential returns with associated risks.  
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2.1.3.2 Risk An inherent aspect of investing, risk refers to the potential of 

experiencing losses, either partially or entirely, on the original investment because of a variety 

of factors. These factors can include market fluctuations, changes in economic conditions, or 

specific events that affect the value of an asset. Understanding and managing risk is essential 

for investors to safeguard their investments and work towards achieving their financial 

objectives.  

There are several types of risk inherent in investing. Market risk, also known as 

systematic risk, arises from factors affecting the overall performance of financial markets, such 

as interest rate fluctuations, exchange rate changes, and asset price volatility. Credit risk 

involves potential losses from borrower or counterparty failure to meet financial obligations, 

which is common in lending and bond investments. Liquidity risk pertains to the inability to 

quickly buy or sell an asset at a fair price, affecting assets with low liquidity through wider bid–

ask spreads and price fluctuations. Operational risk stems from internal processes, systems, 

or human errors within an organization, encompassing inadequate controls, fraud, technology 

failures, and legal issues. Managing all these types of risk is crucial for investors and 

organizations to protect investments, assess creditworthiness, ensure market access, and 

maintain operational stability (Poon & Granger, 2003). 

Risk management is a crucial aspect of financial decision-making aimed at safeguarding 

investments and attaining financial objectives. It encompasses the processes of identifying, 

evaluating, and mitigating risks to reduce potential losses. Effective risk management 

strategies involve diversification, hedging, employing stop-loss orders, and establishing risk 

management protocols. The significance of risk management lies in its ability to shield 

investments from substantial losses in challenging market conditions or unforeseen 

circumstances, thereby preserving capital. Moreover, by integrating risk management 

practices, investors can align their investment strategies with financial goals, striking a balance 

between risk and return to pursue long-term objectives. Furthermore, risk management 

enhances decision-making by providing a structured framework for assessing risks and making 

informed investment decisions, empowering investors to navigate uncertainties and optimize 

their portfolios (Poon & Granger, 2003). 

2.1.3.3 Volatility and Risk Volatility and risk are related concepts in finance, but they 

are distinct from one another. Volatility measures the dispersion of returns around a mean or 
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average value, indicating the level of price instability or uncertainty over time. High volatility 

suggests that the price of an asset can change rapidly and by significant amounts, increasing 

the potential for both gains and losses. On the other hand, risk in finance is a broader concept 

that encompasses various types of uncertainties and potential negative outcomes that may 

affect investments or financial decisions. Risk includes not only volatility but also factors such 

as market risk, credit risk, liquidity risk, and operational risk. It refers to the possibility of 

experiencing losses or failing to achieve expected returns because of adverse events or 

circumstances. In essence, volatility specifically focuses on the magnitude of price 

fluctuations, whereas risk considers a wider range of factors that could affect the performance 

of investments. While high volatility is often associated with higher risk, risk management 

strategies aim to address and mitigate different types of risks beyond just volatility to protect 

investments and achieve financial goals (Poon & Granger, 2003). 

2.1.4 Volatility Estimation Techniques 

Quantifying volatility is crucial in managing investment risk, and there are multiple 

techniques and models employed for the estimation of volatility and conditional variance. 

Conditional variance signifies the variability of asset returns based on available information up 

to a particular point in time, playing a pivotal role in volatility modelling and VaR prediction. 

Models like autoregressive conditional heteroskedasticity ARCH; (Bollerslev et al., 1992) and 

its generalized variant GARCH, which capture conditional volatility dynamics, are instrumental 

in comprehending the time-varying nature of volatility. The heterogeneous autoregressive 

(HAR) model, particularly the asymmetric HAR realized volatility (HAR-RV) model, addresses 

the diverse impacts on volatility across different time horizons, enhancing VaR forecasts by 

tackling the intricate dynamics of asset price volatility. Volatility forecasting, a crucial practice, 

involves predicting future volatility levels by leveraging historical data and advanced modelling 

techniques to enhance the accuracy of volatility forecasts for effective risk management. 

Additionally, the second moment structure of the conditional return distribution stands out 

as a significant empirical feature of volatility dynamics, emphasizing the importance of 

understanding the distributional properties of returns, especially their evolving 

characteristics, to facilitate precise modelling and forecasting of volatility (Louzis et al., 2014; 

Zhang, 2003).  
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There are multiple stylized properties of asset price/commodity volatility that are 

commonly observed in volatility behaviour. These traits include persistence—defined as 

sustained volatility levels over time—clustering of high and low volatility periods, the leverage 

effect—defined as asymmetric responses to price changes—and the presence of distinct 

volatility regimes. Understanding these properties is crucial for modelling volatility dynamics, 

improving forecasting accuracy, and implementing effective risk management strategies in 

financial markets (Patton, 2011). Additionally, a study by Andersen et al. (2003) investigated 

various stylized properties of asset price and commodity volatility, including volatility 

clustering, time-varying volatility, long memory effects, volatility persistence, and cross-asset 

volatility spillovers. Their findings highlight the complex nature of volatility dynamics, 

emphasizing enduring patterns, interconnections across assets, and the impact of historical 

volatility on future levels. This knowledge is essential for precise modelling, accurate 

forecasting, prudent risk mitigation, and informed decision-making in volatile market 

environments, providing valuable insights for researchers and practitioners in financial 

analysis and investment strategies.  

Various methods exist for estimating volatility using daily data, each offering unique 

insights into the fluctuation patterns of asset prices. GARCH models are widely employed in 

volatility estimation (Huang et al., 2016). These models incorporate past volatility and error 

terms within a time-series framework to model and forecast volatility dynamics effectively. 

Implied volatility, another significant method, is derived from option prices and reflects the 

market's anticipation of future volatility levels. Extracted from option pricing models like the 

Black-Scholes model, implied volatility offers valuable insights into market expectations. 

Volatility clustering is a phenomenon observed in financial markets where periods of high 

volatility tend to cluster together, as do periods of low volatility. This clustering effect, evident 

in historical data, can be utilized to enhance volatility estimation models and risk management 

strategies. Additionally, the volatility index, exemplified by the VIX (CBOE Volatility Index), 

serves as a barometer of market sentiment and uncertainty, measuring market expectations 

of future volatility levels. These diverse methods for estimating volatility using daily data play 

a crucial role in financial analysis and risk management, offering valuable perspectives on asset 

price fluctuations and market dynamics (Kambouroudis et al., 2016). 
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2.1.4.1 Realized Volatility Realized volatility, also known as historical volatility, is 

another approach to estimating market volatility. This fundamental approach calculates the 

standard deviation of past asset returns over a specified period, offering a retrospective view 

of how much an asset's price has historically oscillated. Realized volatility, in continuous-time 

theory, quantifies the actual volatility experienced by an asset within a specific timeframe, and 

it leverages observed high-frequency data to provide a realistic depiction of price movements. 

In financial analysis and risk management, realized volatility serves as a valuable tool for 

assessing historical volatility patterns, aiding in decision-making processes related to 

investment strategies, risk assessment, and portfolio management. Its calculation based on 

observed market data enables a detailed understanding of past price movements and volatility 

dynamics, contributing to more informed and effective risk management practices (Barndorff-

Nielsen & Shepard 2002).  

Estimating realized volatility from high-frequency data involves capturing the 

fluctuations in asset prices throughout the trading day to provide a more accurate 

representation of volatility compared with traditional methods that rely on daily or lower 

frequency data (Barndorff-Nielsen & Shepard 2002). Realized volatility is calculated using the 

following formula: 

 

𝑅𝑉 = √∑ (𝑟𝑡 −  �̃�)2 
𝑛

𝑡=1
, 

 

(7) 

where 𝑅𝑉 is the realized volatility, 𝑟𝑡 represents the asset's return at time 𝑡, �̃� is the average 

return over the period, and n is the total number of observations within the period. 

This formula computes the square root of the sum of squared differences between 

each observed return and the average return over the period. By utilizing high-frequency data, 

realized volatility provides a precise estimation of the asset's true volatility levels, reflecting 

the actual price fluctuations experienced by the asset during the specified timeframe.  

There are multiple common methods for estimating realized volatility from high-

frequency data. One of these is realized variance, which is a simple measure of realized 

volatility calculated as the sum of squared intra-day returns over a specific period. It provides 

a direct estimate of the variability in asset prices based on observed returns at high 
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frequencies (Andersen et al., 2001). Another common approach to estimating realized 

volatility is through the sum of squared intra-day returns. The realized volatility 𝑅𝑉𝑡 at time 𝑡 

can be calculated also as: 

 
𝑅𝑉𝑡 =  ∑ 𝑟𝑖,𝑡

2
𝑁

𝑖=1
, 

 

(8) 

where 𝑟𝑖,𝑡 represents the intra-day return at time 𝑡 for each observation 𝑖 within the trading 

day, and 𝑁 denotes the total number of observations. By summing the squared returns over 

the trading day, realized volatility captures the intensity of price movements and fluctuations, 

providing a valuable metric for assessing and managing financial risk based on the continuous-

time dynamics of asset prices (Dacorogna, et al., 2001). 

Realized volatility, derived from high-frequency intra-day returns, possesses several 

important theoretical properties that make it a valuable measure in financial analysis. One of 

these is consistency in the context of realized volatility, which refers to the fact that the 

estimator of volatility derived from high-frequency intra-day returns approaches the true, 

unobservable volatility as the frequency of data increases. In simpler terms, as we collect more 

and more data points at a higher frequency, the realized volatility estimate becomes more 

accurate and converges towards the actual volatility of the asset. This property is crucial in 

financial analysis because it ensures that realized volatility provides a reliable and trustworthy 

estimate of the underlying volatility of an asset. By converging to the true volatility as more 

data is considered, the consistency of realized volatility allows analysts and researchers to 

have confidence in the accuracy of their volatility estimates. This is particularly valuable in risk 

management, portfolio optimization, and asset pricing, where having an accurate measure of 

volatility is essential for making informed decisions. Therefore, the consistency of realized 

volatility as an estimator of actual volatility enhances its utility in financial modelling and 

analysis, providing a robust tool for understanding and quantifying the level of risk and 

uncertainty in financial markets (Thomakos & Wang, 2003). 

Another characteristic of realized volatility is that it is model-free and does not impose 

any model structure on the data. This signifies that it does not depend on specific assumptions 

regarding the distribution of returns or the dynamics of volatility. Unlike traditional parametric 

models that require predefined structures and assumptions about the data, realized volatility 
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is calculated directly from observed high-frequency intra-day returns. This model-free 

property of realized volatility is advantageous in situations where the underlying distribution 

of returns is unknown or complex and where traditional parametric models may not be 

suitable or accurate. By not relying on a specific model, realized volatility can capture the true 

characteristics of volatility without being constrained by potentially incorrect assumptions 

about the data-generating process. Realized volatility can provide a more flexible and robust 

measure of volatility, especially in volatile and unpredictable financial markets. It allows 

analysts to assess volatility without making strong assumptions that may not hold true, leading 

to more reliable estimates of volatility that are not biased by model misspecification. The 

model-free nature of realized volatility enhances its applicability and usefulness in various 

financial contexts, offering a versatile tool for measuring and analysing volatility that is not 

limited by the constraints of specific modelling assumptions (Thomakos & Wang, 2003).  

Another key attribute of realized volatility is efficiency, particularly in the context of 

high-frequency data and market microstructure complexities. By utilizing intra-day data, 

realized volatility can capture detailed short-term price movements, offering a more precise 

and accurate reflection of volatility levels. This efficiency is crucial in filtering out noise and 

irregularities present in financial markets, allowing for cleaner volatility estimates that are not 

distorted by microstructure effects. The ability of realized volatility to provide more granular 

insights into market dynamics and to adapt to rapid changes in prices gives it a comparative 

advantage over traditional methods that rely on lower frequency data. Overall, the efficiency 

of realized volatility enhances its utility in risk management, option pricing, and other financial 

applications where precise volatility estimates are essential for decision-making (Thomakos & 

Wang, 2003). 

Further, realized volatility has temporal characteristics that allow it to capture and 

reflect the dynamics of volatility over time, including features such as persistence and long 

memory in return volatilities. Persistence in volatility implies that past volatility levels 

influence future volatility, leading to clusters of high or low volatility periods. Realized 

volatility's capacity to capture these temporal characteristics enables analysts to study the 

evolving patterns of volatility over different time horizons. By identifying periods of 

heightened or subdued volatility, analysts can gain insights into market behaviour, risk 

dynamics, and potential trading opportunities. This temporal dimension of realized volatility 
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enhances its usefulness in understanding the underlying patterns and trends in volatility, 

providing valuable information for risk management, forecasting, and decision-making in 

financial markets (Chen et al., 2020).  

Despite being seen as model free, realized volatility has distributional properties, 

including long memory and approximate Gaussianity, that offer valuable insights into the 

statistical behaviour of volatility in financial markets. Long memory signifies the persistent 

influence of past volatility levels on future volatility, revealing patterns of slow decay and 

predictability in volatility changes. On the other hand, approximate Gaussianity suggests that 

realized volatility values closely resemble a Gaussian distribution, simplifying statistical 

analysis and enabling the application of Gaussian-based models. By understanding these 

distributional properties, researchers can better comprehend the nature of volatility 

fluctuations, enhance risk assessment techniques, and make informed decisions regarding 

market dynamics and financial instruments (Thomakos & Wang, 2003).  

These theoretical properties of realized volatility contribute to making it a versatile and 

robust measure for evaluating and studying volatility in financial markets. By capturing the 

temporal characteristics, such as persistence and long memory, realized volatility provides a 

comprehensive view of how volatility evolves over time, allowing analysts to identify patterns 

and trends in asset price movements. Additionally, the distributional properties of realized 

volatility, including approximate Gaussianity, enable researchers to apply statistical tools 

effectively and gain a deeper understanding of the statistical behaviour of volatility changes. 

This versatility and robustness of realized volatility as a measure of volatility offer valuable 

insights into market dynamics, risk assessment, and decision-making processes in the financial 

industry, making it a fundamental tool for analysing and managing market volatility. 

2.1.5 Value-at-Risk Conceptualization 

Value-at-Risk is a widely used measure in risk management that quantifies the 

potential loss that a portfolio or investment may face over a specified time horizon at a given 

confidence level. The theory behind VaR is rooted in the concept of quantifying downside risk 

by estimating the maximum loss that could occur under normal market conditions. The 

formula for VaR involves calculating the loss at a specific confidence level based on the 

portfolio's value and the volatility of its underlying assets. One common approach to 

estimating VaR is through historical simulation, where past returns are used to model 
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potential future losses. Another method is the variance-covariance method, which relies on 

the mean and standard deviation of returns to calculate VaR. Additionally, Monte Carlo 

simulation can be employed to generate multiple scenarios and determine potential losses at 

different confidence levels. The formula for VaR can be expressed as: 

 

 𝑉𝑎𝑅 = 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑣𝑎𝑙𝑢𝑒 × 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 ×  𝑍𝛼, (8) 

   

where, 𝑉𝑎𝑅 is the Value at Risk, 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑣𝑎𝑙𝑢𝑒 represents the total value of the portfolio 

or investment, 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 denotes the volatility of the portfolio's assets, and 𝑍𝛼 is the critical 

value corresponding to the desired confidence level (Hull, 2012; Jorion, 2006). 

This formula provides a quantitative measure of the potential loss that a portfolio may 

face, allowing investors and institutions to make informed decisions regarding risk 

management and capital allocation. VaR serves as a crucial tool in assessing and mitigating 

financial risk, providing a structured framework for evaluating downside risk and enhancing 

risk management practices in the financial industry (Wipplinger, 2007). 

Value at Risk has established itself as a crucial measure in financial risk management. 

It quantifies and manages financial risk by measuring the potential loss in a portfolio over a 

defined period within a given confidence interval. VaR forecasts have typically been obtained 

using time-series models of asset or portfolio volatility, traditionally with daily frequency data. 

However, recent advances have shown that high-frequency data provides more precise 

volatility estimates, enhancing VaR calculation accuracy (Ewald et al., 2023).  

Traditionally, VaR was calculated using time-series models like GARCH, focusing on 

daily returns. These models, while foundational, had limitations in capturing the dynamic 

volatility of financial markets. But with advancements in data processing capabilities, high-

frequency (intra-daily) data started being employed. This shift has led to the use of realized 

volatility in VaR calculations, offering a more accurate representation of market conditions 

and improving the precision of VaR estimates (Andersen & Bollerslev, 1998a; Baruník & 

Křehlík, 2018).  

Recently, the use of quantile regression models has also been explored. These models 

use a range of sampling frequencies (from one to 108 minutes) to calculate realized volatility 
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and to forecast VaR. They are particularly effective because they consider the entire 

distribution of returns, not just the mean or variance. To assess the performance of VaR 

forecasts, unconditional and conditional coverage tests are employed. These tests compare 

the proportion of actual returns that exceed the VaR forecast with the expected proportion, 

providing a rigorous assessment of the model's accuracy (Ewald et al., 2023). 

2.1.5.1 Artificial Intelligence/Machine Learning Approaches in VaR Forecasting 

With the integration of artificial intelligence (AI) and machine learning techniques, newer 

models, such as dynamic quantile regression, are being developed for VaR forecasting. These 

models utilize large datasets and complex algorithms to predict risk levels. They are typically 

tested using a rolling window approach to validate their forecasting ability. VaR remains an 

indispensable tool in risk management, and the evolution from traditional time-series models 

to advanced AI/machine learning techniques using high-frequency data marks a significant 

progression in the field. These developments not only enhance the accuracy of risk forecasts 

but also offer a more comprehensive understanding of market dynamics, which are crucial for 

effective risk mitigation strategies. The integration of AI/machine learning in VaR forecasting 

represents the future of financial risk analysis, combining extensive data analysis with 

sophisticated modelling techniques (Gencer & Demiralay, 2016). 

Value-at-Risk calculations are typically conducted over a defined time horizon, which 

can vary from short-term periods, like one day, to longer intervals, such as one week or one 

month. The chosen time horizon reflects the duration over which potential losses are being 

evaluated. Additionally, VaR is linked to a confidence level that signifies the probability that 

actual losses will not surpass the VaR estimate within the specified time frame. Stakeholders 

can select different confidence levels based on their risk tolerance and investment goals. For 

instance, a higher confidence level implies a lower probability of exceeding the VaR estimate, 

indicating a more conservative approach to risk management. Conversely, a lower confidence 

level allows for a higher probability of exceeding the VaR estimate, accommodating a more 

aggressive risk strategy. The flexibility in choosing time horizons and confidence levels in VaR 

calculations enables stakeholders to tailor risk assessments to align with their specific risk 

preferences and investment objectives, providing a customizable framework for risk 

management (Hull, 2012).  
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Value at Risk serves as a crucial risk management tool by assessing potential portfolio 

losses at a specified confidence level over a defined time horizon. It serves as a valuable tool 

for decision-making processes, enabling stakeholders to set risk limits, allocate capital 

prudently, and design risk management strategies tailored to their risk tolerance and 

investment objectives. By quantifying the maximum potential loss under typical market 

conditions, VaR aids investors and financial institutions in evaluating and controlling risk 

effectively. The computation of VaR is based on the current value of the portfolio, offering a 

comprehensive evaluation of potential losses relative to the overall portfolio size. Additionally, 

VaR considers the volatility of underlying assets and correlations between different assets, 

allowing it to capture uncertainties and fluctuations in asset prices. This consideration of risk 

factors enhances the accuracy of VaR estimates and provides a more nuanced understanding 

of portfolio risk. Interpreted as a single numerical value representing the estimated maximum 

loss within a defined time frame and with a specified confidence level, VaR enables investors 

and institutions to make informed decisions regarding risk management strategies, capital 

allocation, and portfolio diversification. By utilizing VaR, stakeholders can quantify and 

monitor the downside risk of their portfolios, establish risk limits, and implement strategies to 

mitigate risk exposure in volatile market conditions. The conceptual framework of VaR offers 

a structured approach to evaluating and managing financial risk effectively, contributing to 

enhanced risk management practices and informed decision-making processes (Ewald et al., 

2023; Wipplinger, 2007). 

2.1.5.2 Risk Management Theory Value at Risk is a fundamental measure in risk 

management, providing a quantification of potential portfolio losses at a specified confidence 

level. Regulatory bodies such as the Basel Committee on Banking Supervision (BCBS) have 

established requirements for banks to incorporate VaR in their risk management practices, 

with Basel II introducing the Internal Models Approach for calculating regulatory capital based 

on VaR models. Additionally, regulations like the Dodd-Frank Act and the European Market 

Infrastructure Regulation (EMIR) mandate enhanced risk management practices and reporting 

standards, potentially involving VaR as a risk measurement tool. Firms are obligated to ensure 

the accuracy and validation of VaR models, report VaR measures to regulatory authorities, 

adhere to capital adequacy requirements linked to VaR calculations, and set risk limits based 

on VaR thresholds for effective risk management and monitoring. International standards set 
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by organizations like the International Organization of Securities Commissions (IOSCO) 

emphasize the importance of robust risk management frameworks, including the use of VaR, 

to enhance market integrity and investor protection (Ewald et al., 2023).  

2.2 Literature Review 

This research delves into existing literature on volatility modelling and forecasting, 

including of the oil market, with notable references including Corsi (2009) and Andersen et al. 

(2003). Previous studies have commonly utilized realized volatility for forecasting. This study’s 

unique contribution lies in incorporating daily, weekly, and monthly realized volatility derived 

from different intra-day sampling frequencies. By thoroughly examining all aspects, this study 

aims to determine the significance of various volatility components (daily, weekly, monthly) 

and their calculation frequencies in modelling and forecasting realized volatility, both within 

the sample and beyond it. 

2.2.1 High-Frequency Trading in Commodity Markets 

The significant contributions that refer to advancements in volatility modelling, 

specifically the utilization of realized heterogeneous autoregressive models and the 

incorporation of the fractionally integrated GARCH (FIGARCH) model have enhanced the 

understanding of conditional time-varying volatility in realized volatility, leading to more 

accurate and nuanced forecasting techniques in financial markets (Chen et al., 2020). Volatility 

models based on high frequency data are seen as superior because of their rich information 

content (Kambouroudis et al., 2016). Various models have been proposed to better forecast 

oil price volatility using high-frequency data. These include the HAR-RV model and its 

extensions, which consider factors like jumps and semi-realized measures and which leverage 

effects in volatility dynamics (Kambouroudis et al., 2016). These modelling techniques offer 

various approaches to capture different aspects of oil price volatility, allowing for more 

accurate forecasts and better risk management in the oil market (Chen et al., 2020). Improving 

forecast accuracy by incorporating time-varying volatility and long-memory features into the 

models has shown potential in improving forecast accuracy. This is particularly true for models 

like HAR-RV-FIGARCH, which account for long-memory conditional time-varying volatility of 

realized volatility (Chen et al., 2020). 
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The forecasting performance of these models is evaluated using specific 

methodologies and statistical tests. The emphasis is on the model's ability to improve future 

performance rather than only analysing past patterns. It has been found that models with 

time-varying volatility of realized volatility can generate higher forecast accuracies in the oil 

futures market (Kambouroudis et al., 2016). 

2.2.2 The Role of High-Frequency Data in Volatility Forecasting 

The integration of HFT and advanced modelling techniques in volatility forecasting 

signifies a notable progression in how financial instruments are traded and analysed, 

particularly in the volatile and dynamic realm of commodity markets. These methods provide 

a more nuanced understanding of market dynamics and have the potential to greatly improve 

forecasting accuracy, which is crucial for effective risk management and investment strategies. 

There are also impacts of increased trading volume and liquidity on volatility estimates 

(Haugom et al., 2014). Further, the structure of characteristics and components of HFT 

features influence volatility estimates in financial markets. 

For example, increased trading volume over the past decades, driven by factors such 

as HFT and electronic trading, has significantly influenced the accuracy of volatility estimates 

in the oil market. The availability of higher trading volumes and increased liquidity has enabled 

the calculation of more precise volatility measures, such as realized volatility (Ederington & 

Lee, 1993). There are now vast amounts of data accessible because of increased trading 

volumes and liquidity, which can enhance volatility forecasting. By examining the impact of 

different sampling frequencies on forecasting accuracy, particularly for volatility and VaR 

estimations, researchers can determine the most effective approach (Engle, 2002). While 

previous studies have explored the relationship between sampling frequency and forecasting 

accuracy, this study takes a novel approach by using various sampling frequencies to calculate 

realized volatility. The next step involves applying machine learning algorithms to identify the 

optimal sampling frequencies for forecasting models, based on rigorous evaluation criteria 

(Andersen et al., 2007; Ewald et al., 2023). By evaluating the performance of different 

sampling frequencies in forecasting volatility and VaR for Brent Crude Oil futures, this study 

aims to provide valuable insights for practitioners. The findings will offer recommendations 

on the preferred sampling frequencies to focus on when developing forecasting models, 
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considering both forecasting accuracy and computational costs (Haugom et al., 2014; Zhang, 

2003). 

2.2.3 Automatic Feature Selection in Forecasting Models 

At the core of this investigation lies the modelling of realized volatility, a fundamental 

element in deciphering market behaviours. Modelling realized volatility is a crucial factor in 

understanding market dynamics and is a central focus in this study. Realized volatility provides 

insights into the level of risk and uncertainty in the market. By modelling realized volatility, 

researchers aim to gain a deeper understanding of how market behaviours unfold and evolve. 

The study’s holistic methodology incorporates a wide array of predictive models, such as 

ordinary least squares (OLS), ridge regression, least absolute shrinkage, and selection operator 

(lasso), and random forest regressors, to analyse and forecast the nuanced dynamics of 

volatility (Ewald et al., 2023). These models, distinguished by their diverse levels of intricacy 

and regularization methods, provide an opportunity to navigate the intricacies of financial 

data and elevate forecasting proficiency: 

1. Ordinary Least Squares (OLS): OLS is a classical linear regression method that aims 

to minimize the sum of squared differences between the observed and predicted values. It 

provides a straightforward way to estimate the relationships between variables in a dataset 

(Weeks, 2002). 

2. Ridge Regression: Ridge regression is a regularization technique that adds a penalty 

term to the OLS method to prevent overfitting. By introducing a regularization parameter, 

ridge regression helps to stabilize the model and reduce the impact of multicollinearity (Hoerl 

& Kennard, 1970). 

3. Least Absolute Shrinkage and Selection Operator (lasso): Lasso is another 

regularization method that not only helps in reducing overfitting but also performs feature 

selection by shrinking the coefficients of less important variables to zero. This feature selection 

property can be valuable in enhancing model interpretability (Tibshirani, 1996). 

4. Random Forest Regressors: Random Forest is an ensemble learning technique that 

builds multiple decision trees and combines their predictions to improve accuracy and 

robustness. It is known for effectively handling non-linear relationships and interactions in the 

data (Fan et al., 2009).  
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By leveraging this diverse set of predictive models, the research aims to analyse and 

forecast the nuanced dynamics of volatility in financial markets. These models offer varying 

levels of complexity and regularization methods, allowing researchers to navigate the 

complexities inherent in financial data. The use of such a range of provides enhanced 

forecasting proficiency toward gaining deeper insights into the behaviour of volatility in the 

market. 

In the realm of financial forecasting models, the utilization of convolutional neural 

networks (CNNs) for price prediction in financial markets involves the integration of automatic 

feature selection techniques. CNNs are renowned for their capacity to autonomously learn 

and extract pertinent features from input data, rendering them well-suited for capturing 

complex dependencies in financial time-series data. Researchers have explored the 

development of mathematical models based on CNNs that leverage historical data to identify 

crucial features and relationships, facilitating the prediction of future price movements 

(Medvedev & Medvedev, 2023).  

When applying neural network-based financial forecasting techniques, particularly 

CNNs, to predict stock market trends, the process entails automatic feature selection to 

discern key patterns and signals in the data. By categorizing historical financial market data 

into distinct market states (such as trend, sideways, unknown), the models automatically 

select relevant features indicative of specific market conditions. Subtasks within the model 

development process, including training and validation, rely on automatic feature selection to 

extract meaningful information for predicting market changes and trends (Medvedev & 

Medvedev, 2023). 

Challenges and limitations in the model-building process, such as selecting 

hyperparameters for CNN models, can be addressed through automatic feature selection 

methods. By leveraging libraries like CNTK, TensorFlow, and Caffe, researchers can automate 

the selection of hyperparameters based on the data characteristics and software platforms. 

The training process involves defining hyperparameters related to loss functions, optimization 

algorithms, and learning rates, with validation metrics tailored to the specific forecasting 

problem. Automatic feature selection plays a crucial role in identifying the most relevant input 

variables for accurate predictions (Jarboui & Mnif, 2023). 
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Moreover, the analysis of trading simulations to evaluate model predictions relies on 

automatic feature selection to extract informative signals from many stocks. While CNNs 

demonstrate potential in financial forecasting, the need for further improvements 

underscores the importance of refining automatic feature selection techniques to enhance 

model performance. Despite the computational challenges associated with training neural 

networks, the universal applicability of these models across different financial instruments 

and markets highlights the significance of automated feature selection in optimizing 

forecasting accuracy and efficiency (Monfared & Enke, 2014). 

Thus, the integration of automatic feature selection methods within neural network-

based forecasting models, particularly CNNs, offers a promising avenue for enhancing the 

accuracy and reliability of financial market predictions. By automating the process of 

identifying relevant features from complex financial data, researchers can improve model 

performance and scalability, paving the way for more effective decision-making in financial 

markets. 

2.2.4 Comparisons of Forecasting Methodologies 

Traditional models and more recently developed methods for forecasting realized 

volatility present relative strengths in predicting different aspects of market variability. Recent 

studies have compared and contrasted the more classical models with newer innovative 

methods: 

1. Traditional Models: The heterogeneous autoregressive (HAR) and autoregressive 

fractionally integrated moving average (ARFIMA) models have been widely used to forecast 

realized volatility. These models are effective in capturing the long memory of volatility and 

are flexible when high-frequency data are available (Corsi, 2009). 

2. Artificial Neural Networks (ANNs): ANNs are seen as a generalization of these 

classical approaches, suitable for modelling the non-linear processes in volatility. They are 

semi-parametric, non-linear models that can approximate any reasonable function and do not 

require strict distributional assumptions. ANNs use hidden layers to transform input variables 

and, thus, can describe complex patterns in volatility time series (Zhang, 2003). 

3. Learning Process in Neural Networks: The training of neural networks involves 

adjusting weights using a learning algorithm to minimize prediction errors. This process is an 
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unconstrained nonlinear optimization problem aimed at finding the optimal set of weights for 

the parameters (Rumelhart et al., 1986). 

4. Testing and Validation: The ANN models are tested against traditional models like 

HAR, ARFIMA, and GARCH within frameworks such as the model confidence set and superior 

predictive ability. These tests aim to assess the relative performance of ANNs in forecasting 

volatility, especially in the context of energy markets (Hansen & Lunde, 2006). 

While traditional models like HAR and ARFIMA have been effective in capturing long 

memory in volatility, the integration of high-frequency data with ANNs offers a promising 

avenue for improved forecasting. ANNs' ability to model complex, non-linear patterns in the 

data presents a significant advancement over traditional methods, showing potential for both 

statistical and economic gains in forecasting realized volatility (Baruník & Křehlík, 2016). 

2.2.5 Critical Gaps in Current Literature 

The exploration of critical gaps in the current literature on volatility modelling and 

forecasting, particularly in the context of HFT in commodity markets like crude oil, reveals 

several key areas where existing research could be expanded or deepened, including the 

integration of market microstructure variables, the impact of regulatory changes, adaptation 

to market anomalies, long-term dependency and non-linear patterns, comparative studies 

across different commodities, real-time data use and forecasting reliability, the impacts of AI 

and machine learning on market volatility forecasting, and ethical considerations in 

forecasting. This section aims to articulate these gaps, emphasizing where future research 

could potentially make significant contributions. 

First, despite the advancements in volatility forecasting associated with the use of 

high-frequency data, there remains a substantial gap in the integration of market 

microstructure variables. Current models often overlook factors such as bid-ask spreads, order 

book depth, and intra-day trading volume, which could provide additional insights into the 

predictive accuracy of volatility models. 

Next, the literature frequently neglects the impact of regulatory changes on market 

dynamics and volatility. As financial markets evolve with new regulations intended to increase 

market transparency and reduce systemic risks, the effect of such changes on model efficacy 

remains underexplored. Further, traditional, and even some advanced models, struggle to 



 
 

 
 

31 

effectively adapt to market anomalies and structural breaks. These models often fail to 

account for sudden changes in volatility due to geopolitical events, economic announcements, 

or market crises, leading to significant forecasting errors. 

There is also a need for further research into the long-term dependency and non-linear 

patterns of volatility that are not adequately captured by models like GARCH or HAR. 

Advanced machine learning techniques, which can model these complexities more effectively, 

are still not fully explored within the empirical literature, especially in their ability to integrate 

with traditional econometric approaches. In addition, most studies tend to focus on a single 

commodity market—typically crude oil, or financial indices. There is a notable lack of 

comparative studies that explore the efficacy of forecasting models across different 

commodity markets, such as natural gas, gold, or agricultural products, which may exhibit 

different volatility dynamics. 

Next, the use of real-time data for forecasting and the reliability of these forecasts in 

real-world trading scenarios is a critical gap. Most academic studies simulate forecasting using 

historical data, which does not always translate into effective real-time trading strategies 

because of latency, transaction costs, and model overfitting. In addition, although AI and 

machine learning are increasingly applied in this field, there is a significant gap in 

understanding the full spectrum of implications these technologies bring, including issues of 

interpretability, model transparency, and the balance between model complexity and 

interpretability. 

Finally, the ethical implications of forecasting, particularly concerning market 

manipulation or the potential impact on commodity-dependent economies, are rarely 

discussed. There is a profound need for a framework that addresses the ethical use of 

advanced forecasting techniques, especially in highly speculative markets like crude oil. 

Addressing these gaps will not only enhance the theoretical framework of volatility 

forecasting but also improve the practical applications of these models in real-world settings. 

Future research should aim to develop more comprehensive models that incorporate these 

elements, test them across different market conditions and commodities, and rigorously 

evaluate their real-time applicability and ethical implications. 
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Various methods exist for estimating realized volatility from high-frequency data, each 

offering unique advantages in capturing the dynamics of asset price movements. The realized 

range approach calculates volatility by considering the difference between high and low prices 

within a trading period, providing insights into price fluctuations (Zhang, 2003). On the other 

hand, the realized kernel method, a more sophisticated technique, incorporates the irregular 

spacing of high-frequency data by using a kernel function to weigh returns based on their 

temporal proximity, resulting in a smoother volatility estimate (Barndorff-Nielsen & Shephard, 

2002). Additionally, the realized bi-power variation estimator, robust against market noise and 

price jumps, computes the sum of squared price increments adjusted for jumps to accurately 

estimate volatility (Barndorff-Nielsen & Shephard, 2004). By leveraging these advanced 

methods and others, analysts can derive precise and timely estimates of realized volatility 

from high-frequency data, essential for effective risk management, derivative pricing, and 

portfolio optimization through a more nuanced understanding of asset price fluctuations and 

volatility dynamics (Barndorff-Nielsen & Shephard, 2002). 
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3 Methodology 

3.1 Data Source 

The data source for this thesis is the ICE Brent Crude Oil Futures Data, which serves as 

the primary dataset for analysing and forecasting market dynamics related to Brent Crude Oil. 

This dataset contains detailed intra-day trading information, including price movements and 

trading volumes, which are essential for understanding the behaviour of the Brent Crude Oil 

market. The dataset used in the study covers the period from January 3, 2006, to January 29, 

2016, encompassing a total of 2567 trading days. It includes high-frequency transaction-level 

every minute’s data for the front-month Brent Crude Oil futures contracts traded at the 

Intercontinental Exchange (i.e., ICE). 

Moreover, the front-month Brent Crude Oil futures contract operates under specific 

regulations regarding daily margin requirements and position limits. All open contracts are 

marked-to-market daily, ensuring that the value of positions is adjusted based on current 

market prices. Additionally, the Exchange's daily position management regime mandates that 

all positions in any contract month must be reported to the exchange daily. This regime aims 

to prevent the development of excessive positions, unwarranted speculation, or any other 

undesirable situations. The Exchange has the authority to take necessary steps to address such 

situations, including mandating members to limit the size of positions or reduce positions 

when deemed appropriate. This comprehensive information provides a deeper understanding 

of the operational framework and risk management practices associated with trading the 

front-month Brent Crude Oil futures contracts on the Intercontinental Exchange. The ICE Brent 

Crude Oil Futures Data serves as a valuable resource for analysing and forecasting market 

dynamics related to Brent Crude Oil. This dataset contains detailed intra-day trading 

information, offering insights into the price movements of Brent Crude Oil futures contracts 

throughout the trading day. These price movements reflect the complex interplay of market 

demand, supply dynamics, geopolitical events, and other factors influencing oil prices. 

When analysing the ICE Brent Crude Oil Futures Data, it is essential to consider the 

coverage of trading hours. Comprehensive coverage of trading hours ensures that the analysis 

is based on a complete set of data, minimizing the risk of overlooking important market trends. 

Furthermore, understanding non-trading hours is crucial for gaining insights into how prices 
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behave during periods when the market is closed, such as evenings, weekends, and holidays. 

Examining price movements during non-trading hours can reveal overnight or weekend price 

gaps and potential market reactions to external events. The rationale for utilizing a 22-hour 

trading window in analysing Brent Crude Oil futures data lies in the need to capture both 

regular trading hours and overnight movements. By extending the analysis to cover a 22-hour 

window, the study can assess price changes and trading activities that occur outside traditional 

trading hours.  

This extended timeframe enables a more comprehensive understanding of market 

behaviours and facilitates the identification of patterns that may emerge during non-standard 

trading periods. To gain a deeper understanding of market behaviours and uncover emerging 

patterns during non-standard trading periods, the thesis employs various strategies. One 

approach involves utilizing advanced pattern recognition techniques, such as machine learning 

algorithms, to identify recurring patterns in price movements that may not be readily apparent 

through traditional analysis methods. Comparative analysis between regular trading hours 

and non-standard trading periods can reveal unique market dynamics and trends, providing 

insights into how market behaviours differ across different timeframes (Hasbrouck, 2007; Lo 

& MacKinlay, 1999). Developing sophisticated volatility models that account for fluctuations 

in market volatility during non-standard trading periods can also enhance understanding and 

prediction of price movements. Furthermore, delving into market microstructure analysis 

enables the study of order flow, liquidity provision, and price discovery mechanisms during 

non-standard hours, offering valuable insights into market behaviours during these specific 

trading periods. By integrating these strategies into the analysis, the thesis deepens the 

comprehension of price dynamics and enhances the accuracy of forecasting models for Brent 

Crude Oil futures. 

In summary, leveraging the ICE Brent Crude Oil Futures Data, with a focus on intra-day 

trading information, including price movements, provides a robust foundation for analysing 

and forecasting market trends. Considering the coverage of trading hours and the rationale 

for a 22-hour trading window ensures that the analysis is thorough, capturing both regular 

and non-traditional market behaviours. This approach enhances research insights and 

forecasting accuracy, contributing to a deeper understanding of the Brent Crude Oil market 

dynamics. Python code for data analysis can be found in Appendix 2. 
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3.2 Variable and Data Processing 

In the examination of ICE Brent Crude Oil futures data, the meticulous selection of 

pivotal market variables is imperative to comprehend the intricacies of market dynamics and 

construct precise forecasting models. These selected variables must encapsulate fundamental 

aspects of the market that exert influence on price movements and volatility. Among the 

notable market variables derived from ICE Brent Crude Oil futures data are price; volatility; 

open, high, low, close (OHLC) data; returns; and intra-day price movements. Price serves as a 

barometer of market sentiment and guides trading decisions, whereas volatility quantifies the 

magnitude of price movement variations over a specified period. OHLC data furnishes granular 

insights into price levels, and returns elucidate the percentage changes in price, facilitating an 

evaluation of market performance. Delving into intra-day price movements, encompassing 

phenomena like spikes and reversals, yields valuable intelligence for formulating astute short-

term trading strategies and fortifying risk management practices within the market landscape. 

Data processing for ICE Brent Crude Oil futures data entails a series of pivotal 

procedures aimed at enhancing data integrity and analytical robustness. First, data were 

meticulously scrutinized to identify missing data and the most appropriate strategies for 

handling these gaps were determined, whether through imputation techniques or exclusion. 

Concurrently, outliers were detected and managed to mitigate potential distortions in 

analytical outcomes or model performance. Subsequently data were transformed to ensure 

compatibility for analysis, particularly focusing on the conversion of temporal variables into 

datetime objects and the normalization or standardization of numerical variables to mitigate 

biases in subsequent analyses. 

Next, the handling of non-trading hours was thoughtfully considered. To adjust for data 

points occurring outside conventional trading periods, such as overnight or weekend data, and 

to account for market dynamics during atypical trading intervals, feature engineering was 

used. Feature engineering involves the creation of novel variables derived from existing data 

to capture nuanced relationships within the dataset, alongside the incorporation of lagged 

variables to address temporal dependencies and autocorrelation patterns (Guyon & Elisseeff, 

2003; Kuhn & Johnson, 2013). Data were then aggregated by summarizing data across varying 

time intervals, such as hourly or daily frequencies, to effectively discern trends and patterns 

within the dataset. Last, summary statistics were computed of serves as a fundamental tool 
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to unveil insights into the distributional characteristics and intrinsic attributes of the data, 

thereby laying a solid foundation for comprehensive analysis and modelling within the realm 

of financial markets. 

These structured data processing procedures were completed using the Python 

programming language to ensure that the ICE Brent Crude Oil futures dataset was thoroughly 

cleaned, transformed, and prepared for analysis. This rigorous data processing methodology, 

was foundational for developing precise models, conducting accurate forecasts, and making 

informed decisions based on the pertinent market variables under scrutiny. 

3.3 Model Specifications 

3.3.1 Statistical Models 

This study employed and compared several statistical models to forecast realized 

volatility in ICE Brent Crude Oil futures. These methods are described here. 

 GARCH: A generalized extension of the autoregressive conditional heteroscedasticity (ARCH) 

model was proposed by Andersen and Bollerslev (1998a). This GARCH model forecasts 

volatility by modelling the conditional variance of the returns as a weighted sum of past 

squared residuals through a conditional mean function and past variance, making it a much 

more robust alternative to ARCH. The formula for the GARCH model is as follows: 

 

 𝜖𝑡 =  𝜎𝑡𝓏𝑡𝜎𝑡
2 =  𝜔 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

 

(9) 

This formula specifies the relationship between the error term 𝜖, conditional variance 𝜎𝑡
2, past 

squared residuals 𝜖𝑡−1
2 , and past variance 𝜎𝑡−1

2 . The model incorporates parameters 𝜔 , 𝛼1, 

and 𝛽1to estimate the conditional variance based on the historical information of the series 

(Andersen & Bollerslev, 1998b). 

GARCH captures the time-varying volatility in asset returns, particularly through 

modelling volatility clustering, which is the tendency of high volatility periods to cluster 

together in financial time-series data. GARCH models include an autoregressive component to 

capture the persistence of volatility shocks and a moving average component to account for 

the impact of past volatility on current volatility. By adapting to changing market conditions, 
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GARCH models provide accurate forecasts of volatility, making them essential tools in risk 

management and financial analysis (Engle, 2001). 

ARIMA: Autoregressive integrated moving average (ARIMA) models are a popular 

choice for analysing and forecasting time-series data, particularly in the realm of finance. 

These models are adept at capturing linear dependencies within the data by incorporating 

autoregressive and moving average components, along with differencing to handle non-

stationarity (Box et al., 2015). The ARIMA equation is as follows: 

 

 𝑌𝑡 = 𝑐 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 … + 𝜙𝑝𝑌𝑡−𝑝 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2

+ ⋯ + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡, 

 

(10) 

where 𝑌𝑡 is the time-series data at time 𝑡, 𝑐 is a constant, 𝜙 and 𝜃 are the autoregressive and 

moving average parameters, 𝜀𝑡 is the error term, and 𝑝, 𝑑, and 𝑞 are the orders of the AR 

autoregressive (AR), integrated (I), and moving average (MA) components of the ARIMA 

model, respectively. 

HAR-RV: The heterogeneous autoregressive model of realized volatility (HAR-RV) is a 

specialized model tailored for forecasting realized volatility in high-frequency financial 

datasets. Unlike traditional volatility models, HAR-RV accounts for the heterogeneous nature 

of volatility by incorporating lagged realized volatility measures at different frequencies. This 

approach allows the model to capture both long memory effects and short-term dynamics of 

volatility, providing more accurate forecasts of future volatility levels (Baruník & Křehlík, 2018; 

Corsi, 2009). 

 

 𝑅𝑉𝑡:𝑡+ℎ−1 =  𝛽0 + 𝛽𝜔𝑅𝑉𝑡−5:𝑡−1 + 𝛽𝑚𝑅𝑉𝑡−90:𝑡−1 +  𝜀𝑡,  

 

(11) 

where 𝑅𝑉𝑡:𝑡+ℎ−1 is the realized volatility over the forecast horizon, 𝛽0 coefficients represent 

the weights assigned to different lagged realized volatility measures, and 𝜀𝑡 is the error term. 

In summary, ARIMA models excel at capturing linear trends and patterns in financial 

time-series data, while HAR-RV models are specifically designed to address the challenges of 
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forecasting realized volatility in HFT settings. By combining the strengths of these models, 

researchers and analysts can enhance their forecasting accuracy and gain deeper insights into 

the intricate dynamics of volatility in financial markets. GARCH models, ARIMA models, and 

HAR-RV models play essential roles in modelling and forecasting financial time-series data, 

each offering unique capabilities for capturing volatility dynamics and linear dependencies. By 

understanding the strengths and applications of these statistical models, researchers can 

enhance their forecasting accuracy and gain valuable insights into market behaviour and risk 

management in HFT environments. 

3.3.2 Machine Learning Models 

3.3.2.1 The Multi-Layer Perceptron model The multi-layer perceptron (MLP) model, 

particularly the MLPRegressor, is a widely used neural network architecture for regression 

tasks. The model's formula can be broken down into several key components to understand 

how it generates predictions. First, the input layer of the MLP receives the input features and 

passes them to neurons in the first hidden layer. Each neuron in a hidden layer computes a 

weighted sum of the inputs from the previous layer, incorporating a bias term, which is then 

passed through an activation function to introduce non-linearity. The activation function 

output of a neuron is determined by applying the function to the weighted sum of inputs. 

Moving to the output layer, the final prediction is produced by calculating the weighted sum 

of activations from the last hidden layer, considering the weights connecting hidden neurons 

to the output neuron and a bias term. During training, the model evaluates a loss function, 

such as mean squared error, to quantify the disparity between predicted and actual values, 

adjusting weights and biases through optimization techniques like backpropagation to 

minimize this loss and enhance prediction accuracy (Hinton et al., 2012). 

The formula for a simple feedforward MLP model, such as the MLPRegressor, can 

likewise be broken down into several components to understand how the model makes 

predictions. The input layer of the MLP receives the feature values (input data) and passes 

them to the neurons in the first hidden layer. Each neuron in a hidden layer computes a 

weighted sum of the inputs from the previous layer, applies an activation function, and passes 

the result to the neurons in the next layer. The weighted sum 𝑧 for a neuron 𝑗 in a hidden layer 

is calculated as: 
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𝑧𝑗 = ∑ (𝑤𝑖𝑗 ∗  𝑥𝑖)

𝑛

𝑖=1
+ 𝑏𝑗, 

 

(12) 

where 𝑤 is the weight connecting input neuron 𝑖 to hidden neuron 𝑗, 𝑥𝑖 is the input value from 

neuron 𝑖, and 𝑏𝑗 is the bias term for neuron 𝑗. 

Then the activation function is applied to the weighted sum to introduce non-linearity 

and determine the output of the neuron. The output (𝑎) of neuron 𝑗 after applying the 

activation function is calculated as follows: 

 

 𝑎𝑗 = 𝑓( 𝑧𝑗), 

 

(13) 

where 𝑓( ) is the activation function. 

Further, the output layer receives the activations from the last hidden layer and 

produces the final prediction. For regression tasks, the output layer typically consists of a 

single neuron that outputs the predicted continuous value. The predicted output (y_pred) is 

calculated as the weighted sum of the activations in the last hidden layer: 

 

 
𝑦𝑝𝑟𝑒𝑑 = ∑ (𝑤𝑘𝑗 ∗  𝑎𝑗)

𝑛

𝑖=1
+  𝑏𝑘, 

 

(14) 

where 𝑤𝑘𝑗 is the weight connecting hidden neuron 𝑗 to the output neuron 𝑘, 𝑎𝑗 is the 

activation value from hidden neuron 𝑗, and 𝑏𝑘 is the bias term for the output neuron. 

The model’s utilization of activation functions, weighted sums, biases, and loss 

functions underscores its capacity to capture complex patterns and relationships within the 

data, making it a versatile and valuable tool for regression modelling across diverse domains. 

3.3.2.2 Random Feature Selection During random feature selection at each split in a 

decision tree, a random subset of features is considered for determining the best split. This 

random feature selection helps in decorrelating the trees and improving the overall model’s 

performance. Random Forest, an ensemble decision tree method, employs a technique called 
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bagging (i.e., bootstrap aggregating), where each tree is trained on a bootstrapped sample of 

the training data. This bootstrapping process involves sampling the training data with 

replacement, ensuring that each tree sees a slightly different subset of the data. 

Random forest regression is a powerful ensemble learning technique used for 

regression tasks. This method combines the strength of multiple decision trees to create a 

robust and accurate regression model. By averaging the predictions of individual trees and 

introducing randomness in feature selection and data sampling, random forest mitigates 

overfitting and enhances generalization performance. The formula for random forest 

regression encapsulates the ensemble nature of the model, where predictions are aggregated 

from multiple trees by averaging the predictions of all trees in the forest to provide a reliable 

and stable regression outcome (Breiman, 2001). Thus, the prediction �̂� made by a random 

forest regression model is the average of predictions from all individual trees in the forest: 

 

 
�̂� =

1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1
, 

 

(15) 

where �̂� is the final predicted value, 𝑁 is the total number of trees in the forest, and 𝑦𝑖 is the 

prediction made by the 𝑖𝑡ℎ tree. 

Each decision tree in the random forest is constructed by recursively partitioning the 

feature space into regions based on feature values. The prediction at each leaf node of the 

tree is the average (for regression) of the target values of the training samples that fall into 

that region. 

3.3.2.3 Support Vector Regression Support vector regression (SVR) is a machine 

learning algorithm used for regression tasks that extends the principles of Support Vector 

Machines (SVM) to predict continuous outcomes. This algorithm aims to find the optimal 

hyperplane that best fits the data points while minimizing margin violations. The algorithm is 

particularly effective in capturing non-linear relationships in the data by mapping the input 

features into a higher-dimensional space (Drucker et al., 1997). In the case of linear SVR, the 

prediction �̂� for a new input sample 𝑥 is calculated as follows: 

 �̂� =  𝑤𝑇𝑥 + 𝑏, (16) 
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where �̂� is the predicted output, 𝑤 is the weight vector, 𝑥 is the input feature vector, and 𝑏 is 

the bias term. 

Support vector regression aims to minimize the loss function, which penalizes errors 

based on the margin and the presence of any violations. The loss function typically includes a 

regularization term to control the complexity of the model and prevent overfitting. SVR 

optimization involves finding the optimal hyperplane that maximizes the margin around the 

data points while ensuring that the errors (deviations from the hyperplane) are within a 

specified tolerance level. Support vector regression is a versatile algorithm for regression tasks 

that can handle both linear and non-linear relationships in the data. By mapping data into a 

higher-dimensional space using kernel functions, SVR can capture complex patterns and make 

accurate predictions (Smola & Schölkopf, 2004). The formula for SVR encompasses the linear 

and non-linear prediction mechanisms, along with the optimization process to find the best-

fitting hyperplane. Support vector regression's ability to control model complexity and 

generalize well to unseen data makes it a valuable tool in regression modelling across various 

domains. 

3.4 Evaluation Metrics 

3.4.1 Grid Search with Cross-Validation  

Grid search with cross-validation (grid search CV) is a technique used in machine 

learning to find the optimal hyperparameters for a model by exhaustively searching through 

a specified parameter grid and evaluating the model's performance using cross-validation. Its 

process does not involve specific mathematical formulas but rather a systematic approach to 

finding the optimal hyperparameters for a machine learning model (Bergstra & Bengio, 2012).  

The parameter grid is a dictionary containing the desired hyperparameters for tuning 

a neural network model. These hyperparameters can include the number of hidden layers, 

activation functions, loss functions, maximum iterations, learning rate, etc. Each parameter is 

assigned a list of possible values to be tested. 

The grid search process involves evaluating the model's performance for each 

combination of hyperparameters in the parameter grid. The formula for grid search is the 

following: 
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 𝐺𝑟𝑖𝑑 𝑆𝑒𝑎𝑟𝑐ℎ =  arg 𝑚𝑎𝑥𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑠 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠  

 

(17) 

Cross-validation is a technique used to assess how well a model generalizes to an 

independent dataset. The formula for cross validation is the following: 

 

 
𝐶𝑟𝑜𝑠𝑠 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 =

1

𝑘
∑ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠𝑖

𝑘

𝑖=1
, 

 

(18) 

where 𝑘 is the number of folds in the cross-validation process and 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑠𝑖  is 

the performance metric (e.g., accuracy, loss) for the 𝑖th fold. These formulas provide a high-

level overview of the grid search CV processes in machine learning. The actual implementation 

involves running the model with different hyperparameters, evaluating its performance using 

cross validation, and selecting the best set of hyperparameters based on the results. 

In summary, grid search CV is a powerful tool for hyperparameter tuning in machine 

learning models, allowing for systematically searching through a predefined parameter grid to 

find the optimal set of hyperparameters for a neural network model. 

3.4.2 Neural Network 

In the context of machine learning, creating a neural network model is a crucial step 

before conducting hyperparameter optimization using techniques like grid search CV. 

Therefore, neural network model creation is the foundation for hyperparameter tuning. First, 

the neural network architecture that will be used for the task at hand is designed and built. 

This process typically involves selecting the number of layers, the number of neurons in each 

layer, the activation functions, the optimizer, the loss function, and other architectural choices 

that define how the neural network will learn from the data (Goodfellow et al., 2016). 

By creating the neural network model up front, the baseline structure and parameters 

that will be optimized during the hyperparameter tuning process are established. The initial 

neural network model acts as the starting point from which different hyperparameter 

combinations will be explored and evaluated to enhance the model's performance. Libraries 

like TensorFlow, Keras, and Scikit-learn provide a convenient way to build neural network 

models with various complexities and configurations. These libraries offer pre-built neural 
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network layers, activation functions, optimizers, and loss functions, making it easier to define 

and train neural networks for different machine learning tasks. Therefore, before delving into 

hyperparameter optimization techniques such as grid search CV, it is essential to have a well-

defined neural network model in place. This model serves as the base structure that will be 

refined and improved through the iterative process of hyperparameter tuning to achieve the 

best possible performance on the given dataset and task (Goodfellow et al., 2016). 

3.4.3 Loss Function 

In the context of a neural network model, the loss function, also known as the cost 

function or objective function, is a crucial component that quantifies how well the model is 

performing during training. The loss function calculates the difference between the predicted 

output of the neural network and the actual target output for a given set of input data. The 

goal of training a neural network is to minimize this loss function, which indicates how far off 

the predictions are from the ground truth (Bishop, 2006). 

   Mean squared error (MSE) is a loss function that quantifies the average of the 

squared differences between the predicted values and the actual values. Mathematically, MSE 

is calculated as the mean of the squared residuals between the predicted values (�̂�𝑖) and the 

true values (𝑦𝑖) as follows: 

 

 
𝑀𝑆𝐸 =

1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
  

 

(19) 

During model training, the neural network adjusts its parameters to minimize MSE, 

aiming to reduce the overall squared errors between predictions and actual values. A lower 

MSE indicates that the model's predictions are closer to the true values, reflecting improved 

performance in terms of minimizing squared errors. 

   Mean absolute error (MAE) is a loss function that calculates the average of the 

absolute differences between the predicted values and the actual values. The MAE is 

computed as the mean of the absolute residuals between the predicted values (�̂�𝑖) and the 

true values (𝑦𝑖) as follows: 
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𝑀𝐴𝐸 =

1

𝑛
∑ |�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=1
 

 

(20) 

   During training, the neural network aims to minimize the MAE by adjusting its 

parameters to reduce the average absolute errors between predictions and actual values. A 

lower MAE signifies that the model's predictions have smaller absolute deviations from the 

true values, indicating improved accuracy in terms of absolute errors. 

R-squared (R²) is a metric that measures the proportion of the variance in the 

dependent variable that is predictable from the independent variables. It is not a loss function, 

but an evaluation metric used to assess the goodness of fit of the model. The R² value is 

calculated as the ratio of the explained variance to the total variance: 

 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1

 

 

(21) 

A higher R² value indicates that the model explains a larger proportion of the variance 

in the target variable, suggesting a better fit of the model to the data and a stronger 

relationship between the independent and dependent variables (Montgomery et al., 2012). 

3.4.4 Back-Testing Value-at-Risk and Expected Shortfall Models 

Back-testing VaR and expected shortfall (ES) models are crucial for risk management 

in financial institutions and. This process involves assessing the accuracy and reliability of 

these models by comparing the predicted risk measures with actual outcomes over a historical 

period. By evaluating the effectiveness of VaR and ES models in capturing and quantifying 

market risk, insights into the model's performance and potential areas for enhancement can 

be gained. The methodology for back-testing VaR models entails several key steps. First, 

historical data selection involves the choice of an appropriate dataset encompassing relevant 

time periods for analysis, including historical returns and price movements necessary for VaR 

calculations. Subsequently, VaR is calculated using the selected historical data and the chosen 

methodology, such as historical simulation, parametric, or Monte Carlo simulation, to 

determine the maximum potential loss a portfolio may incur at a specified confidence level 

over a given time horizon (Jorion, 2006). 
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Following VaR calculation, the comparison of predicted VaR values with actual 

portfolio losses observed during the historical period is conducted. This comparison assesses 

whether actual losses exceed VaR estimates and quantifies the frequency and severity of 

exceptions, known as VaR breaches. Statistical tests like the Kupiec test, Christoffersen test, 

or conditional coverage test are then used to evaluate the accuracy and reliability of the VaR 

model, ensuring consistency between VaR estimates and observed losses while identifying any 

model performance deficiencies. Based on the back-testing results, model validation and 

adjustment are performed to enhance accuracy and robustness. This may involve recalibrating 

model parameters, updating risk factors, or integrating additional data sources for improved 

risk estimation (Hull, 2012). The formula for VaR is typically expressed as the following: 

 

 𝑉𝑎𝑅𝛼 = −𝐸𝑆𝛼 = − inf{𝑥 ∈ ℝ ∶ 𝐹(𝑥) ≥ 𝛼} , 

 

(22) 

where 𝑉𝑎𝑅𝛼 represents the VaR at a specified confidence level 𝛼, −𝐸𝑆𝛼 denotes the expected 

shortfall at the confidence level 𝛼, 𝐹(𝑥) is the cumulative distribution function of the portfolio 

returns, and 𝛼 is the confidence level, typically ranging from 90% to 99%. 

This formula calculates the potential loss that a portfolio may incur over a specified 

time horizon with a given level of confidence. VaR is a widely used risk measure in financial 

institutions for quantifying and managing market risk. The significance of back-testing for risk 

management lies in model validation, risk mitigation, regulatory compliance, and continuous 

improvement. By conducting thorough back-testing and implementing corrective actions 

based on the results, financial institutions can fortify their risk management frameworks and 

make well-informed decisions in dynamic market environments. 

 

3.4.5 Model Calibration and Selection 

The calibration process is rigorous, balancing the complexity of models with their 

interpretability and predictive prowess. Through a systematic evaluation of model parameters 

and features, this study refines methodologies, ensuring they are attuned to the nuances of 

the data. The selection criterion hinges not only on statistical metrics such as Akaike’s 
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information criterion (AIC) and Bayesian information criterion (BIC) but also on the models' 

ability to resonate with the underlying market dynamics they seek to capture. 

The calibration process involved striking a delicate balance between model complexity, 

interpretability, and predictive accuracy. By systematically evaluating model parameters and 

features, this study fine-tunes these methodologies to align with the intricacies present in the 

dataset, ensuring their effectiveness in capturing the underlying market dynamics. 

The AIC and BIC are commonly used statistical metrics to assess the goodness of fit of 

models (Burnham & Anderson, 2004). Their formulas are as follows:  

 

 𝐴𝐼𝐶 =  −2 ∗  log(𝐿) + 2𝑘, 

 

(23) 

where 𝐿 represents the maximum value of the likelihood function of the model and 𝑘 denotes 

the number of parameters in the model. 

 

 𝐵𝐼𝐶 =  −2 ∗ log(𝐿) + 𝑘 ∗  log(𝑛) , 

 

(24) 

where 𝑛 signifies the sample size. 

In this study, the model selection process not only relied on these statistical metrics 

but also considered the ability of the models to resonate with the underlying market dynamics 

they aim to capture. This holistic approach ensures that the chosen models are not only 

statistically sound but also reflective of the true complexities of the financial markets, 

enhancing the robustness of their forecasting methodologies. The in-sample analysis acts as a 

critical evaluation tool for assessing the effectiveness of models by scrutinizing their 

performance against known data. This introspective examination provides valuable insights 

into the strengths and limitations of each model, shedding light on their predictive accuracy 

and areas that may require improvement. 
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4 Results 

The comprehensive analysis of financial volatility and predictive modelling within the 

realm of high-frequency data analysis and advanced statistical models offers a detailed 

exploration that integrates and expands upon the preliminary findings, methodology, and 

results. This synthesized analysis aims to illuminate the intricate dynamics of financial markets, 

providing a reflective, critical, and evidence-based examination of the empirical evidence 

derived from this study. 

The initial findings of the study underscore the importance of utilizing high-frequency 

data and advanced statistical modelling techniques to enhance our understanding of financial 

volatility and market risk. By delving into the nuances of market dynamics at a granular level, 

researchers can uncover hidden patterns, identify key drivers of volatility, and develop more 

accurate forecasting models that capture the complexities of real-world market behaviour. 

The methodology employed in this study, including the use of quantile regression, feature 

selection algorithms, and comparative analysis of forecasting models, reflects a rigorous and 

systematic approach to modelling financial volatility. By leveraging these advanced 

techniques, this thesis can extract meaningful insights from the data, refine their risk 

assessment frameworks, and provide analysis needed to make informed decisions in the face 

of market uncertainties. 

4.1 Descriptive Statistics 

To provide descriptive statistics for the volatility variables utilized in the models, a 

systematic approach was followed. Initially, the ICE Brent Crude Oil dataset was filtered to 

isolate the pertinent volatility-related variables by selecting specific columns associated with 

volatility in trading data. This filtering process involved identifying variables that adhered to 

predefined patterns such as 'rvol_pt', 'd[0-9]+', 'w[0-9]+', and 'm[0-9]+', which represent 

various types of volatility measures, like realized volatility, daily returns, weekly averages, and 

monthly averages, respectively. Utilizing techniques like regular expressions (regex) facilitated 

the extraction of columns matching these patterns, thereby focusing solely on volatility-

related variables for subsequent analysis and statistical summarization. Histogram plots were 

visually assessed to determine the distribution of realized volatility (i.e., rvol) over different 
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periods (i.e., segments of time; pt1 = price over one minute, pt2 = price over two minutes, and 

so on) (Figures 1–3). 

 

Figure 1. Distribution of realized volatility averaged over 1–4-minute time periods. Rvol stands for realized 

volatility, and pt (previous tick) values indicate the number of minutes over which the price is averaged (e.g., 

pt1 = 1 minute) for ICE Brent Crude Oil minute-level data from January 3, 2006, to January 29, 2016 (total 2,567 

trading days). 
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Figure 2. Distribution of realized volatility averaged over 5, 6, 9, and 10-minute time periods. Rvol stands for 

realized volatility, and pt (previous tick) values indicate the number of minutes over which the price is averaged 

(e.g., pt5 = 5 minutes) for ICE Brent Crude Oil minute-level data from January 3, 2006, to January 29, 2016 (total 

2,567 trading days). 
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Figure 3. Distribution of realized volatility averaged over a 12-minute time period. Rvol stands for realized 

volatility, and pt (previous tick) values indicate the number of minutes over which the price is averaged (e.g., 

pt12 = 12 minutes) for ICE Brent Crude Oil minute-level data from January 3, 2006, to January 29, 2016 (total 

2,567 trading days). 

The right-skewed shape of the histograms suggests that the data is concentrated 

towards lower values, with a tail extending towards higher values. This skewness is common 

in financial data, particularly for variables like returns or volatility, where extreme values occur 

infrequently but can have a significant impact on the overall analysis. In the context of financial 

market analysis, these histograms represent the distribution of realized volatility measures 

over different time intervals, which are crucial for assessing market risk and volatility patterns. 

The consistency in the shape of the histograms across various periods indicates a stable 

volatility pattern or behaviour over time. Analysing these histograms provided insights into 

the frequency and distribution of volatility values within each time interval, highlighting the 

variability and potential outliers in the data.  

Once the dataset was filtered to include relevant variables and histograms were 

assessed for data distribution, descriptive statistics including mean, standard deviation, 

minimum, maximum, and quartiles were calculated to further provide a comprehensive 

overview of the dataset's characteristics and distribution (Table 1). These statistical metrics 
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offer valuable insights into the behaviour and variability of the volatility measures, enabling a 

deeper understanding of the data for further analysis and interpretation. Metrics like mean 

and median reveal central tendencies, while standard deviation and quartiles highlight data 

variability. Specifically, the mean provides a measure of central tendency, indicating the 

typical value of the variable, and the standard deviation measures the dispersion of data 

points around the mean, with a higher value suggesting greater variability. Quartiles, dividing 

the data into four equal parts, help assess spread and distribution, and the minimum and 

maximum values reflect the range of observed values. These statistics aid in identifying 

outliers, assessing data quality, and detecting patterns in trading data analysis. Displaying the 

statistical summary provides a concise overview of these key metrics, offering a snapshot of 

the dataset's properties. Conducting a data quality check through the statistical summary 

helps identify missing values or inconsistencies, ensuring data reliability. This comprehensive 

understanding of volatility variables aids analysts in making informed decisions, identifying 

trends, and assessing data suitability for further analysis or modelling in trading datasets. 

Table 1. Table of statistical measures including count (number of non-null observations), mean (average), 
standard deviation (std dev; variation or dispersion), minimum (min), maximum (max), and quartiles (25th, 
50th, 75th percentiles) of realized volatility (rvol) for each time period (e.g., pt = previous tick) analysed.  

Sampling Count Mean Std Dev Min 25% 50% 75% Max 

rvol_pt1 2567 0.0152 0.0076 0.0034 0.0105 0.0134 0.0178 0.0599 

rvol_pt2 2567 0.0150 0.0075 0.0034 0.0102 0.0132 0.0175 0.0613 

rvol_pt3 2567 0.0148 0.0076 0.0035 0.0100 0.0131 0.0174 0.0666 

rvol_pt4 2567 0.0147 0.0075 0.0031 0.0099 0.0130 0.0172 0.0680 

rvol_pt5 2567 0.0146 0.0076 0.0034 0.0010 0.0128 0.0171 0.0693 

rvol_pt6 2567 0.0147 0.0076 0.0033 0.0098 0.0128 0.0173 0.0653 

rvol_pt9 2567 0.0145 0.0076 0.0030 0.0096 0.0127 0.0169 0.0596 

rvol_pt10 2567 0.0144 0.0076 0.0030 0.0094 0.0125 0.0168 0.0601 

rvol_pt12 2567 0.0144 0.0078 0.0029 0.0093 0.0125 0.0170 0.0159 

rvol_pt15 2567 0.0142 0.0079 0.0022 0.0092 0.0125 0.0168 0.0836 

rvol_pt18 2567 0.0142 0.0078 0.0026 0.0093 0.0124 0.0167 0.0635 

rvol_pt20 2567 0.0140 0.0077 0.0026 0.0090 0.0122 0.0165 0.0651 

 

The consistent count across variables indicates an equal amount of data for each, while 

varying mean, standard deviation, and range values suggest differences in central tendencies 

and data spread. The percentiles offer insights into data distribution, with the 50th percentile 
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representing the median. The differences in mean, standard deviation, and range imply these 

variables may represent distinct aspects or dimensions of the analysed data, possibly related 

to realized volatility for different time periods or conditions in a time-series or financial 

analysis context. 

Additionally, insights into data distribution and patterns were obtained through 

visualization of box plots (Figure 4). The consistency in data range and concentration of values 

within a narrow band across variables suggest uniform data spread, while outliers signify 

extreme values outside the typical range, possibly indicating exceptional events.



 
 

 
 

 

 

 

Figure 4. Box plots of selected volatility variables. Interquartile Range (IQR) represents the middle 50% of data point variability (boxes), median indicating 
central tendency (vertical lines in each box), whiskers extending to min and max values exclude outliers (open circles), which deviate significantly from the 

overall pattern.  
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In financial markets, box plots are valuable for comparing dispersion and central 

tendency of realized volatility measures over different time periods or financial instruments. 

The uniform distribution of medians around a central range suggests a stable data central 

tendency, whereas the outliers may indicate sporadic volatility spikes or exceptional market 

conditions. Analysing box plots aids in comprehending data variability, distribution, and 

anomalies, facilitating informed decision-making and risk assessment in financial market 

analysis.  

4.2 Statistical Model Results 

The analysis of statistical models, which employs GARCH and ARIMA models to a 

financial time-series dataset of daily closing prices, presents a comprehensive look at the 

underlying volatility and trend patterns in the data. 

The GARCH model (see the top half of Figure 5 for model outputs) is adept at capturing 

volatility dynamics in financial time series data. In this analysis, the model underscores the 

importance of past volatility, an indication of volatility clustering, where periods of high 

volatility tend to be followed by high volatility and low by low. This pattern identification is 

particularly useful for risk management because it allows practitioners to adjust their 

strategies during periods of expected high volatility. The estimated omega coefficient of 

2.666e-06 and alpha (long-run average variance) of 0.2800 in the GARCH model are 

statistically significant (p-values < 0.05). This significance is essential because it justifies the 

inclusion of these terms in predicting future volatility by providing strong evidence that the 

results were not obtained by chance. Similarly, the beta coefficient of 0.7000, which captures 

the persistence of volatility shocks, is significant, indicating that volatility shocks tend to 

persist over time. Furthermore, the model's fit to the data is substantiated by the AIC and BIC 

values of –720.216 and –709.958, respectively. These criteria measure the relative quality of 

statistical models for a given set of data; lower values generally indicate a better fit. 
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Figure 5. Statistical modelling outputs for GARCH (top) and ARIMA (bottom) modelling of ICE 
Brent Crude Oil market data. 

Moving on to the ARIMA model results (see the bottom half of Figure 5 for model 

outputs), the significant autoregressive term (ar.L1) with a coefficient of 0.9078 suggests that 

there is a strong continuity in the price series. That is, past prices are a strong predictor of 

future prices. The moving average term (ma.L1) with a coefficient of –0.2692, also significant 

with a p-value of 0.005, indicates that the model attempts to correct for any shock that 
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occurred in the previous period. The estimated variance (sigma2) of 1.997e-05 is quite small, 

implying that the model predicts the closing prices will have minimal deviations from the 

mean, which can be interpreted as a generally stable series over the period under study.  

The model diagnostics for the ARIMA model are also revealing. The Ljung-Box test 

provides a p-value of 0.01, suggesting that at least some autocorrelations are significantly 

different from zero at the 5% level, pointing towards potential model misspecification or the 

presence of unexplained patterns in the residuals. Additionally, the Jarque-Bera test statistic 

of 31.16 with a p-value of 0.06, slightly above the 5% significance level, suggests a mild 

departure from normality. This is common in financial data where the distribution of returns 

can exhibit fat tails and skewness, often caused by the leverage effect or black swan events. 

The skewness and kurtosis values of 1.02 and 4.91, respectively, confirm that the residuals are 

not normally distributed: they are positively skewed and have heavier tails than the normal 

distribution.  

Both GARCH and ARIMA models offer valuable insights but also suggest different 

aspects of the data. The GARCH model is key for understanding volatility, while the ARIMA 

model is helpful for capturing the trends and correcting for past prediction errors. Given the 

findings, particularly the mild deviations from normality and the remaining autocorrelation in 

the residuals, further refinement of the models could be beneficial. Alternative distributions 

like the student’s t or skewed distributions in the GARCH model could be explored to better 

accommodate the fat tails and skewness observed. Additionally, including exogenous 

variables, such as macroeconomic factors or market indices, might capture external influences 

affecting the volatility and trends. It is also recommended to continually validate the models 

against new, out-of-sample data to confirm their predictive power and adjust them as needed 

to maintain forecasting accuracy. This iterative process of model updating ensures that the 

predictive models stay aligned with the evolving market conditions. 

The results from the HAR-AV model (Figure 6) provide a robust analysis of the realized 

volatility using historical lagged volatilities as predictors. However, the reported R2 and 

adjusted R2 values of 1.000 in the model output are striking, as they indicate that the model 

explains 100% of the variability in the realized volatility of the financial time series. Such 

perfect fit values often raise concerns about the possibility of overfitting, where the model is 

too closely tailored to the sample data and may not generalize well to out-of-sample data. It 
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is unusual for empirical models to achieve such perfect fit, and it suggests that the results 

should be approached with caution and rigorous validation with new data be performed. The 

F-statistic is extremely high, and the associated p-value is essentially zero, which strongly 

suggests that the model is statistically significant. This means that the variables included in the 

model collectively have significant predictive power in explaining the variation in realized 

volatility. The coefficients for all lagged volatility terms (x1, x2, x3) are statistically significant, 

with p-values well below the standard 0.05 threshold. This significance indicates that past 

volatility (daily, weekly, and monthly) is a crucial predictor of current volatility, which is 

consistent with volatility clustering. 

Model diagnostics provide additional context for these results. The Durbin-Watson 

statistic value of 1.776 suggests there is minimal autocorrelation in the model's residuals. This 

is a positive sign, indicating that the model captures the temporal structure in the volatility 

well without leaving behind systematic patterns in the residuals. However, the Omnibus test 

results in a p-value of 0.00, and the Jarque-Bera test also has a significant p-value of 2.40e-13, 

suggesting that the residuals do not follow a normal distribution. This interpretation is further 

supported by a skewness statistic of –1.315 and an excess kurtosis of 5.169. Such non-

normality in residuals can be a concern because it might violate the OLS assumption of 

normally distributed errors, potentially leading to inefficiency of estimates and invalid 

inferential statistics. 
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Figure 6. Statistical modelling outputs for HAR-AV modelling using ordinary least squares 
regression of ICE Brent Crude Oil realized volatility data. 

Given the non-normality issues highlighted by the tests, further investigation into the 

model's residuals is necessary. This investigation could include checking for structural breaks, 

outliers, or influential points that may be unduly affecting the model's results. Additionally, it 

may be prudent to test for stationarity in the volatility series and ensure that the time series 

is appropriately differenced, if necessary, before modelling. Considering the potential for 

multicollinearity (i.e., correlation among predictor variables), as noted by the smallest 

eigenvalue being close to zero, it is crucial to examine the variance inflation factors for the 

predictors. If multicollinearity is present, it could be inflating the standard errors of the 

coefficients, leading to less reliable hypothesis tests. Given the observed imperfections in the 

model, it may be beneficial to explore other volatility models, such as GARCH-family models, 

which are specifically designed to handle the clustering of volatility and can model the 

conditional heteroskedasticity often observed in financial time series data. It's also 

recommended to validate the model's predictive accuracy using out-of-sample data. This 

helps ensure that the model's perfect in-sample fit translates into strong predictive 

capabilities moving forward. Finally, alternative models or additional terms might be 
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considered to address the issues of skewness and kurtosis in the residuals, such as 

transforming the response variable or using models that are robust to non-normality. The 

exploration of alternative error distributions within the GARCH framework, for instance, could 

be a step towards more robust volatility forecasts. 

4.3 Machine Learning Modelling Results 

Three regression models were explored: multi-layer perceptron (MLP), random forest 

(RF), and support vector machine (SVM), across various metrics. 

The loss curve over epochs for the MLP model is illustrated in Figure 7. The loss drops 

sharply in the initial epochs, indicating rapid learning at this early stage. However, there is a 

slight increase at around epoch 10, possibly due to overfitting or learning rate adjustments. 

Following this, the loss continues to decline and stabilizes, which is indicative of the model 

converging to a solution. 

 

Figure 7. The loss curve over epochs for the multi-layer perceptron (MLP) model. 

The RF model performed excellently on both the training and test sets, with MSE and 

MAE nearing zero and R2 values being almost perfect (Figure 8). This suggests that RF is highly 
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effective in capturing the patterns in the data without overfitting, as evidenced by the 

consistent performance in training and testing phases. SVM (Figure 9), however, shows some 

negative values in R2, especially on the test set, which may indicate a model fit that's worse 

than the mean model. Negative R2 values arise when the chosen model does not follow the 

trend of the data, so the predictions end up being less accurate than if one had simply 

predicted the mean of the target variable. MLP also shows negative R2 values (Figure 10), 

suggesting that this model, like SVM, is performing poorly on the given dataset. The loss 

functions for MLP depicted in the bar chart indicate that while the model performs slightly 

better in the test set than SVM, it still underperforms when compared to Random Forest. 

 

Figure 8. Performance of random forest (RF) model. 

When predicting volatility in financial data, models like GARCH may show high R2  

scores due to the clear patterns in temporal financial data. However, general machine 

learning models like MLP and SVM may struggle with non-linear, stochastic data lacking clear 

patterns. Overfitting is a concern in MLP and SVM if not properly regularized, especially in 

high-dimensional datasets. Volatility models use directly related features, while scaling is 

crucial for MLP and SVM. Recommendations include improving feature engineering, 

hyperparameter tuning, and robust validation techniques to enhance model performance 

across diverse datasets. 
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Figure 9. Performance of multi-layer perceptron (MLP) model. 

 

Figure 10. Performance of support vector machine (SVM) model. 

 The scatter plot of predicted versus actual values (Figure 11) allows for a visual 

assessment of each model's predictive accuracy. For an ideal model, the points would lie on 

the diagonal line, indicating perfect prediction. MLP predictions are quite spread out from the 

line, suggesting a disparity between predictions and actual values. The MLP model may not be 
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capturing the complexity of the data efficiently, which could be due to the architecture not 

being optimized for the data at hand. Adjustments such as tuning the number of layers, 

neurons, or even the regularization parameters could potentially improve its performance. 

Random Forest appears to have a tighter clustering around the line, particularly for the middle 

range of values, indicating better predictive performance. The RF model, with its ensemble 

approach, appears to effectively capture the data's patterns, suggesting that the average of 

multiple decision trees (each considering a random subset of features) is able to generalize 

well from the training data to the test data. The SVM model output has predictions that 

generally overestimate for lower actual values and underestimate for higher actual values. 

The SVM model seems to struggle with this dataset, potentially due to the choice of kernel or 

the need for more fine-tuned hyperparameters. 

 

Figure 11. Predicted vs. actual values among machine learning models. 

In conclusion, the RF model stands out with superior performance, which aligns with 

the model's theoretical underpinnings as a robust ensemble method. However, both the MLP 

and SVM models exhibit issues that require further investigation and model tuning. Given the 

complexity often inherent in financial data, a combination of model tuning, feature 

engineering, and alternative modelling approaches might be necessary to achieve optimal 
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predictive performance. Additionally, the negative R2 values for MLP and SVM on the test sets 

warrant a deeper dive into their respective model diagnostics and potential overfitting issues 

for MLP and underfitting for SVM. 

4.4 Feature Selection Results 

Comparisons between the performance of various models in accurately prediction 

variability in data can provide valuable insights. The comparative analysis in this study included 

traditional linear models like linear regression and ridge regression, ensemble models such as 

random forest and gradient boosting, a machine learning mainstay in SVR, and time-series-

specific models like GARCH, ARIMA, and LSTM (Figure 12). These models have undergone 

evaluation through various error metrics to assess their performance. Metrics such as mean 

squared error and root mean squared error give us insights into the average of the squared 

differences and the square root of these differences between predicted and actual values, 

where lower figures are indicative of a model with predictions closely matching the observed 

data. Mean absolute error provides another angle, offering the average of the absolute 

differences, which serves to understand the precision of the models outside of their squared 

errors.  
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Figure 12. Bar chart presenting a comparative analysis of various machine learning models 
applied to ICE Brent Crude Oil futures data. 

One of the key takeaways from the visual representation of this performance data is 

that the models exhibit varying degrees of accuracy and reliability, as indicated by their 

respective error rates. While the chart does not display mean absolute percentage error, 

typically, a lower value in this metric would be desirable because it represents the average of 

the percentage differences between the predictions and actual figures, providing a scale-free 

context to the error. The adjusted R2 metric also offers valuable insight, adjusting for the 

number of predictors and the sample size to reflect the model’s explanatory power more 

accurately. In scenarios where this value is negative, it suggests that the model's predictive 

capacity is worse than that of a simple horizontal line. 

This comparative analysis aims to deduce which model best suits the task of predicting 

volatility in the dataset provided, a crucial step in financial modelling, particularly in the realm 

of HFT. Models that maintain a balance between low error rates and high explanatory power 

without succumbing to overfitting are often favoured. Overfitting can be detrimental, as it 

indicates that a model might perform well on training data but fail to generalize to unseen 

data. While the data points to certain models being more effective than others in this specific 
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context, the true test of a model's utility will be in its application to new data and the 

consistency of its predictive quality. 

4.5 Volatility Forecast Performance 

Examination of collective volatility forecast performance plots formed a detailed 

examination of market volatility, mapped out over various time frames—daily, weekly, and 

monthly—providing a multifaceted view of market dynamics (Figures 13 and A2.1–A2.3). 

Starting with daily lagged volatility, which spans across numerous consecutive days, these 

plots trace the immediate fluctuations in the market. Such short-term variances are typically 

sensitive to day-to-day market news and events, where even slight tremors in investor 

sentiment or economic indicators can create ripples of change. Moving to a broader scale, the 

weekly average volatility plots stretch across several weeks, offering a tempered perspective 

compared to the daily data. These averages smooth over the abrupt spikes of daily volatility, 

revealing more persistent trends and sentiments in the market.  



 
 

 
 

66 

 

 

 

Figure 13. Examples of volatility forecast performance plots averaged over daily (top), weekly 
(centre), and monthly (bottom) time periods for a selection of each. See Appendix 2 for full 

performance plots. 
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The monthly average volatility plots, encompassing an even wider time span, depict 

the longest-term trends in market behaviour. These plots are critical in understanding the 

sustained shifts in volatility, which are less reactive to the 'noise' of daily market moves and 

more indicative of deeper, systemic changes in the economic landscape. By examining these 

visual narratives of volatility, analysts can infer underlying patterns such as seasonality or long-

term cycles. Such insights are key to deciphering the market’s rhythm, which can further 

inform investment decisions, trading strategies, and risk management. In essence, these 

visualizations serve not just as a record of past market behaviour, but also as a lens through 

which future market movements might be anticipated and understood.  

A correlation heatmap of volatility variables was examined as a comprehensive visual 

aid to understand the interconnections among different volatility metrics across time frames 

(Figures 14, A3). This heatmap portrays how various volatility measures co-move or diverge, a 

concept of paramount importance in the financial world where the objective is often to gauge 

and navigate market risks effectively. (Figure 14 provides a snapshot of correlations between 

realized volatility variables for minute-level time periods. See Appendix 3 for a full heatmap 

with correlations between all possible variable combinations.) 

 

 

 

Figure 14. Correlation heatmap of volatility variables for minute-level data. See Appendix 3 for full 

correlation heatmap with all possible variable combinations. 
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At first glance, the varying shades of red across the heatmap highlight the extent of 

positive correlation among the variables. Notably, clusters of darker reds reveal a strong 

positive correlation, particularly within similar time spans such as daily volatilities. This pattern 

suggests a synchronicity in the way these measures react to market stimuli, a reflection of the 

market's cohesiveness in response to short-term events. Conversely, areas in blue signify 

lower or inverse correlations (Appendix 3). These areas are particularly intriguing because they 

imply that certain volatility measures do not track together, indicating a divergence in market 

behaviour across different periods. For instance, measures that are less correlated may 

provide insights into the multi-dimensional nature of market volatility, underscoring the 

complexities that come with forecasting and risk assessment. 

The heatmap is also self-referential, as evidenced by the diagonal line of perfect 

correlation. This is a natural occurrence, representing each variable's correlation with itself 

and serving as a benchmark for interpreting the rest of the heatmap. Moreover, the distinct 

block-like patterns that emerge on the heatmap encapsulate the notion that volatility 

measures within similar time frames—daily, weekly, or monthly—tend to exhibit a higher 

degree of correlation (Figures 14, A3). This pattern could indicate that similar underlying 

factors are at play within these time-specific groupings. For those in portfolio management, 

the correlations can serve as a beacon for diversification strategies. A portfolio composed of 

assets with varying correlations can mitigate risk, whereas a high correlation across the board 

might indicate that diversification benefits are minimal. 

In predictive modelling, such correlations are a double-edged sword. While they can 

offer rich information, they also pose a risk of multicollinearity, which could skew model 

outcomes. Careful selection of variables is necessary to sidestep redundancy and ensure 

robust forecasts. Finally, from the standpoint of risk management, dissecting the correlations 

between short-term and long-term volatility measures could reveal how immediate market 

shifts may echo into more extended trends. Such insights are invaluable for risk managers 

tasked with safeguarding portfolios against market tumult. All in all, the heatmap transcends 

being a mere snapshot of volatility correlations, morphing into an analytical framework for 

financial experts aiming to decipher the undercurrents of market volatility. 
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4.6 Value-at-Risk Prediction Results 

This study presents an exploration of VaR predictions using HFT data, providing a 

nuanced understanding of the various statistical and machine learning models' capabilities in 

quantifying financial risk. Value at risk is a critical concept in financial risk management, 

representing potential losses in the value of a risky asset or portfolio over a specific time 

frame, within a certain confidence interval. This metric is instrumental for financial institutions 

to manage their investment portfolio risks. In this examination, a selection of realized volatility 

measures, labelled from sampling `1` to `108`, representing sampling frequencies from 1 to 

108 minutes, are analysed using OLS regression to predict daily closing prices (Figure 15). From 

the OLS residuals, VaR estimates are derived at various confidence levels on both tails of the 

distribution, providing a spectrum of potential gains and loss.  

Based on the results presented in the table for Value-at-Risk (VaR) predictions using 

different sampling frequencies, it is observed that the one-factor quantile regression model 

performs well across various sampling frequencies compared to the OLS version. The quantile 

regression model shows consistent performance even at lower sampling frequencies, passing 

a significant number of VaR levels tested in the empirical exercise. In contrast, the OLS 

version's performance deteriorates quickly as the sampling frequency decreases, with lower 

accuracy in VaR forecasts compared to the quantile regression model. 

The study highlights the importance of selecting an appropriate model for VaR 

predictions, emphasizing the effectiveness of the one-factor quantile regression model in 

providing reliable forecasts across different sampling frequencies. This finding suggests that 

the quantile regression approach offers a robust and stable method for forecasting VaR, 

particularly in the context of financial risk management. Furthermore, the research 

underscores the significance of exploring different statistical and machine learning models to 

enhance the accuracy and reliability of VaR predictions in financial risk management. By 

comparing the performance of various models, including the one-factor quantile regression 

model, the study contributes valuable insights into the effectiveness of different approaches 

for quantifying financial risk. The results support the use of the one-factor quantile regression 

model for VaR forecasting, as it demonstrates consistent performance and robustness across 

different sampling frequencies, providing practitioners with a reliable tool for managing 

financial risk effectively.



 
 

 
 

 

 

    Value-at-  Risk Prediction Results      

Samling 
Left VaR  

1% 
Left VaR 

2.5% 
Left VaR 

5% 
Left VaR 

10% 
Right VaR 

99% 
Right VaR 

97.5% 
Right VaR 

95% 
Right VaR 

90% 
Min Max Range Pass Rate 

1 0.005444 0.006165 0.006906 0.008049 0.042701 0.037438 0.031482 0.024364 0.003385 0.059893 0.056509 0.989871 

2 0.005261 0.005876 0.006657 0.007736 0.042098 0.037007 0.031392 0.023778 0.003441 0.061294 0.057853 0.989871 

3 0.005034 0.005632 0.006540 0.007677 0.042024 0.036864 0.031341 0.023617 0.003465 0.066505 0.063039 0.989871 

4 0.004998 0.005604 0.006384 0.007548 0.041825 0.036619 0.031167 0.023574 0.003068 0.068046 0.064978 0.989871 

5 0.004859 0.005640 0.006363 0.007355 0.041213 0.036165 0.030733 0.023537 0.003355 0.069349 0.065994 0.989871 

6 0.004788 0.005535 0.006288 0.007505 0.041910 0.036255 0.030966 0.023728 0.003348 0.065267 0.061919 0.989871 

9 0.004712 0.005440 0.006222 0.007305 0.043078 0.036006 0.031239 0.023481 0.002970 0.059645 0.056675 0.989871 

10 0.004525 0.005400 0.006117 0.007150 0.042598 0.036442 0.030859 0.023301 0.003017 0.060065 0.057048 0.989871 

12 0.004651 0.005184 0.006029 0.007208 0.043420 0.037149 0.030473 0.023618 0.002891 0.059147 0.056255 0.989871 

15 0.004470 0.005219 0.005967 0.007050 0.042763 0.037345 0.030989 0.023340 0.002249 0.083602 0.081354 0.989871 

18 0.004538 0.005133 0.005975 0.007039 0.043894 0.036729 0.030008 0.023486 0.002579 0.063499 0.060920 0.989871 

20 0.004286 0.005071 0.005711 0.006785 0.042545 0.036873 0.029847 0.023093 0.002628 0.065096 0.062467 0.989871 

27 0.004344 0.004949 0.005666 0.006661 0.043081 0.036560 0.030405 0.023218 0.002460 0.063362 0.060902 0.989871 

30 0.004015 0.004835 0.005532 0.006545 0.042585 0.036913 0.030335 0.023191 0.002326 0.074485 0.072159 0.989871 

36 0.003875 0.004667 0.005449 0.006383 0.043962 0.036736 0.030720 0.023487 0.002140 0.061013 0.058873 0.989871 

45 0.003794 0.004515 0.005268 0.006266 0.042387 0.037560 0.031011 0.023443 0.002412 0.067388 0.064976 0.989871 

54 0.003389 0.004153 0.004929 0.006067 0.045599 0.037509 0.030769 0.023186 0.001992 0.077990 0.075998 0.989871 

60 0.003347 0.004104 0.004805 0.005865 0.045002 0.036753 0.029593 0.023010 0.001815 0.069897 0.068082 0.989871 

90 0.002865 0.003638 0.004318 0.005471 0.045751 0.036805 0.030003 0.023352 0.001302 0.076211 0.074909 0.989871 

108 0.002723 0.003276 0.003997 0.005067 0.046805 0.037394 0.030363 0.023587 0.001129 0.074250 0.073121 0.989871 

 

Table 2. Value-at-risk predictions using one-factor model using daily realized volatility. Values are reported for various confidence intervals, along with minimum 
(min), maximum (max), range (max – min), and pass rate (measure of model performance). 
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The efficacy of different models is illustrated by the VaR prediction values. The GARCH 

model shows moderate accuracy in capturing volatility, benefiting from its mean-reversion 

feature, which is particularly relevant to financial time series. The ARIMA model establishes a 

baseline understanding of autocorrelation within the time series but struggles with forecasting 

volatility spikes, which are crucial for VaR estimation. The LSTM model, with its advanced 

memory cells, holds promise in identifying complex patterns within volatility data, yet its 

application to VaR prediction requires careful tuning to avoid overfitting. 

A striking observation is the consistently high pass rates, exceeding 99.8% across 

different volatility points, suggesting the models perform well against historical data. While 

indicative of robust model performance, such high pass rates raise questions about overfitting 

and the challenge levels of the test conditions. 

The deployment of VaR in a risk management context is essential because it helps 

institutions determine the capital needed to cushion against potential losses. This study's 

findings suggest that although each model brings unique advantages to the table, their 

selection must be strategically aligned with the specific risk management objectives of an 

institution. This comparative analysis of VaR predictions highlights the critical nature of 

choosing the right model in risk management, emphasizing the need for financial institutions 

to consider not only a model's statistical accuracy but also its performance during market 

extremes that can heavily influence VaR calculations. 
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5 Discussion  

5.1 Interpretation of Findings 

The results demonstrate robust model performance, with high pass rates suggesting 

effective volatility forecasting. This result may point to a successful capture of market 

dynamics by the models. However, the possibility of overfitting requires attention, and further 

out-of-sample testing is necessary to confirm model generalizability and predictive power. 

This interpretation of the results highlights several key points regarding model performance 

in volatility forecasting, including robust model performance, effective volatility forecasting, 

potential overfitting concerns, the need for out-of-sample testing, as well as a need for 

confirmation of model generalizability. 

First, the findings indicate that the models used in the study exhibit robust 

performance. The high pass rates suggest that the models are effective in forecasting volatility. 

A high pass rate implies that the models are successfully capturing the underlying market 

dynamics related to Brent Crude Oil futures. This is a positive outcome because it indicates 

that the models are able to provide accurate forecasts of volatility levels. In addition, the 

effective volatility forecasting demonstrated by the models is crucial for market participants, 

especially in the context of the oil futures market. Accurate volatility forecasts enable market 

participants to make informed decisions regarding risk management, trading strategies, and 

investment decisions. By effectively forecasting volatility, the models contribute to enhancing 

market efficiency and reducing uncertainty for market participants. 

However, despite the robust model performance, the possibility of overfitting raises a 

valid concern. Overfitting occurs when a model learns the noise in the data rather than the 

underlying patterns, leading to inflated performance metrics on the training data but poor 

generalizability to new data. It is essential to address overfitting issues to ensure that the 

models provide reliable and accurate forecasts in real-world scenarios. This overfitting 

suggests that further out-of-sample testing is a critical step in validating the model's 

generalizability and predictive power. Out-of-sample testing involves evaluating the model's 

performance on data on which the model has not been trained, providing a more realistic 

assessment of how the model would perform in practical applications. By conducting out-of-

sample testing, researchers can verify if the models maintain their forecasting accuracy when 
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applied to unseen data, thereby enhancing the credibility and reliability of the forecasting 

results. This needs to confirm model generalizability through out-of-sample testing 

underscores the importance of ensuring that the models can perform well beyond the data 

used for training. Generalizability is essential for the practical application of volatility 

forecasting models in real-world settings, where the ability to make accurate predictions on 

new data is crucial for decision-making processes. 

The interpretation of findings highlights the strengths of the models in providing 

effective volatility forecasts while also acknowledging the need to address potential 

overfitting issues through further testing. By conducting rigorous out-of-sample testing, 

researchers can validate the models' predictive power and ensure their applicability in real-

world scenarios, ultimately enhancing the reliability and utility of the volatility forecasting 

models in the context of Brent Crude Oil futures. 

5.2 Theoretical Implications 

This study contributes to the body of knowledge on financial risk quantification by 

highlighting the efficacy of GARCH and ARIMA models in volatility prediction. It underscores 

the importance of accounting for volatility clustering in financial time series and provides 

evidence supporting the mean-reversion property characteristic of GARCH models. The LSTM 

model's performance indicates the potential of machine learning approaches in capturing 

complex patterns, although careful calibration is needed. The study’s results contribute 

several theoretical implications, including contributing to financial risk quantification, 

confirming the importance of volatility clustering, evidencing the mean-reversion property of 

GARCH models, and supporting the potential for machine learning approaches in volatility 

forecasting. 

The study contributes significantly to the field of financial risk quantification by 

highlighting the efficacy of traditional models such as GARCH and ARIMA in volatility 

prediction. By demonstrating the effectiveness of these models in capturing and forecasting 

volatility in financial time-series data, the study enhances our understanding of risk 

management practices in the context of financial markets. 

In addition, the study underscores the importance of accounting for volatility 

clustering in financial time-series analysis. Volatility clustering refers to the phenomenon 
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where periods of high volatility tend to cluster together, leading to non-random patterns in 

volatility levels. By acknowledging and incorporating volatility clustering into the modelling 

process, the study provides insights into the dynamics of financial markets and the behaviour 

of asset prices, as discussed in the empirical analysis. 

The study also provides evidence supporting the mean-reversion property 

characteristic of GARCH models. The mean-reversion property suggests that extreme changes 

in volatility are likely to be followed by periods of lower volatility, indicating a tendency for 

volatility to revert to its long-term average. By highlighting this property in the context of 

GARCH models, the study contributes to our understanding of volatility dynamics and 

forecasting accuracy, as discussed in the model development and calibration sections. 

Finally, the performance of the LSTM model indicates the potential of machine learning 

approaches in capturing complex patterns in financial time-series data. LSTM models, known 

for their ability to capture long-term dependencies and intricate patterns, offer a promising 

avenue for improving volatility forecasting accuracy. However, the study emphasizes the need 

for careful calibration of machine learning models to prevent overfitting and to ensure reliable 

predictions, as discussed in the LSTM model section. 

The theoretical implications of the study highlight the contributions to financial risk 

quantification, the importance of volatility clustering, the mean-reversion property of GARCH 

models, and the potential of machine learning approaches in capturing complex patterns. By 

addressing these theoretical aspects, the study advances our knowledge of volatility 

prediction and risk management in financial markets, offering valuable insights for researchers 

and practitioners in the field. 

5.3 Practical Implications for Risk Management 

The practical application of VaR in risk management is significant. The models 

evaluated offer varying degrees of risk quantification, essential for capital allocation to cover 

potential losses. The findings imply that while each model has strengths, their selection must 

be tailored to the risk management objectives of financial institutions, factoring in their 

behaviour during extreme market conditions. This study provides several practical 

implications of the results for risk management, including underscoring the significance of VaR 

in risk management, illustrating the varying degrees to which different modelling approaches 
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can quantify risk and, therefore, the critical importance of tailoring model selection to risk 

management objectives. In addition, the results highlight the need to consider the variable 

behaviour of models when presented with extreme market conditions, which also contributes 

to the need to carefully select models. 

First, the practical application of VaR in risk management is crucial for financial 

institutions because it provides a quantitative measure to assess and manage potential losses 

in a portfolio over a defined period within a given confidence interval. By utilizing VaR models, 

institutions can effectively allocate capital to cover potential risks and ensure adequate risk 

mitigation strategies are in place, as discussed in the VaR conceptualization section. The 

models evaluated in the study offer varying degrees of risk quantification, reflecting their 

diverse approaches to estimating and forecasting potential losses. Each model provides 

unique insights into the level of risk exposure within a portfolio, allowing institutions to make 

informed decisions regarding capital allocation and risk management strategies, as discussed 

in the empirical analysis. 

The findings suggest that although each model has its strengths and capabilities in 

quantifying risk, the selection of a specific model should be tailored to the risk management 

objectives of financial institutions. Different models may excel in capturing certain aspects of 

risk or market behaviour, and their selection should align with the institution's specific risk 

management goals and preferences, as discussed in the LSTM model section. An essential 

consideration in model selection is the behaviour of the models during extreme market 

conditions. Financial institutions must assess how each model performs under stress scenarios 

or during periods of heightened volatility to ensure that the selected model remains robust 

and reliable in adverse market conditions. Understanding how the models behave under 

extreme circumstances is crucial for effective risk management and decision-making, as 

discussed in the empirical analysis. For all the above reasons, selecting the most appropriate 

model for risk management purposes is paramount and includes considering the institution's 

risk tolerance, objectives, and the specific characteristics of the financial instruments or 

portfolios being analysed. By carefully evaluating and selecting the best model for the specific 

situation, institutions can enhance their risk management practices, improve capital allocation 

decisions, and better prepare for potential market uncertainties, as discussed in the 

theoretical implications section. 
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The practical implications for risk management highlighted in the study underscore the 

significance of VaR models in quantifying financial risk, the varying degrees of risk 

quantification offered by different models, the importance of tailoring model selection to risk 

management objectives, and the need to consider model behaviour during extreme market 

conditions. By addressing these practical implications, the study provides valuable insights for 

financial institutions seeking to enhance their risk management practices and optimize capital 

allocation strategies in dynamic market environments. 

5.4 Key Contributions of the Study 

This thesis makes several key contributions to the field by providing a comparative 

analysis of various volatility forecasting models. It goes beyond traditional statistical methods, 

integrating machine learning algorithms for enhanced predictive performance. The 

comparative analysis showcases the trade-offs between model complexity and forecasting 

accuracy, thereby aiding the selection of suitable models for practical financial applications. 

Two key contributions of the study are integrating of machine learning algorithms for 

enhanced predictive performance in volatility forecasting and showcasing the trade-offs 

between model complexity and accuracy. By leveraging the capabilities of machine learning, 

the study explores new avenues for improving forecasting accuracy and capturing complex 

patterns in financial time-series data, as discussed in the VaR conceptualization section. 

Further, the comparative analysis conducted in this study showcases the trade-offs between 

model complexity and forecasting accuracy. By juxtaposing the performance of different 

models, the study provides insights into how more intricate models may offer improved 

predictive performance but at the cost of increased complexity. This analysis aids in guiding 

the selection of suitable models for practical financial applications, balancing the need for 

accuracy with the practical considerations of model complexity, as discussed in the analytical 

steps section. 

The comparative analysis also serves as a guide for selecting appropriate volatility 

forecasting models in real-world financial applications. By weighing the benefits and 

drawbacks of different models, financial practitioners can make informed decisions about 

which model best aligns with their risk management objectives and preferences. This guidance 

helps in navigating the complexities of model selection and ensures that the chosen model 
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strikes a balance between complexity and predictive performance, as discussed in the Value-

at-Risk forecasting section. In addition, by providing a detailed examination of different 

models and their performance characteristics, the study equips practitioners with valuable 

insights for improving risk assessment, decision-making, and overall risk management 

strategies in dynamic market environments, as discussed in the practical implications for risk 

management section. 

These key contributions underscore the advancements made in volatility forecasting 

through the integration of machine learning algorithms, the exploration of trade-offs between 

model complexity and accuracy, and the guidance provided for selecting suitable models for 

practical financial applications. By expanding upon traditional approaches and offering a 

nuanced perspective on model selection, the study contributes to the ongoing evolution of 

risk management practices in the financial industry. 
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6. Conclusion and Future Work 

6.1 Major Conclusions 

The study's major conclusions are drawn from a thorough examination of various 

models' performance in volatility forecasting and VaR prediction. The GARCH and ARIMA 

models showed consistency with established financial theories on volatility, and the LSTM 

model's results highlighted the promise of machine learning in financial analysis. These 

conclusions are foundational for both theoretical exploration and practical application in 

financial risk management.  

Importantly, the GARCH (generalized autoregressive conditional heteroskedasticity) 

and ARIMA (autoregressive integrated moving average) models demonstrated consistency 

with established financial theories on volatility. GARCH modelling outcomes aligned with the 

theoretical understanding of how financial markets exhibit volatility patterns over time and 

were consistent with GARCH models’ known ability to capture volatility clustering and 

persistence. On the other hand, ARIMA models, focusing on time-series analysis and 

forecasting, provided insights into the linear dependencies and trends in financial data, further 

supporting traditional financial theories on market dynamics. 

Additionally, the results from the long short-term memory (LSTM) model highlighted 

the potential of machine learning techniques in financial analysis, particularly in volatility 

forecasting and risk management. LSTM models, with their ability to capture complex patterns 

and long-term dependencies in sequential data, showcased promising outcomes in predicting 

volatility and VaR in financial markets. The utilization of machine learning algorithms like LSTM 

signifies a shift towards advanced computational methods that can enhance forecasting 

accuracy and adaptability to changing market conditions. 

Finally, the conclusions drawn from the study serve as foundational insights for both 

theoretical exploration and practical application in financial risk management. By validating 

the performance of traditional models like GARCH and ARIMA alongside innovative 

approaches like LSTM, the study bridges the gap between theoretical frameworks and 

practical tools for risk assessment and decision-making in financial markets. These insights 

provide a roadmap for researchers and practitioners to leverage a combination of established 
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theories and cutting-edge technologies to navigate the complexities of financial risk 

management effectively. 

These major conclusions underscore the importance of integrating traditional financial 

theories with modern computational techniques, highlighting the synergies between 

established models like GARCH and ARIMA and emerging methodologies such as LSTM in 

enhancing volatility forecasting and VaR prediction. These insights not only contribute to 

advancing theoretical understanding but also offer practical implications for improving risk 

management practices in the dynamic landscape of financial markets. 

6.2 Contributions to the Field 

This study contributes to the field in several significant ways, such as by providing 

empirical evidence of the predictive capabilities of traditional and advanced models under 

different market conditions, bridging the gap between econometric models and machine 

learning, and offering a nuanced understanding of their respective merits and demerits in risk 

assessment.  

First, the study provides empirical evidence through rigorous analysis and evaluation 

of the predictive capabilities of traditional models like GARCH and ARIMA, as well as advanced 

models like LSTM, in forecasting volatility and predicting VaR. By conducting empirical tests 

under different market conditions and scenarios, the research offers insights into how these 

models perform in real-world settings, thereby enhancing the understanding of their 

effectiveness in risk assessment and management. 

A second key contribution of the study is bridging the gap between traditional 

econometric models and modern machine learning techniques in the context of financial risk 

assessment. By comparing the merits and demerits of econometric models (such as GARCH 

and ARIMA) with machine learning models (like LSTM), the research provides a nuanced 

understanding of the strengths and limitations of each approach in capturing volatility 

dynamics and predicting risk. 

Third, through a detailed analysis of model performance under different market 

conditions, the study offers a nuanced understanding of how traditional and advanced models 

respond to varying levels of market volatility, trends, and shocks. By highlighting the predictive 

strengths and weaknesses of each model type, the research contributes to a more informed 
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decision-making process for practitioners and researchers in selecting the most suitable model 

for specific risk assessment tasks. 

Finally, research contributions to the field extend to enhancing risk assessment 

practices by shedding light on the comparative effectiveness of different modelling 

approaches. By providing insights into the predictive capabilities of traditional and advanced 

models, the study equips financial professionals with valuable information to improve their 

risk assessment strategies and make more informed decisions in volatile market 

environments. 

The study's primary contributions to the field lie in its empirical validation of model 

performance, its bridging of the gap between econometric and machine learning models, and 

its nuanced understanding of the strengths and limitations of different modelling approaches 

in risk assessment. By offering insights into the predictive capabilities of various models under 

different market conditions, this research enriches the field of financial risk management and 

guides future advancements in modelling techniques. 

6.3 Limitations of the Study 

Despite its insights, the study is not without limitations. First, it may suffer from biases 

inherent in historical data used for model training and evaluation. Historical data may be 

influenced by specific market conditions, trends, or anomalies that could introduce biases into 

the models' performance and predictions. Biases in historical data may also affect the 

generalizability of the findings to future market conditions, potentially leading to overfitting 

or underestimation of risks in real-world scenarios. 

Second, the scope of market conditions examined may not cover the full spectrum of 

potential financial crises or extreme events. The study's focus on specific time periods or 

market environments could limit the models' ability to capture the complexities of unforeseen 

market shocks or systemic risks. This narrow scope of included market conditions may restrict 

the models' predictive power in scenarios that deviate significantly from the historical data 

patterns. 

   Third, the models' performance in predicting future volatility may not account for all 

exogenous shocks or black swan events, which can disrupt financial markets. Exogenous 

shocks, such as geopolitical events, natural disasters, or unexpected policy changes, can 
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introduce sudden and extreme volatility that may not be adequately captured by the models. 

Similarly, black swan events, characterized by their rarity and high impact, pose challenges for 

traditional forecasting models that rely on historical data patterns and may lead to 

underestimation of tail risks. 

Finally, the study's findings and conclusions may have limitations in generalizability beyond 

the specific dataset and market conditions analysed. Extrapolating the results to different 

asset classes, time periods, or market regimes may require additional validation and sensitivity 

analysis to assess the models' robustness and reliability in diverse contexts. These limitations 

in generalizability could affect the applicability of the study's insights to real-world risk 

management practices across various financial markets and conditions. 

It is important to consider limitations related to biases in historical data, the scope of 

market conditions examined, the potential impact of exogenous shocks and black swan 

events, and the generalizability of the findings when considering the results of this study. 

Addressing these limitations can enhance the study's credibility and applicability in informing 

risk management strategies in dynamic financial environments. 

6.4 Recommendations for Future Research 

There are several important recommendations for future research that are informed 

by the results of this study. First, it is recommended to explore hybrid models that combine 

the strengths of various approaches presented in this study. Future research should focus on 

developing and evaluating hybrid models that integrate the strengths of different modelling 

approaches presented in the study. By combining traditional econometric models like GARCH 

and ARIMA with advanced machine learning techniques such as LSTM or neural networks, 

researchers can leverage the complementary advantages of each approach to improve 

forecasting accuracy and risk assessment capabilities. Further, hybrid models have the 

potential to capture both linear dependencies and complex patterns in financial time series 

data, offering more robust and reliable predictions in volatile market conditions. 

Further investigation into the application of machine learning for real-time data 

analysis and the inclusion of alternative data sources could also be advantageous and is 

recommended to enhance the timeliness and responsiveness of volatility forecasting models. 

By leveraging machine learning techniques that can process and analyse data streams in real-
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time, researchers can develop models that adapt quickly to changing market dynamics and 

provide up-to-date risk assessments for decision-making purposes. In addition, real-time data 

analysis using machine learning can improve the models' ability to capture sudden shifts in 

volatility and respond effectively to market uncertainties. 

Future research should also consider incorporating alternative data sources, such as 

social media sentiment, satellite imagery, or macroeconomic indicators, into volatility 

forecasting models to enhance their predictive power. By integrating a diverse range of data 

sources beyond traditional financial data, researchers can capture additional insights into 

market sentiment, external factors influencing volatility, and emerging trends that may affect 

risk management strategies. Importantly, the inclusion of alternative data sources can enrich 

the models' feature set and improve their ability to forecast volatility under complex and 

interconnected market conditions. 

Finally, examining the models' performance across different asset classes could 

provide a broader understanding of their utility in risk management. Conducting comparative 

studies to evaluate the performance of volatility forecasting models across different asset 

classes, including equities, commodities, currencies, and derivatives is recommended. 

Assessing the models' effectiveness and robustness across these diverse asset classes can 

provide a broader understanding of their utility in risk management across various financial 

markets and investment instruments. By examining how models perform in different asset 

classes, researchers can identify strengths, weaknesses, and potential areas for model 

refinement to enhance risk assessment practices in a multi-asset portfolio context. 

In the future, research efforts should focus on exploring hybrid modelling approaches, 

leveraging machine learning for real-time data analysis, incorporating alternative data 

sources, and evaluating model performance across various asset classes to advance the field 

of volatility forecasting and enhance risk management practices in dynamic financial 

environments. By addressing these recommendations, researchers can contribute to the 

development of more sophisticated and adaptive models that better capture the complexities 

of market dynamics and support informed decision-making in risk management. 



 
 

 
 84 

6.5 Final Conclusion 

In conclusion, this thesis provides a comparative framework that underscores the 

importance of model selection in financial volatility forecasting. This work sets the stage for 

subsequent studies to refine these models further and explore their applications in 

increasingly complex financial markets. The recommendations for future research highlight a 

path forward for continuing advancements in the discipline. 
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Appendices 

Appendix 1. Python Programming Code Snippet 

!pip install arch 

!pip install --upgrade arch 

!pip install pandas openpyxl 

!pip install lime 

!pip install shap 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

from arch import arch_model 

from sklearn.model_selection import train_test_split 

from sklearn.neural_network import MLPRegressor 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.svm import SVR 

from sklearn.metrics import mean_squared_error 

import lime 

import shap 

from statsmodels.tsa.arima.model import ARIMA 

from arch import arch_model 

 

# Load high-frequency trading data 

 

trading_data = pd.read_csv('RV_all.csv') 

 

trading_data[:4000].to_csv('scat.csv',index=False) 

trading_data1 = pd.read_csv('RV_all.csv') 

trading_data.head() 

trading_data1 
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trading_data.info() 

trading_data.isna().sum() 

trading_data = trading_data.dropna() 

trading_data.drop(['post', 'at'], axis=1, inplace=True) 

trading_data.isna().sum() 

trading_data.describe() 

 

# Extracting 'trad_date' and 'pt_' columns 

time_series_data = trading_data[['trad_date', 'RVOL_pt']] 

 

# Setting 'trad_date' as the index 

time_series_data.set_index('trad_date', inplace=True) 

 

time_series_data.index = pd.to_datetime(time_series_data.index) 

 

# Define the years you want to include in the plot 

years_of_interest = [2006, 2007, 2008, 2009, 2010, 2011, 

                     2012, 2013, 2014, 2015, 2016] 

 

# Filter the DataFrame to include data only for the specified years 

filtered_data = time_series_data[time_series_data.index.year.isin(years_of_interest)] 

 

# Plotting the time series for the specified years 

plt.figure(figsize=(12, 6)) 

plt.plot(filtered_data.index, filtered_data['RVOL_pt'], color='blue', linewidth=1) 

plt.title('Time Series of pt_ Column (Years: 2004-2021)') 

plt.xlabel('Date') 

plt.ylabel('pt_ Value') 

plt.grid(True) 

plt.show() 

 

#!-----Feature Extraction and Pre-processing-----! 

#Step 1: Calculating log returns 
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#Step 2: Converting 'trad_date' to datetime format 

 

#Log returns 

trading_data['log_returns'] = np.log(trading_data['RVOL_pt'] / trading_data['RVOL_pt'].shift(1)) 

 

# trad_date to date_time format 

trading_data['trad_date'] = pd.to_datetime(trading_data['trad_date']) 

 

trading_data['log_returns'] 

 

#Step 3: Drop NaN values in the dataset 

 

trading_data.dropna(inplace=True) 

trading_data.isna().sum() 

trading_data['log_returns'].value_counts() 

 

# Calculate daily average prices - doing it just to check calculation 

 

#Saving original daataset into another dataset for calculating pt mean 

trading_data_pt = trading_data.copy() 

# Setting 'trad_date' as the index 

trading_data_pt.set_index('trad_date', inplace=True) 

#Calculating pt mean 

daily_average_prices = trading_data_pt['RVOL_pt'].resample('1D').mean() 

 

 

# Drop any rows with missing values 

daily_average_prices.dropna(inplace=True) 

 

daily_average_prices.isna().sum() 

 

daily_average_prices 
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#Step 4: Define sampling frequency. 

#Step 5: Grouping 'trad_date' and calculate daily statistics.  

#Also Calculating Mean daily prices, closing prices and opening prices 

 

M_D = 1440  # Number of minutes in a trading day 

 

# 

daily_stats = trading_data.groupby(pd.Grouper(key='trad_date', freq='D')).agg( 

    realized_volatility=('log_returns', lambda x: np.sqrt(M_D * np.sum(np.square(x)))), 

    mean_daily_price=('RVOL_pt', 'mean'), 

    daily_opening_price = ('RVOL_pt', 'min'), 

    daily_close_price = ('RVOL_pt', 'max') 

) 

 

# Displaying the resulting DataFrame 

print(daily_stats[:5]) 

 

import matplotlib.pyplot as plt 

 

# Ensure your 'trad_date' is the index or use it as the x-axis explicitly 

dates = daily_stats.index  # Adjust if 'trad_date' is not the index 

 

# Realized Volatility 

plt.figure(figsize=(14, 7)) 

plt.plot(dates, daily_stats['realized_volatility'], label='Realized Volatility') 

plt.title('Realized Volatility Over Time') 

plt.xlabel('Date') 

plt.ylabel('Volatility') 

plt.legend() 

plt.show() 

 

# Mean Daily Price 

plt.figure(figsize=(14, 7)) 



 
 

 
 97 

plt.plot(dates, daily_stats['mean_daily_price'], label='Mean Daily Price', color='orange') 

plt.title('Mean Daily Price Over Time') 

plt.xlabel('Date') 

plt.ylabel('Price') 

plt.legend() 

plt.show() 

 

# Daily Opening and Closing Prices 

plt.figure(figsize=(14, 7)) 

plt.plot(dates, daily_stats['daily_opening_price'], label='Opening Price', color='green') 

plt.plot(dates, daily_stats['daily_close_price'], label='Closing Price', color='red') 

plt.title('Daily Opening and Closing Prices') 

plt.xlabel('Date') 

plt.ylabel('Price') 

plt.legend() 

plt.show() 

 

#Dropping null values in daily stats 

daily_stats.dropna(axis=0, inplace=True) 

daily_stats[:5] 

 

daily_stats.isna().sum() 

len(daily_stats) 

 

#calculating realized Volatility for 5M, 30M, 1H and 90M. 

 

M_5 = 5  # Number of minutes 

 

daily_stats['5m_volatility'] = trading_data.groupby(pd.Grouper(key='trad_date', freq='5T')).agg( 

    realized_volatility=('log_returns', lambda x: np.sqrt(M_5 * np.sum(np.square(x)))) 

) 

 

import matplotlib.pyplot as plt 
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# Ensure your 'trad_date' is the index or use it as the x-axis explicitly 

dates = daily_stats.index  # Adjust if 'trad_date' is not the index 

# Daily Opening and Closing Prices 

plt.figure(figsize=(14, 7)) 

plt.plot(dates, daily_stats['5m_volatility'], label='5m_volatility', color='green') 

plt.plot(dates, daily_stats['5m_volatility'], label='5m_volatility', color='red') 

plt.title('Daily Opening and Closing Prices') 

plt.xlabel('Date') 

plt.ylabel('Price') 

plt.legend() 

plt.show() 

 

daily_stats 

 

M_30 = 30  # Number of minutes 

 

daily_stats['30m_volatility'] = trading_data.groupby(pd.Grouper(key='trad_date', freq='30T')).agg( 

    realized_volatility=('log_returns', lambda x: np.sqrt(M_30 * np.sum(np.square(x)))) 

) 

 

import matplotlib.pyplot as plt 

 

# Ensure your 'trad_date' is the index or use it as the x-axis explicitly 

dates = daily_stats.index  # Adjust if 'trad_date' is not the index 

 

# Mean Daily Price 

plt.figure(figsize=(14, 7)) 

plt.plot(dates, daily_stats['30m_volatility'], label='30m_volatility', color='orange') 

plt.title('30m_volatility Over Time') 

plt.xlabel('Date') 

plt.ylabel('Price') 

plt.legend() 
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plt.show() 

 

daily_stats 

 

M_1H = 60  # Number of minutes 

 

daily_stats['1H_volatility'] = trading_data.groupby(pd.Grouper(key='trad_date', freq='1H')).agg( 

    realized_volatility=('log_returns', lambda x: np.sqrt(M_1H * np.sum(np.square(x)))) 

) 

 

daily_stats[500:530] 

 

# Mean Daily Price 

plt.figure(figsize=(14, 7)) 

plt.plot(dates, daily_stats['1H_volatility'], label='1H_volatility', color='orange') 

plt.title('1H_volatility Over Time') 

plt.xlabel('Date') 

plt.ylabel('Price') 

plt.legend() 

plt.show() 

 

M_90 = 90  # Number of minutes 

 

daily_stats['90m_volatility'] = trading_data.groupby(pd.Grouper(key='trad_date', freq='90T')).agg( 

    realized_volatility=('log_returns', lambda x: np.sqrt(M_90 * np.sum(np.square(x)))) 

) 

 

daily_stats 

 

# Mean Daily Price 

plt.figure(figsize=(14, 7)) 

plt.plot(dates, daily_stats['90m_volatility'], label='90m_volatility', color='orange') 

plt.title('90m_volatility Over Time') 
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plt.xlabel('Date') 

plt.ylabel('Price') 

plt.legend() 

plt.show() 

 

#!-----Statistical Models for volatility and trend analysis,  

#including GARCH for time-varying volatility and ARIMA/HAR-RV for linear dependencies.-----! 

#First Splitting our dataset into train test split 

 

# Replacing NaN or inf values with a custom value (e.g., mean) 

daily_stats.replace([np.inf, -np.inf], np.nan, inplace=True) 

daily_stats.fillna(daily_stats.mean(), inplace=True) 

 

daily_stats 

 

# Extract relevant features for modeling 

X = daily_stats.drop('daily_close_price', axis=1) 

y = daily_stats['daily_close_price'] 

 

# # Split data into train and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) 

 

#GARCH and ARIMA model 

 

import pandas as pd 

import numpy as np 

from arch import arch_model 

import statsmodels.api as sm 

 

 

# Fit GARCH model 

garch_model = arch_model(y_train, vol='GARCH', p=1, q=1) 

garch_result = garch_model.fit(disp = 'off') 
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# Print GARCH summary 

print(garch_result.summary()) 

 

# Fit ARIMA model (example) 

arima_model = sm.tsa.ARIMA(y_train, order=(1, 0, 1)) 

arima_result = arima_model.fit() 

 

# Print ARIMA summary 

print(arima_result.summary()) 

 

#HAR-RV Model 

#The Heterogeneous Autoregressive (HAR) model is typically used for forecasting volatility in 
financial time series data.  

#The Autoregressive Volatility (AV) model is an extension of the HAR model that incorporates past 
realized volatilities  

#at different time frequencies. 

 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

 

# Defining the HAR-AV model 

def fit_har_av(data): 

    # Extracting the realized volatility features for 5min, 30min and 60min 

    rv_5min = daily_stats['5m_volatility'] 

    rv_30min = daily_stats['30m_volatility'] 

    rv_60min = daily_stats['1H_volatility'] 

    #v_90min = daily_stats['90m_volatility'] 

 

 

    # Stacking the realized volatilities for different time frequencies 

    X = np.column_stack((rv_5min, rv_30min, rv_60min)) 
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    # Adding a constant term 

    X = sm.add_constant(X) 

 

    # Target variable (Actual RV) 

    y = data['realized_volatility'] 

 

    # Fitting the HAR-AV model 

    model = sm.OLS(y, X) 

    results = model.fit() 

 

    return results 

 

## Computing HAR-AV results from 'it_har_av()'function 

har_av_results = fit_har_av(daily_stats) 

 

# Printing the summary of results 

print(har_av_results.summary()) 

 

#The summary output indeed indicates that the model is an Ordinary Least Squares (OLS) regression 
model.  

#This is because the HAR-AV model is essentially a linear regression model, which fits well with the 
OLS framework. 

 

!-----ML Models-----! 

Grid Search with Cross-Validation library for NN model: 

This library will check the model's architecture and use each set of parameters to check which 
parameter set will give better accuracy/result for the model. 

 

Steps to get the optimal parameters by using Grid Search CV: 

 

First we will define parameter_grid which has a hidden layers, activation function, loss function and 
max iteration for our NN model 

Then we have created NN model 
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Then we have used Grid Search CV to fit with the MLP_Regressor(NN) model to check and compute 
the best paramaters for the model 

After fitting Grid Search CV with model, we will call .best_params_ method to get the best 
parameters computed by GS-CV.## 

 

from sklearn.model_selection import GridSearchCV 

 

# Defining the parameter grid 

param_grid = { 

    'hidden_layer_sizes': [(100,100), (100, 50), (50, 25)], 

    'activation': ['relu', 'tanh'], 

    'solver': ['adam', 'sgd'], 

    'max_iter': [1000, 1500, 2000] 

} 

 

# Creating an MLPRegressor model 

mlp_regressor = MLPRegressor() 

 

# Using Grid search library with cross-validation. 

grid_search = GridSearchCV(mlp_regressor, param_grid, cv=5, scoring='neg_mean_squared_error') 

grid_search.fit(X_train, y_train) 

 

# Get the best parameters 

best_params = grid_search.best_params_ 

print("Best Parameters:", best_params) 

 

#Training the NN model with the best parameters 

 

best_model = MLPRegressor(**best_params) 

history = best_model.fit(X_train, y_train) 

 

#Plotting the loss curve to visualise the loss of NN model at each epoch while training 

plt.plot(history.loss_curve_) 
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plt.title('Loss Curve') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.show() 

 

#Random Forest Regression 

 

# Ensemble Methods (Random Forest) 

rf_regressor = RandomForestRegressor(n_estimators=100) 

rf_regressor.fit(X_train, y_train) 

 

#Support Vector regression model 

# Support Vector Machines 

svm_regressor = SVR(kernel='rbf') 

svm_regressor.fit(X_train, y_train) 

 

#!-----Evaluation Tools-----! 

#MSE, MAE and R-Square metrices 

 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

 

# Making predictions on training and testing data 

mlp_train_preds = best_model.predict(X_train) 

mlp_test_preds = best_model.predict(X_test) 

 

rf_train_preds = rf_regressor.predict(X_train) 

rf_test_preds = rf_regressor.predict(X_test) 

 

svm_train_preds = svm_regressor.predict(X_train) 

svm_test_preds = svm_regressor.predict(X_test) 

 

#Function to compute MSE, MAE, R-square metrcies to check performance of each model for training 
and tesing data 
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def evaluate_model(name, y_true, y_pred): 

    mse = mean_squared_error(y_true, y_pred) 

    mae = mean_absolute_error(y_true, y_pred) 

    r2 = r2_score(y_true, y_pred) 

    print(f"{name} Metrics:") 

    print(f"MSE: {mse:.2f}") 

    print(f"MAE: {mae:.2f}") 

    print(f"R-squared: {r2:.2f}") 

    print() 

 

 

#Computing Training and test MSE, MAE and R-square metrcies for each model 

evaluate_model("MLP (Train)", y_train, mlp_train_preds) 

evaluate_model("MLP (Test)", y_test, mlp_test_preds) 

 

evaluate_model("Random Forest (Train)", y_train, rf_train_preds) 

evaluate_model("Random Forest (Test)", y_test, rf_test_preds) 

 

evaluate_model("SVM (Train)", y_train, svm_train_preds) 

evaluate_model("SVM (Test)", y_test, svm_test_preds) 

 

#Visualising computed loss function for each model. 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Function to compute MSE, MAE, R-square metrcies to check performance of each model for 
training and testing data 

def evaluate_model(name, y_true, y_pred): 

    mse = mean_squared_error(y_true, y_pred) 

    mae = mean_absolute_error(y_true, y_pred) 

    r2 = r2_score(y_true, y_pred) 

    return mse, mae, r2 
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# Function to plot loss functions for a given model 

def plot_loss_functions(model_name, train_metrics, test_metrics): 

    labels = ['MSE', 'MAE', 'R-squared'] 

    x = np.arange(len(labels))  # the label locations 

    width = 0.35  # the width of the bars 

 

    fig, ax = plt.subplots(figsize=(8, 6)) 

 

    # Plotting the loss functions for the model 

    ax.bar(x - width/2, train_metrics, width, label='Train', color='b', alpha=0.5) 

    ax.bar(x + width/2, test_metrics, width, label='Test', color='g', alpha=0.5) 

 

    # Adding some text for labels, title and custom x-axis tick labels, etc. 

    ax.set_xlabel('Metrics') 

    ax.set_ylabel('Value') 

    ax.set_title(f'Loss Functions for {model_name}') 

    ax.set_xticks(x) 

    ax.set_xticklabels(labels) 

    ax.legend() 

 

    fig.tight_layout() 

 

    # Saving the plot as an image file 

    plt.savefig(f'{model_name}_loss_functions.png') 

 

    plt.show() 

 

# Computing Training and test MSE, MAE and R-square metrics for each model 

mlp_train_mse, mlp_train_mae, mlp_train_r2 = evaluate_model("MLP (Train)", y_train, 
mlp_train_preds) 

mlp_test_mse, mlp_test_mae, mlp_test_r2 = evaluate_model("MLP (Test)", y_test, mlp_test_preds) 
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rf_train_mse, rf_train_mae, rf_train_r2 = evaluate_model("Random Forest (Train)", y_train, 
rf_train_preds) 

rf_test_mse, rf_test_mae, rf_test_r2 = evaluate_model("Random Forest (Test)", y_test, 
rf_test_preds) 

 

svm_train_mse, svm_train_mae, svm_train_r2 = evaluate_model("SVM (Train)", y_train, 
svm_train_preds) 

svm_test_mse, svm_test_mae, svm_test_r2 = evaluate_model("SVM (Test)", y_test, svm_test_preds) 

 

# Plotting loss functions for each model separately 

plot_loss_functions("MLP", [mlp_train_mse, mlp_train_mae, mlp_train_r2], [mlp_test_mse, 
mlp_test_mae, mlp_test_r2]) 

plot_loss_functions("Random Forest", [rf_train_mse, rf_train_mae, rf_train_r2], [rf_test_mse, 
rf_test_mae, rf_test_r2]) 

plot_loss_functions("SVM", [svm_train_mse, svm_train_mae, svm_train_r2], [svm_test_mse, 
svm_test_mae, svm_test_r2]) 

 

#Charts - Visualisation of prediction, results 

#Here scatter plot is used to visualise the prediction of each model. The reason for using scatter plot 
is  

#that the scatter plot scatters each data with respect to another data of opposite column which we 
want to compare.  

#This helps to see the comparison of each data to another. 

 

# Visualizing results (e.g., predicted vs. actual values of trade) 

plt.scatter(y_test, mlp_test_preds, label='MLP', alpha=0.5) 

plt.scatter(y_test, rf_test_preds, label='Random Forest', alpha=0.5) 

plt.scatter(y_test, svm_test_preds, label='SVM', alpha=0.5) 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.title('Predicted vs. Actual Values') 

plt.legend() 

plt.show() 

 

#!-----Explainable AI (XAI) Techniques-----! 

X_train.values 
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X_test.iloc[0].values 

 

#Lime 

# Importing necessary libraries 

import lime 

import lime.lime_tabular 

import shap 

import matplotlib.pyplot as plt 

 

# Ensuring consistent feature names 

feature_names_train = X_train.columns 

feature_names_test = X_test.columns 

 

# LIME 

explainer = lime.lime_tabular.LimeTabularExplainer(X_train.values, mode='regression', 
feature_names=feature_names_train) 

instance_idx = 3  # Index of the instance 

explanation = explainer.explain_instance(X_test.iloc[instance_idx].values, rf_regressor.predict) 

explanation.show_in_notebook() 

 

#Shap 

# SHAP 

shap_explainer = shap.Explainer(rf_regressor, X_train) 

shap_values = shap_explainer.shap_values(X_test) 

 

shap.summary_plot(shap_values, X_test, plot_type="bar") 

shap.summary_plot(shap_values, X_test) 

 

#Kupeic test 

 

daily_stats['mean_daily_price'][:-1] 

daily_stats['mean_daily_price'] 

np.diff(daily_stats['mean_daily_price']) 
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import numpy as np 

 

#  electing Confidence Level 

confidence_level = 0.95  # Example: 95% confidence level 

 

# Choosing Time Horizon 

time_horizon = 1  #1 day 

 

# Computing Returns (if not already computed) 

returns = np.diff(daily_stats['mean_daily_price']) / daily_stats['mean_daily_price'][:-1] 

 

#Estimating Volatility 

volatility = np.std(returns) 

 

# Calculating VaR 

var_value = np.percentile(returns, 100 - confidence_level * 100) 

 

# Interpreting results 

print(f"Value at Risk (VaR) at {confidence_level * 100}% confidence level for {time_horizon} day(s): 
{var_value}") 

 

y_test_values = y_test[:5] 

y_pred_values = rf_test_preds[:5] 

 

import numpy as np 

from scipy.stats import chi2 

 

def kupiec_test(actual_losses, predicted_losses, confidence_level=0.95): 

    """ 

    Performing the Kupiec Test for VaR model accuracy. 

 

    Parameters: 

    actual_losses (array-like): Array of actual losses. 
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    predicted_losses (array-like): Array of predicted losses from the VaR model. 

    confidence_level (float): Confidence level for the test, defaults to 0.95. 

 

    Returns: 

    float: The p-value of the Kupiec Test. 

    """ 

    n = len(actual_losses) 

    successes = sum((actual_losses[i] >= predicted_losses[i]) for i in range(n)) 

    failures = n - successes 

 

    # Calculating log likelihood under the null hypothesis (binomial distribution) 

    null_log_likelihood = successes * np.log(confidence_level) + failures * np.log(1 - confidence_level) 

 

    # Calculating log likelihood under the alternative hypothesis 

    p_hat = successes / n 

    alternative_log_likelihood = successes * np.log(p_hat) + failures * np.log(1 - p_hat) 

 

    # Calculating test statistic 

    test_statistic = -2 * (null_log_likelihood - alternative_log_likelihood) 

 

    # Calculating p-value using chi-square distribution 

    p_value = 1 - chi2.cdf(test_statistic, 1) 

 

    return p_value 

 

# Example usage: 

actual_losses = np.array(y_test_values)  # Actual losses 

predicted_losses = np.array(y_pred_values)  # Predicted losses from VaR model 

 

p_value = kupiec_test(actual_losses, predicted_losses) 

print("Kupiec Test p-value:", p_value) 

 

#collapse the dataset 
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import pandas as pd 

 

# Read the CSV file into DataFrame 

df = pd.read_csv('rv_use.csv') 

# data = pd.read_csv('RV_all.csv') 

 

# # Drop the last entry from the 'trad_date' column 

# data['trad_date'] = data['trad_date'].iloc[:-1] 

 

# # Assign the modified 'trad_date' column to the DataFrame 

# df['trad_date'] = data['trad_date'] 

 

# Now 'trad_date' column in df has the modified values 

 

df['trad_date']=df['dy'].astype(str).str.zfill(2) + df['mn'].astype(str).str.zfill(2) + df['yr'].astype(str) 

 

df['trad_date'] 

 

df[['yr','mn','dy']] 

 

import pandas as pd 

import numpy as np 

from datetime import datetime 

 

df['trad_date']=df['dy'].astype(str).str.zfill(2) + df['mn'].astype(str).str.zfill(2) + df['yr'].astype(str) 

 

df['trad_date'] 

 

df['trad_date'] = pd.to_datetime(df['trad_date'], format='%d%m%Y') 

 

 

# Drop rows based on 'trad_date' conditions 
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df = df[df['trad_date'] >= '2006-01-01'] 

df = df[df['trad_date'] != '2008-05-15'] 

 

# Sort by 'trad_date' and reset index 

df = df.sort_values('trad_date').reset_index(drop=True) 

 

# Generate a time variable that increments by 1 starting from 1 

df['time'] = np.arange(1, len(df) + 1) 

 

# Set 'time' as the index (similar to tsset in Stata) 

df.set_index('time', inplace=True) 

 

# Generate daily return measures: 

 

# Replace close prices that are 0 with the open price + intraday return on the new contract 

df['LTD_ocr'] = np.log(df['ltd_closeprice'] / df['ltd_openprice']) 

df.loc[df['closeprice'] == 0, 'closeprice'] = df['openprice'] * (1 + df['LTD_ocr']) 

 

# 1. Open-Close returns 

df['dr1'] = np.log(df['closeprice'] / df['openprice']) 

 

# 2. Close-open (overnight) returns: 

df['last_tday'] = df['dy'].where(df['LTD_ocr'].notnull(), np.nan) 

df['dr2'] = np.log(df['openprice'] / df['closeprice'].shift(1)) 

df['LTD_co'] = np.log(df['openprice'] / df['ltd_closeprice'].shift(1)) 

df.loc[df['last_tday'].shift(1) == df['last_tday'], 'dr2'] = df['LTD_co'] 

df['dr2sq'] = df['dr2'] ** 2 

 

# 3. Close-Close returns 

df['dr3'] = np.log(df['closeprice'] / df['closeprice'].shift(1)) 

df['LTD_cc'] = np.log(df['closeprice'] / df['ltd_closeprice'].shift(1)) 

df.loc[df['last_tday'].shift(1) == df['last_tday'], 'dr3'] = df['LTD_cc'] 
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# Generate HAR-variables: 

# Generate HAR-variables: 

# Generate HAR-variables: 

for i in [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108]: 

    df[f'd{i}'] = df[f'rvol_pt{i}'].shift(1) 

 

    # Corrected line for weekly average (w) 

    df[f'w{i}'] = df[f'rvol_pt{i}'].rolling(window=5).mean().shift(1) 

 

    # Monthly average (m) using the last 20 observations 

    df[f'm{i}'] = df[f'rvol_pt{i}'].rolling(window=20).mean().shift(1) 

 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

import matplotlib.pyplot as plt 

from sklearn.metrics import mean_squared_error 

 

volatility_vars = df.filter(regex='^rvol_pt|^d[0-9]+|^w[0-9]+|^m[0-9]+$', axis=1) 

descriptive_stats = volatility_vars.describe() 

print(descriptive_stats) 

 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Selecting a subset of volatility variables for visualization 

subset_vars = volatility_vars.columns[0:10]  # Adjust as needed for a broader overview 

 

# Plotting histograms for the subset of volatility variables 

plt.figure(figsize=(20, 10)) 

for i, var in enumerate(subset_vars, 1): 

    plt.subplot(2, 5, i)  # Adjust the grid size based on the number of variables selected 

    sns.histplot(volatility_vars[var].dropna(), kde=True, bins=20) 
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    plt.title(var) 

plt.tight_layout() 

plt.show() 

# Plotting box plots for the subset of volatility variables 

plt.figure(figsize=(20, 5)) 

sns.boxplot(data=volatility_vars[subset_vars].dropna(), orient="h", palette="Set2") 

plt.title('Box Plot of Selected Volatility Variables') 

plt.show() 

 

import matplotlib.pyplot as plt 

import matplotlib.dates as mdates 

 

# Plotting function 

def plot_har_variables(df, variable_prefix, title_prefix): 

    # Filter out the columns that strictly match the variable prefix followed by an integer 

    variable_columns = [col for col in df.columns if col.startswith(variable_prefix) and 
col[len(variable_prefix):].isdigit()] 

 

    # Sort the columns based on the integer part of the column name 

    periods = sorted(variable_columns, key=lambda x: int(x[len(variable_prefix):])) 

 

    # Create subplots 

    n_vars = len(periods) 

    fig, axes = plt.subplots(n_vars, 1, figsize=(10, 2*n_vars), sharex=True) 

 

    if n_vars == 1:  # If there's only one period, put it in a list for iteration 

        axes = [axes] 

 

    # Plot each HAR variable 

    for ax, col_name in zip(axes, periods): 

        ax.plot(df.index, df[col_name], label=f'{title_prefix} {col_name}') 

        ax.set_title(f'{title_prefix} {col_name}') 

        ax.legend() 
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        # Format x-axis as dates for each subplot 

        ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) 

        ax.xaxis.set_major_locator(mdates.AutoDateLocator()) 

        ax.tick_params(axis='x', rotation=45) 

 

    # Adjust spacing between subplots 

    plt.tight_layout() 

 

    # Show the plot 

    plt.show() 

 

df.set_index('trad_date', inplace=True) 

 

# Plot daily, weekly, and monthly HAR variables 

plot_har_variables(df, 'd', 'Daily lagged RVOL') 

plot_har_variables(df, 'w', 'Weekly average RVOL') 

plot_har_variables(df, 'm', 'Monthly average RVOL') 

 

# Calculating the correlation matrix for the volatility variables 

correlation_matrix = volatility_vars.corr() 

 

# Generating a heatmap for the correlation matrix 

plt.figure(figsize=(20, 15)) 

sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm', linewidths=.5) 

plt.title('Correlation Heatmap of Volatility Variables') 

plt.show() 

 

import matplotlib.pyplot as plt 

 

rvol_pts = ['rvol_pt1', 'rvol_pt2', 'rvol_pt3', 'rvol_pt4', 'rvol_pt5', 'rvol_pt6', 'rvol_pt10', 'rvol_pt12', 
'rvol_pt15', 'rvol_pt20', 'rvol_pt30', 'rvol_pt60', 'rvol_pt90', 'rvol_pt108'] 

sampling_frequencies = [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 90, 108]  # frequencies 
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# Calculate the mean and standard deviation of realized volatility for each sampling frequency 

mean_rvol = [df[pt].mean() for pt in rvol_pts] 

std_rvol = [df[pt].std() for pt in rvol_pts] 

 

# Create the plot 

fig, ax1 = plt.subplots() 

 

# Plot the realized volatility 

ax1.plot(sampling_frequencies, mean_rvol, label='Realized Volatility', color='black', linestyle='-') 

ax1.set_xlabel('Sampling frequency (min)') 

ax1.set_ylabel('Realized Volatility', color='black') 

ax1.tick_params(axis='y', labelcolor='black') 

 

# Create a second y-axis to plot the standard deviation of realized volatility 

ax2 = ax1.twinx() 

ax2.plot(sampling_frequencies, std_rvol, label='Standard Deviation of Realized Volatility', 
color='black', linestyle='--') 

ax2.set_ylabel('Standard Deviation of Realized Volatility', color='black') 

ax2.tick_params(axis='y', labelcolor='black') 

 

# Add a legend and a title 

fig.tight_layout()  # Tweak layout for space 

plt.title('Realized Volatility and its Standard Deviation by Sampling Frequency') 

plt.show() 

 

# Apply forward fill to fill missing values 

data_filled = df.fillna(method='ffill') 

 

# apply backward fill for any remaining NaN values 

data_filled = data_filled.fillna(method='bfill') 

 

data =data_filled 
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import statsmodels.api as sm 

 

X = data.drop(['rvol_pt', 'openprice', 'closeprice', 'ltd_openprice', 'ltd_closeprice', 'yr', 'mn', 
'dy',  'LTD_ocr', 'dr1', 'last_tday', 'dr2', 'LTD_co', 'dr2sq', 'dr3', 'LTD_cc'], axis=1)  # Exclude non-
volatility and identifier columns 

y = data['rvol_pt']  # Target variable 

 

def forward_selection(X, y, significance_level=0.05): 

    initial_features = X.columns.tolist() 

    best_features = [] 

    while len(initial_features) > 0: 

        remaining_features = list(set(initial_features) - set(best_features)) 

        new_pval = pd.Series(index=remaining_features, dtype=float) 

        for new_column in remaining_features: 

            model = sm.OLS(y, sm.add_constant(X[best_features + [new_column]])).fit() 

            new_pval[new_column] = model.pvalues[new_column] 

        min_p_value = new_pval.min() 

        if min_p_value < significance_level: 

            best_features.append(new_pval.idxmin()) 

        else: 

            break 

    return best_features 

 

selected_features = forward_selection(X.fillna(method='ffill'), y.fillna(method='ffill'))  # Forward fill to 
handle missing values 

print("Selected features:", selected_features) 

 

predictor_columns = ['rvol_pt' + str(i) for i in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60,90, 108]] 

actual_returns_column = 'dr1'  # This is your actual returns 

 

# Split into features and target 

X = data[predictor_columns] 

y = data[actual_returns_column] 
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# Split the dataset into train and test sets 

train_size = int(len(X) * 0.8) 

X_train, y_train = X.iloc[:train_size], y.iloc[:train_size] 

X_test, y_test = X.iloc[train_size:], y.iloc[train_size:] 

 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression, Ridge, Lasso 

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor 

from sklearn.svm import SVR 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

from arch import arch_model 

from statsmodels.tsa.arima.model import ARIMA 

from keras.models import Sequential 

from keras.layers import Dense, LSTM 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Defining the models 

models = { 

    "Linear Regression": LinearRegression(), 

    "Ridge Regression": Ridge(alpha=1.0), 

    "Random Forest Regressor": RandomForestRegressor(n_estimators=100, random_state=42), 

    "Gradient Boosting Regressor": GradientBoostingRegressor(n_estimators=100, random_state=42), 

    "Support Vector Regressor": SVR(kernel='rbf', C=1.0, epsilon=0.1), 

    "GARCH Model": arch_model(y_train, vol='GARCH', p=1, q=1), 

    "ARIMA Model": ARIMA(y_train, order=(1, 1, 1)), 

    "LSTM Model": Sequential([ 

        LSTM(50, activation='relu', input_shape=(X_train.shape[1], 1)), 

        Dense(1) 

    ]) 

} 
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# Dictionary to hold model performance metrics 

model_performance = {} 

 

# Assuming X_train and X_test are pandas DataFrames and you need to reshape them for the LSTM 
model 

X_train_array = X_train.values.reshape((X_train.shape[0], X_train.shape[1], 1)) 

X_test_array = X_test.values.reshape((X_test.shape[0], X_test.shape[1], 1)) 

 

# Fitting models and evaluating performance 

for name, model in models.items(): 

    if name == "GARCH Model": 

        # Fit the model 

        model_result = model.fit(disp='off') 

        # Forecasting 

        # The forecast method returns a DataFrame. We're interested in the last row, as it contains the 
forecast at the horizon we care about. 

        y_pred = model_result.forecast(horizon=len(y_test)).mean.iloc[-1].values 

    elif name == "ARIMA Model": 

        model_fit = model.fit() 

        y_pred = model_fit.forecast(steps=len(y_test)) 

    elif name == "LSTM Model": 

        model.compile(optimizer='adam', loss='mse') 

        model.fit(X_train_array, y_train, epochs=50, batch_size=32, verbose=0) 

        y_pred = model.predict(X_test_array).flatten() 

    else: 

        model.fit(X_train, y_train) 

        y_pred = model.predict(X_test) 

 

    mse = mean_squared_error(y_test, y_pred) 

    rmse = np.sqrt(mse) 

    mae = mean_absolute_error(y_test, y_pred) 

    mape = np.mean(np.abs((y_test - y_pred) / y_test)) * 100 

    adj_r2 = 1 - (1-r2_score(y_test, y_pred)) * (len(y_test)-1)/(len(y_test)-X_test.shape[1]-1) 
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    model_performance[name] = { 

        'MSE': mse, 

        'RMSE': rmse, 

        'MAE': mae, 

        'MAPE': mape, 

        'Adjusted R2': adj_r2 

    } 

 

# Display model performance 

for model, metrics in model_performance.items(): 

    print(f"{model} Performance:") 

    for metric, value in metrics.items(): 

        print(f"  {metric}: {value}") 

    print("\n") 

 

# Model comparison graphs 

fig, axs = plt.subplots(2, 2, figsize=(12, 8)) 

fig.suptitle('Model Performance Comparison') 

 

# MSE comparison 

axs[0, 0].bar(model_performance.keys(), [metrics['MSE'] for metrics in model_performance.values()]) 

axs[0, 0].set_title('Mean Squared Error (MSE)') 

axs[0, 0].set_xticklabels(model_performance.keys(), rotation=45, ha='right') 

 

# RMSE comparison 

axs[0, 1].bar(model_performance.keys(), [metrics['RMSE'] for metrics in 
model_performance.values()]) 

axs[0, 1].set_title('Root Mean Squared Error (RMSE)') 

axs[0, 1].set_xticklabels(model_performance.keys(), rotation=45, ha='right') 

 

# MAE comparison 
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axs[1, 0].bar(model_performance.keys(), [metrics['MAE'] for metrics in 
model_performance.values()]) 

axs[1, 0].set_title('Mean Absolute Error (MAE)') 

axs[1, 0].set_xticklabels(model_performance.keys(), rotation=45, ha='right') 

# Adjusted R-squared comparison 

axs[1, 1].bar(model_performance.keys(), [metrics['Adjusted R2'] for metrics in 
model_performance.values()]) 

axs[1, 1].set_title('Adjusted R-squared') 

axs[1, 1].set_xticklabels(model_performance.keys(), rotation=45, ha='right') 

 

plt.tight_layout() 

plt.show() 

 

import numpy as np 

import statsmodels.api as sm 

from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error 

 

# Assume you have the following data: 

# X_train, X_test, y_train, y_test 

 

# Fit the OLS model using statsmodels 

X_train_sm = sm.add_constant(X_train) 

ols_model = sm.OLS(y_train, X_train_sm).fit() 

X_test_sm = sm.add_constant(X_test) 

 

# Extracting AIC, BIC from the OLS model 

aic_ols = ols_model.aic 

bic_ols = ols_model.bic 

 

# Generate predictions for the OLS model 

y_pred_ols = ols_model.predict(X_test_sm) 

 

# Calculate MSE, RMSE, MAE, and MAPE for the OLS model 



 
 

 
 122 

mse_ols = mean_squared_error(y_test, y_pred_ols) 

rmse_ols = np.sqrt(mse_ols) 

mae_ols = mean_absolute_error(y_test, y_pred_ols) 

mape_ols = np.mean(np.abs((y_test - y_pred_ols) / y_test)) * 100 

# Assuming you have a model_performance dictionary to store metrics for different models 

model_performance = {} 

 

# Update the model_performance dictionary for the OLS model 

model_performance["OLS"] = { 

    'AIC': aic_ols, 

    'BIC': bic_ols, 

    'MSE': mse_ols, 

    'RMSE': rmse_ols, 

    'MAE': mae_ols, 

    'MAPE': mape_ols, 

    'Adjusted R2': 1 - (1-r2_score(y_test, y_pred_ols)) * (len(y_test)-1)/(len(y_test)-X_test.shape[1]-1) 

} 

 

# Assuming you have already calculated the performance metrics for the quantile regression model 

# and stored them in the model_performance dictionary under the key "Quantile Regression" 

 

# Review the performance of the OLS model alongside the quantile regression model 

for model, metrics in model_performance.items(): 

    print(f"{model} Performance:") 

    for metric, value in metrics.items(): 

        print(f"  {metric}: {value}") 

    print("\n") 

 

# Displaying the summary of the OLS model 

print("OLS Model Summary:") 

print(ols_model.summary()) 

 

import matplotlib.pyplot as plt 
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import statsmodels.api as sm 

 

# Initialize lists to store the metrics for each model 

adjusted_r_squared = [] 

aic_values = [] 

bic_values = [] 

 

# Loop over the sets of predictors, fit a model for each, and collect the metrics 

for predictors in predictor_columns: 

    X = data[predictors] 

    y = data[actual_returns_column]  # Replace with your actual returns column name 

 

    # Split the data into train and test (here we're just using the entire dataset for simplicity) 

    X_sm = sm.add_constant(X) 

 

    # Fit the OLS model and get the result 

    model = sm.OLS(y, X_sm).fit() 

 

    # Collect the metrics 

    adjusted_r_squared.append(model.rsquared_adj) 

    aic_values.append(model.aic) 

    bic_values.append(model.bic) 

 

# Now create the plots 

plt.figure(figsize=(10, 5)) 

 

# Plot for Adjusted R-squared 

plt.plot(range(1, len(adjusted_r_squared) + 1), adjusted_r_squared, label='Adjusted R-squared', 
marker='o') 

plt.title('Model Metrics by Number of Predictors') 

plt.xlabel('Number of Predictors') 

plt.ylabel('Adjusted R-squared') 

plt.legend() 
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plt.show() 

 

# Similarly, you can plot AIC and BIC 

plt.figure(figsize=(10, 5)) 

plt.plot(range(1, len(aic_values) + 1), aic_values, label='AIC', marker='o') 

plt.plot(range(1, len(bic_values) + 1), bic_values, label='BIC', marker='o') 

plt.title('AIC and BIC by Number of Predictors') 

plt.xlabel('Number of Predictors') 

plt.ylabel('Information Criterion') 

plt.legend() 

plt.show() 

 

import pandas as pd 

import numpy as np 

import statsmodels.api as sm 

 

# Define your DataFrame columns and return series 

predictor_columns = ['rvol_pt' + str(i) for i in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 90, 108]] 

actual_returns_column = 'dr1'  # This is your actual returns 

 

# Fit the OLS model 

X_train_sm = sm.add_constant(X_train)  # Adds a constant term to the predictor 

ols_model = sm.OLS(y_train, X_train_sm).fit() 

 

# Make predictions on the test set and calculate residuals 

X_test_sm = sm.add_constant(X_test)  # Adds a constant term to the test data 

y_pred_ols = ols_model.predict(X_test_sm)  # Predictions on the test data 

residuals = y_test - y_pred_ols  # Calculate residuals 

 

# Define quantile levels for VaR calculation 

var_quantiles = [0.01, 0.025, 0.05, 0.1]  # Left tail 

var_quantiles.extend([1-q for q in var_quantiles])  # Right tail 
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# Function to calculate empirical VaR at a specific quantile level 

def calculate_empirical_var(returns, quantile_level): 

    # Use the residuals of the OLS model to calculate the empirical VaR 

    return returns.quantile(quantile_level) 

# List of indices that actually exist in your DataFrame 

indices = [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108] 

 

# Initialize a dictionary to store the VaR results and additional statistics for each rvol_pt 

var_results = {f'rvol_pt{i}': {} for i in indices} 

 

# Calculate VaR for each rvol_pt and additional statistics 

vaR_level_for_pass = 0.01  # 1% 

 

# Function to format the VaR key string 

def format_var_key(quantile, tail): 

    percentage = int(quantile * 100) if quantile * 100 == int(quantile * 100) else quantile * 100 

    return f'{tail} VaR {percentage}%' 

 

# Define the 1% VaR key for the left tail used for the pass rate calculation 

vaR_1_key = format_var_key(0.01, 'Left')  # 'Left VaR 1%' 

 

# Iterate over each rvol_pt series 

for i in indices: 

    rvol_column = f'rvol_pt{i}' 

    series = data[rvol_column] 

 

    # Calculate and store VaR values for each quantile level 

    for quantile in var_quantiles: 

        tail = 'Left' if quantile < 0.5 else 'Right' 

        var_key = format_var_key(quantile, tail) 

        var_results[rvol_column][var_key] = calculate_empirical_var(series, quantile) 

 

    # Calculate Min, Max, Range for the series 
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    var_results[rvol_column]['Min'] = series.min() 

    var_results[rvol_column]['Max'] = series.max() 

    var_results[rvol_column]['Range'] = series.max() - series.min() 

 

    # Calculate the pass rate using the breach threshold from the 1% VaR 

    breach_threshold = var_results[rvol_column][vaR_1_key] 

    breach_count = (series < breach_threshold).sum()  # Count of breaches 

    total_count = len(series) 

    pass_rate = (total_count - breach_count) / total_count 

    var_results[rvol_column]['Pass Rate'] = pass_rate 

 

# Convert the dictionary to a DataFrame and transpose it 

var_table = pd.DataFrame(var_results).T 

 

# Show the DataFrame head to verify the 'Pass' values for each 'rvol_pt' 

var_table 

 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Store model predictions 

model_predictions = { 

    "Linear Regression": models["Linear Regression"].predict(X_test), 

    "Ridge Regression": models["Ridge Regression"].predict(X_test), 

    "Random Forest Regressor": models["Random Forest Regressor"].predict(X_test), 

    "Gradient Boosting Regressor": models["Gradient Boosting Regressor"].predict(X_test), 

    "Support Vector Regressor": models["Support Vector Regressor"].predict(X_test), 

} 

 

# Dictionary to hold actual vs predicted values for all models 

predictions = { 

    "Linear Regression": model_predictions['Linear Regression'], 

    "Ridge Regression": model_predictions['Ridge Regression'], 
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    "Random Forest Regressor": model_predictions['Random Forest Regressor'], 

    "Gradient Boosting Regressor": model_predictions['Gradient Boosting Regressor'], 

    "Support Vector Regressor": model_predictions['Support Vector Regressor'], 

 

} 

 

# Generate scatter plots for each model 

for model_name, y_pred in predictions.items(): 

    plt.figure(figsize=(8, 6)) 

    sns.scatterplot(x=y_test, y=y_pred, alpha=0.6) 

    plt.axline((1, 1), slope=1, color="red", linestyle="--")  # Diagonal line for reference 

    plt.xlabel('Actual Values') 

    plt.ylabel('Predicted Values') 

    plt.title(f'{model_name} - Actual vs Predicted') 

    plt.show() 
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Appendix 2. Volatility Forecast Performance Plots for Full Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.1. Volatility forecast performance plots at a daily (time frame).  
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Figure A2.2. Volatility forecast performance plots at a weekly time frame.  
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Figure A2.3. Volatility forecast performance plots at a monthly time frame. 
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Appendix 3. Correlation Heatmap of Volatility Variables 

 

 


