

Faculty of Applied Ecology, Agriculture and Biotechnology

**Prativa Paudel** 

# **Master's Thesis**

# Genetic and epigenetic analyses of Scots pine of divergent origin, sowed Swedish seed vs. wind-blown Norwegian seed in two firecleared and two logged forests

Master in Applied and Commercial Biotechnology

2024

Consent to lending by University College Library YES  $\boxtimes$  NO  $\square$ Consent to accessibility in digital archive Brage YES  $\boxtimes$  NO  $\square$ 

## Acknowledgement

Completion of this thesis has been a challenging yet rewarding journey and was not possible without the guidance, support, and encouragement from many individuals - for each of them I am deeply grateful.

First and foremost, I would like to begin by expressing my sincere appreciation and gratitude to my major supervisor Professor Robert Wilson for his unwavering support, invaluable and patient guidance, encouragement, and insightful feedback, which has been instrumental in shaping this research and pushed me to achieve more than I thought. I am immensely thankful to another member of my thesis committee, Associate Professor Hanne K. Sjølie (leader of the Scots pine growth project funded by the Norwegian "Skogtiltaksfondet"), for the thoughtful suggestions and collaborations, providing a supportive environment for this thesis. I also want to extend my gratitude to Glommen Mjøsen Skog SA – along with Sverre Holm (R&D director), & Marie Kalstad (for the sampling), and Chedley Kastally, for their crucial help in the completion of this thesis. Further, I would like to acknowledge the research environment and opportunities provided by Inland Norway University of Applied Sciences (Campus Hamar) to carry out this thesis.

I owe a deep dept of gratitude to my family for their understanding, unconditional love, and encouragement throughout my academic journey. And a special thanks to my dear husband, Ujjwal for the endless patience, constant support, love, and source of strength throughout this journey.

# Abbreviations

| SNP                               | Single nucleotide polymorphism                                                                                                                 |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| N v S                             | Norwegian versus Swedish                                                                                                                       |
| T v S                             | Tall versus Short                                                                                                                              |
| GWAS                              | Genome wide association study                                                                                                                  |
| SPEI                              | Standardized precipitation evapotranspiration index                                                                                            |
| HTLP                              | High temperature and low precipitation                                                                                                         |
| LTHP                              | Low temperature and high precipitation                                                                                                         |
| GO                                | Gene Ontology                                                                                                                                  |
| RRBS                              | Reduce representative bisulfite sequencing                                                                                                     |
| DMRs                              | Differentially methylated regions                                                                                                              |
|                                   |                                                                                                                                                |
| RefFreeDMA                        | Reference free DNA methylation analysis                                                                                                        |
| RefFreeDMA<br>BP                  | Reference free DNA methylation analysis<br>Biological process                                                                                  |
|                                   |                                                                                                                                                |
| BP                                | Biological process                                                                                                                             |
| BP<br>MF                          | Biological process<br>Molecular function                                                                                                       |
| BP<br>MF<br>CC                    | Biological process<br>Molecular function<br>Cellular component                                                                                 |
| BP<br>MF<br>CC<br>DI              | Biological process<br>Molecular function<br>Cellular component<br>Dominant interaction                                                         |
| BP<br>MF<br>CC<br>DI<br>RI        | Biological process<br>Molecular function<br>Cellular component<br>Dominant interaction<br>Recessive interaction                                |
| BP<br>MF<br>CC<br>DI<br>RI<br>DWC | Biological process<br>Molecular function<br>Cellular component<br>Dominant interaction<br>Recessive interaction<br>Dominant without covariance |

| HWE   | Hardy-Weinberg equilibrium        |
|-------|-----------------------------------|
| PCA   | Principal component analysis      |
| BLAST | Basic local alignment search tool |

## **Table of Contents**

| A  | BST | RA  | АСТ   |                                                                           | 8  |
|----|-----|-----|-------|---------------------------------------------------------------------------|----|
| 1. |     | IN  | TROI  | DUCTION                                                                   | 10 |
|    | 1.1 |     | SCOTS | S PINE ( <i>PINUS SYLVESTRIS</i> L.)                                      | 10 |
|    | 1.2 |     | Наві  | fat, Ecology, Importance and Usage                                        | 11 |
|    | 1.3 |     | Statu | JS AND ACTIVITIES ON SCOTS PINE IN NORWAY                                 | 12 |
|    |     | 1.3 | .1    | The State of use, genetic improvement and breeding                        | 14 |
|    | 1.4 |     | Effec | T OF TEMPERATURE AND PRECIPITATION ON GROWTH                              | 15 |
|    | 1.5 |     | SNPs  | MARKERS AND SNP-GENOTYPING                                                | 17 |
|    | 1.6 |     | Geno  | ME WISE ASSOCIATION STUDIES                                               | 20 |
|    |     | 1.6 | 5.1   | Gene Ontology Analysis                                                    | 22 |
|    | 1.7 |     | DNA   | METHYLATION, IT'S SIGNIFICANCE AND APPLICATIONS                           | 22 |
|    |     | 1.7 | 7.1   | Bisulfite Sequencing                                                      | 25 |
|    |     | 1.7 | 2.2   | Reduced representative bisulfite sequencing (RRBS) in non-model organisms | 26 |
|    |     | 1.7 | .3    | Reference free DNA methylation analysis (RefFreeDMA)                      | 28 |
|    | 1.8 |     | Аім о | OF THE STUDY                                                              | 29 |
| 2. |     | M   | ATER  | IAL AND METHODS                                                           | 30 |
|    | 2.1 |     | Geno  | TYPES AND SNPS CATEGORIZATION                                             | 30 |
|    | 2.2 |     | Popui | LATION STRUCTURE AND ADMIXTURE ANALYSIS                                   | 30 |
|    | 2.3 |     | Geno  | ME WIDE ASSOCIATION STUDY (GWAS)                                          | 31 |
|    | 2.4 |     | Gene  | ONTOLOGY ANALYSIS                                                         | 32 |
|    | 2.5 |     | Diffe | RENTIAL DNA METHYLATION ANALYSIS                                          | 33 |
| 3. |     | RF  | SULT  | Γ                                                                         | 35 |
|    | 3.1 |     | Geno  | TYPES AND SNPS CATEGORIZATION                                             | 35 |
|    | 3.2 |     | Popui | LATION STRUCTURE AND ADMIXTURE ANALYSIS                                   | 36 |

| 3.3   | GENOME WIDE ASSOCIATION STUDY (GWAS)                                                                    | 41 |     |
|-------|---------------------------------------------------------------------------------------------------------|----|-----|
| 3.    | <i>3.1 Identification of SNPs associated with Plant Height based on their Origin</i>                    | 41 |     |
|       | .3.2 Association study of SNPs with Annual Plant growth under varying recipitation                      | -  | an  |
| 3.4   | GENE ONTOLOGY ANALYSIS                                                                                  | 45 |     |
| 3.    | 4.1 Gene Ontology (GO) analysis of genes associated with Plant height                                   |    |     |
| -     | .4.2 Gene Ontology (GO) analysis of genes associated with growth of pla<br>emperature and precipitation |    | yin |
| 3.5   | DNA METHYLATION ANALYSIS                                                                                | 54 |     |
| 3.6   | BLAST SEARCH AND ANALYSIS                                                                               | 59 |     |
| 4. D  | DISCUSSION                                                                                              | 63 |     |
| 4.1   | GENOTYPES AND SNPs CATEGORIZATION                                                                       | 63 |     |
| 4.2   | POPULATION STRUCTURE AND ADMIXTURE ANALYSIS                                                             | 64 |     |
| 4.3   | GENOME WIDE ASSOCIATION STUDIES (GWAS)                                                                  | 65 |     |
| 4.4   | GENE ONTOLOGY (GO) ANALYSIS                                                                             | 69 |     |
| 4.5   | DNA METHYLATION ANALYSIS                                                                                | 71 |     |
| 4.6   | BLAST SEARCH AND ANALYSIS                                                                               | 73 |     |
| 5. C  | ONCLUSION                                                                                               | 76 |     |
| 6. R  | EFERENCES                                                                                               | 77 |     |
| APPEN | IDIX                                                                                                    | 90 |     |

#### Abstract

Scots pine (*Pinus sylvestris* L.) is the most widely distributed pine species across Eurasia and is a vital genetic resource in Norway with a widespread geographic range. It is one of the most suitable and best pioneer species for the afforestation because of its undemanding nature and higher adaptability potential in poor soil conditions. This study investigated population structure, GWAS (Genome wide association studies), and Gene ontology using 50K SNP genotyping data as well as DNA methylation analyses from reduced representation bisulfite sequencing (RRBS) data. Population structure was estimated using fastSTRUCTURE, STRUCTURE 2.3.4 and STRUCTURE HARVESTER, GWAS was performed using Plink v2.0, gene ontology through R-stats and DNA methylation through RefFreeDMA (Reference free DNA methylation analysis) software, further differentially methylated regions functionally characterized via BLAST algorithms using QIAGEN CLC Genomic Workbench 22.0.2. Population structure analysis of 310 individual samples identified the most likely Kvalue of 8, and genetic diversity within all the cluster showed significant variability; mean FST values indicated genetic differentiation, particularly for clusters 5 and 8. Cluster 4 was the largest with 240 of 310 trees and was therefore presumed to represent trees originating from the sowed Swedish seed. GWAS identified distinct SNP markers associated with plant height (PH) based on different allele and genotype models, with markers in the dominant allele model predominating. Interaction analysis further explained allele-specific associations particularly observed in Swedish trees across the forest plots. Analyses were expanded to investigate influence of seasonal variation in annual growth of plants by correlating SNP markers, growth associated SNPs varied significantly across seasons; dominant allele models showed highest associations during periods of High SPEI. Gene ontology (GO) analysis provided insights into biological importance of identified genes, identifying different molecular functions, biological processes, and cellular components associated with PH. Particularly, a subset of genes showed shared and unique functions across different samples and allele models, emphasizing detailed genetic mechanisms underlying PH and plant growth. RRBS analyses of 29 sampled trees, roughly 50:50 Swedish:Norwegian and 50:50 tall:short, identified 394 differentially methylated fragments between Norwegian and Swedish seed origin, 129 in CpG, 128 in CHG, and 80 in CHH. Norwegian trees showed higher prevalence of methylation in CHH site, while Swedish trees showed higher methylation in CpG. In the tree height comparison, 593 DMRs were identified between tall and short trees: 293 in CpG, 188 in CHG, and 112 in CHH. Individuals in both tree growth categories (tall and short) exhibited high methylated sites in CHH, while fewer methylated sites were observed in CHG and CpG for tall trees and short trees, respectively. Therefore, our detailed analysis enhances the understanding of underlying genetic and epigenetic mechanisms regulating Scots pine growth traits. And the findings of this study provide valuable insights for conservation practices and sustainable forest management as well as breeding approaches directed towards enhancing resilience and productivity in Pinus sylvestris.

**Keywords**: Scots Pine; *Pinus sylvestris*; SNP; population structure; GWAS; gene ontology; DNA methylation

## 1. Introduction

#### 1.1 Scots Pine (*Pinus Sylvestris* L.)

Pinus sylvestris L. (Scots Pine) is a two-needle pine which belongs to family Pinaceae and the most widely distributed pine species - across Eurasia, North America to Central America, North Africa, and nearby islands. The word "sylvestris" came from the Latin meaning "of forests" and its distribution in wide range suggests higher genetic variation and existence of many sub-species and varieties (Durrant et al., 2016). Scots pine can be easily distinguished with its orange-red bark colour, where the upper part of stem has thin, papery, and bright orange or reddish-brown bark, whereas the lower part of stem has thick brown coloured bark that is deeply fissured in young trees and shallow fissured in old trees with thin, pale greybrown coloured bark. It has a monopodial growth with a termina bud on aerial shoots surrounded by several lateral buds, in which the branches are produced in whorls, where lateral buds between the whorl is absent and the needle-shaped leaves occur in pairs which arises from a short shoot with the leaf-bases surrounded by 5-10 mm long common sheath. Needles are generally slightly twisted and finely serrulate, 3-8 cm long and 1-2 mm wide with grey or blue- green summer colour, dark grey-green or yellow, or reddish green in winter which persist 2-4 years in general to up to 6 years. The needles are xeromorphic with imbedded stomata, a well-developed collenchymatous hypodermis with a waxy layer on thick-walled epidermis, so that water loss is minimized, helping it to adapt to cold and drought conditions (Carlisle & Brown, 1968). Scots pine is a monoecious species in general, but only male or only female flowers in mature trees might occur occasionally, in which wind pollination prevails mainly and the pollen is round or elliptic in shape, size of 44-52 µm with two wings. At the base of current season's growth (new shoot) on older shaded branches with low vigour, clusters of male inflorescences are formed (when buds open in early spring), which are ovoid, 4-8 mm long and yellow or violet-yellow to occasionally pink or violet-red colour pre-anthesis. Whereas the female inflorescence or cone is formed (mid-May to early June) on the more vigorous and well-illuminated shoots i.e., apex of new and strong shoots that are borne at end of current year's growth having seminiferous scales with red or rose-purple shade, 5-6 mm long and pointed tips. First time flowering occurs in the spring or early summer (April - June ) when the tree is around 15 years and the female flowers are pollinated after the anthesis in about June and when matured, fertilization occurs the year following pollination i.e., upcoming spring, it forms woody cones of 5-8 cm conic-oblong and in each ovuliferous scale with two integumental ovules winged seed of grey, brown, or yellow colour is formed after fertilization. When the environment is favourable i.e., alternate dry and wet periods (over 9-12 months), the cones open, the ripened winged seeds are released, and dispersed from parent trees. Under favourable conditions, epigeal germination of seeds occurs within 10 days, cotyledons fully develop in about 10-16 days, apical bud advances to form primordial leaves - on whose axils the bifoliate fascicles develop to grow as an adult foliage in about 8-10 months post germination, after which the bifoliate shoots developed from brown scales axils produces the foliage in plants (Carlisle & Brown, 1968; Durrant et al., 2016; Brichta et al., 2023).



Figure 1. Representation of morphology of Scots pine (Pinus sylvestris L.) showing (A) tree, (B) section of branch, (C) female cone, (D) male strobili, (E) needle, and (F) seed (Figure adopted from Brichta et al., 2023).

## 1.2 Habitat, Ecology, Importance and Usage

Scots pine, essentially a gregarious and light demanding species, doesn't tolerate heavy shading, atmospheric pollution or salty sea wind but can thrive well and colonize in nutrient poor and disturbed sites, drought as well as frost condition, and acidic highland moors. With the rising temperature it's growth is more towards northern region while decreasing in its southern inhabitation and it requires a period of winter chilling after autumn to break it's dormancy and again starts to grow when temperature rises around 5 °C in spring (Durrant et al., 2016). It lives up to 200-300 years and grows on average to 23-27 m in height, and 50-80 cm in diameter with yellowish-white sapwood, and pale brown or reddish heartwood of stem. The crown forms of Scots pine vary, in Scandinavia and higher altitude it is "spruce-like" i.e., narrow cone shaped and finely branched. Being the widely spread species within genus Pinus, it can be found from 8° W in Spain to 141° E of Russia to 70° N in Scandinavia covering 10,000 km longitudinally and representing the distance of 3700 km. It can grow between 200 - 2000 mm of annual precipitation with 300 mm as essential limit, 5-9 °C common mean annual temperature, minimum of 100 frost free is required for its survival and can be found on very poor to rich acid or alkaline soil condition mostly on sandy, sandy loam, and peat soils, but on fertile soils it is outnumbered by another species. It has been successfully exploiting the less crowded ecological niche and reproducing in unstable environment mainly due to its set of traits, such as (a) its low nutrient demand is supported by association with mycorrhiza in low nutrient soils, (b) light demanding nature and rapid growth of youth makes it a pioneer colonizer in open areas, (c) even a single tree can propagate due to its monoecious nature facilitating in-breeding and selfing, and (d) long distance pollination and seed transport is effective with wind, so reproduction is almost guaranteed with annual seed production with short generation time (Krakau et al., 2013). Scots pine can change the anatomical and morphological structure of the needle based on growing environment which in-turn determines the growth duration and intensity of various organs, and the productivity as well as stability of stands. The morphological changes include the length and volume of the needle i.e., long or short, dense or thinner, wider or narrower, resilient or fragile, while the anatomical changes include the thickness of assimilative & conductive tissues, of folded mesophyll, diameter of vascular bundles and resin canals, number of resin canals, and thickness of external protective tissues of the needle (Galdina & Khazova, 2019). In Europe, monocultures of Scots pine are found in poorest habitat, but in uplands or slightly richer habitats it can be found in mixture with oaks (Quercus petraea, Quercus robur), Norway spruce (Picea abies), silver birch (Betula pendula), European larch (Larix decidua), European beech (Fagus sylvatica), silver fir (Abies alba), and other pines (primarily Pinus uncinate, Pinus nigra) (Brichta et al., 2023; Durrant et al., 2016). It stores food primarily in the form of fat (oils) rather than as starch, and in winter starch is converted to fat, but in summer when the temperature rises fat is converted back to starch. Also, turpentine as a part of resins is produced as a product of certain metabolic processes in Scots pine, commercially tapped, and contains  $\alpha$ -pinene, some  $\beta$ -pinene and  $\Delta^3$ carene, limonene, terpinolene and di-pentene in small quantities (Carlisle & Brown, 1968). These are the component of essential oils which can also be obtained through hydro-distillation of needles and have high antimicrobial activity ( $\alpha$ -pinene,  $\beta$ -pinene, limonene), insect larvicidal potential, and limonene emulsion can be applied to prolong the self-life of food as it avoids foodborne pathogen contamination (Ibáñez & Blázquez, 2019). Also, the different components of essential oils have been used as a starting material for varnishes, paint thinning solvents, printing inks, insecticides, rubbers, and the pleasant aroma of essential oil helps to calm down nervous system and used in the perfumes, air fresheners, soaps, and massage oils. Its wider distribution and ecological plasticity make it one of the important tree species for forestry and wood industry in central Europe and throughout Eurasia, while the density of spring and summer wood varies between 0.412 and 0.541 g cm<sup>-3</sup>. The distinct and differentiated summer ring is due to high resin content which in turn makes the wood very durable making it very useful material in water and humid conditions as well as in lumber, timber constructions, and furniture, while the low-quality woods can be used for fuel and fibre and bark could be used as an insulating material for buildings (Brichta et al., 2023). Scots pine can be the most suitable and best pioneer species for the afforestation of the reclamation sites, such as post-mining areas and climate change impacted sites because of its undemanding nature and higher adaptability potential in poor soil conditions (Vacek et al., 2021).

#### 1.3 Status and activities on Scots Pine in Norway

The present status and composition of forest is resulted from the interaction of human and forest over long periods of time in past, such as deforestation, induced regeneration, and silviculture practices, so it varies from forests of primeval time. Different factors determined the species composition and their subsequent distribution in Norwegian forest, such as tree species immigration after the Ice Age, successive climatic changes, and human interactions. Likewise, studies pertaining to evidence of ancient DNA from lake sediments and pollen,

coupled with recent DNA samples have supported the hypothesis that Pinus sylvestris survived the ice-free refugia of Scandinavia throughout the course of most recent glaciation and *Pinus sylvestris* was present as early as 22,000 years ago on the north-western coast of Norway. *Pinus sylvestris* is considered as vital in genetic resource category and is found in widespread geographic range of Norway, which occurs in strand where wind acts mainly as an effective pollinator and seed dispersal agent (Fjellstad & Skrøppa, 2020).

In Norway, forest covers 12.1 million hectares of land, and the Norwegian forests can be differentiated into three major forest type categories with their main tree species, namely coniferous evergreen boreal forest (5.8 million hectares - Picea abies, Pinus sylvestris), broadleaved forest (4.2 million hectares - Betula pubescens, B. pendula), and mixed forest (2.1 million hectares - P. abies, P. sylvestris, Betula sp.). Moreover, the coniferous forest is formed mainly of Picea abies (Norway spruce), and Pinus sylvestris (Scots pine), which covers 48 % of forest area and 88 % of the annual forest fellings. These forest species dominate the inland region of Norway and are economically the most important, as well as the only species which are managed actively in commercial forestry for wood production. Apart from forests, 2.1 million hectares of other wooded land is present in Norway, and 42.7 % (2728 out of 6396 growing stock 1000 m<sup>3</sup> over bark) of the growing stock on those land is accounted by the Pinus sylvestris trees of diameter ( $\geq$  5 cm) at breast height (dbh) equal to 1.3 meter. In Norway, the genetic variability of Pinus sylvestris has been evaluated at family level (offspring from one mother tree, with the evaluated samples from provenances - trees from a defined geographic region) whose morphological traits, adaptive and production characters have been assessed, however molecular characterization has not been performed yet. A recent survey on the number of published studies of genetic variability of native Norwegian tree species (from 1954 - 2019) showed that the studies on *Pinus sylvestris* were mostly conducted from the 1950s to early 1990s, however in recent years the studies have been carried out mainly on Norway spruce (Picea abies), and Birch (Betula species) with more focus on other broadleaved species for their better management. Field tests in forest genetic research is mainly performed by The Norwegian Institute of Bioeconomy Research (NIBIO), The Norwegian University of Life Sciences (NMBU) and The Norwegian Forest Seed Centre and the collection of Pinus sylvestris in provenance tests have been carried out from 6 stands and 20 accessions, which are not part of the breeding programmes. As an in-situ conservation effort, genetic characterization of *Pinus sylvestris* along with other species has been performed in five gene conservation units (GCUs) (in already established nature conservation areas) as a part of the Horizon 2020 GenTree project and regular monitoring has been executed since 2020, so that the data can be utilized in the future in connection with genetic monitoring. Forest genetic resources in Norway are conserved in ex-situ conservation stands and in seed storage, as a part of Ex situ conservation efforts, with proper strategy for long term regeneration, however the major focus is on Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) as important commercial species. The ex-situ conservation stands are maintained with a cooperation between the Norwegian Genetic Resource Centre, The Norwegian Forest Seed Centre and forest owners with an aim to conserve original forest genetic resources through regular forestry as well as regeneration, selection of trees for breeding, and seed collection. For seed storage, seed samples of Scots pine and Norway spruce were deposited in Svalbard Global Seed Vault (SGSV) in 2015, primarily for back-up storage to conserve and monitor changes in genetic diversity from various stages and generation of breeding populations or seed orchards, with discussion on expanding its use for future monitoring and conservation. Moreover, the Norwegian Forest Seed Center established a biobank with 770 reference seed and DNA samples of spruce and pine from all seed lots available a decade ago for experiments and research, having a representative selection of those seed lots stored at SGSV (Fjellstad & Skrøppa, 2020).

#### 1.3.1 The State of use, genetic improvement and breeding

In production forestry, after the harvest, Pinus sylvestris is mainly regenerated naturally executing seed-tree method in which 30-150 seed trees are retained per hectare as a regeneration felling strategy. Primarily, Pinus sylvestris planting is based on seeds from the natural forest, but incorporation of genetically improved materials from the Swedish tree improvement program has been of recent interest. The Norwegian Forest Seed Centre (Skogfrøverket) is a responsible organization for tree breeding activities which also provides the seed required for forest nurseries, offers guidance for utilizing materials from national seed orchards and is a responsible body for acquisition, storage, and trading of seeds for forestry sector i.e., seed sales - domestic and international transfer (imported and exported). Norwegian forest nurseries located at different regions produce seedlings as per local requirement, in general, and seedlings of Pinus sylvestris are also imported, mainly from Sweden. For the year 2021 and 2022, domestic seed sale and export of native P. sylvestris were 37.13 kg & 0 kg, and 33.67 kg & 0.10 kg, respectively, while domestic seed sale and export of exotic P. sylvestris were 8.55 kg & 0 kg, and 7.43 kg & 0 kg, respectively. Out of 41.20 kg total seed sales in 2022, 11.33 kg and 29.87 kg were sold for seed plantation (OECD category - 5.83 kg qualified & 5.50 kg tested) and stock stand, respectively (https://www.skogfroverket.no/).

The seeds in Norway were mainly used for the purpose of forestry, timber, and pulpwood. At The Norwegian Forest Seed Centre 79 OECD Forest Seed and Plant Scheme qualified accessions of commercial seed lots of native Pinus sylvestris has been stored. Pinus sylvestris, as one of the native tree species, has been tested at the Norwegian Landscape Laboratory at NMBU for revegetation and planting purposes in gardens (ornamental) and landscape, so that suitable clones and seed sources can be recommended, and native plant material use in landscaping purposes can be increased. Aroused interest in planting Pinus sylvestris in Norwegian forestry necessitates increased seedling production through seed collection coupled with tree improvement in forest stands, or importing genetically enhanced materials, alongside development of models aiming to develop a web tool that would recommend optimal reproductive materials based on specific site conditions (Fjellstad & Skrøppa, 2020). In Norway, the seed production of Pinus sylvestris was 100 % from OECD category - source identified amounting 17 kg for the year 2021, while 800,000 plants and 7458 kg seeds of Pinus sylvestris were imported in 2021. In Norwegian forestry, 45,502,000 seedlings were delivered in 2021 for forest regeneration, among which around 95.65 % Picea abies, 0.5 % others, and 3.85% (1,753,000 seedlings - 28 % unimproved & 72 % genetically improved) Pinus sylvestris. Furthermore, the demand for improved materials (seeds and plants) of Scots pine in Norwegian forestry have increased and mainly fulfilled by import from Sweden, and the improved seeds have been directly sown for plant production in forest, like in Eastern Norway. Additionally, Norwegian Forest Seed Centre has already started a breeding program for Scots pine by developing the Norwegian orchards to produce second generation seed materials in about 15-20 years (Solvin & Sundheim Fløistad, 2023).

Genetic improvement and breeding activities in *Pinus sylvestris* has been initiated in Norway at a lower intensity as compared to *Picea abies* (Norway spruce) and 150 originally selected plus trees were kept as graft in 4 clonal archives for which 7 provenance trials were conducted with a total of 40 provenances, however progeny trials haven't yet been initiated. National tree breeding strategy for 2010-2040 (approved in 2017) guides the breeding programmes in Norway (organized through Norwegian Forest Seed Centre) to produce the bred material with higher survival rates over large areas (climatic adaptation), higher genetic gain in volume production (>20 %), better wood quality and carbon sequestration as well as maintaining genetic variation. Furthermore, there exists a collaborative effort among tree breeding organisations in the Nordic countries, such as the use of a centralized biobank, molecular markers for identifying breeding materials and trait-controlling genes important in selection, adopting "breeding without breeding" approach by integrating genetically evaluated (using molecular markers) trees from regular forests into breeding populations, implementing genomic selection for predicting breeding values, drone technology for tree height measurement in stands and progeny trials, and databases for secure, efficient data management (Fjellstad & Skrøppa, 2020).

The research and development work on forest genetic resources (FGR) are performed mainly by Norwegian Genetic Resource Centre, Department of Forest genetics and biodiversity at NIBIO, Norwegian Forest Seed Centre, along with some national and regional authorities for agriculture and environment, forest sector representatives, research, and educational institutions like NMBU. Likewise, The Forestry Act and the Nature Diversity Act 2009 is the legislation governing forest genetic resources, while the projects are financed either as research grants through the Norwegian Research Council, the Norwegian Agricultural Agency, the Nordic Council of Ministers, and the European Union or by own budget of researching institutions. Also, The Norwegian Forest Seed Centre and NIBIO has maintained a common database of all genetic units tested in FGR research and tree breeding (Fjellstad & Skrøppa, 2020).

## 1.4 Effect of temperature and precipitation on growth

Scots pine is the most dominant and significantly affected species in European forests by the frequency and intensity of climate change phenomena - extreme weather events like long-term drought, unbalanced wet and dry periods, heat waves and considerable climatic fluctuations. These climatic changes have lots of negative consequences like increased risk of forest fire due to dry period, negative impact on photosynthetic activities, the growth of cambium, resistance against the harmful insects and pathogens, which in turn decreases the diversity and leads to homogenization of forests stands. Also, the dry period affects the radial growth of the

tree, water stress significantly changes the structure of pine stand, and lack of precipitation coupled with high temperature results in die back of pine forests. Likewise, the annual temperature is highly correlated to tree rings growth (width index) rather than the temperature at vegetation season, while annual precipitation is mostly negatively correlated and the precipitation in the vegetation season is highly correlated to tree rings growth (Brichta et al., 2024). For the precise estimation of climate-growth relationship, daily temperature and precipitation data can be used as compared to monthly data, as daily life processes in trees are constantly occurring which could be accounted for in the analysis. The summer drought or frost have instant effect while winter drought has delayed effect on tree rings width, the size and structure of tree rings is affected by many climatic factors among which the drought is the most stressful for trees and narrower rings is caused by droughts. Comparison and analysis of climatic data in extreme years with growth rate of tree found that low temperature (severe) towards end of winter coupled with low sum of precipitation i.e., drought in spring and early summer (vegetation season) limits the growth of tree, inferring precipitation and temperature in March as one of the most influential month in terms of ring width and tree growth (Waszak et al., 2021).

Climatic factors greatly influence the growth of the tree like the radial growth (tree ring width - early wood width and late wood width), and the shortage of water due to higher temperature will reduce the transpiration and photosynthetic activity - tree's capacity to photo-assimilate atmospheric carbon modified, which ultimately will alter tree water potential (decline), secondary growth, xylem structure and functions. Shift from the limitation of low temperature during winter and water shortage due to rise in summer temperature coupled with low precipitation (higher evapotranspiration) have a major impact and control on tree growth. If the availability of water is high plants will uptake more nutrients, a greater number of newer branches and needles will be produced with enhanced photosynthesis and lengthened growing season (Tabakova et al., 2020). Tree height and temperature related variables have the positive correlation, as temperature affects the growth time and rate of tree height - warmer temperature improves the photosynthetic efficiency through enhanced photosynthetic enzyme activities, which increases the material accumulation i.e., more nutrient and carbohydrate accumulation as well as distribution in the trunk. Likewise, warmer temperature cuts the limitations imposed by lower temperature, so the uptake of water and nutrients in root is promoted through enhanced activities of soil microorganisms, the division as well as specialization of cambium and meristems cells is promoted, and these functions encourages the active tree height growth in advance. Furthermore, tree height growth is very sensitive to both current and previous years precipitation and ground water because the prophase of tree height growth is dependent on the increased soil water content and its availability to roots due to increased precipitation from previous autumn to current spring and thawing of soil in spring. However, Scots pine being a pre-season growing species, tree height responses negatively to the precipitation in the previous year's growing season as it limits the photosynthesis due to decreased light intensity and temperature, so that the nutrient accumulation and its availability to top buds growth for current season is limited resulting in lower tree height growth in succeeding year (Y. Zhou et al., 2019). Stomatal density (SD; mm<sup>-2</sup>) is a key factor that controls the photosynthesis, transpiration, and gas exchange processes in plant leaves, the number and activities of stomata is found to be also associated with the increased temperature, where higher SD was observed in needle samples from southern end of Europe (warm temperature) as compared to low temperature Northern region (Marek et al., 2022).

Indeed, drought has a huge impact on plant growth, but to objectively quantify its intensity, duration, magnitude, and spatial extent is a difficult task, so standardized precipitation evapotranspiration index (SPEI) is among the widely used drought index calculator that takes the effects of both evapotranspiration and precipitation together into consideration. SPEI is a multi-scalar method for drought assessment based on precipitation and temperature data, which computes monthly climatic water balances (D parameter) - precipitation minus potential evapotranspiration (PET), that has been accumulated at different timescales and helps to identify, analyze, and monitor the droughts events (Pasho & Alla, 2015; Peña-Gallardo et al., 2018). This drought index SPEI calculation was first proposed by (Vicente-Serrano et al., 2010a) in which the monthly climatic water balances simply helps to measure the water surplus or deficit for the month analyzed, using a three-parameter log-logistic distribution those values obtained are transformed to a normal standardized variable, the output is SPEI with average value 0 and standard deviation 1, for direct spatial and temporal comparison. Moreover, SPEI of 0 indicates a value corresponding to 50% of the cumulative probability of D (P-PET), based on a log-logistic distribution and the SPEI values ranges from -5 to +5 in which the smaller the value the stronger the degree of drought and the larger the value the higher the degree of moisture (Y. Ma et al., 2015). Furthermore, the SPEI drought index can be employed into different dry and wet categories as such, extremely wet (EW); SPEI 2.00 and above, very wet (VW); SPEI 1.50 to 1.99, moderately wet (MW); SPEI 1.00 to 1.49, near normal (NN); SPEI -0.99 to 0.99, moderately dry (MD); SPEI -1.00 to -1.49, severely dry (SD); SPEI -1.50 to -1.99, extremely dry (ED); SPEI -2.00 and less (B. Li et al., 2015).

## 1.5 SNPs markers and SNP-genotyping

Single nucleotide polymorphism (SNP) can be defined as an occurrence of one base variation in a single DNA nucleotide at the specific position in the genome in which the single nucleotide variation results from single-base insertion, deletion, transversion (purine to pyrimidine), and transition (purine to purine or pyrimidine to pyrimidine). Any of the four bases can occur at SNP mutation site, but the SNPs are mainly biallelic with C to T SNPs being most common; these usually form due to spontaneous deamination of 5-methylcytosine to thymine in GC-rich regions. SNPs can be categorized based on their genomic location; cSNPs (gene coding SNPs, relatively rare owing 20% of mutation rate in the surrounding sequence), iSNPs (intergenic SNPs), and pSNPs (perigenic SNPs) and the SNPs being biallelic genetic variant (at each SNP maximum 2 alleles and 3 genotypes could be detected), in average occur every hundreds of base pairs (Yang et al., 2020). Further, cSNPs can be categorized into nonsynonymous (a different amino acid is incorporated into the polypeptide by altering the transcribed codon such that, the function of corresponding protein is affected) and synonymous-believed to be biologically silent or inconsequential, but it's impact on gene function (mRNA splicing, mRNA stability, mRNA structure, protein translation and cotranslational protein fold) have also been well documented (Komar, 2009). SNPs act as ideal biological markers because of their higher abundance, wider occurrence, stable heredity, high specificity, extremely low mutation rate and stable genetic variability in the genomes (genes or in regulatory regions), so that genome evolution, genes associated with various traits and their functions can be studied and identified through high-throughput detection and further integration of SNPs easily in genotyping data (J. Zhang et al., 2020).

Various high-throughput SNP genotyping approaches are available which can be compared and utilized based on the requirements (read length, accuracy, throughput), from firstgeneration sequencing (FGS) based, next-generation sequencing (NGS) based, and thirdgeneration sequencing (TGS) based SNP genotyping to microarray-based SNP genotyping. The main NGS based SNP genotyping platforms to date are based on sequencing-by-synthesis (SBS) and includes, Solexa sequencing (Illumina/Solexa genome analyzer). However, NGS platforms are limited by relatively short read length, so that TGS methods such as Single molecule real time - SMRT (Pacific Biosciences) and Nanopore sequencing (Oxford nanopore technologies) can be considered albeit with reservation, as these platforms also suffer from fidelity issues. Likewise, DNA microarray (DNA chip or Gene chip) based SNP genotyping uses a technique of molecular hybridization of designed probes (two or more) present in a chip with the completely complementary sequences of target gene and in situ fluorescence detection of hybridized products in solid media for SNP analysis, where the base type of targeted sequence is determined based on fluorescence (intensity and type) by laser scanning. DNA microarray can analyze limited initial materials (specific genome regions) and efficiently detect large number of SNPs (known SNPs) with high accuracy in a single experiment (Yang et al., 2020). For instance, in Axiom array, oligonucleotides DNA probes are immobilized on a glass or silicon wafer (array plates) and the amplified genomic DNA is fragmented into 25-125 base pairs (bp) fragments, purified, resuspended, and hybridized to the DNA probes and captured followed by stringent washing for the removal of non-specific background. Now, each captured polymorphic nucleotide on the array surface is queried by the fluorescence labeled solution probes through ligation and differentiated, so that the array can be stained and imaged on GeneTitan MC instrument and data is further handled via software package- The Applied Biosystems<sup>™</sup> Axiom<sup>™</sup> Analysis Suite (<u>https://www.thermofisher.com</u>), formerly known as the Affymetrix Axiom platform.

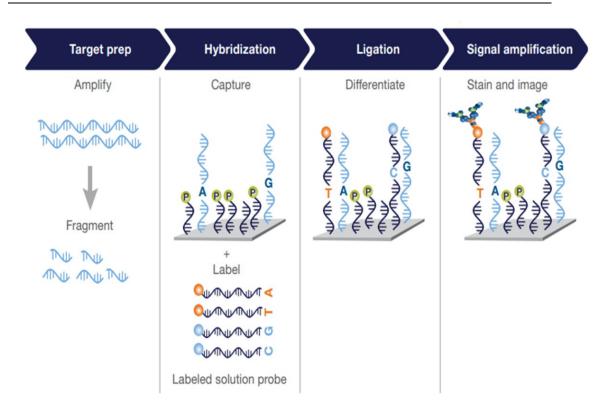



Figure 2. Basic workflow of Applied Biosystems<sup>TM</sup> Axiom<sup>TM</sup> microarray (<u>https://www.thermofisher.com</u>).

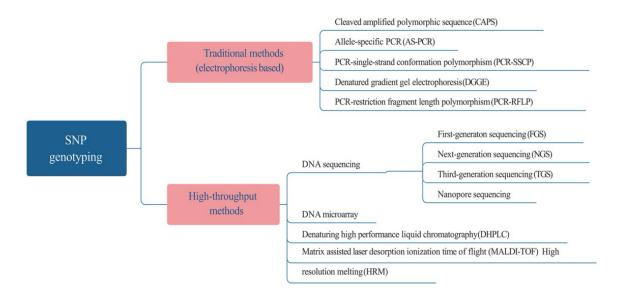



Figure 3. Various SNP genotyping approaches (Yang et al., 2020).

The traditional as well as other SNP genotyping approaches except DNA microarray and DNA sequencing, hardly meets the rapid increased demand for SNP genotyping in large scale due to lower SNPs detection potential and subsequent genotyping despite being time consuming with high device and sample preparation requirements. The DNA microarray or SNP chip microarray is only appropriate for genotyping thousands of SNPs in hundreds of samples as it requires extensive time to develop and design a SNP assay or chip, generates bias to reference genome that hinders to detect unique SNPs, and are also unable to detect and genotype some

SNP loci that are not conserved (occurring in flanking regions of those SNPs) or due to other hits in genome (sequences homology) thus giving false positive or false negative results while SNP genotyping. Moreover, whole genome sequencing (WGS) and resequencing, multiplex PCR and continuous advancement in next-generation sequencing (NGS) technology has altogether made it possible to generate millions of SNPs by screening large part of the genome in different species and some have focused on developing genome wide perfect SNPs harbouring conserved flanking regions and being captured uniquely in the genome during PCR amplification (J. Zhang et al., 2020). Whole genome resequencing using NGS techniques like restriction-site associated DNA sequencing (RADseq), ddRADseq, and genotyping by sequencing (GBS), through enzymatic digestion, amplification and partial sequencing made it possible to recombine and update partially amplified sequence to the reference genome, so that the unique SNPs can be observed or detected, which was not possible through SNP arrays (Bilginer et al., 2022).

#### 1.6 Genome wise association studies

Grasping the genetic structure of complex traits is essential to have a deep understanding of biology. Majority of traits having agricultural and evolutionary significance are complex traits, controlled by many genetic loci, environment conditions and their interactions (Tibbs Cortes et al., 2021). To establish a strong predictive model for these traits, it is essential to have a significant number of genetic markers analyzed across a large sample size that have precise phenotype, ideally in diverse environments. Nevertheless, advancements in scale, accuracy and affordability of high-throughput sequencing and genotyping are expanding the efficiency of genetic association studies. Specially, availability of economical high-throughput genotyping has become advantageous for the study of non-model organisms, particularly those facing challenges in genome assembly due to genome size and/or complexity (Perry et al., 2022a). Genome-wide association studies (GWAS) is used to identify the associations between genotypes and phenotypes by examining the differences in allele frequency of genetic variants among individuals who share similar ancestry but varying phenotypically (Uffelmann et al., 2021). Genome wide association mapping has the capacity to provide a more accurate understanding of number of genetic regions associated with the trait, ultimately aiding in identification of casual mutations within the mapped regions (Parchman et al., 2012).

In standard GWAS, phenotype and genotype data are gathered from a sizable group of assembled individuals, such as a diversity panel. The genotype data typically includes genome-wide single nucleotide polymorphisms (SNPs), that are identified using methods such as resequencing, genotyping-by-sequencing, or array-based genotyping (Tibbs Cortes et al., 2021). GWAS employs statistical methods for identifying the associations between genomic polymorphisms (such as SNPs, insertions and deletions, and structural variations) and phenotypic variation (Tibbs Cortes et al., 2021; Q. Xiao et al., 2022) and analyze the results to identify a group of genes containing diverse alleles that could be responsible for variation in phenotypes (Burghardt et al., 2017). The effectiveness of GWAS in identifying genes of interest depends on five important factors which includes, genetic complexity of a trait, its

heritability, number of accessions assayed, their relatedness, and the density of the genomic variants. Thus, GWAS is highly potent in identifying a causative gene (i.e., one with segregating alleles contributing phenotypic variation) when there is absence of confounding between relatedness and phenotypic variation, few major loci have significant effects on phenotypic variation, and genetic factors predominantly account for phenotypic variation (i.e., high heritability). Conversely, identifying the genes contributing to phenotypic variation is most challenging when sample exhibit high genetic structuring, traits have low heritability (i.e., phenotypic variation is mostly because of environmental variation), and the genetic basis of the trait is intricate ( involving many genes with each having minimal contribution to genetic variance of that trait) (Burghardt et al., 2017).

Moreover, Genome-wide association studies have identified genomic regions linked to various agronomic, physiological, and fitness attributes such as flowering time, plant height, kernel number, stress tolerance, and grain yield. These studies have also explored agriculturally significant traits across a variety of major crop species such as maize (Zea mays L.), wheat (Triticum aestivum L.), rice (Oryza sativa L.), soybean [Glycine max (L.) Merr.], sorghum [Sorghum bicolor (L.) Moench], barley (Hordeum vulgare L.), cotton (Gossypium hirsutum L.), and several other crops in addition to the model plant species Arabidopsis (Tibbs Cortes et al., 2021). Association studies and genomic selection have been conducted in pine species for various traits including serotiny in Pinus pinaster and Pinus contorta, circumference, height, and stem straightness in Pinus pinaster, oleoresin flow in Pinus taeda, and growth as well as wood quality traits in Pinus sylvestris (Perry et al., 2022a). Also, the GWAS conducted in Pinus armandi have found two potential gene, CesA2 and CCoAOMT associated with Diameter at breast height (DBH) (Q. Li et al., 2024). In GWAS of rice, the genes have been found to be associated with geographical differentiation and adaptation during domestication. Additionally, study has identified the genes associated with biochemical and molecular phenotypes such as flavonoid, fatty acid, amino acid, and nucleic acid metabolites (Tibbs Cortes et al., 2021).

Furthermore, GWAS has been used to examine data obtained by high-throughput automated phenotyping. For instance, in Sorghum, GWAS have pinpointed significant associations for panicle architecture through automated feature extraction from images as well as biomass traits through measurements obtained from aerial drones. Genome-wide association studies are used for dual purposes of identifying novel associations with desirable traits and confirming loci discovered by other methods. They can be conducted independently as a part of gene cloning studies or as an initial step in marker-assisted selection among other applications. Indeed, utilizing the information speeds up the progress of crop breeding, for example, genetic loci detected through GWAS on provitamin A levels in maize grain served as the foundation for marker-assisted and genomic selection to enhance this important nutritional trait, thus accelerating crop breeding (Tibbs Cortes et al., 2021).

The advancement in technology and methodology is responsible for the success of GWAS. Various algorithms have been developed for genotype calling from SNP array data with each generation bringing enhancement in accuracy and call rate. New algorithms have also been

developed for calling low frequency and rare variants as well as for inferring haplotypes and structural variants. As GWAS depends more on Whole Genome Sequencing (WGS) data, a corresponding array of tools have been developed to facilitate variant discovery and SNP calling from sequencing data. Similarly, advancements in the statistical imputation of genotypes have been made and the software like PLINK for data management and analysis can effectively process and analyze whole genome SNP array data in a computationally effective method (Tam et al., 2019).

#### 1.6.1 Gene Ontology Analysis

Gene ontology (GO) is a significant step in the field of bioinformatics (T. Zhou et al., 2017), serves as a crucial resource by offering details on a gene molecular function, its involvement in biological process and location within cellular components (Stevenson & Zumajo-Cardona, 2018). Recently, ontologies have emerged as a potent instrument for handling phenotypic data because standardizing terminology across various species and sub-disciplines facilitates inference depending on logical relationship (Oellrich et al., 2015). The GO project has developed three organized sets of terms (i.e., ontologies) describing genes, transcripts and proteins of any organism based on their associated cellular component, biological function and molecular role in a way that is not specific to any species. Collaborative database benefits from utilization of GO terms, which ensures uniform retrievals across them. Additionally, GO terms can be queried at various levels, ensuring annotators to assign characteristics to genes or gene products based on their level of understanding and specificity of the information available about that entity (Botton et al., 2008). An ontology consists of well-defined terms and their relationships, while the structure itself indicates existing representation of biological knowledge and provides a framework for organizing new data. Eventually, an ontology serves as an essential tool which allow researchers to transform data into knowledge (Ashburner et al., 2000).

The clusterProfiler is one of the widely used libraries among Bioconductor packages for gene ontology analysis which offers enrichGO and gseGO functions for over-representation analysis (ORA) and gene set enrichment analysis (GSEA) using Gene Ontology (GO). Further, the AnnotationHub package allows for online querying of GO annotation for non-model organisms by accessing genome-wide annotations from various data providers such as UCSC, Ensembl, NCBI, STRING, and GENCODE. Due to the Bioconductor community's efforts of keeping up to date GO annotation for model and non-model organisms, clusterProfiler facilitates GO analysis across a broader range of species than other tools. Additionally, a GO annotation data frame (for example, obtained data from the BiomaRt or UniProt database using taxonomic ID) can be employed to construct an OrgDb either through the AnnotationForge package or directly via the universal interface for enrichment analysis (Wu et al., 2021).

## 1.7 DNA methylation, it's significance and applications

DNA methylation is an evolutionarily conserved epigenetic modification that affects gene regulation, gene imprinting, genome structure and integrity which require the addition of a

23

methyl group to the carbon-5 position of cytosines and contribute to transcriptional repression (Bewick & Schmitz, 2017; Catoni et al., 2018; Gallego-Bartolomé, 2020). DNA methylation in plants is classified into different site classes depending on the sequence context (CG, CHG and CHH), (where H is A,C or T) for which the methylated C (mC) is associated and separate enzymatic pathways are involved in establishment and maintenance of methylation in specific site classes (Bewick & Schmitz, 2017). Three different families of DNA methyltransferases (METases) regulates the process of DNA methylation in plants -which includes maintenance methyltransferases (METs), chromomethylases (CMTs) and de novo domains rearranged DNA methylases (DRMs) (Elhamamsy, 2016). The significance of DNA methylation is not only determined by its abundance, but also by its distribution across different parts of the gene and sequence context such as CG, CHG and CHH. The broad diversity in the type, amount, and location of DNA methylation in a gene during different stages of development has been found in various plant species (Shaikh et al., 2022).

Moreover, the initiation of DNA methylation in plants is regulated by RNA directed DNA methylation (RdDM) pathway, in which the de novo methylation across all sequence context is catalyzed by DNA methyltransferase - domains rearranged methyltransferase 2 (DRM2) (Alakärppä et al., 2018; Gallego-Bartolomé, 2020). In canonical RdDM pathway, the RNAdependent RNA polymerase 2 is involved in the conversion of single-stranded RNAs (ssRNAs) synthesized from the plant-specific RNA polymerase IV (Pol IV) into doublestranded RNAs (dsRNAs). The synthesized dsRNAs are integrated within Argonaute 4 (AGO4) and Argonaute 6 (AGO6) after slicing into 24-nt small interfering RNAs (siRNAs) by DICER-LIKE 3 (DCL3) enzyme (Gallego-Bartolomé, 2020; He et al., 2011). Involvement of Pol IV to chromatin relies on the histone reader SAWADEE homeodomain homolog 1 (SHH1) and the CLASSY family of putative chromatin remodeler. Another aspect of the pathway involves transcription of non-coding RNAs (ncRNAs) by Pol V, which are aligned through sequence complementarity by siRNA loaded AGO4/AGO6, followed by cotranscriptional slicing. After the formation of AGO-siRNAncRNA-Pol V ribonucleoprotein complex, DRM2 is brought-in to initiate target DNA methylation. Also, involvement of Pol V to the chromatin is facilitated by the DNA methyl-readers SUVH2 and SUVH9, which in turn engage the DDR complex - DEFECTIVE IN MERISTEM SILENCING 3 (DMS3), DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), and RNA-DIRECTED DNA METHYLATION 1 (RDM1) - that is crucial for Pol V's presence on chromatin (Gallego-Bartolomé, 2020). Unlike canonical RdDM, the non-canonical pathways typically participate in establishment of initial DNA methylation at new target loci, such as novel TE insertions, instead of preserving existing heterochromatin (Erdmann & Picard, 2020). The RdDM pathway is guided by small RNAs (sRNAs) originating from various origins such as viruses and Pol II transcripts, and these sRNAs are created from dsRNAs that are cleaved into 21-24nt sRNAs by different DCL proteins. These sRNAs are integrated into different AGO proteins to initiate post-transcriptional gene silencing (PTGS) of complementary RNAs through cleavage and/or translational repression. The specific integration of these sRNAs into AGO4 and/or AGO6 can potentially induce Pol V-and DRM2dependent methylation of complementary DNA sequences, which could lead to TGS of genes and transcriptionally active TEs (Gallego-Bartolomé, 2020). After the de novo establishment of methylation via RdDM, maintenance occurs subsequent to DNA replication through methyltransferase 1 (MET1) and chromomethylase 2 and 3 (CMT2 and 3), functioning in the CpG, CHH and CHG contexts, respectively (Gallego-Bartolomé, 2020, 2020; H. Zhang et al., 2018).

In plants, DNA methylation has been identified to be participated in regulating diverse cellular processes such as taking a major part in genome functioning, stability and development, silencing transposable elements (TEs), genomic imprinting and X-chromosome inactivation (Bartels et al., 2018; Shaikh et al., 2022). DNA methylation that occurs in promoter regions is associated with gene expression and eventually involved in regulating growth and development in plants and various other eukaryotes. Methylation of cytosine residues have an impact on binding of DNA with various proteins, including regulatory proteins, which typically prevents the binding of several nuclear proteins which takes participation in transcription and other diverse pathways. Conversely, certain proteins especially bind to methylated DNA sequences and assemble a protein group in the DNA - which is involved in regulation of gene expression. Mostly, cytosine methylation (5mC) in plants is found in transposons and repetitive sequences and inhibits the transcription and transposition, thus is crucial for gene silencing and maintaining genome stability (Shaikh et al., 2022). The methylation of intronic TEs and repeats has also been found to have an influence on mRNA processing mechanisms including alternative splicing and alternative polyadenylation (Gallego-Bartolomé, 2020). In addition to the TEs silencing and repeats, DNA methylation is involved in regulation of various biological processes such as transition to flowering, vernalization, leaf morphology, developmental changes, fertility, floral organ identity, embryonic development, seed development, response to environmental stimuli and genome protection. Recent studies have disclosed that DNA methylation is found to have an essential role in governing important agronomical characteristics, such as heterosis, fruit ripening in tomato and other fleshy fruits, and response to biotic and abiotic stress. Similarly, recent research has also shown the dynamic nature of DNA methylation during embryogenesis and early stages of vegetative growth. The levels of CHH methylation have been found to be higher in embryos as compared to seedlings or adult plants which suggests the crucial role of DNA methylation in embryogenesis. Also, the mutations occurring in MET1 and DDM1 have an impact on seed size and development, which shows the significant role of DNA methylation for seed development. Furthermore, experimentally generated hypomethylation in plant genomes has led to several developmental defects, ensuring the essential role of DNA methylation in proper growth and development. Therefore, DNA methylation in plant participates in different processes including fertilization, gametogenesis, vegetative and reproductive development, and interaction between DNA methylation and histone modification (Shaikh et al., 2022).

Indeed, DNA methylation has necessary impact on abiotic and biotic stress response that is critical in plant adaptation mechanisms (Elhamamsy, 2016). Abiotic and biotic stresses in numerous plant species cause variations in the DNA methylation level of particular DNA sequences, leading to changes in the expression of genes related to stress or defense mechanism, ultimately enabling adaptation to environmental stress (Schmidt et al., 2017). The

*MET1*-mutant *Arabidopsis* plant shows hypersensitivity to salt stress due to significant loss of cytosine methylation and changes in expression of *AtHKT1* gene, which plays a crucial role in plant salt-tolerance mechanism. Exposure of maize roots to cold stress reduces the expression of *MET1* gene and decrease in MET1 level causes demethylation of transposable elements Activator/ Dissociation (Ac/Ds) leading to an activation of abiotic stress-related genes. A similar case of shifting from DNA methylation to demethylation state was also found in rice grown under water stress condition and the demethylation of *Xa21G* gene in rice leads to improved resistance for *Xanthomonas oryzae pv. oryzae* (Elhamamsy, 2016).

Correspondingly, implementation of epigenome editing tools has become advantageous in plant breeding on various levels as it enables the utilization of methylation modifications. Just as the genetic modifications, editing tools could accelerate the domestication process of wild plants by making alterations to the traits that are associated with growth habit, flowering time, yield, nutrition, seed and fruit size, and number in a single generation. However, induced demethylation has a varying effect which can influence both gene expression and repression, as opposed to the gene knockout. Additionally, induced DNA methylation can improve hybrid breeding and plant propagation through tissue culture, which can generate new gene expression patterns in the offspring and aid in managing offspring phenotype. Therefore, epigenome editing could be an effective approach in plant breeding programs for creating new varieties with enhanced agronomic characteristics (Shaikh et al., 2022).

#### 1.7.1 Bisulfite Sequencing

A more cost effective and flexible substitute for Whole genome Bisulfite Sequencing is Bisulfite Sequencing (BS-Seq) in representations of the genome. This method involves using restriction enzyme for genome fragmentation during library preparation and the examples of such method includes RRBS, epiGBS, BsRADseq, epiRADseq, and Creepi (Gawehns et al., 2022). Bisulfite sequencing is a technique used to analyze cytosine methylation which requires treatment of DNA with sodium bisulfite that causes deamination of cytosine to uracil while the methylation at the 5-carbon position prevents this reaction (Gruntman et al., 2008; Henderson et al., 2010). Bisulfite sequencing is followed by various techniques such as sequencing, methylation-specific PCR, combined bisulfite restriction assays, and other methods, so the bisulfite conversion of DNA necessitates prior DNA denaturation, since only methyl cytosines that are situated in single strands are prone to attack. Usually, following denaturation and bisulfite modification, dsDNA is obtained by primer extension, and specific DNA fragment is amplified using PCR (Fraga & Esteller, 2002). The polymerase chain reaction (PCR) of bisulfite treated DNA amplify uracil as thymine while methylated cytosine remains unchanged after amplification. And after amplification, sequencing is performed which allows for determination of the frequency with which sites are present as either cytosine or thymine, serving as an indicator of methyl-cytosine frequency in the original DNA sample. Sodium bisulfite sequencing is a very useful technique when carried out carefully, however, there are chances of some potential pitfalls. The problems are mostly common in plants where methylation can be found in any sequence context. Further, the amplification of unconverted genomic DNA is a frequent problem seen in bisulfite sequencing which is mainly due to incomplete denaturation of the template DNA. This problem can be minimized by designing primers that are biased towards amplifying fully converted DNA (Henderson et al., 2010). A precise primer design is challenging for successful bisulfite sequencing, which is due to lack of prior knowledge regarding the methylation level and sequence changes after conversion. To maintain unbiased results, it is essential to align cytosine residues at primer binding sites with degenerate bases in primers, while minimizing the number of degenerate positions (Foerster & Scheid, 2010). After the amplification reaction, gel electrophoresis analysis should be performed to verify the attainment of expected size of PCR product, also gel purification is suggested to remove any primer dimers. Afterward, the purified PCR amplified product can be cloned, and the same DNA molecule can be reanalysed using conventional methods (Henderson et al., 2010).

# 1.7.2 Reduced representative bisulfite sequencing (RRBS) in non-model organisms

The whole genome bisulfite sequencing (WGBS) is regarded as the benchmark for thoroughly analyzing DNA methylation variation by targeting nearly every base in a genome, however, it is limited to species with well-established genomes and is most costly approach for studying genome wide methylation. A more economical option to WGBS is Reduced representative bisulfite sequencing (RRBS), which focuses on a small portion of the genome while still providing a scalable DNA methylation profile with single-nucleotide resolution (Malinowska et al., 2020). RRBS method depends on selecting specific sizes of restriction fragments to create a reduced representation of the genome of a particular strain, tissue or cell type (Meissner et al., 2005). For the species without reference genomes, RRBS can generate accession-specific references solely for the loci that are examined, which can be achieved by incorporating non-bisulfite converted samples in the sequencing (e.g. for bsRADseq) or deducing unconverted reference from the bisulfite treated reads (Paun et al., 2019).

The similarity among individuals in DNA methylation can be measured by integrating the RRBS data, which also provides a ground for describing patterns of epigenetic variation within and among natural populations. The epigenetic measure of such population offers understanding of the distribution of epigenetic variation such as to what extent the natural epigenetic population structure is correlated to underlying genetic population structure and with environmental variation. The studies conducted on natural populations of Arabidopsis thaliana, experimental populations of maize, and recombinant inbred lines (RILs) of soybean have reported the higher correlation between epigenetic and genetic structure, suggesting that major epigenetic variation is regulated by genetic control. Moreover, some studies have explained the association of epigenetic population with ecological conditions instead, which suggests direct or indirect contribution of epigenetics to adaptation. This is either because epigenetic changes are caused by environmental conditions and provides a capacity for phenotypic plasticity or continuing heritable responses or/and because the epigenetic variation that are not correlated to overall genetic population structure can be influenced by individual genetic loci. Additionally, high heritability of cytosine methylation in plants provides opportunity to use RRBS loci as markers for linkage mapping purposes in crosses where genetic variation is limited or not present (Paun et al., 2019).

While RRBS could focus on functional areas within a genome, in non-model species, understanding of the genomic context of RRBS sites is usually limited to fragments that share similarities with annotated species. This approach has noted drawbacks because genes and their functions change over time, potentially hindering accurate evaluation of the information obtained in non-model species. Using a reference transcriptome could enhance functional predictions in absence of a reference genome, however, even if a significant portion of RRBS fragments overlap with a well annotated transcriptome or can be annotated with known plant genes, only a few of these fragments overlap with 5' end of gene where increased DNA methylation correlates with gene silencing. The significance of gene body methylation outside of 5' end in plants varies depending on context and taxonomic group, and usually, gene body methylation is weakly or not at all correlated with gene expression. While methylation of the promoter region is strongly associated with silencing, identifying RRBS fragments that overlaps with promoter regions is challenging without a well annotated reference genome of the target species or a close relative. Additionally, it may be difficult to achieve sufficient genome coverage for plants with average to large sized genomes and the identification of differentially methylated regions (DMRs) is another challenge for all RRBS approaches. Studies conducted in several species have reported that methylation changes over large chromosomal stretches (DMRs) are more prone to have an impact on transcriptional activity at nearby loci and contribute towards phenotypic change than at single cytosines (DMPs). Nonetheless, defining DMRs remains challenging even in whole genome analyses. The short fragments interrogated with RRBS techniques (usually< 500 bp) will comprise only a limited cytosine positions and accurately identifying DMRs with statistical confidence from such data will be challenging in many instances. Thus, most RRBS analyses will be constrained to calling DMPs, with their intrinsic randomness (Paun et al., 2019).

Furthermore, the flexibility of RRBS protocols provides various technical ways to enhance effectiveness, for example, selection of restriction enzymes determines which regions of the genome are sampled (Paun et al., 2019). RRBS conducted in maize plant suggest that the RRBS enzymes must be selected carefully by considering variations among genomes and different Region of Interest (ROIs) (Hsu et al., 2017). Methylation sensitive enzymes will focus on sections within plant genomes that show a tendency to avoid densely methylated repetitive regions, resulting in enrichment towards coding regions. However, using these enzymes will increase the likelihood of missing data, especially within DMRs, as methylated individuals at the recognition site will not be included. An enzyme with a restriction site rich in GC content will also bias against repetitive regions because numerous transposable elements (TEs) are associated to regions of genome that are predominantly AT-rich. Additionally, enzymes that cleave more frequently (with shorter recognition sequences) will increase the genome representation irrespective of genomic context. Improvements can also be done by using platform that can generate longer reads (such as MiSeq instead of HiSeq) or by making adjustment to the libraries to obtain information across larger regions using pairedend sequencing techniques (for instance, up to 800 bp for bsRADseq using Illumina). This increase the probability of annotating and detecting DMRs, and potentially identifying promoters (Paun et al., 2019).

#### **1.7.3 Reference free DNA methylation analysis (RefFreeDMA)**

There are great possibilities in studying impacts of environment and epigenetic inheritance not only in laboratory but also in natural populations and natural organisms, as animals in the nature usually face the complex evolutionary challenges and ecological adaptation, which cannot be designed in the laboratory settings. Basically, bioinformatics methods are insufficient for analysing sequencing-based DNA methylation data in the unavailability of a high-quality reference genome and in genetically diverse populations in which existing reference genomes could introduce bias into the analysis. An integrated method for analysing DNA methylation at single-base-pair resolution was depicted by combining an optimized high-throughput RRBS protocol with a customized computational method named RefFreeDMA, which enable identification of differential DNA methylation without a reference genome (Klughammer et al., 2015a).

RefFreeDMA is designed as a Linux-based software pipeline, enabling small to moderately sized analyses on a desktop computer (e.g., 40-hr total runtime for completing 20 samples), whereas extensive analyses are effectively parallelized on a computing cluster (Klughammer et al., 2015a). RefFreeDMA generates a deduced genome directly from RRBS sequencing reads, maps the sequencing reads to the deduced genome, performs DNA methylation calling, and detects differentially methylated cytosines and DNA fragments. RefFreeDMA constructs the deduced genome by first grouping the RRBS reads across all samples within a species based on their sequence similarity, which is followed by inference of the consensus sequence for each read cluster. In this consensus sequence, positions containing both cytosines (Cs) and thymines (Ts) among the clustered reads are retained as Cs, since they are likely to represent methylated genomic cytosines and protected from bisulfite sequencing in some but not in all samples. Briefly, all consensus sequences are concatenated with spacer sequences (referred to as stretches of Ns) to make computational tasks easier, which results in construction of deduced genome specifically for a particular species and for the analysis but shared among all samples contributing to the analysis. The subsequent stages of read alignment, DNA methylation calling, and analysing differential methylation follow a similar procedure to DNA methylation analysis with a reference genome. RefFreeDMA addresses significant drawbacks of an existing technique utilizing de novo assembly of MeDIP-seq reads, including low resolution, susceptibility to biases, and lack of quantification. Moreover, it exhibits greater potency and broader applicability as compared to read mapping to the genome of a closely related species, which necessitates a closely matched genome and an unconverted library (Klughammer et al., 2015a).

Additionally, various inherent constraints of reference free DNA methylation analysis were suggested in (Klughammer et al., 2015a) for taking into account while considering this method. Firstly, repetitive elements with high sequence similarity may merge into a single deduced genome fragment, which leads to moderately fewer covered CpGs compared to the reference-based analysis. Secondly, unmethylated cytosines across all samples of a species may not be represented in the deduced genome unless one RRBS sample is sequenced without bisulfite conversion and added to the analysis. Thirdly, the method does not perform de novo assembly of deduced genome fragments, a process that necessitate greater sequencing depth

and broader sequencing coverage than is usually feasible. Consequently, there is possible chances for the same CpG to be included twice in two partially overlapping fragments. The applications of RefFreeDMA includes conducting epigenome wide association studies (EWASs) to explore phenotypic variation within natural populations, examining the epigenetic impacts of various feeds, drugs, and rearing conditions in agricultural research, and meta-epigenome examinations of DNA methylation across entire ecosystems (Klughammer et al., 2015a).

## 1.8 Aim of the study

The aim of the study was to analyze the SNP genotyping data - GWAS (Genome wide association studies), and the DNA methylation data (analyze output reads from Illumina sequencing of reduced representation bisulfite libraries) using various software, such as PLINK v 2.0, R-stats, and CLC genomic Workbench 22.0.2. The main aim was to determine whether the trees from sowed seeds (Swedish) can be differentiated either genetically or epigenetically from trees derived from wind-blown seeds (Norwegian) from neighboring natural stands of Scots pine. Another aim of the study was to determine whether detected SNP alleles correlate with lifetime growth rate and/or annual growth rates during periods of temperature and/or water stress. Also, the study aimed to characterize the genes associated with the significant SNPs by Gene Ontology analyses. Finally, a secondary aim was to identify whether Swedish vs. Norwegian trees or tall vs. short trees exhibited differential DNA methylation patterns, and if so, whether such differentially methylated regions could be functionally characterized via BLAST algorithms.

## 2. Material and Methods

#### 2.1 Genotypes and SNPs categorization

Individual sample of *Pinus sylvestris* from 4 different forests – Storvelta (S), Gratvikskogen (G), Brannflata midt (BM), Brannflata Sor (BS) in Norway were used for the study with total of 320 samples, in which 10 sampling surface area from each forest and 8 individual sample trees from each sampling surface were selected. Before sampling, two of these forest, G and S were subjected to harvesting operations by leaving some seed trees. Other two plots, BM and BS, were cleared by fire damage, leaving no remaining seed trees. ALL four of these cleared plots were sown with pine seed purchased from the Swedish Forestry Research Institute by Glommen Mjøsen Skog SA and sold to forest owners who owned BM, BS, G and S. The pine seeds used for sowing were mostly extracted from cones gathered in the Dalarna region of Sweden, but some seeds were taken from cones gathered on the Norwegian side of the border, directly east of Gratvikskogen and Storvelta. One of the objectives of this study was to genetically differentiate between the Swedish origin trees (sown seed) and naturally occurring population (Norwegian). The phenotypic data in terms of total height, diameter, age of trees from 5 to 10 years, height increment in each year i.e., from Year 2011 to 2020 was recorded, and the origin of trees either Swedish or Norwegian was inferred from the SNP data and STRUCTURE analysis. Ten to thirty needles were harvested from each tree, placed in an Eppendorf tube, and immediately flash frozen and stored in liquid N<sub>2</sub> before transferring to a -80 °C freezer. The needles were then freeze dried. The genomic DNA from all the samples were extracted by BioBank AS (Hamar, Norway) and SNP genotyped using the Affymetrix platform and the PiSy50K array developed at the University of Helsinki (Kastally et al, 2021). From all the samples, data for 47712 SNPs were obtained, and 10 individual samples failed the quality control and 10 were missing data, so the total of 300 out of 320 samples were used for the downstream analyses. The final SNP call file (.txt) from Affymetrix containing information for those 47712 SNPs were assigned to either of six classes which includes, Poly High Resolution, Mono High Resolution, No Minor Homozygotes, Call Rate Below Threshold, off target variants (OTV), and Other. Finally, only 42920 SNPs falling in category Poly High Resolution and No Minor Homozygotes (NMH) were used for further analysis and were converted to pgen, pvar, and psam file using the command in Plink 2.0 with the help and suggestions of Chedly Kastally.

## 2.2 Population structure and admixture analysis

Using STRUCTURE software v.2.3.4, the population structure analysis was performed through the series of steps by creating a separate project. Initially, the input file was created with the names of SNPs marker in the row and individual ID included in the column. After clicking the option – file, the project directory and name of the project was then specified and the selection of input file for the analysis was completed. Likewise, various input file characteristics, such as the number of individuals (310), number of SNPs loci (42920), and

missing data value (-9) was also specified in STRUCTURE. v.2.3.4. The analysis was performed selecting the admixture model with two replicates of K values ranging from 1 to 10, burn-in period of 10000 and 20000 Markov chain Monte Carlo (MCMC) replication after burn in. Thereafter, to parallelize the runs of STRUCTURE, Structure threader program was used by creating a virtual environment in Python. Further, the output from STRUCTURE v.2.3.4 was used as an input and processed in STRUCTURE HARVESTER executing "Evanno method" to determine the best K value through statistics  $\Delta$  K (Earl & vonHoldt, 2012). For the better visualization of true number of populations, STRUCTURE v2.3.4 and fastSTRUCTURE were used to generate the admixture plot and presented in the result section.

#### 2.3 Genome Wide Association Study (GWAS)

Genome wide Association Study was conducted in Plink v 2.0 to associate SNPs with phenotypic data. Based on the phenotype, two different association study was performed for 300 samples of *Pinus sylvestris*- (i) Association study of SNP genotype associated with tree height (Tall or Short) based on Origin of tree i.e., Swedish (S), Norwegian (N), and Total -Swedish & Norwegian (Total - N+S) and (ii) Association study of SNP genotype associated with tree growth (good or bad) based on temperature and precipitation. For the association study of tree height, all the samples were separated in terms of their age and tall versus (vs) short trees were sorted based on total height of individual trees for their respective ages - by calculating average value and standard deviation (std). The sorting process was done separately for the origin of tree – N and S, and for total (N+S), then the height of the trees that falls 1 Standard deviation above the Mean Value was categorized as Tall whereas the height falls 1 Standard deviation below the Mean Value was categorized as short trees. Subsequently, the three different psam files were created for each of the Swedish, Norwegian, and Total (N+S) trees including Individual ID, Family ID and tree height denoted as 1 for tall, 2 for Short, and -9 for trees belonging to neither of them. Also, the covariance file (covar.txt) was created considering the four different sampling locations – Storvelta, Gratvikskogen, Brannflata midt (BM), Brannflata Sor (BS) as covariance and integrated in the analysis. After that the association analysis was performed for N, S, and total (N+S) in the PLINK 2.0 software using the flag -glm and -assoc. Association based on dominant and recessive allele was performed-for with and without covariance, as well as for interaction, while based on Genotypic, the association was performed only for without covariance and interaction. Thus, the SNPs significantly (P-value less than or equal to 0.01) associated with tree height (Tall or Short) based on origin of tree i.e., Swedish (S), Norwegian (N), and Total - N+S were identified.

Moreover, for the association of growth with seasonal temperature and precipitation, the Standardized Precipitation Evapotranspiration Index (SPEI) was calculated using R-studio to detect the period with a water deficit. The homogenized monthly mean temperature and precipitation data from 2011 to 2020 was taken from Flisa II station and potential evapotranspiration was estimated using the Thornthwaite method as described by (Vicente-Serrano et al., 2010b) and the SPEI was calculated (figure 4) on 3 month scale (SPEI-3). To

analyse the association of growth, two different time-period of the years were selected which includes, dry summer months from June to August and dry spring months from March to May. All the 300 individual sample of trees were separated based on their age and the growth was determined in each year from 2011 to 2020 using the height increment for each of those year. The similar method of calculating the average and standard deviation was used as applied in association study of height based on origin of trees. Likewise, the growth of trees either good or bad was identified for each of the year considering 1 Standard deviation above the mean value and 1 Standard deviation below the mean value representing good growth and bad growth, respectively. Depending on the calculated SPEI value-integrated over three-month scale, only the year which showed the high and low SPEI value was chosen for each time-period. For Dry summer (June-August), the High SPEI and Low SPEI value was observed in the year 2018 and 2012, respectively. While, for the period of dry spring (March-May) High SPEI and Low SPEI value was observed in the year 2017 and 2019, respectively. Also, the High SPEI was named as Low Temperature High Precipitation (LTHP) and Low SPEI as High Temperature Low Precipitation (HTLP).

Finally, the four different psam files were created for these four different categories identified. The phenotype for individual tree in the psam file was denoted as 1 for good growth, 2 for bad growth, and -9 for the samples that were neither of them. After this, the association analysis was performed in PLINK 2.0 (--glm and --assoc) only for without covariance in the dominant, recessive, and genotypic categories, thus the significantly associated SNPs were identified by sorting the P-value less than or equal to 0.01. Using Venn Diagram, the significantly associated SNPs that were identified in both association study were shown for better visualization.

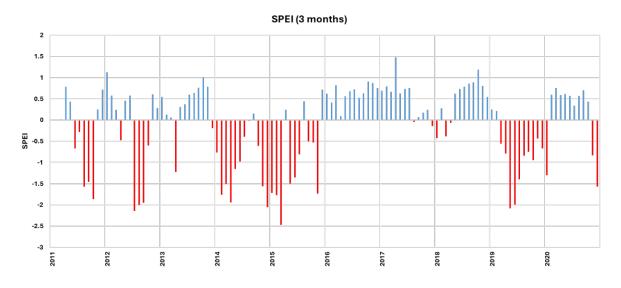



Figure 4. SPEI calculation over the 3 months scale (SPEI 3) based on the homogenized monthly mean temperature and precipitation data from 2011 to 2020 taken from Flisa II station.

#### 2.4 Gene Ontology Analysis

Gene Ontology (GO) Analysis was performed using R-studio to identify the Biological Process (BP), Molecular Function (MF), and Cellular Components (CC) involved. Using the

Metadata file (47712 SNPs blast searched with nucleotide sequences of *Pinus sylvestris* as well as with transcriptome sequences of *Pinus taeda*), the SNPs that were found to be significantly associated with the phenotype in the association study were compared - to identify the genes associated with those significant SNPs, but not all the significant SNPs were associated with the genes. The genes that were identified in both association analysis based on dominant, recessive, and genotypic were utilized to conduct Gene Ontology analysis. The list of gene symbols was used as input file to carry out the analysis in R-studio using enrichGO function provided by ClusterProfiler package from the Bioconductor and the AnnotationHub package of Arabidopsis thaliana was used. Consequently, the redundant terms from the list of enriched GO terms were eliminated using the function in the ClusterProfiler.

## 2.5 Differential DNA methylation Analysis

Purified genomic DNA from 15 Swedish and 15 Norwegian trees, roughly 50:50 tall vs. short was shipped to CD Genomics in the USA for generating reduced representation bisulfite sequencing (RRBS) data. Briefly, the DNA samples were digested with restriction enzymes – DpnII & MspI for RRBS library preparation, in which the short fragments containing methylated dinucleotides at the ends are generated, end repaired, and size selected (300 bp) and adapter-ligated. The DNA fragments are then subjected to bisulfite conversion (sodium bisulfite), PCR amplified, and sequenced by Illumina paired end (150 bp - each end) sequencing platform. Following QC and trimming, sequencing reads were pre-processed using RefFreeDMA (Klughammer et al., 2015b) basic guidelines by splitting the scripts in both python and R-studio. The two binary variables, Norwegian vs. Swedish and Tall vs. Short were used for conducting DNA methylation analysis in three different sequence contexts -CpG, CHG, and CHH. While performing the analysis, the sequence reads were processed separately. The differentially methylated fragments and differentially methylated motifs for Read 1 and 2 of both binary variables (Norwegian vs. Swedish, NvS, and Tall vs. Short, TvS) in three different sequence context- CpG, CHG, and CHH (3 context \* 2 variables \* fragments & motifs = 12 files, each for Read 1 and Read 2) were generated. And filtered in steps - Padjusted value less than or equal to 0.05 (P  $\leq$  0.05), followed by coverage greater than 8 and less than 200 filtering value in meth cov g1 (i.e. comparative sample 1) and in meth cov g2 (i.e. comparative sample 2) - to identify the significantly methylated sequences. Further, filtering was also done in the meth.mean.diff and diff.mean.meth column for differentially methylated fragments and differentially methylated motifs, respectively with same value range for both Read 1 and 2 (in same variable and context). For the comparisons of NvS and TvS, the meth.meth.diff values for fragments and diff.mean.meth values for motifs were standardised for all contexts (CpG, CHG, CHH) and same values were applied for both reads (1 and 2). The standardized parameters values applied in NvS for fragments were - CpG ( meth.mean.diff of +/- 15), CHG (meth.mean.diff of +/- 30), and CHH (meth.mean.diff of +/-7) and for motifs were - CpG (diff.mean.meth of  $\pm -50$ ), CHG (diff.mean.meth of  $\pm -50$ ), and CHH (diff.mean.meth of +/- 50). Furthermore, the standardized parameters values applied in TvS for fragments were - CpG (meth.mean.diff of +/- 20), CHG (meth.mean.diff of +/-

30), and CHH (meth.mean.diff of +/- 7) and for motifs were - CpG (diff.mean.meth of +/- 20), CHG (diff.mean.meth of +/- 20), and CHH (diff.mean.meth of +/- 50).

After the filtering step, MultiBlastx and Multiblastn was performed in CLC Genomics Workbench 22.0.2 and the parameters for blast search was set (Appendix). MultiBlastn against the created blast database of *Pinus jeffreyi* (Accession number: <u>SAMN12121614</u>) and MultiBlastx against the Refseq protein database was conducted for both the differentially methylated fragments and differentially methylated motifs. MultiBlastn of binary variable (NvS) for different context was performed separately, with read1 and read 2 together for both motifs and fragments. Similarly, MultiBlastn for TvS differentially methylated motifs was performed for read 1 and read 2 together, but for fragments it was done separately for read 1 and read 2 - motifs (NvS as well as TvS) and fragments (TvS), while for NvS differentially methylated fragments it was performed together for read 1 and read 2. Finally, the differentially methylated sequence (motifs and fragments) and the results from both MultiBlastn and MultiBlastx were analysed.

## 3. Result

#### 3.1 Genotypes and SNPs categorization

Genotypes for a total of 47712 SNP markers were obtained for 310 *Pinus sylvestris* DNA samples, after quality control, using the PiSy50K SNP array based on the Affymetrix Axiom platform (Kastally et al., 2022). The SNPs markers were categorized into different classes, of which only 42920 SNPs from the category Poly high resolution (PHR) and No-minor homozygote (NMH) were used for further analysis. Out of total number of SNPs (42920), the highest percentage (97.9%) were in HWE (P-value  $\geq 0.01$ ) (figure 5A). Moreover, the number of SNPs above MAF  $\geq 0.05$  was 41974 (figure 5 B) and the number of SNPs falling into different MAF values is shown in figure 6. The observed heterozygosity, O (HET) was higher in majority of SNPs as compared to expected heterozygosity, E (HET) (figure 7).

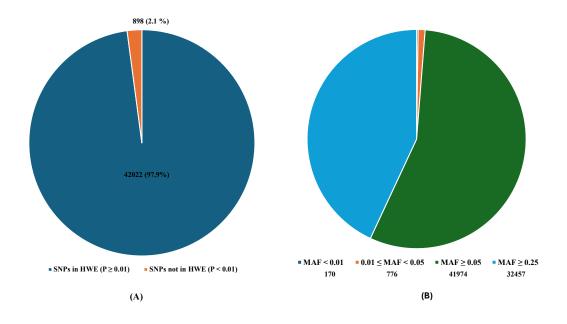



Figure 5. Categorization of SNPs either in HWE ( $P \ge 0.01$ ) or not in HWE (P < 0.01). (B) Categorization of SNPs in different MAF categories.

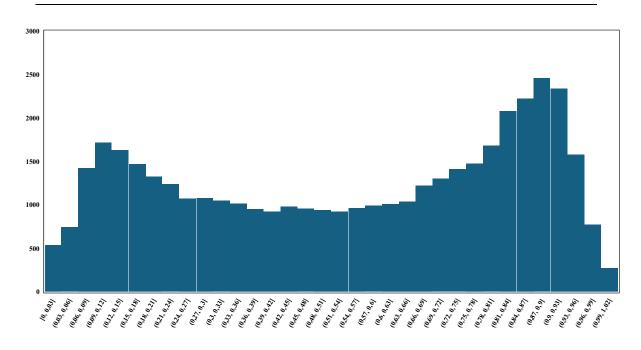



Figure 6. Number of SNPS falling into different MAF categories.

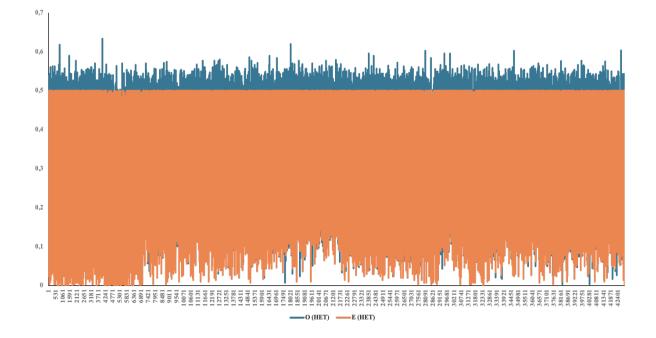
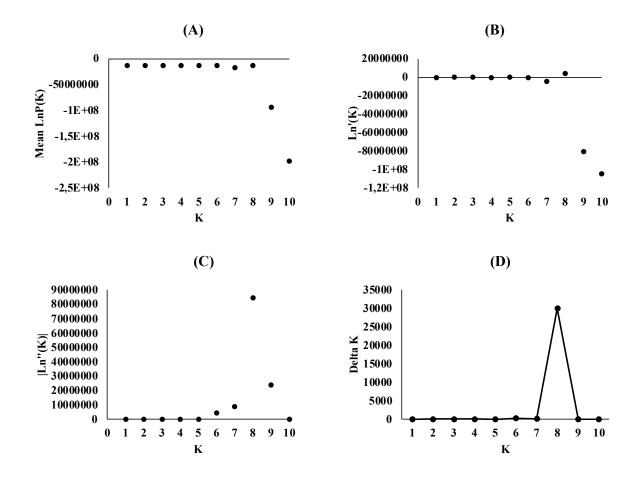




Figure 7. Observed and expected heterozygosity for each 42920 SNPs obtained.

## 3.2 Population structure and admixture analysis

Among four forest plots, Branflatta Midt (BM), Brannflatta Sør (BS), Gratvikskogen (G) and Storvelta (S), two of these forest, G and S were subjected to harvesting operations by leaving some seed trees before sampling. Other two plots, BM and BS, were cleared by fire damage, leaving no remaining seed trees but there still have been some viable Norwegian seeds left in the soil that germinated along with the sown Swedish seeds. Among the 8 different population, one large population was identifying as the Swedish population (population 4), while other represented different mixtures of Norwegian and Swedish. Particularly, Gratvikskogen showed the fewest individual (population 4 - Swedish) and belonged largely to population that were more mixed with the Swedish (Table 1). This was likely due to the proximity of the cones (containing seeds) collection sites on the Norwegian side closer to Gratvikskogen than the other plots.

Analysis of 42920 SNPs in STRUCTURE V.2.3.4 was mainly performed to determine the true K - value (the true number of populations) using an admixture model and to analyse various characteristics of populations such as allele frequency divergence, mean FST and expected heterozygosity between individuals. STRUCTURE HARVESTER was used to process the output results of STRUCTURE program executing "Evanno method" as a mean likelihood value - LnP(k) for each K-value and plots were generated. A plot of mean likelihood as a function of K visually indicated that the likelihood increased until the true K was reached and then plateaued (Figure 8). The  $\Delta$ K plotted for each k value showed a modal value for the distribution and generates the true k value which was eight clusters (Figure 8). The admixture plot was generated from the fastSTRUCTURE and STRUCTURE V.2.3.4 which showed the population structure graph at different k-value and at true K- value i.e., eight distinct population (8 clusters) in *Pinus sylvestris* (Figure 9 and Appendix figure A2 & A3).



Estimation of K in Scots Pine (Pinus sylvestris)

Figure 8. shows a graphical representation of the steps used to identify the true number of populations (K) from STRUCTURE analysis on a dataset of 310 Scots Pine individuals genotyped at 42,920 SNP loci. Panel A - Mean likelihood plot LnP(K) for each K value over 10 runs. Panel B - First order rate of change of LnP(K) with respect to K value, Ln'(K) = LnP(K) - LnP(K-1). Panel C - Second order rate of change (absolute value) of LnP(K) as per K value, |Ln''(K)| = |Ln'(K+1)-Ln'(K)|. Panel D - Delta K ( $\Delta K$ ) value, calculated using the formula  $\Delta K = mean (|Ln''(K)| / sd [LnP(K)])$ , plotted against K values to provide a modal value indicating the true K or the highest level of structure. In this study, the true K is determined to be eight clusters.

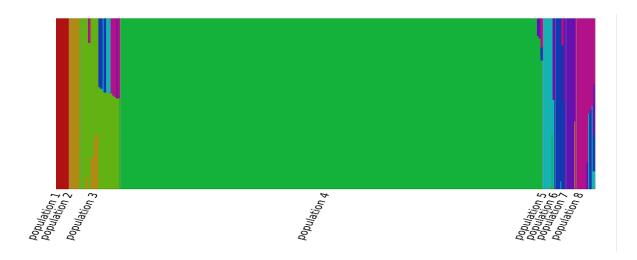



Figure 9. An admixture plot from fastSTRUCTURE shows eight populations, represented by different colors, at the optimal K value (K=8).

Table 1. Estimation of sampled trees from each of the forests belonging to different populations. N:Norwegian, S: Swedish

|           | BM | BS | S  | G  | Total |
|-----------|----|----|----|----|-------|
| Pop 1 (N) | 3  |    | 4  |    | 7     |
| Pop 2 (N) |    | 2  | 1  | 3  | 6     |
| Pop 3 (N) |    |    |    | 20 | 20    |
| Pop 4 (S) | 69 | 74 | 75 | 22 | 240   |
| Pop5 (N)  |    |    |    | 6  | 6     |
| Pop 6 (N) |    |    |    | 5  | 5     |
| Pop 7 (N) |    |    |    | 6  | 6     |
| Pop 8 (N) |    |    |    | 10 | 10    |
| Total     | 72 | 76 | 80 | 72 | 300   |

The proportion of membership of sample observed in each cluster of *Pinus sylvestris* ranged from 0.021 (cluster 7) to 0.759 (cluster 4). The genetic diversity between individual within same cluster showed that the average distance varied from 0.1836 (cluster 8) to 0.3191 (cluster 4). The mean Fst value reported in all the cluster ranged from 0.0118 (cluster 4) to 0.5253 (cluster 8) which showed the remarkable genetic differentiation in all the cluster, except cluster 4 with low genetic distinctness within cluster (Table 2).

Table 2. Estimation of cluster proportions, expected heterozygosity, and mean Fst values usingSTRUCTURE in Scots Pine.

| Inferred<br>Clusters | Proportion of membership<br>of sample in each cluster | Average distances (expected<br>heterozygosity) between individuals in<br>same cluster | Mean<br>value of<br>Fst |
|----------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------|
| 1                    | 0.038                                                 | 0.2198                                                                                | 0.4771                  |
| 2                    | 0.025                                                 | 0.2161                                                                                | 0.4716                  |

| 3 | 0.06  | 0.2593 | 0.2594 |
|---|-------|--------|--------|
| 4 | 0.759 | 0.3191 | 0.0118 |
| 5 | 0.025 | 0.2081 | 0.4714 |
| 6 | 0.027 | 0.2482 | 0.3245 |
| 7 | 0.021 | 0.1978 | 0.5142 |
| 8 | 0.046 | 0.1836 | 0.5253 |

The allele frequency divergence among population showed that the highest nucleotide distance was observed between cluster 4 and 6, while the cluster 5 and 8 were found to be closely related with lowest (0.0299) net nucleotide distance between them (Table 3).

Table 3. Allele-frequency divergence (Net nucleotide distance) among Scots Pine populations,computed using point estimates of P.

| Inferred | 1 | 2      | 3      | 4      | 5      | 6      | 7      | 8      |
|----------|---|--------|--------|--------|--------|--------|--------|--------|
| Clusters |   |        |        |        |        |        |        |        |
| 1        | - | 0.0922 | 0.1206 | 0.1253 | 0.0614 | 0.1294 | 0.1144 | 0.0883 |
| 2        |   | -      | 0.0913 | 0.0948 | 0.0319 | 0.1019 | 0.0861 | 0.0599 |
| 3        |   |        | -      | 0.1211 | 0.061  | 0.1303 | 0.1161 | 0.0882 |
| 4        |   |        |        | -      | 0.0648 | 0.1323 | 0.1229 | 0.0935 |
| 5        |   |        |        |        | -      | 0.071  | 0.0569 | 0.0299 |
| 6        |   |        |        |        |        | -      | 0.127  | 0.0985 |
| 7        |   |        |        |        |        |        | -      | 0.0855 |
| 8        |   |        |        |        |        |        |        | -      |
|          |   |        |        |        |        |        |        |        |

#### 3.3 Genome wide association study (GWAS)

The study involved two separate investigations aimed at understanding the genetic factors influencing Plant Height (PH) and Plant growth through Genome Wide Association Studies (GWAS). In the first study, our goal was to identify SNPs significantly associated to PH across population of Scots pine. The second study aimed to examine the potential relationships between SNPs markers and annual Plant growth, considering variations in temperature and precipitation across different seasons.

## 3.3.1 Identification of SNPs associated with Plant Height based on their Origin

Genome Wide Association Study (GWAS) was conducted to identify the significantly associated SNPs with plant height (PH) in Norwegian, Swedish and combined population (Total(N+S)) of Scots pine from 4 forest plots- Brannflata Midt (BM-), Brannflatta Sør (BS), Gratvikskogen (G), and Storvelta (S). In the Norwegian sample, significantly associated SNPs with PH were identified in dominant alleles (53 SNPs) and recessive alleles (1 SNP) by considering the covariance. Without covariance, the significant association included 84 SNPs with dominant alleles, 19 SNPs with recessive alleles, and 49 SNPs with genotypes (Table 4). For Norwegian trees, inclusion of interaction association model did not exhibit any SNPs marker associated with PH in any forest. In terms of Swedish population, significantly associated SNPs with dominant alleles were 217 and recessive alleles were 32 when considering covariance. Without covariance, the associations expanded to include 279 SNPs associated with dominant alleles, 94 SNPs with recessive alleles, and 265 SNPs with genotype. Interaction analysis identified 98 SNPs (49 in BS and 49 in S) associated with dominant alleles and 2 SNPs (in BS) associated with recessive alleles, whereas no SNPs were associated with genotype (Table 4). The predominance of dominant allele was observed in both, Norwegian and Swedish trees, and dominance of dominant allele was much higher when the covariance was not included.

For the combined population of Norwegian and Swedish (Total (N+S)), significant associations were detected with 344 SNPs identified in dominant allele and 56 SNPs identified in recessive alleles when covariance was considered. Association analysis without covariance included 313 SNPs identified in dominant alleles, 131 SNPs in recessive alleles, and 299 SNPs in genotype. Based on interaction, association analysis revealed 585 SNPs (150 in BS, 244 in S, and 191 in G) associated with dominant alleles, 30 SNPs (14 in BS, 5in S, and 11 in G) with recessive alleles, and 106 SNPs 8 26 in BS, 52 in S, and 28 in G) with genotype interaction (Table 4). In BS, interaction association model identified 150 significant SNPs associated with PH by dominant model, and 14 significant SNPs were associated with PH by an additive genetic model, and 16 significant SNPs were associated with PH by an additive genetic model. Likewise, in forest S, analysis revealed a substantial genetic influence on PH with dominant model identifying 244 significant SNPs. Furthermore, recessive genetic model identified 5 significant SNPs associated with PH, while additive genetic model (20 SNPs) and dominant deviation model (32 SNPs) also showed influence on PH. In G, a dominant model exhibited 191

significant SNPs associated with PH, recessive model revealed 11 significant SNPs, while additive genetic model and dominant deviation model identified 7 SNPs and 21 SNPs, respectively.

| Origin                               | Dominant | Dominant<br>Interaction | Dominant<br>without<br>covariance | Recessive   | <b>Recessive</b><br>interaction | Recessive<br>without<br>covariance | Genotypic<br>interaction | Genotypic<br>without<br>covariance |
|--------------------------------------|----------|-------------------------|-----------------------------------|-------------|---------------------------------|------------------------------------|--------------------------|------------------------------------|
|                                      |          |                         | Γ                                 | Norwegian   |                                 |                                    |                          |                                    |
| Significantly*<br>associated<br>SNPs | 53       | 0                       | 84                                | 1           | 0                               | 19                                 | 0                        | 49                                 |
|                                      |          |                         |                                   | Swedish     |                                 |                                    |                          |                                    |
| Significantly*<br>associated<br>SNPs | 217      | 98                      | 279                               | 32          | 2                               | 94                                 | 0                        | 265                                |
|                                      |          |                         | Total (No                         | rwegian + S | wedish)                         |                                    |                          |                                    |
| Significantly*<br>associated         |          |                         |                                   |             |                                 |                                    |                          |                                    |

Table 4. Significant SNPs identified based on Origin of 300 Scots Pine (Pinus syvestris) samples.

\* Significance determined at p-value  $\leq 0.01$ 

Table 5. Significantly associated SNPs with plant height (PH) identified in different forest plots.

| Forest plots | Dominant model * covariant interaction | Recessive model * covariant interaction | Genotype model *<br>covariant interaction |
|--------------|----------------------------------------|-----------------------------------------|-------------------------------------------|
| BM           | -                                      | -                                       | -                                         |
| BS           | 199                                    | 16                                      | 26                                        |
| S            | 293                                    | 5                                       | 52                                        |
| G            | 191                                    | 11                                      | 28                                        |

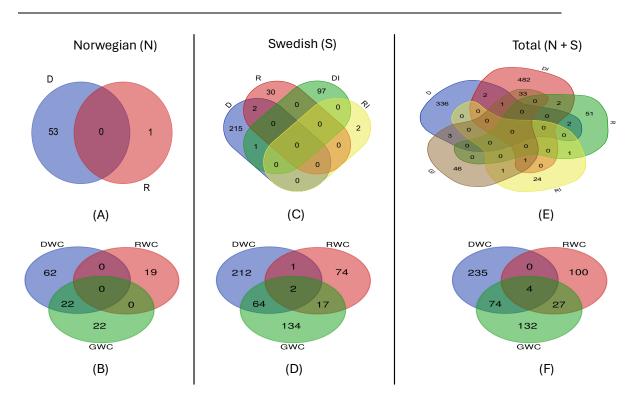



Figure 10. Venn diagram showing significantly associated SNPs based on the origin of 300 Scots Pine samples. (A) represents significantly associated SNPs based on the dominant - D, recessive - R and dominant interaction - DI, of Norwegian trees. (B) represents significantly associated SNPs based on the dominant, recessive and genotype without covariance (DWC, RWC & GWC, respectively) of Norwegian trees. (C) represents significantly associated SNPs based on the dominant, recessive, dominant interaction, and recessive interaction- RI of Swedish trees. (D) represents significantly associated SNPs based on the dominant, recessive and genotype without covariance of Swedish trees. (E) represents significantly associated SNPs based on the dominant interaction, recessive interaction, and genotypic interaction - GI of Total(N+S) trees. (F) represents significantly associated SNPs based on the dominant, recessive, and genotype without covariance of Total(N+S) trees.

# **3.3.2** Association study of SNPs with Annual Plant growth under varying temperature and precipitation

Understanding the genetic basis of annual plant growth and its response to changing environmental conditions is important for elucidating adaptive strategies of plant. GWAS helps to understand the genetic architecture of complex traits like plant growth.

In our investigation of the genetic factors influencing yearly Plant growth, we conducted a detailed re-evaluation of our dataset to identify SNPs markers that specifically correlate with Plant growth during different time period with seasonal changes in temperature and precipitation. Based on the Standardized Precipitation Evapotranspiration Index (SPEI), which provides a standardized measure of drought severity by integrating both temperature and precipitation data. Four different time periods were selected to identify SNP markers associated with growth during seasons varying in temperature and precipitation. During the period of March-May, the highest number (376) of significantly associated SNPs was identified in the dominant allele model, while lowest number (88) was identified for the

recessive allele model, in the Low SPEI category (HTLP, 2019). Conversely, the High SPEI (LTHP, 2017) marked the highest number (982) and lowest number (400) of significantly associated markers based on the recessive allele and dominant allele models, respectively. Based on the genotypic model the number of significantly associated SNPs were 292 and 351 for Low SPEI and High SPEI, respectively (Table 6).

Furthermore, both the SPEI category of the period June-August (year 2012 & 2018) showed the greater number of significant SNPs for dominant allele model while the lowest number was found for recessive allele model. The number of SNPs identified in the Low SPEI were 55 for dominant allele, 34 for the recessive allele, and 47 for the genotypic. For the high SPEI category, 488, 111 and 387 significant SNPs were identified by the dominant, recessive, and genotypic association, respectively (Table 6).

|                           | Dominant without | <b>Recessive without</b> | Genotypic without |
|---------------------------|------------------|--------------------------|-------------------|
| Time period with SPEI     | covariance       | covariance               | covariance        |
|                           | Marcl            | h-May                    |                   |
| HTLP (Low SPEI), 2019     |                  |                          |                   |
| Significantly* associated |                  |                          |                   |
| SNPs                      | 376              | 88                       | 292               |
| LTHP (High SPEI), 2017    |                  |                          |                   |
| Significantly* associated |                  |                          |                   |
| SNPs                      | 400              | 982                      | 351               |
|                           | June-A           | August                   |                   |
| HTLP (Low SPEI), 2012     |                  |                          |                   |
| Significantly* associated |                  |                          |                   |
| SNPs                      | 55               | 34                       | 47                |
| LTHP (High SPEI), 2018    |                  |                          |                   |

Table 6. Significant SNPs associated with growth and with seasonal temperature and precipitation for different time-period.

| Significantly* associated |     |     |     |
|---------------------------|-----|-----|-----|
| SNPs                      | 488 | 111 | 387 |
|                           |     |     |     |

45

\* Significance determined at p-value  $\leq 0.01$ 

## 3.4 Gene Ontology Analysis

#### 3.4.1 Gene Ontology (GO) analysis of genes associated with Plant height

Understanding the biological importance of genes identified through GWAS is crucial for elucidating the underlying mechanisms regulating these traits. Gene Ontology (GO) analysis provides a systematic approach for annotating genes based on their biological processes (BP), molecular functions (MF) and cellular components (CC), thus facilitates interpretation of GWAS results. Notably, only a subset of the SNP marker on the array were annotated as lying in "known" sequences identified via Blast searches against various plant sequences databases. The subsequent GO analysis was performed exclusively on this subset of associated SNP marker for which annotation information was available.

Among the 29 genes identified in Norwegian and 172 in Swedish trees, only 3 genes were found to be common between them (Appendix A5). The *CUL1* and *RPK2* genes were identified from the SNPs (7) that were found to be commonly associated with Norwegian and Swedish individuals in GWAS. However, the *CPL1* gene was identified as common to both populations, although identified from different SNPs. Considering the GO analysis, the *CUL1* gene identified from the Swedish trees was found to be associated with the recessive allele model or identified from the SNPs that were significantly associated based on the recessive allele. While in the Norwegian sample, dominant allele was responsible for the identification of the gene. Furthermore, the GO ID and function of gene was different, recessive allele was associated with the MF of ubiquitin protein ligase binding (GO:0031625), while the dominant allele was involved in BP- SCF complex assembly (Table 7).

| Gene ID | ONTOLOGY | GO ID      | GO term description                                            | p. adjust          | Association                 |
|---------|----------|------------|----------------------------------------------------------------|--------------------|-----------------------------|
| CUL1    | MF       | GO:0031625 | ubiquitin protein ligase binding                               | 0.0294597491937438 | Recessive                   |
| CUL1    | BP       | GO:0010265 | SCF complex assembly                                           | 0.0495629689636819 | Dominant                    |
| CUL1    | BP       | GO:0010265 | SCF complex assembly                                           | 0.0289889408562439 | Dominant without covariance |
| CPL1    | MF       | GO:0008420 | RNA polymerase II CTD heptapeptide repeat phosphatase activity | 0.0302215747690859 | Dominant without covariance |
| CPL1    | MF       | GO:0140994 | RNA polymerase II CTD heptapeptide repeat modifying activity   | 0.0316445907022511 | Dominant without covariance |
| RPK2    | BP       | GO:0009846 | pollen germination                                             | 0.0405330538716311 | Dominant                    |
| RPK2    | BP       | GO:0009942 | longitudinal axis specification                                | 0.0495629689636819 | Dominant                    |
| RPK2    | BP       | GO:0009942 | longitudinal axis specification                                | 0.0289889408562439 | Dominant without covariance |
| RPK2    | BP       | GO:0048653 | anther development                                             | 0.0289889408562439 | Dominant without covariance |
| RPK2    | BP       | GO:0048443 | stamen development                                             | 0.0289889408562439 | Dominant without covariance |
| RPK2    | BP       | GO:0048466 | androecium development                                         | 0.0289889408562439 | Dominant without covariance |
| RPK2    | BP       | GO:0010073 | meristem maintenance                                           | 0.0289889408562439 | Dominant without covariance |
| RPK2    | BP       | GO:0048438 | floral whorl development                                       | 0.0289889408562439 | Dominant without covariance |
| RPK2    | BP       | GO:0000578 | embryonic axis specification                                   | 0.0353167039850309 | Dominant without covariance |
| RPK2    | BP       | GO:0010152 | pollen maturation                                              | 0.0362841657812691 | Dominant without covariance |
| RPK2    | BP       | GO:0009956 | radial pattern formation                                       | 0.04531764088098   | Dominant without covariance |

| Table 7. Gene | e ontology | analysis | of thre | e common | genes | identified | in I | Norwegian | and Sw | edish |
|---------------|------------|----------|---------|----------|-------|------------|------|-----------|--------|-------|
| samples.      |            |          |         |          |       |            |      |           |        |       |

46

When the total number (29) of genes identified across different association models of Norwegian trees were compared, 19 genes were determined based on the dominant allele, 2 were associated with the recessive allele, and 11 genes were linked to genotype. Likewise, comparing the genes identified for the Swedish trees based on the different alleles and genotype yields 118 genes associated with dominant allele, 23 genes based on recessive allele, and 45 genes were associated with the genotype. Moreover, the association analysis of Total (N+S) revealed 220 genes based on the dominant allele, 40 genes associated with recessive allele, and 43 genes associated with genotype (Appendix A6).

For the Norwegian trees, gene ontology analysis conducted separately for the dominant, recessive and genotype models identified 81 different GO terms, encompassing 42 terms related to BP, 31 terms related to MF, and 8 terms related to CC. Notably, the GO terms identified by dominant, recessive, and genotype were 40, 22, and 19, respectively. Among these, the *SH3P2* gene associated with the recessive allele, contributed to the identification of 22 unique GO terms (Appendix table S4). GO enrichment dot plot depicted the top 10 (P - adjusted) enriched functions for the genes associated with PH of Norwegian trees (Figure 11). This result suggested that the enriched functions associated with the PH of the trees based on the dominant allele are mostly related to Biological Processes (BP) such as pollen germination, SCF complex assembly, intracellular potassium ion homeostasis, and anther and stamen development, and enriched terms associated with the recessive allele are related to BP such as cell plate formation involved in plant type cell wall biogenesis, and plasma membrane organization, while enriched terms related to genotype are CC - plant type vacuole membrane and MF- signalling receptor activity (Figure 11).

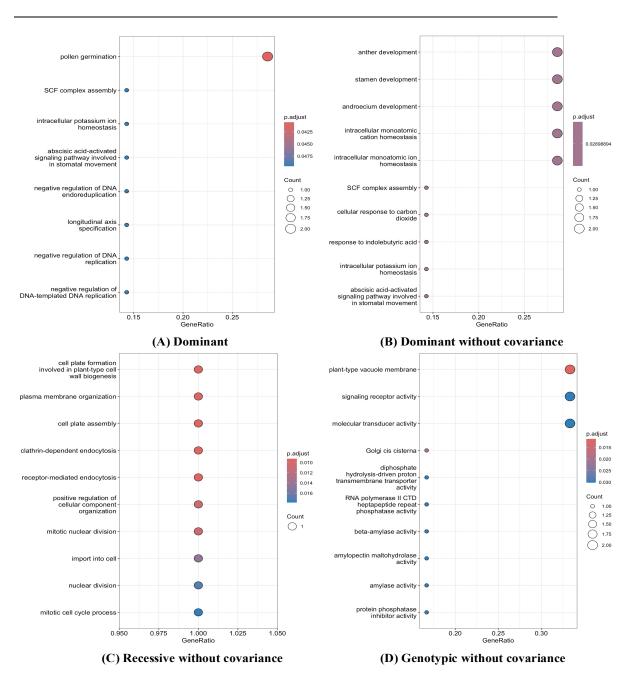
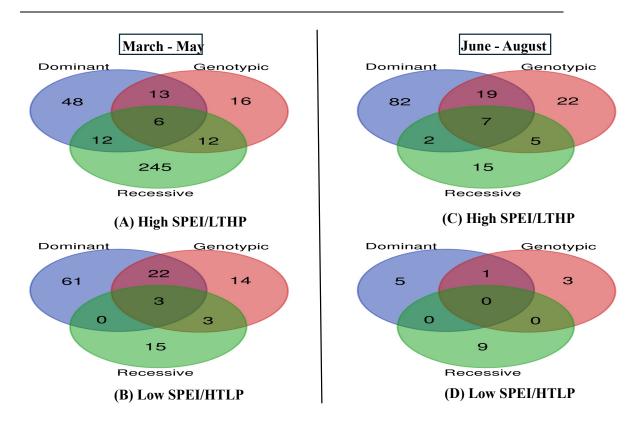



Figure 11. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in Norwegian trees. (A) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele. (B) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele without covariance. (C) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive allele without covariance. (D) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with genotype without covariance.


In terms of Swedish trees, a total of 64 GO terms were identified, which includes the three different categories - BP, CC, and MF comprising of 31, 5, and 44 GO terms, respectively. Majority of GO terms (53) were identified by the genes associated with genotype and dominant alleles without covariance. Specifically, 35, 16, and 29 GO terms were identified for the dominant, recessive and genotype, respectively, with 25, 8, and 22 GO terms being unique to each corresponding allele (Appendix Table S5). The enriched function of the dominant

genes associated with PH of the Swedish trees were primarily related to molecular transducer and signalling receptor activity, detection of chemical stimulus, and plant ovule development (Appendix A7). Recessive gene were found to be mostly related with the functions such as diphosphotransferase activity, glucuronosyltransferase activity, and acyl-CoA oxidase activity. For the genotype, the enriched functions were mostly associated with calcium ion homeostasis and calcium ion transport (Appendix A 8).

Genes identified across different alleles and genotype in Total (N+S) were found to be related to 170 distinct GO term - 105 related to BP, 24 related to CC and 65 related to MF. Of these, genes associated with dominant allele accounted for 54, while those associated with the genotypic variant accounted for 38 terms. The highest number (99) of GO terms were identified by the genes associated with recessive allele. Notably, the number of unique GO terms for the dominant, recessive, and genotype allele was 33, 90 and 27, respectively. GO terms related to CC such as exoribonuclease complex (GO:1905354) and proton-transporting V-type ATPase, V0 domain (GO:0033179) were identified by the genes associated with both, dominant and recessive interaction (Appendix Table S6). It was depicted that the genes governed by dominant alleles were mostly related to gated channel activity, molecular transducer activity, CUT catabolic and metabolic process, ubiquitin-like protein ligase activity, and response to amino acid (Appendix A9). The enriched functions identified for the recessive genes were mostly related to anaphase promoting, nuclear ubiquitin ligase complex, CUT catabolic and anabolic process, histone mRNA metabolic process, fatty acid biosynthetic process, negative regulation of post-translational protein modification, and negative regulation of fatty acid metabolic process (Appendix A 10). Enriched functions identified for genotype were primarily related to Hsp90 protein binding, cyclosporin A binding, and peptidyl-prolyl cis-trans isomerase activity (Appendix A 11).

## 3.4.2 Gene Ontology (GO) analysis of genes associated with growth of plants under varying temperature and precipitation

Genes associated with annual growth for the different time periods of varying temperature and precipitation were identified from the SNPs that were significantly associated based on various allele and genotype models. In the LTHP/ High SPEI category during March-May, 352 genes were identified, while 118 genes were identified in the HTLP/Low SPEI category. Similarly, the period of June-August showed that 154 genes were associated with growth in the LTHP/High SPEI, whereas the genes found in the HTLP/Low SPEI category was noted as 18 (Appendix A 12). When each of the categories was assessed, it was apparent that most genes identified in the High SPEI category were associated with recessive allele in both time periods (Figure 16A). Conversely, in the Low SPEI category during March-May, genes associated with dominant allele was 86 (Figure 12 B). During the time-period of June-August, the 110 genes associated with growth in LTHP category showed a dominant allele association, while the genes associated with recessive allele was 9 in HTLP category (Figure 12 C & D).



*Figure 12. Venn diagram showing genes identified in different category of different time-period.* (*A*) *Genes identified in High SPEI/LTHP of time-period March - May, (B) Genes identified in Low SPEI/HTLP of time-period March - May, (C) Genes identified in High SPEI/LTHP of time-period June -August, and (D) Genes identified Low SPEI/HTLP of time-period June - August.* 

Genes associated with growth of plants with seasonal temperature and precipitation revealed different functions. During the period of March-May, a total of 95 GO terms were identified, with 17 in High SPEI category and 83 in Low SPEI category. Out of 17 GO terms in High SPEI category, 9 were related to BP and 8 were related to MF. Particularly, genes associated with dominant allele accounted for 13 GO term and genotype accounted for 3 terms, with 12 terms unique for dominant gene, whereas genotype showed no unique terms. Only 1 GO term was uniquely identified by gene associated with recessive allele (Table Appendix S4). Enriched functions for the dominant gene associated with growth in High SPEI were primarily related to BP such as regulation of anatomical and cell morphogenesis, regulation of cell differentiation, and response to metal ion (Figure 13). The sole function identified for recessive gene (ROC2/ROC1) was MF - glycerophosphodiesterase activity (Figure 13). Enriched functions for genotype were MF- peptidyl prolyl cis trans isomerase activity and cyclosporin-A binding (Figure 13). PCAP1and RAC6 genes associated with dominant allele identified 5 GO term related to BP.

Furthermore, GO terms associated with BP, CC and MF were 73, 5, and 20, respectively in the Low SPEI category. Genes associated with dominant allele accounted for 53 terms, those associated with recessive allele for 6 terms, and those associated with the genotype for 46 terms, with 33, 3, and 25 being unique to each corresponding category (Appendix Table 4). GO ontology analysis displayed that the enriched function of the genes associated with growth of *Pinus sylvestris* based on dominant allele for High SPEI during March - May were

predominantly related to BP functions such as development of floral whorl, carpel, gynoecium, and plant ovule (Figure 14). The enriched function for genes governed by recessive allele were primarily related to MF such as cyclosporin A binding, peptidyl-prolyl cis-trans isomerase activity, and hydrolase activity acting on carbon-nitrogen (Figure 14). For the genotype association model, the enriched functions were linked to BP- regulation of fatty acid biosynthetic and metabolic process, detection of stimulus, and negative regulation of post-translational protein modification (Figure 14).

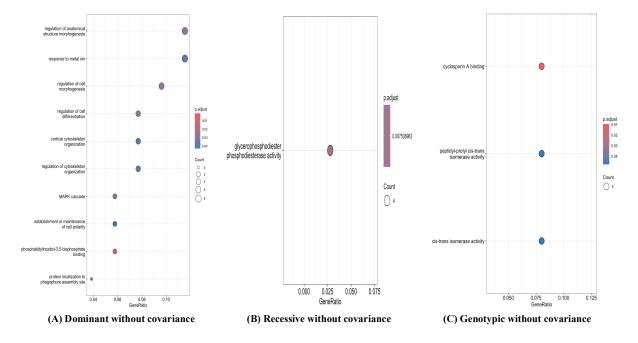



Figure 13. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in High SPEI / LTHP category of March-May. (A) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele without covariance. (B) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive allele without covariance. (C) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with genotype without covariance.

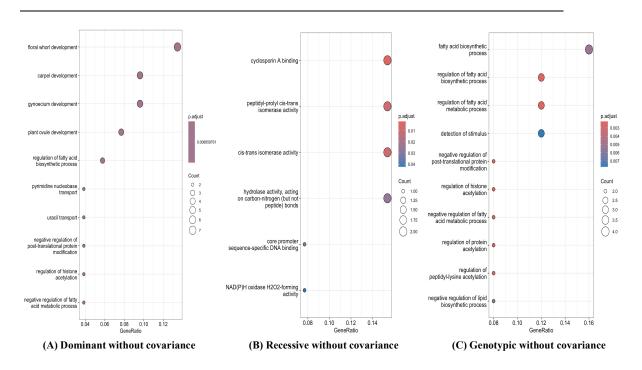



Figure 14. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in Low SPEI / HTLP category of March-May. (A) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele without covariance. (B) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive allele without covariance. (C) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with genotype without covariance.

During June-August, the total number of GO terms identified was 106, among which 24 was identified in High SPEI and 83 in Low SPEI category. In the High SPEI, GO terms assigned to BP, MF and CC were 8, 14, and 2, respectively, in which 11 were identified by genes associated with dominant allele, 8 by the recessive allele and 5 based on the genotype. Out of 10 GO terms identified for the dominant allele, only 1 was not unique, while all the terms identified for the recessive and genotype were unique (Appendix Table S5). For the genes associated with dominant allele, the enriched terms were mostly related to functions such as ubiquitin protein transferase activity, phosphatidylinositol-3,5-biphosphate binding, and phagophore assembly site membrane. The enriched function associated with growth based on recessive allele were related to response to hydrogen peroxide, MAP kinase and carboxylase activity, glutamate catabolic process and such. Moreover, enriched function associated with genotype included seed germination, response to lead ion, fatty-acyl-CoA binding and others (Figure 15).

Among the 83 GO terms identified in the Low SPEI category, 11 of them were BP, 4 of them were CC, and 14 of them were MF, which were associated with genes identified by dominant allele, recessive allele and genotype. The number of GO terms identified by genes associated with dominant allele was 27 with 7 being unique. Genes associated with recessive, and genotype resulted in 26 and 50 GO terms, respectively, with 31 being unique to genotype, while all the terms identified for the recessive allele were unique (Appendix Table 5). GO dot plot indicated that the enriched function for genes associated with dominant allele in Low

SPEI category of June -August were related to regulation of brassinosteroid mediated signalling pathway, callus formation, wound healing, and primary root development, recessive gene were enriched in the functions such as respiratory burst involved in defence response, snRNA 3'-end processing, respiratory burst, and so on. For genotype associated genes, the enriched functions include cellular response to organic cyclic compound, golgi to plasma membrane protein transport, protein localization to plasma membrane, and golgi organization and transport to vacuole (Figure 16). GO analysis conducted for common genes identified in March-May and June-August showed 7 different GO terms in which 6 of them were related to MF while only 1 was related to CC (Table 8).

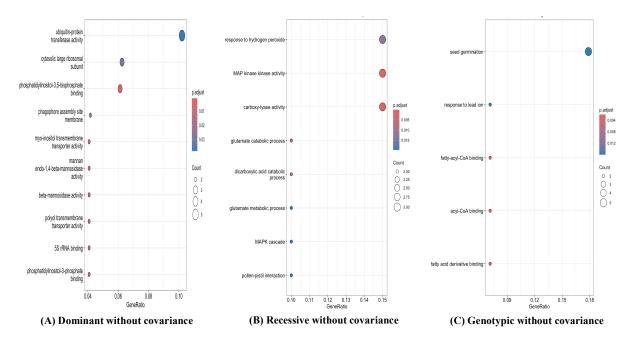



Figure 15. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in High SPEI / LTHP category of June-August. (A) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele without covariance. (B) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive allele without covariance. (C) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with genotype without covariance.

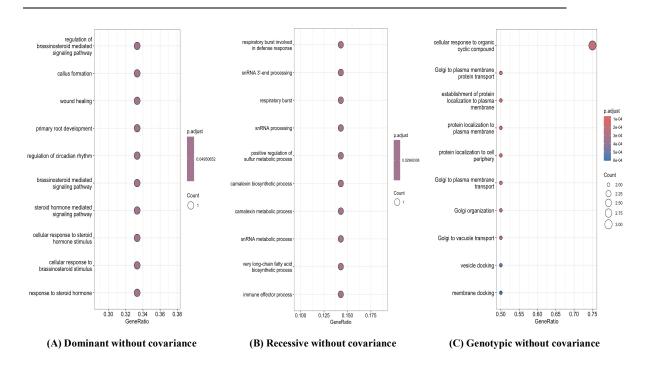



Figure 16. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in Low SPEI / LTHP category of June-August. (A) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele without covariance. (B) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive allele without covariance. (C) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with genotype without covariance.

Table 8. Gene ontology analysis of common genes identified in different SPEI categories during different time-period.

|                     |          |            |                                               |                      | SPEI / Temperature |             |
|---------------------|----------|------------|-----------------------------------------------|----------------------|--------------------|-------------|
| Genes               | Ontology | GO ID      | Gene Ontology term                            | p.adjust             | and Precipitation  | Association |
|                     |          |            | March-May                                     |                      |                    |             |
| ATG18C/ATG18D/PCAP1 | MF       | GO:0080025 | phosphatidylinositol-3,5-bisphosphate binding | 0.00144477519907477  | High SPEI / LTHP   | DWC         |
| MKK1/MKK2/MKK6      | MF       | GO:0004708 | MAP kinase kinase activity                    | 0.00405019348910528  | High SPEI / LTHP   | DWC         |
| ATG18C/ATG18D       | MF       | GO:0032266 | phosphatidylinositol-3-phosphate binding      | 0.0271476482980617   | High SPEI / LTHP   | DWC         |
| ROC2/ROC1           | MF       | GO:0016018 | cyclosporin A binding                         | 0.00939780570147978  | High SPEI / LTHP   | RWC         |
| ROC2/ROC1           | MF       | GO:0016018 | cyclosporin A binding                         | 0.00939780570147978  | High SPEI / LTHP   | GWC         |
| ROC1/ROC2           | MF       | GO:0016018 | cyclosporin A binding                         | 0.0091407743136777   | Low SPEI / HTLP    | DWC         |
| ROC1/ROC2           | MF       | GO:0016018 | cyclosporin A binding                         | 0.00158444578096837  | Low SPEI / HTLP    | RWC         |
| ROC1/ROC2           | MF       | GO:0016018 | cyclosporin A binding                         | 0.011758586133132    | Low SPEI / HTLP    | GWC         |
| RPL5A/RPL5B         | MF       | GO:0008097 | 5S rRNA binding                               | 0.0091407743136777   | Low SPEI / HTLP    | DWC         |
| RPL5/RPL5A/RPL5B    | CC       | GO:0022625 | cytosolic large ribosomal subunit             | 0.00862574638997222  | Low SPEI / HTLP    | DWC         |
|                     |          |            | June-August                                   |                      |                    |             |
| ATG18C/ATG18D/PCAP1 | MF       | GO:0080025 | phosphatidylinositol-3,5-bisphosphate binding | 0.00117701906024141  | High SPEI or LTHP  | DWC         |
| MKK1/MKK2/MKK6      | MF       | GO:0004708 | MAP kinase kinase activity                    | 0.000150985480316647 | High SPEI or LTHP  | RWC         |
| ATG18C/ATG18D       | MF       | GO:0032266 | phosphatidylinositol-3-phosphate binding      | 0.0147061487397375   | High SPEI or LTHP  | DWC         |
| ATG18C/ATG18D       | CC       | GO:0034045 | phagophore assembly site membrane             | 0.027497619213474    | High SPEI or LTHP  | DWC         |
| RPL5A/RPL5B         | MF       | GO:0008097 | 5S rRNA binding                               | 0.0130574043802036   | High SPEI or LTHP  | DWC         |
| RPL5/RPL5A/RPL5B    | CC       | GO:0022625 | cytosolic large ribosomal subunit             | 0.027497619213474    | High SPEI or LTHP  | DWC         |
| RPL34               | CC       | GO:0022625 | cytosolic large ribosomal subunit             | 0.0351246995084778   | Low SPEI or HTLP   | DWC         |

#### 3.5 DNA methylation analysis

Reduced representative bisulfite sequencing (RRBS) data obtained from the genomic DNA extracted from 30 sample trees of *Pinus sylvestris* (15 Swedish and 15 Norwegian) were analysed to investigate the epigenetic differences between Swedish and Norwegian trees, as well as to explore the potential methylation patterns associated with tree height variation.

Using the filtering criteria of adjusted p-value (meth.pval\_adj), methylation difference (meth.meth\_diff), and methylation mean coverage (meth.mean\_cov), a total of 930 differentially methylated fragments with 5938 methylated sites were obtained. For the comparisons of NvS and TvS, the meth.meth.diff values for fragments and diff.mean.meth values for motifs were standardised for all contexts (CpG, CHG, CHH) and same values were applied for both reads (1 and 2). To reduce the list of sequences used as queries for the blast searches the standardized parameters values applied in NvS for fragments were - CpG (meth.mean.diff of +/- 15), CHG (meth.mean.diff of +/- 30), and CHH (meth.mean.diff of +/- 50). Furthermore, the standardized parameters values applied in TvS for fragments were - CpG (meth.mean.diff of +/- 50), CHG (meth.mean.diff of +/- 50), and CHH (meth.mean.diff of +/- 7) and for motifs were - CpG ( meth.mean.diff of +/- 20), CHG (meth.mean.diff of +/- 20), CHG (diff.mean.meth of +/- 50).

Comparing the Norwegian (N) and Swedish (S), 394 differentially methylated fragments (regions) (DMRs) were identified, among which 129 were found in CpG, 128 in CHG, and 80 were found in CHH. Compared to S, 152 regions were found to be hypermethylated in N, in which 31 were identified in CpG, 66 were in CHG, and 55 in CHH. While 185 hypomethylated regions were observed which includes 98 from CpG, 62 from CHG, and 25 from CHH regions. Methylated sites found in N were 114, 177, and 868 in CpG, CHG, and CHH sites, respectively, and methylated sites of S observed in CpG was 393, CHG was 160, and CHH was 364 (Table 7). The number of DNA methylation associated motifs in NvS was highest (270) in CHH sites and lowest (138) in CHG, while 140 were identified in CpG site. There was a highest number of methylated sites observed in N in which CHH has the highest methylated sites while lowest was observed in CpG sites. In terms of S, methylation sites mainly occurred at CpG, while lowest methylated site was identified in CHG site.

With respect to Tall (T) vs Short (S), the total number of DMRs identified were 593, with 293 being identified in CpG, 188 in CHG, and 112 in CHH. When compared to Short, 292 regions were determined as hypermethylated in Tall in which, CpG, CHG, and CHH accounted for 166, 45, and 81, respectively. The total of 301 regions were found to be hypomethylated in Tall which includes 127 regions of CpG, 143 regions of CHG, as well as 31 of CHH site. Methylated sites obtained in CpG were 1609, CHG were 174, and CHH were 1270 in Tall, while methylated sites identified in Short were 441 for CpG, 591 for CHG, and 777 for CHH sites (Table 9). When DNA methylation associated motifs for TvS was observed, CHG showed the highest number of associated motifs whereas lowest number was found in CHH. The highest number of methylation site was observed in Tall which showed the highest methylated

sites in CHH, while lowest was found in CHG. Likewise, methylation sites in Short mostly occurred in CHH and lowest number of methylated sites was in CpG region. The result indicates that the methylation sites were mainly identified in CHH except for the Short, which showed the highest number methylated sites in the CpG context (Table 9).

| Methylated<br>Sites | Differentially<br>methylated<br>fragments | Hyper<br>methylated | Hypo-<br>methylated | Methylated sites in N | Methylated sites in S | Methylated motifs |
|---------------------|-------------------------------------------|---------------------|---------------------|-----------------------|-----------------------|-------------------|
|                     |                                           |                     | N v S               | 5                     |                       |                   |
| CpG                 | 129                                       | 31                  | 98                  | 114                   | 393                   | 140               |
| CHG                 | 128                                       | 66                  | 62                  | 177                   | 160                   | 138               |
| СНН                 | 80                                        | 55                  | 25                  | 868                   | 364                   | 270               |
|                     |                                           |                     | T v S               |                       |                       |                   |
| CpG                 | 293                                       | 166                 | 127                 | 609                   | 441                   | 251               |
| CHG                 | 188                                       | 45                  | 143                 | 174                   | 591                   | 270               |
| СНН                 | 112                                       | 81                  | 31                  | 1270                  | 777                   | 170               |

Table 9. Differential DNA methylation in Norwegian vs. Swedish (NvS) and Tall vs. Short (TvS).

DNA methylation scatterplots were created, which illustrated the relationship between DNA methylation level across different sequence contexts (CpG, CHG, and CHH) between two samples, Norwegian (N) & Swedish (S) and Tall (T) & Short (S). Each scatterplot includes Pearson correlation coefficient (r) which measures the linear relationship between methylation levels in Norwegian (N) & Swedish (S) and Tall (T) & Short (S), points observed near the diagonal indicate similar methylation levels.

The plot showed a strong positive correlation between the methylation level in N and S, high correlation (r =0.805) suggesting consistent methylation pattern between N and S in CpG site of Read 1 (Figure 28A). Similarly, strong positive correlation was observed in CHG and CHH site of Read 1 (Figure 28B and C). CpG site of Read 2 showed a very strong positive correlation indicating very high degree of similarity in methylation levels between N and S (Figure 28D). A strong positive correlation was observed in CHG site of Read 2 (Figure 28E), while CHH site of Read 2 exhibit a slightly lower but strong positive correlation which indicates some differences in methylation levels between N and S, but the trend remains positive and strong (Figure 28F). For the DNA methylation associated motif of NvS, a very strong positive correlation was observed between methylation level of N and S in all methylated sites of both, Read1 and 2, suggesting that the methylation patterns between the two samples are highly similar (Figure 29).

For Read 1 of TvS, there was a very strong positive linear relationship between T and S in CpG site (Figure 30 A), CHG site showed a strong positive linear relationship, though slightly less strong than CpG (Figure 30 B), and CHH with correlation coefficient (r = 0.894) indicated a strong positive linear relationship slightly stronger than CHG site (Figure 30 C). All the sites showed strong positive relationship for Read 2 (Figure 30 E and F). All the methylated sites of both Read 1 and 2 showed the strong positive association between T and S for methylation in differentially methylated motifs (Figure 31).

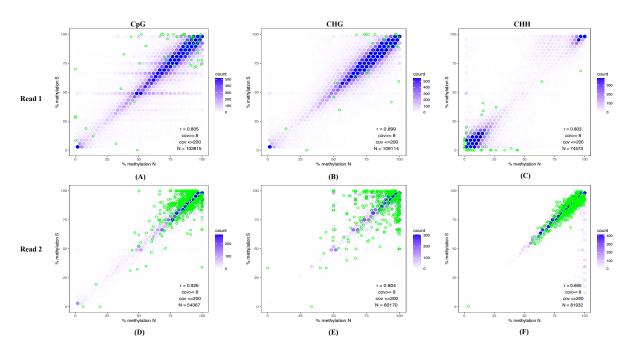



Figure 17. DNA methylation scatterplot illustrating the relationship between DNA methylation percentage of differentially methylated fragments at CpG, CHG, and CHH sites between Norwegian (x-axis) and Swedish (y axis). Panels A, B, and C illustrate the relationship between DNA methylation for Read 1, Panels C, D, and E represent the relationship between DNA methylation for Read 2, Blue hexagon represent high-density regions where many methylated sites have similar methylation levels in both samples. The intensity of blue color indicates count of data point, darker shades indicating higher densities, Green circles represent low-density regions with fewer data points, indicating sites with less common methylation levels between samples.

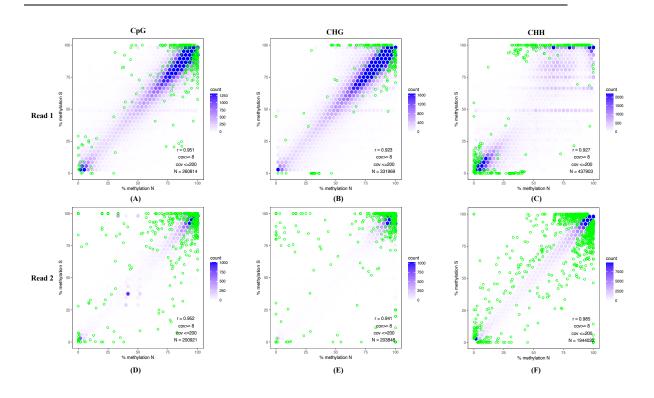



Figure 18. DNA methylation scatterplot illustrating the relationship between DNA methylation percentage for differentially methylated motifs at CpG, CHG, and CHH sites between Norwegian (x-axis) and Swedish (y axis). Image A, B, and C illustrates the relationship between DNA methylation for Read 1, Image C, D, and E represents the relationship between DNA methylation for Read 2, Blue hexagon represent high-density regions where many methylated sites have similar methylation levels in both samples. The intensity of blue color indicates count of data point, draker shades indicating higher densities, Green circles represent low-density region with fewer data points, indicating sites with less common methylation levels between sample.

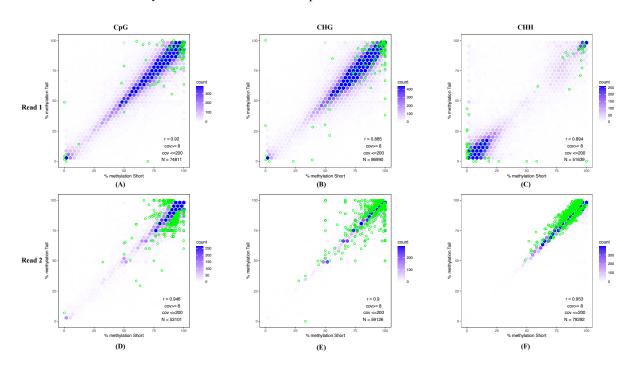



Figure 19. DNA methylation scatterplot illustrating the relationship between DNA methylation percentage for differentially methylated fragments at CpG, CHG, and CHH sites between Norwegian (x-axis) and Swedish (y axis). Image A, B, and C illustrates the relationship between DNA methylation for Read 1, Image C, D, and E represents the relationship between DNA methylation for Read 2, Blue hexagon represent high-density regions where many methylated sites have similar methylation levels in both samples. The intensity of blue color indicates count of data point, draker shades indicating higher densities, Green circles represent low-density region with fewer data points, indicating sites with less common methylation levels between sample.

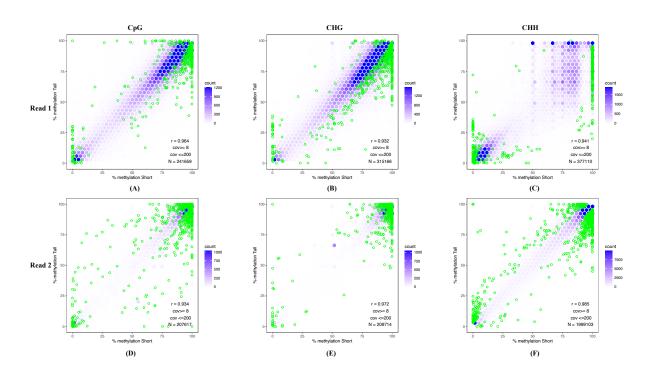



Figure 20. DNA methylation scatterplot illustrating the relationship between DNA methylation percentage for differentially methylated motifs at CpG, CHG, and CHH sites between Norwegian (x-axis) and Swedish (y axis). Image A, B, and C illustrates the relationship between DNA methylation for Read 1, Image C, D, and E represents the relationship between DNA methylation for Read 2, Blue hexagon represent high-density regions where many methylated sites have similar methylation levels in both samples. The intensity of blue color indicates count of data point, draker shades indicating higher densities, Green circles represent low-density region with fewer data points, indicating sites with less common methylation levels between sample.

Principal component analysis (PCA) was performed to visualize the relationship between samples and methylated fragments creating binary variables as Norwegian vs. Swedish (NvS) and Tall vs. Short (TvS) in CpG, CHG, and CHH sites. PC1 shows the largest variation in the samples followed by other principal component in decreasing order, so the sum of all principal components is always 100%. The points contributing similar information are grouped together indicating similar DNA methylation profiles, while the points that do not cluster with others might be outliers with unique methylation profiles which can be investigated if they have any biological meaning. Points clustering near origin might indicate a homogeneous group with

similar methylation profiles or their DNA methylation profiles are not extreme in any direction captured by respective principal component. Some of the samples between groups are overlapped meaning they have shared variance or similarity in DNA methylation profiles. The first two principal components capture the most variance, but other components might also provide valuable insights and patterns not visible in first two.

For Read 1 of NvS on CpG site, PC1 and PC2 explains 8.1 and 6.4% of variance in the samples, showing dispersed samples across both axes with some observed clustering (top left). PC3 and PC4 (top right) explains 6 and 5.6% of variance in the sample capturing additional variance showing more spread-out distribution with less distinct clustering compared to PC1 vs PC2 plot, thus providing further insights into the data structure. Also, dense cluster of samples near the origin (0,0) indicated samples from multiple groups with similarity in their methylation profiles. Furthermore, for Read 2 PC1 and PC2 (bottom left) explains 12.4 and 9.2% of variance in the sample reflecting most significant differences in DNA methylation pattern and secondary pattern of variability among the samples, respectively. PC3 and PC4 (bottom right) captures 6.3 and 6% of variability in DNA methylation patterns among the samples. FURUBS45\_2, FURUG25\_2, and FURUG73\_2 was observed as outliers and can be investigated for unique methylation patterns (Appendix A 13). Moreover, principal component analysis from Appendix figure A 14 to 17 can be interpreted and understood in a similar way.

### 3.6 BLAST search and analysis

Nucleic acid sequence homology searches were performed using BLASTn against database of *Pinus jeffereyi* (Accession number: <u>SAMN12121614</u>)for differentially methylated fragments and motifs to identify the evolutionary relationship with *Pinus jeffereyi*, a phylogenetically close relative to *P. sylvestris*. Also, BLASTx searches were performed against the RefSeqProtein database to identify differentially methylated sequences that are potentially protein coding and to predict their function or relationship with known gene sequences.

Blastx performed for differentially methylated fragments revealed significant homology with plants protein sequences, including those of *Pinus species*. Particularly, 18 differentially methylated fragments of CHG sites showed similarity with various plants proteins, with all of them were identified protein. Among them 7 of the proteins were matched with *Pinus species*, 2 were protein sequence of *Pinus koraiensis*, denoted as ORF 47a and ORF52a. Likewise, similarity with other *Pinus species* such as *Pinus ponderosa* (protein name - photosystem II protein) and *Pinus rigida/Pinus taeda* (RNA polymerase beta subunit) were identified through blast searches. For CpG sites, 6 differentially methylated fragments exhibited similarity to plant protein sequences among which 2 of them were related to (AccD) *Pinus species*, namely *Pinus densiflora var. densiflora* and *Pinus koraiensis* (ORF91). Moreover, CpG fragments were similar with disease resistance protein RGA-2 like sequence from *Coffea arabica*, while homologs in *Juglans regia* and *Cryptomeria japonica* were not identified. CHH methylation showed similarity with plant genomes however proteins remain uncharacterized (Table 11).

Methylated motif of CpG, and CHH displayed similarity with 4 and 5 plant protein sequences, respectively. In particular, 3 proteins associated with CpG motif were not identified, while a cytochrome C biogenesis protein was related to *Larix occidentalis*. CHH motifs showed similarity with 30s ribosomal protein S 12-B chloroplastic protein of *Salvia hispanica*, along with 2 uncharacterized proteins and predicted proteins from *Brassica oleracea var. oleracea*.

Among 5 similar sequences of CHG motifs, 1 remain unidentified while two showed similarities with *Pinus ponderosa* and *Pinus echinate*, name protein - photosystem II protein K and hypothetical protein NUH76\_pgp002, respectively. Two of CHH motif showed similarity with plant *Cryptomeria japonica* with one having a protein named as – paired amphipathic helix protein while other was not identified (Table 12).

Table 10. Summary of total number of query and significant blast hits in BLASTn and BLASTx based on different categories for differentially methylated fragments and motifs.

| BLASTn                              |                      | BLASTx                                                       |                        |                    |                                                              |  |
|-------------------------------------|----------------------|--------------------------------------------------------------|------------------------|--------------------|--------------------------------------------------------------|--|
| Categories                          | Number<br>of queries | Number of<br>blast hits-<br>significant E-<br>value (< 0.01) | Categories             | Number<br>of query | Number of<br>blast hits-<br>significant E-<br>value (< 0.01) |  |
| Differentially methylated Fragments |                      |                                                              |                        |                    |                                                              |  |
| NvS - CpG (Read 1 & 2)              | 129                  | 102                                                          | NvS - CpG (Read 1 & 2) | 129                | 47                                                           |  |
| NvS - CHG (Read 1 & 2)              | 128                  | 125                                                          | NvS - CHG (Read 1 & 2) | 128                | 68                                                           |  |
| NvS CHH (Read 1 & 2)                | 70                   | 65                                                           | NvS CHH (Read 1 & 2)   | 70                 | 35                                                           |  |
| TvS - CpG (Read 1)                  | 10                   | 3                                                            | TvS - CpG (Read 1)     | 10                 | 3                                                            |  |
| TvS - CpG (Read 2)                  | 89                   | 74                                                           | TvS - CpG (Read 2)     | 89                 | 27                                                           |  |
| TvS - CHG (Read 1)                  | 104                  | 52                                                           | TvS - CHG (Read 1)     | 104                | 64                                                           |  |
| TvS - CHG (Read 2)                  | 84                   | 80                                                           | TvS – CHG (Read 2)     | 84                 | 47                                                           |  |
| TvS CHH (Read 1)                    | 55                   | 28                                                           | TvS CHH (Read 1)       | 55                 | 28                                                           |  |
| TvS CHH (Read 2)                    | 57                   | 55                                                           | TvS CHH (Read 2)       | 57                 | 31                                                           |  |
| Differentially methylated Motifs    |                      |                                                              |                        |                    |                                                              |  |
| NvS - CpG (Read 1 & 2)              | 124                  | 93                                                           | NvS - CpG (Read 1)     | 28                 | 13                                                           |  |
| NvS - CHG (Read 1 & 2)              | 135                  | 127                                                          | NvS - CpG (Read 2)     | 96                 | 50                                                           |  |
| NvS CHH (Read 1 & 2)                | 186                  | 132                                                          | NvS - CHG (Read 1)     | 10                 | 7                                                            |  |
| TvS CpG (Read 1 & 2)                | 177                  | 75                                                           | NvS - CHG (Read 2)     | 125                | 77                                                           |  |
| TvS CHG (Read 1 & 2)                | 222                  | 124                                                          | NvS CHH (Read 1)       | 46                 | 37                                                           |  |
| TvS CHH (Read 1 & 2)                | 124                  | 73                                                           | NvS CHH (Read 2)       | 140                | 67                                                           |  |
|                                     |                      |                                                              | TvS - CpG (Read 1)     | 93                 | 40                                                           |  |
|                                     |                      |                                                              | TvS - CpG (Read 2)     | 84                 | 65                                                           |  |
|                                     |                      |                                                              | TvS - CHG (Read 1)     | 138                | 76                                                           |  |
|                                     |                      |                                                              | TvS - CHG (Read 2)     | 84                 | 65                                                           |  |
|                                     |                      |                                                              | TvS CHH (Read 1)       | 49                 | 35                                                           |  |
|                                     |                      |                                                              | TvS CHH (Read 2)       | 75                 | 48                                                           |  |

| Query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number<br>of HSPs                         | Lowest E-<br>value                                                                                                             | Accession                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0111015                                   | vurue                                                                                                                          |                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| dedRef 1424606-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                                                                                                | СрG                                                                                                                       | disease resistance protein RGA2-like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1424607 36-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                         | 6,3112E-06                                                                                                                     | XP 027060706                                                                                                              | [Coffea arabica]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| dedRef_571295-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                                |                                                                                                                           | uncharacterized protein LOC108999132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 571296_27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                         | 0,047264                                                                                                                       | XP_018831472                                                                                                              | [Juglans regia]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dedRef_1304576-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                         | 0.0222419                                                                                                                      | VD 010250((0                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1304577 26<br>dedRef 1556511-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                         | 0,0233418                                                                                                                      | YP 010350660                                                                                                              | AccD [Pinus densiflora var. densiflora]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1556515 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                         | 1,6489E-11                                                                                                                     | YP 001152147                                                                                                              | ORF91 [Pinus koraiensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| dedRef 930535-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 0,0005421                                                                                                                      |                                                                                                                           | ATP synthase CF0 subunit I [Dioscorea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 930536_20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                         | 3                                                                                                                              | YP_009528872                                                                                                              | bulbifera]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dedRef_1108957-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~                                         | 0.210070                                                                                                                       | VD 0500(0070                                                                                                              | uncharacterized protein LOC131859354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1108958_24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                         | 0,318979                                                                                                                       | XP_059068972                                                                                                              | [Cryptomeria japonica]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                                                                                                | CHG                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dedRef_1761202-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                         | 0,0096725                                                                                                                      | VD 001152052                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1761212 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                         | 2                                                                                                                              | YP 001152053                                                                                                              | ORF47a [Pinus koraiensis]<br>hypothetical chloroplast protein [Pinus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dedRef 778999-779000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                         | 1,9651E-06                                                                                                                     | YP 008082385                                                                                                              | taeda]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dedRef 334714-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                         | 1,9 00 112 000                                                                                                                 |                                                                                                                           | uncharacterized protein LOC131858325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 334715_38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                         | 6,8853E-14                                                                                                                     | XP_059067510                                                                                                              | [Cryptomeria japonica]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dedRef_3645364-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                         | 1 22205 05                                                                                                                     |                                                                                                                           | UDP-glycosyltransferase 74D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3645365_1<br>dedRef 379983-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                         | 1,2239E-07                                                                                                                     | XP_057823103                                                                                                              | [Cryptomeria japonica]<br>transposon Tf2-1 polyprotein isoform X1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 379984 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                         | 0,581616                                                                                                                       | XP 050940139                                                                                                              | [Cucumis melo]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| dedRef 1307669-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                         | 0,501010                                                                                                                       | M 050740157                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1307670 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                         | 0,026621                                                                                                                       | YP 001152109                                                                                                              | ORF52a [ <i>Pinus koraiensis</i> ]<br>ribosomal protein L20 [Larix griffithii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| dedRef 1448271-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 0,0008018                                                                                                                      |                                                                                                                           | <ul> <li>&gt;ref[YP_010310042.1  ribosomal protein<br/>L20 [Larix himalaica]</li> <li>&gt;ref[YP_010310114.1  ribosomal protein<br/>L20 [Larix kongboensis]</li> <li>&gt;ref[YP_010310186.1  ribosomal protein<br/>L20 [Larix potaninii var. australis]</li> <li>&gt;ref[YP_010310258.1  ribosomal protein</li> </ul>                                                                                                                                                                                                                                                                                                                                     |
| 1448272 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                         | 9                                                                                                                              | YP 010309970                                                                                                              | L20 [Larix griffithii var. speciosa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dedRef 163909-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                                |                                                                                                                           | photosystem I P700 apoprotein A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 163909 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                         | 8,6795E-06                                                                                                                     | YP_009771487                                                                                                              | [Poecilanthe parviflora]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 163909_24<br>dedRef_1107976-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                |                                                                                                                           | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 163909 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                         | 8,6795E-06<br>1,0091E-05                                                                                                       | YP_009771487<br>XP_057831826                                                                                              | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 163909_24<br>dedRef_1107976-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                |                                                                                                                           | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>163909_24</u><br>dedRef_1107976-<br><u>1107977_33-1</u><br>dedRef_1010182-<br>1010183_35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 1,0091E-05<br>3,8973E-10                                                                                                       |                                                                                                                           | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 163909_24<br>dedRef_1107976-<br>1107977_33-1<br>dedRef_1010182-<br>1010183_35<br>dedRef_1228017-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                         | 1,0091E-05<br>3,8973E-10<br>0,0001012                                                                                          | XP_057831826<br>YP_008082327                                                                                              | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref]YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 163909_24<br>dedRef_1107976-<br>1107977_33-1<br>dedRef_1010182-<br>1010183_35<br>dedRef_1228017-<br>1228017_23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                         | 1,0091E-05<br>3,8973E-10                                                                                                       | XP_057831826                                                                                                              | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref]YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]                                                                                                                                                                                                                                                                                                                                                                                                               |
| 163909_24<br>dedRef_1107976-<br>1107977_33-1<br>dedRef_1010182-<br>1010183_35<br>dedRef_1228017-<br>1228017_23<br>dedRef_973251-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>5<br>5                               | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8                                                                                     | XP_057831826<br>YP_008082327<br>NP_042374                                                                                 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref]YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225                                                                                                                                                                                                                                                                                                                                                                       |
| 163909_24<br>dedRef_1107976-<br>1107977_33-1<br>dedRef_1010182-<br>1010183_35<br>dedRef_1228017-<br>1228017_23<br>dedRef_973251-<br>973252_36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                         | 1,0091E-05<br>3,8973E-10<br>0,0001012                                                                                          | XP_057831826<br>YP_008082327                                                                                              | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref]YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]                                                                                                                                                                                                                                                                                                                                            |
| 163909_24<br>dedRef_1107976-<br>1107977_33-1<br>dedRef_1010182-<br>1010183_35<br>dedRef_1228017-<br>1228017_23<br>dedRef_973251-<br>973252_36<br>dedRef_272714-<br>272715_22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>5<br>5                               | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8                                                                                     | XP_057831826<br>YP_008082327<br>NP_042374                                                                                 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref]YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225                                                                                                                                                                                                                                                                                                                                                                       |
| 163909_24           dedRef_1107976-           1107977_33-1           dedRef_1010182-           1010183_35           dedRef_1228017-           1228017_23           dedRef_973251-           973252_36           dedRef_272714-           272715_22           dedRef_536389-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>5<br>5<br>5<br>5                     | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8<br>9,7209E-10<br>1,5171E-05                                                         | XP_057831826<br>YP_008082327<br>NP_042374<br>XP_020262272<br>YP_010526882                                                 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref[YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]                                                                                                                                                                                                                                                                                           |
| 163909_24           dedRef_1107976-           1107977_33-1           dedRef_1010182-           1010183_35           dedRef_1228017-           1228017_23           dedRef_973251-           973252_36           dedRef_272714-           272715_22           dedRef_536389-           536389_39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>5<br>5<br>5                          | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8<br>9,7209E-10                                                                       | XP_057831826<br>YP_008082327<br>NP_042374<br>XP_020262272                                                                 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis]                                                                                                                                                                                                                                                    |
| 163909_24           dedRef_1107976-           1107977_33-1           dedRef_1010182-           1010183_35           dedRef_1228017-           1228017_23           dedRef_973251-           973252_36           dedRef_536389-           536389_39           dedRef_973251-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>5<br>5<br>5<br>5<br>5                | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8<br>9,7209E-10<br>1,5171E-05<br>8,6952E-05                                           | XP_057831826<br>YP_008082327<br>NP_042374<br>XP_020262272<br>YP_010526882<br>YP_009863084                                 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis]<br>uncharacterized protein LOC109838225                                                                                                                                                                                                            |
| 163909_24           dedRef_1107976-           1107977_33-1           dedRef_1010182-           1010183_35           dedRef_1228017-           1228017_23           dedRef_973251-           973252_36           dedRef_536389-           536389_39           dedRef_973251-           973252_36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>5<br>5<br>5<br>5                     | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8<br>9,7209E-10<br>1,5171E-05                                                         | XP_057831826<br>YP_008082327<br>NP_042374<br>XP_020262272<br>YP_010526882                                                 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]                                                                                                                                                                                 |
| 163909_24           dedRef_1107976-           1107977_33-1           dedRef_1010182-           1010183_35           dedRef_1228017-           1228017_23           dedRef_973251-           973252_36           dedRef_536389-           536389_39           dedRef_973251-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>5<br>5<br>5<br>5<br>5                | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8<br>9,7209E-10<br>1,5171E-05<br>8,6952E-05                                           | XP_057831826<br>YP_008082327<br>NP_042374<br>XP_020262272<br>YP_010526882<br>YP_009863084                                 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis]<br>uncharacterized protein LOC109838225                                                                                                                                                                                                            |
| 163909_24           dedRef_1107976-           1107977_33-1           dedRef_1010182-           1010183_35           dedRef_1228017-           1228017_23           dedRef_973251-           973252_36           dedRef_536389-           536389_39           dedRef_973251-           973252_36           dedRef_536389-           536389_39           dedRef_973251-           973252_36           dedRef_272714-           272715_22           dedRef_536389- | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8<br>9,7209E-10<br>1,5171E-05<br>8,6952E-05<br>9,7209E-10<br>1,5171E-05               | XP_057831826<br>YP_008082327<br>NP_042374<br>XP_020262272<br>YP_010526882<br>YP_009863084<br>XP_020262272<br>YP_010526882 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]                                                                                                                                |
| 163909_24           dedRef_1107976-           1107977_33-1           dedRef_1010182-           1010183_35           dedRef_1228017-           1228017_23           dedRef_973251-           973252_36           dedRef_536389-           536389_39           dedRef_77251-           973252_36           dedRef_536389-           536389_39           dedRef_77251-           973252_36           dedRef_973251-           973252_36           dedRef_973251-           973252_36           dedRef_973251-           973252_36           dedRef_973251-           973252_36           dedRef_973251-           973252_36           dedRef_376389           39           dedRef_376389           39           39                                                                            | 5<br>5<br>5<br>5<br>5<br>5<br>5           | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8<br>9,7209E-10<br>1,5171E-05<br>8,6952E-05<br>9,7209E-10<br>1,5171E-05<br>8,6952E-05 | XP_057831826<br>YP_008082327<br>NP_042374<br>XP_020262272<br>YP_010526882<br>YP_009863084<br>XP_020262272                 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis] |
| 163909_24           dedRef_1107976-           1107977_33-1           dedRef_1010182-           1010183_35           dedRef_1228017-           1228017_23           dedRef_973251-           973252_36           dedRef_536389-           536389_39           dedRef_973251-           973252_36           dedRef_536389-           536389_39           dedRef_973251-           973252_36           dedRef_272714-           272715_22           dedRef_536389- | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 1,0091E-05<br>3,8973E-10<br>0,0001012<br>8<br>9,7209E-10<br>1,5171E-05<br>8,6952E-05<br>9,7209E-10<br>1,5171E-05               | XP_057831826<br>YP_008082327<br>NP_042374<br>XP_020262272<br>YP_010526882<br>YP_009863084<br>XP_020262272<br>YP_010526882 | [Poecilanthe parviflora]<br>uncharacterized protein LOC131042530<br>[Cryptomeria japonica]<br>RNA polymerase beta' subunit [Pinus<br>taeda] >ref YP_010449301.1  RNA<br>polymerase beta' subunit [Pinus rigida]<br>ORF58 [Pinus thunbergii]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]<br>cytochrome b6 [Anthoceros agrestis]<br>uncharacterized protein LOC109838225<br>[Asparagus officinalis]<br>photosystem II protein K [Pinus<br>ponderosa]                                                                                                                                |

#### Table 11. BLASTx of methylated fragments with plants hits at CpG, CHG, and CHH context.

| dedRef_4150913-<br>4150914_14 | 1 | 3,00287  | XP_009111222 | uncharacterized protein LOC103836680<br>[Brassica rapa]                     |
|-------------------------------|---|----------|--------------|-----------------------------------------------------------------------------|
| dedRef_1703421-<br>1703422_1  | 5 | 0.664903 | XP 041183558 | uncharacterized protein<br>EDB91DRAFT_1095842 [ <i>Suillus</i><br>paluster] |

Table 12. BLASTx of methylated motifs with plants hits at CpG, CHG, and CHH context.

|                            | Number  | Lowest  |             |                                            |  |  |
|----------------------------|---------|---------|-------------|--------------------------------------------|--|--|
| Query                      | of HSPs | E-value | Accession   | Description                                |  |  |
| CpG                        |         |         |             |                                            |  |  |
|                            |         | 8,63E-  | YP_00952217 | cytochrome c biogenesis protein [Larix     |  |  |
| dedRef_1855544-1855544_0   | 5       | 11      | 3           | occidentalis]                              |  |  |
|                            |         |         | XP_05580840 | uncharacterized protein LOC129876949       |  |  |
| dedRef_290571-290573_6     | 1       | 6,12506 | 2           | [Solanum dulcamara]                        |  |  |
|                            |         |         | XP_05580840 | uncharacterized protein LOC129876949       |  |  |
| dedRef_290571-290573_6     | 1       | 6,12506 | 2           | [Solanum dulcamara]                        |  |  |
|                            |         |         | XP_02097278 | uncharacterized protein LOC110269347       |  |  |
| dedRef_987810-987811_35    | 1       | 8,75412 | 9           | [Arachis ipaensis]                         |  |  |
| CHG                        |         |         |             |                                            |  |  |
| dedRef_4867705-4867717_23- |         | 3,5618E | XP_05786511 | uncharacterized protein LOC131072855       |  |  |
| 1                          | 5       | -11     | - 8         | [Cryptomeria japonica]                     |  |  |
|                            |         |         | YP_01044928 | hypothetical protein NUH76_pgp002          |  |  |
| dedRef_778999-779000_1     | 5       | 1,36959 | 7           | [Pinus echinata]                           |  |  |
|                            |         | 8,6309E | YP_00952217 | cytochrome c biogenesis protein [Larix     |  |  |
| dedRef 1855544-1855544 0   | 5       | -11     | 3           | occidentalis]                              |  |  |
|                            |         | 7,146E- | XP_05906866 | paired amphipathic helix protein Sin3-like |  |  |
| dedRef_1186197-1186198_33  | 5       | 13      | 9           | 3 [Cryptomeria japonica]                   |  |  |
|                            |         | 1,5171E | YP_01052688 | photosystem II protein K [Pinus            |  |  |
| dedRef_272714-272715_22    | 5       | -05     | 2           | ponderosa]                                 |  |  |
| СНН                        |         |         |             |                                            |  |  |
|                            |         | 7,0827E | XP_04795365 | 30S ribosomal protein S12-B, chloroplastic |  |  |
| dedRef_899225-899226_33    | 5       | -24     | 9           | [Salvia hispanica]                         |  |  |
|                            |         |         | XP_06096058 | uncharacterized protein LOC115723872       |  |  |
| dedRef_1013605-1013606_64  | 5       | 1,02227 | 0           | isoform X2 [Cannabis sativa]               |  |  |
|                            |         |         | XP_00911122 | uncharacterized protein LOC103836680       |  |  |
| dedRef_4150913-4150914_14  | 1       | 3,02554 | 2           | [Brassica rapa]                            |  |  |
|                            |         |         |             | PREDICTED: RNA-directed DNA                |  |  |
|                            |         | 6,9114E | XP_01361521 | polymerase homolog [Brassica oleracea      |  |  |
| dedRef 1515312-1515313 33  | 5       | -07     | 4           | var. oleracea]                             |  |  |

#### 4. Discussion

The primary objective of this study was to differentiate genetically and epigenetically between Scots pine (*Pinus sylvestris*) populations originating from Swedish sowed seeds and Norwegian wind- blown seeds using SNP genotyping and DNA methylation data. Additionally, the study aimed to correlate specific SNP allele with lifetime growth rate and annual growth rate under varying temperature and water stress conditions, and to characterize the associated genes through Gene Ontology (GO) analysis.

### 4.1 Genotypes and SNPs categorization

In this study, genotypes for 47712 SNPs markers were initially obtained for each of 300 individual samples of *Pinus sylvestris* using the Affymetrix platform. After stringent quality control measures, only 42920 SNPs falling into Poly High Resolution (PHR) and No Minor Homozygote (NMH) categories were selected for subsequent analysis. PHR are successful SNP loci due to their reliable genotyping into well-defined clusters, polymorphic nature, and are characterized as the diploid genotypes AA, AB and BB. SNPs falling into the MonoHighResolution class exhibit a monomorphic state, lacking allelic variability and could originate from either sequencing errors within transcriptome data or actual SNPs initially identified in the SNP discovery population. Likewise, the "Other" class of SNPs includes SNPs located in the flanked region and those arising from inadequate thermodynamic properties of probes leading to non-target hybridization. Additionally, the Off-target variants (OTV) comprises SNPs that are generated by mismatches between array probes and the target DNA sequence resulting in clusters with low intensity (Howe et al., 2020).

Remarkably, a significant proportion (97.8%) of SNPs were in Hardy Weinberg Equilibrium (HWE) exhibiting a P-value of  $\geq 0.01$ , which emphasizes the robustness of the dataset and confirms the suitability of the chosen markers for further analysis. Furthermore, 41974 SNPs demonstrated a Minor Allele Frequency (MAF) of  $\geq 0.05$ , indicating their relevance and potential significance in genetic association studies. The higher percentage of SNPs in HWE and with MAF shows a significant level of genetic diversity within the Pinus sylvestris population. Such genetic diversity is essential for adaptability and long- term survival of the species which enables responses to environmental changes and resistance to disease.

In the majority of SNPs, observed heterozygosity (O(HET)) was higher compared to the expected heterozygosity (E(HET)), which suggests a high level of genetic diversity in a population. This higher level of genetic variability might be due to several factors such as cross fertilization between different plants which occurs through wind or insect pollination and increases likelihood of heterozygosity. Other reasons could be natural selection that maintains the genetic diversity in the population by selecting multiple alleles which result in heterozygosity in the population.

#### 4.2 Population structure and admixture analysis

To elucidate the population structure and admixture patterns in *Pinus sylvestris*, 42,920 SNPs were analysed using STRUCTURE v.2.3.4, which utilizes an admixture model to estimate the true number of populations (K) by analysing allele frequency divergence, mean FST, and expected heterozygosity among individuals. Using the admixture model in STRUCTURE facilitated estimation of the most likely number of population clusters by maximizing the likelihood of the observed data. STRUCTURE HARVESTER processed the output results from STRUCTURE software by implementing "Evanno method" to determine the optimal Kvalue, which was 8 for this sample set. Admixture plots generated using fastSTRUCTURE and STRUCTURE provided clear visualization of the population structure at different Kvalues, ultimately confirming the presence of eight distinct clusters (K = 8) within population of Pinus sylvestris. These clusters represent the true underlying population structure of the sample set, which is important for understanding the evolutionary dynamics and for executing effective conservation strategies. The analysis revealed significant variation in the proportion of membership of samples in each cluster, cluster 7 showed the lowest membership proportion of 0.021, representing a minor cluster which possibly consist of unique or rare genetic subset within population. While cluster 4 indicates a major cluster with highest proportion (0.759) of membership. This emphasizes the heterogeneous nature of genetic distribution within Pinus sylvestris, which reflect a varying degree of genetic drift, gene flow, and selection pressures across different populations.

Furthermore, differences in genetic diversity among the clusters was observed, with cluster 8 showed the least (0.1836) while cluster 4 displayed the highest (0.3191), which suggest the presence of more genetically similar individuals in cluster 8 whereas individuals in cluster 4 are genetically more diverse. Conversely, genetic diversity ranging from 0.0433 to 0.580 was found between the population of *Pinus sylvestris* in which, highest diversity was noted between two most distant population (Sheller et al., 2023). The reasons for such higher genetic diversity as compared to our study might result from higher geographical distance between those populations. Geographically distant population are more likely to experience genetic drift and local adaptation, and lower chances of genes exchange which lead to greater genetic diversity within population. In contrast, populations in our study are closer geographically thus, resulting in higher gene flow and less genetic diversity.

Low nucleotide distance observed between cluster 5 and 8 (0.02999) indicates the closer relationship among the individual within these clusters. Our study also examined the mean FsT value, which measures the genetic differentiation among clusters. Highest FsT value observed in cluster 8 (0.5253) indicates significant genetic differentiation which could be due to reduced gene flow or historical isolation of this population. This suggests limited genetic exchange of this cluster with other clusters possibly due to geographical, ecological, or reproductive barriers, and such differentiation can lead to the development of unique characteristics within cluster. Conversely, low FsT value in cluster 4 (0.0118) represent a greater degree of genetic homogeneity which likely results from higher level of gene flow or a larger effective population size, enabling more frequent genetic exchanges within the cluster.

Consequently, less genetic differentiation and more uniform genetic structure in cluster 4 indicates an interconnected population. Understanding such variation in FsT values within Pinus sylvestris population helps in creating effective conservation strategies such as preserving the genetic uniqueness of highly differentiated clusters like cluster 8, which can maintain the genetic diversity of the species. Another study conducted in the populations of Pinus sylvestris showed genetic differentiation (Fst = 0.097) between two most distant populations of Pinus sylvestris (Sheller et al., 2023), which was much lower as compared to our observation. Such lower genetic differentiation suggests more uniform genetic structure potentially influenced by several factors such as geographical distance and isolation, pressure due to varying environment, historical factors like migration, and human impact such as logging, and forest management. Interestingly, the geographical distance between the population in the study was higher as compared to ours. However, there might be other reasons for lower FsT value rather than geographical distance which includes wind pollination and high rate of outcrossing among population, absence of geographical barriers allowing free gene flow, sample size as well as the number of individuals within each population. Another reason could be variations in the molecular markers used and the statistical method implemented in the calculation of FsT. Moreover, differences in environmental conditions such as climate and soil type induce varying selective pressures.

### 4.3 Genome Wide Association Studies (GWAS)

Single nucleotide polymorphisms (SNPs) are considered as the preferred molecular genetic markers for association studies due to their prevalence as the most abundant polymorphisms within the genome. They are distributed across both genic and intergenic regions and have capacity to denote mutational events which may induce changes in phenotypic (Cuervo-Alarcon et al., 2021). Genome Wide Association Studies (GWAS) were conducted to analyse the association of single nucleotide polymorphism (SNPs) and plant height (PH) in Scots pine samples representing Norwegian and Swedish trees as well as samples combined (Total (N+S)). The accurate identification of genetic relationships and low error rates provided by PiSy50k emphasize the suitability of using SNP array in Genome Wide Association Studies (Kastally et al., 2022). However, as large part of RNA transcriptomic was used to generate PiSy50 k SNP array, there might be some biased result due to possibilities of higher number of contig present in RNA transcriptomic than actual gene therefore, it may cause problems in downstream analyses and result in biased result (Ojeda et al., 2019).

By examining the data from 4 forest plots- Brannflata Midt (BM), Brannflata Sør (BS). Gratvikskogen (G), and Storvelta (S), this study identified significant SNPs correlated with PH to understand the genetic basis of this complex trait, which is critical for effective forest management and breeding programs. The genetic architecture of traits in forest trees is typically polygenic, which is influenced by numerous loci with minor to moderate effects. A prevalent method for identifying the genetic polymorphisms associated to adaptive traits is by testing the association between phenotypic traits and genetic variation (Cuervo-Alarcon et al., 2021).

Our findings provide valuable insights into the complex genetic interaction influencing this trait. In this study, we identified significantly associated SNPs with PH where each significant marker exhibited varying patterns of association across different alleles and origin (Norwegian or Swedish). Genome wide association studies was conducted by several studies in *Pinus species*, other forest trees and crop plants for various traits. A study conducted in three different Pine species (*Pinus sylvestris*, *Pinus uncinata*, and *Pinus mungo*) identified 118 SNP markers significantly associated with growth and phenology (Perry et al., 2022b). GWAS conducted for tree height in poplar trees identifies 41 significant SNPs associated with height (Chen et al., 2021). In Rice, GWAS conducted for plant height identified 13 associated loci for rice growing under normal water conditions, 13 associated loci for drought conditions, and 8 associated loci were identified in both conditions (X. Ma et al., 2016).

We identified 206, 987, and 1864 SNPs showing significant association with PH in Norwegian, Swedish, and combined sample Total (N+S), respectively, highlighting genetic variation influencing PH across different sample groups. The greater number of significantly associated SNPs identified in the Swedish and combined group suggests either broader genetic diversity or increased detection power due to large number of samples in these groups compared to Norwegian. Particularly, the overlap of 7 SNPs between Norwegian and Swedish groups accentuates the presence of limited shared genetic factors affecting PH among these sample groups. Norwegian trees are wind-blown seeds and might have undergone natural selection and adaptation to their environment. The differences in origin of trees likely contributes to the observed variations in SNPs association with PH in each population.

The differentiation of SNPs based on the dominant and recessive allele models, both with and without covariance enhances our understanding of the genetic contribution to PH in population of Scots pine. In the Norwegian sample, the number of significant SNPs associated with dominant allele were significantly higher as compared to associated with recessive allele in both, with covariance (53 dominant, 1 recessive) and without covariance (84 dominant, 19 recessive) association. This trend was consistent in the Swedish sample, where dominant allele associated SNPs were more common (217 dominant, 32 recessive with covariance; 279 dominant, 94 recessive without covariance). The combined analysis (Total (N+S)) supports these findings by further showing the predominant role of dominant, 131 recessive without covariance). Our study suggests that a more detailed genetic basis for PH was observed in Swedish trees as compared to Norwegian, because the Norwegian samples size is too small (too few numbers of tall vs. short trees) to generate the same numbers of significantly associated SNPs as for the larger Swedish group.

Additionally, allele (or genotype) model\*covariant interaction identified significant SNPs associated with PH. In Norwegian trees, dominant allele model\*covariant interaction did not identify significant SNPs, whereas Swedish population exhibited significant interaction effects for dominant (98 SNPs), and recessive (2 SNPs) model. Combined population identified a greater number of significant SNPs under interaction effects for the dominant allele (585 SNPs), suggesting complex genetic interactions affecting PH. The unique and overlapping

SNPs identified in interaction effects (585 SNPs for dominant allele model in combined population) suggest that PH is not just influenced by individual SNPs but also by their interactions. This is particularly observed in large number of SNPs identified in dominant interaction which shows epistasis interactions where one gene's impact depends upon another gene.

Significant associations were detected in specific forest plots, indicating forest-specific genetic influences on PH. For instance, BS and S exhibited distinct sets of associated SNPs compared to G, which suggests unique genetic factors (specific SNP allele variants) having effect in these locations. There were no significant SNPs identified associated with PH in forest BM. Even the forest plot belongs to same geographical location, there could be several factors contributing to the differences in significant associations such as microclimatic variation, historical land use, sampling variation and others. The fire clearance in BM and BS plots and presence of Norwegian seeds in S and G plots represents the different management practices, fire clearance can reset the genetic composition by removing certain species or genotypes which might lead to the appearance of unique genetic factors influencing PH. Similarly, presence of Norwegian seed in the plot might introduce novel genetic variants into the population, which can cause genetic divergence. Despite belonging to the same geographical location, forest plot might experience microclimatic differences in factors such as soil composition, moisture level, and other.

Furthermore, including covariance association in the analysis provided additional insights. The number of significant SNPs associated with dominant allele and recessive alleles changes when covariance is considered versus when it was not considered, which indicates that some of the associations are stronger and more reliable when covariance is included, likely reducing false positives. Without covariance, common SNPs were found between dominant and genotype models (74 SNPs), and between recessive and genotype (27 SNPs), which highlights the complex genetic makeup of PH. Increase in the number of significant SNPs without including covariance suggests that some of the associations might be due to differences in population from different stands.

The presence of significant associations in multiple SNP markers, along with significant pvalues determines the true associations as described by (Upadhyaya et al., 2013). In our study, SNPs markers identified as significantly associated in most association models (dominant, recessive and genotype) demonstrated association by having more than one SNP marker associated with plant height. However, this was not the case for the recessive model in Norwegian trees and the recessive model \* covariate interaction model in Swedish trees. These findings suggest that SNP markers for plant height in Norwegian and Swedish trees are not significantly associated with plant height by recessive allele and recessive interaction models, respectively.

The varying degree of overlap among SNPs associated with different alleles model and interactions (dominant, recessive, and genotype) suggests that PH is controlled by a network of genes with both additive and non-additive effects and thus emphasizes the importance of considering both individual SNP effects and their interaction to fully understand the genetic

68

architecture of complex traits like plant height in Scots pine. Identification of significant numbers of SNPs across different models and populations represent the complexity of the genetic basis of PH. The limited number of SNPs shared between Norwegian and Swedish trees suggests that there are unique genetic factors involved within each population. Our findings could contribute valuable knowledge to the field of plant genetics and offer a basis for future research aimed at enhancing our understanding of this complex trait in forest trees.

Furthermore, in this study, we examined the association between SNP markers and growth of plants under varying temperature and / or water stress conditions. Growth is an important trait for examining plant responses to varying stresses, which is influenced by environmental factors (Cuervo-Alarcon et al., 2021). We implemented Standardized Precipitation Evapotranspiration Index (SPEI) to create different category (High and Low SPEI) depending on varying temperature and water stress condition. Through combining precipitation and temperature data, SPEI calculates drought index using monthly (or weekly) differences between precipitation and Potential Evapotranspiration (PET) that represent a simple climatic water balance , and enables assessment of drought severity across different period and locations as it can computed across various climatic conditions (Vicente-Serrano et al., 2010b).

By implementing SPEI, different categories (High and Low SPEI) were created based on contrasting temperature and water stress conditions. Our findings revealed a remarkable difference in the number of significantly associated SNPs across different SPEI categories and alleles. During the March-May period, when environmental stress is typically high due to low precipitation and elevated temperatures, the dominant allele association model showed the highest number of significantly associated SNPs in the Low SPEI category, which suggests that certain genetic variants might provide advantages to deal with limited water resources. In contrast, in High SPEI category, indicative of favourable temperature and precipitation, recessive allele model genotypic markers displayed a greater association with plant growth suggesting that different genetic variants might be advantageous in environments with adequate amounts of precipitation or with favourable temperature.

Furthermore, genotypic associations provided depth to the analysis by disclosing detailed interaction between genetic factors and varying temperature conditions. Particularly, significant numbers of SNPs were identified in both, Low and High SPEI categories which emphasize the complex nature of genotype-environment interactions in shaping plant growth responses. This complex nature highlights the importance of considering the combined effects of multiple genetic variants in understanding the response of plants to with fluctuation in temperature and precipitation.

During the growth period of June-August, both SPEI categories showed a greater number of significant SNPs associated with dominant allele compared to recessive allele, which suggests that certain genetic variants might play a crucial role in enabling plants to manage with various stressors during this growth period. The observed differences in significantly associated SNPs between Low and High SPEI periods likely reflect the activation of specific stress response pathways which varies with changing temperature and precipitation. During period of water

stress, plants may prioritize the expression of certain gene associated with drought conditions which results in higher number of significant SNPs associations in the dominant allele model.

Different seasonal fluctuation in temperature and precipitation imposes selective pressure on plants and affect their growth, leading to changes in adaptation, survival and thereby genetic differences. The observed differences in the number of significantly associated SNPs between different time periods (March-May and June-August) might reflect seasonal changes in light intensity, photoperiod and selective pressures. For instance, higher number of significant SNPs associated with the dominant allele model during June-Aug period might explains adaptations to warmer temperatures and increased availability of water during the season. Our findings highlight the complex nature of genetic basis of plant growth traits and explain the importance of considering both genetic and factors like temperature and precipitation in understanding plant adaptation to changing climatic conditions. Identifying specific SNPs markers associated with plant growth across diverse climatic conditions provides valuable insights into plant breeding strategies aimed at enhancing flexibility to climate change.

## 4.4 Gene Ontology (GO) Analysis

With an aim to identify and understand the function of the genes in which SNP markers identified in GWAS of plant height (PH) reside, Gene Ontology (GO) analysis was performed. Genes identified in the GWAS of PH within Norwegian, Swedish, and combined - Total (N+S) showed varying number of associations with SNP allele variants following dominant allele, recessive allele, and genotype models. Particularly, Swedish trees displayed a higher number of identified genes compared to Norwegian individuals.

In Norwegian trees, a greater number of genes were associated with dominant alleles as compared to the recessive allele, implying an important role of these alleles in phenotype determination. GO analysis further explains the functional importance of these alleles, which identified enriched functions primarily related to processes such as pollen germination, SCF complex assembly, and anther development. Conversely, genes associated with recessive alleles showed relation with distinct functions such as cell plate formation and plasma membrane organization, which suggests potential regulatory mechanism unique to this allele. Enriched functions associated with genotypes were related to the regulatory processes such as calcium ion homeostasis, highlighting the significance of genes for the growth and development of plants.

Similar patterns were observed in Swedish trees, which emphasize the crucial role of genotype associated genes for phenotype determination. Dominant genes were enriched in functions related to signalling receptor activity and chemical stimulus detection, which indicates the involvement of gene in environmental responsiveness. Moreover, recessive genes were mostly related to metabolic activities, implying the crucial role of genes in growth, development through involvement in conversion of nutrients, and energy.

Combined population of Norwegian and Swedish trees revealed a broad view of genetic pathways underlying PH. Shared and unique GO terms among different alleles and genotypes draw a special attention to the complexity of gene regulation and its effect on phenotype variation. Specifically, genes associated with both dominant and recessive alleles showed dual roles in cellular processes such as CUT catabolic and metabolic processes, indicating the multiple roles of those genes. Our study provides valuable insights into the complex interaction between genetic variation and phenotype determination in trees.

Common genes identified in Norwegian and Swedish are related to various functions, such as CUL1 gene is related to both Molecular function (ubiquitin protein ligase binding) and biological processes (SCF complex assembly). CUL1 shows continual expression across entire life cycle of plants, from the inception of zygote to the production of pollen. The essential role of CUL1 and SCF complexes in regulating auxin responses throughout various stage of growth and development has been reported in (Hellmann et al., 2003). CPL1 gene is associated with Molecular function related to RNA polymerase II CTD heptapeptide repeat phosphatase and modifying activity. CPL1 is essential for transcriptional regulation and involved in miRNA biogenesis, plant growth and stress responses. Delayed flowering phenotype in Arabidopsis thaliana is addressed due to loss of CPL1 function (Yuan et al., 2021). Another similar gene identified is RPK2, which was related to several functions related to BP such as pollen germination, longitudinal axis specification, anther, stamen, and androecium development, meristem maintenance, floral whorl development, embryonic axis specification, pollen maturation, and radial pattern formation. RPK2 was found to be involved in regulating root growth by controlling cell proliferation and influencing meristem size in Arabidopsis thaliana (Racolta et al., 2018).

Moreover, Gene Ontology Analysis (GO) analysis was conducted for the genes associated with growth of plants to understand the Biological Process (BP), Cellular components (CC), and Molecular Function (MF) of the genes associated with growth of plants with seasonal temperature and precipitation. The study provided insights into the distinct significant role of various genes across different environmental conditions, which highlights the dynamic interaction between the genetic factors and environmental stimuli in influencing plant growth and development by identifying Gene Ontology (GO) terms associated with the High SPEI and low SPEI categories during two different growth period (March-May and June-August).

During the period of March-May, a total of 95 GO terms were identified with significant differences observed between High and Low SPEI category. In High SPEI, genes associated with dominant allele were related to the regulatory processes such as anatomical and cell morphogenesis, cell differentiation, and response to metal ions. Such functions are pivotal for early growth and development process in plants, which shows the essential role of dominant alleles in vigorous growth and development of plants in the favourable environmental conditions. The sole function identified for the recessive gene in High SPEI was glycerophosphodiesterase activity, which highlights the significant involvement of plants.

Genotype-related functions such as peptidyl prolyl cis trans isomerase activity and cyclosporin A- binding underscore the importance of protein folding and stress response mechanism.

In contrast, Low SPEI category identified various functions associated with alleles and genotype. Genes governed by dominant allele were predominantly associated with various floral and reproductive development such as development of floral whorl, carpel, gynoecium, and plant ovule. Such reproductive functions observed under conditions of lower moisture indicates an adaptive strategy followed by plants to prioritize the reproductive success over vegetative growth in water stress. Association of recessive gene with the stress response mechanism such as cyclosporin A binding and hydrolase activity shows the essential role of recessive allele in maintaining cellular functions under unfavourable conditions or water stress condition in Low SPEI period. Genotype related functions include regulation of fatty acid biosynthesis processes and detection of stimuli indicates a wide range of adaptive responses to environmental stress.

Furthermore, 106 GO terms were identified across High SPEI and Low SPEI category during the growth period of June-August. Dominant genes in the High SPEI category were related with cellular functions such as ubiquitin protein transferase activity and phosphatidylinositol-3,5-biphosphate binding which play a crucial role in regulation of protein. The association of dominant gene with phagophore assembly site membrane suggest an active role in autophagy and cellular survival and maintenance during the period of high-water availability. Recessive genes were related with the functions such as response to hydrogen peroxide and MAP kinase activity which shows the role of recessive allele in reducing oxidative stress. The association of genotypes with the function such as seed germination and response to lead ion highlights various physiological processes in the adequate moisture conditions. In Low SPEI period of June-August, dominant genes were primarily related with brassinosteroid - mediated signalling and primary root development which highlights the role of dominant allele to manage stress in plants by controlling root growth and hormones. Genes governed by recessive allele show association with stress response function which highlight the continuity of recessive allele in helping plants to handle stressed conditions. Genotype related functions such as protein transport and golgi organization highlights the influence of genotype in molecular machinery of these process which determine ability of cell to survive in adverse environmental condition. GO enrichment analysis for different genes associated with allele and genotype elucidate the complex genetic strategies exerted in plants for growth and survival with varying temperature and water stress conditions. Dominant genes typically control broad regulatory and developmental processes, whereas recessive genes and genotype specific functions frequently contribute to specialized roles in maintaining cellular functions and stress response.

#### 4.5 DNA methylation analysis

Analysing Reduced Representative Bisulfite Sequencing (RRBS) data obtained from 30 individual sample of Pinus sylvestris, including Norwegian and Swedish samples revealed notable epigenetic differences between these two origins. Also, we analysed the data to

examine the methylation pattern associated with tree height (Tall vs Short) and observed significant differences.

By comparing two origins of trees Norwegian and Swedish, we identified 394 differentially methylated regions (DMRs) which includes 129 in CpG, 128 in CHG, and 80 in CHH sites. Among these DMRs, 152 regions were hypermethylated while 185 regions were hypomethylated. Further, differences in the distribution of the methylated sites were observed in between Norwegian and Swedish trees. Norwegian trees showed higher methylation in CHH sites (868) while lowest in CpG sites (114). In contrast, higher methylation in Swedish trees was found in CpG site (393), whereas lower methylation was observed in CHG site (160). Such differences in methylation profiles observed among these two different origins of trees indicates the different epigenetic mechanism exerted by trees which might be related to the local adaptations or due to genetic differentiation. When considering the potential functional effects, only CpG methylations has been associated with gene expression in Pinus taeda (Gardner et al., 2023). Our study shows higher CpG methylation in Swedish trees as compared to Norwegian trees, which suggest that Swedish trees might engage more broadly in gene regulation through CpG methylation. Higher level might facilitate optimization of gene expression more precisely which enable them to adapt more effectively to their specific environmental conditions such as climate, soil composition and other factors. In contrast, lower CpG methylation observed in Norwegian trees indicates less dependence on CpG methylation for regulation of gene expression. In plants, CHG methylation is associated with gene splicing and modifications in methylation status have the potential to disrupt precise splicing of gens which may lead to harmful effects (Gardner et al., 2023). Lower level of CHG methylation found in Swedish trees imply decreased role of CHG methylation in splicing mechanism of trees, which might indicate an adaptation to reduce the harmful effects that could arise from epimutations in these regions.

Furthermore, in plants, CHH methylation is predominantly associated with the silencing of transposable elements (TEs) and occurrence of epimutations in these regions are generally low (Gardner et al., 2023). In Norwegian trees, higher level of CHH methylation shows a strong mechanism for maintaining genome integrity by silencing TEs. The lower CHH methylation in Swedish trees imply either lower TEs activity or evolution of alternative mechanism for managing TE activity. Such differences in CHH methylation between these origin highlights diverse strategies employed by them to maintain genomic stability.

When methylation pattern associated with tree height was compared, 593 DMRs were identified between Tall (T) and Short (S) trees, among which 293 were in CpG, 188 in CHG, and 112 in CHH site. Identification of 593 DMRs between tall and short trees highlights the regulatory function of DNA methylation in controlling processes associated with growth. Comparing Tall vs Short identified 292 hypermethylated and 301 hypomethylated regions. Moreover, observed methylation site count significantly varied between tall and short trees, tall trees showed higher methylated site in CHH (1270) while lower methylated site in CHG (107). For Short trees, higher methylated site was identified in CHH (777) and fewer methylated site was found in CpG (441). These variation in methylation pattern imply possible

epigenetic basis for variation of height in *Pinus sylvestris*, where different methylation patterns correlate with trait. Such variation in between tall and short trees might be resulted from various factors such as growth, development and adaptations to environment. Higher methylation in CHH can also be influenced by microenvironment, which includes several factors such as soil, water temperature, humidity, pest and others. Microenvironment accounted for 0.086% of phenotypic variation in Plant height has been recorded (Hu et al., 2015). Tall trees generally experience more stress due to light exposure, temperature fluctuation, which can induce stress in plants. CHH methylation is found to be associated with the regulation of genes related to stress response (Wang et al., 2022). The greater number of CHH methylated sites in tall trees might indicate an increased need for regulation of gene expression to manage the physiological and environmental stress associated with greater height. Since CHH methylation is related to plant immune responses (D. Xiao et al., 2021), our findings suggests that both tall and short trees might have an enhanced immune responses due to their elevated CHH methylation levels. Our findings offer valuable insights into the mechanism underlying plant adaptation and defence strategies. This finding has significant implications for forestry and agricultural practices as it highlights the importance of DNA methylation patterns, particularly CHH methylation, which could provide insight into the breeding programs aimed at improving disease resistance. Understanding this pattern can help breeders to perform selective breeding with improved CHH methylation pattern, enhancing the ability of plants to withstand pathogens and environmental challenges and thus result in sustainable production. Variation in the methylation patterns observed between Swedish and Norwegian as well as between tall and short trees draw an attention to the complex nature of epigenetic regulation influenced by environmental and genetic factor.

### 4.6 BLAST search and analysis

BLASTn was performed against the assembled genome of *Pinus jeffreyi*, whereas BLASTx was performed against the Ref-seq protein database. Using BLASTn, nucleic acid sequence homology searches against the *Pinus jeffreyi* database (Accession number: SAMN1212614) was performed with aim to identify evolutionary relationship of differentially methylated fragments and motifs with *Pinus jeffreyi*, which is a phylogenetically close relative of Pinus sylvestris. Most of the methylated fragments and motifs at CpG, CHG, and CHH sites showed significant similarity with sequences from *P. jeffreyi*, representing the genetic relatedness and conservation of methylation patterns within the species. E-value quantifies the statistical significance of similarity search in BLAST, where lower E-value suggests more significant sequence similarity (the better is the hit i.e., the sequences are homologs) and higher E-value suggests that the similarities between query and retrieved database sequence are by chance (Kerfeld & Scott, 2011)

BIASTX searches against the RefseqPROTEIN database aimed to identify protein coding potential of differentially methylated sequences and to predict functions or relationship with known gene sequences. From evolutionary perspective, protein sequences are more conserved as compared to nucleotide sequences and also the detected protein hits might have been annotated facilitating the observation of protein functions (<u>Bioinformatics Software</u>] <u>QIAGEN Digital Insights</u>). The result showed significant homology with plant protein sequences especially those from Pinus species, indicates evolutionary conservation and potential functional roles of these methylated regions.

For the CHG context, 18 differentially methylated fragments showed similarity with plant proteins, which suggests conservation of these sequences across plant genomes. Particularly, 7 fragments matched with Pinus species, and 2 were identified in Pinus koraiensis (ORF 47a and ORF52a). Additionally, other matches include photosystem II protein from Pinus ponderosa and RNA polymerase beta subunit from Pinus rigida/Pinus taedae. Photosystem II (PS II) is a multi-pigment protein complex located within the thylakoid membranes of oxygenic photosynthetic organisms, such as cyanobacteria, algae, and plants. It plays a crucial role in splitting water, reducing plastoquinone, and oxygen evolution (Lu, 2016). These matches suggests that CHG methylation sites in Pinus sylvestris are involved in important biological processes such as photosynthesis and transcription and are highly conserved among *Pinus species*. In CpG, 6 differentially methylated fragments showed similarity to plant protein sequences, with 2 were related to Pinus species, namely Pinus densiflora var. densiflora and Pinus koraiensis (ORF91). Furthermore, 1 CpG fragment exhibiting similarity with a disease resistance protein RGA-2 like sequence from Coffea arabica suggests potential role in plant defense mechanisms. RGA2 gene was identified playing an essential role in disease resistance against Phytophthora capsici Leonian in Capsicum annum (Y.-L. Zhang et al., 2013). Although CHH methylation sites showed similarity across plant genomes, protein remains uncharacterized (there was a hit, but protein has no identity or function) which indicates the presence of potential novel proteins or genomic regions with unidentified functions and requires further study.

BLASTx search of methylated motifs (CpG, CHG, and CHH) revealed several plant protein sequences which elucidate the conservation and possible functional roles of these motifs. CpG motifs showed identification with 4 plant protein sequences including a cytochrome C biogenesis protein from *Larix occidentalis*, which is essential for electron transport in photosynthesis. Cytochrome c proteins are essential heme carriers, which undergo a complex

post-translational biosynthesis known as cytochrome c biogenesis, and are found in most living organisms and are crucial for energy production and various cellular processes, (Verissimo & Daldal, 2014). The identification of uncharacterized (there was a hit, but protein has no identity or function) proteins suggests need for further research to identify their roles. In CHH motifs 5 plant protein sequences were identified, a 30s ribosomal protein S 12-B chloroplastic protein identified from *Salvia hispanica*, which is crucial for protein synthesis in chloroplasts. Ribosomal protein S12 is located at the interface between ribosomal subunits, where it is play an essential roles to interact with tRNA molecules and large subunit (Cukras et al., 2003). The resemblance to predicted proteins from *Brassica oleracea var. oleracea* and 2 uncharacterized proteins suggests the presence of conserved but functionally obscure regions in plant genomes.

CHG motifs showed similarity with 5 plant sequences, 2 were related to *Pinus ponderosa* and Pinus echinate, with protein sequence- a photosystem II protein and a hypothetical protein NUH76 pg002, respectively. These proteins are likely involved in crucial biological processes such as photosynthesis. Intrinsic and extrinsic proteins of Photosystem II helps to neutralize light stress in plants (Landi & Guidi, 2023). Moreover, another CHH motif showed similarity with a paired amphipathic helix protein from Cryptomeria japonica, which is potentially involved in transcriptional regulation. The significant homology of differentially methylated fragments with proteins of Pinus species and other plant species emphasizes evolutionary conservation of these methylated patterns. Identification of proteins involved in photosynthesis, transcription, and disease resistance suggests that methylation might play a key role in regulation of essential physiological processes in *Pinus sylvestris*. Additionally, presence of uncharacterized and hypothetical proteins shows that there are still unknown aspects of plant genomics and epigenomics which require further exploration. To recapitulate, BLASTn and BLASTx searches and analyses provided a detailed overview of evolutionary relationships and potential functions of differentially methylated sequences in P. sylvestris with homology to Pinus jeffreyi and other plant species. These findings helped to characterise the methylated sequences in *Pinus sylvestris*, find a homologous sequences in other species and their potential roles in important biological functions, thereby facilitating future investigations to completely understand the functional importance of DNA methylation in Pinus sylvestris.

## 5. Conclusion

A detailed analysis of genetic and epigenetic factors influencing the traits of *Pinus sylvestris*, particularly plant height and annual growth unveils the intricate relationship between genomic variations, temperature and precipitation, and phenotypes. Firstly, population structure analysis of 310 individuals of Scots pine using SNPs markers highlights the presence of 8 distinct clusters (K = 8) within the sampled trees, with significant genetic diversity observed across different forest plots and between Norwegian and Swedish trees. And the largest cluster 4 most likely represented trees originating from Swedish seed.

Moreover, Genome Wide Association Studies (GWAS) offers valuable insights into the genetic framework of plant height and growth by revealing significant SNPs markers associated with these traits across different sample groups and climatic conditions. The predominance of dominant alleles found to correlate with plant height suggests their significant role in determining phenotypic variations, thereby holding potential implications for plant breeding and selection strategies. Notable differences in DNA methylation patterns were identified between Swedish and Norwegian trees as well as between tall and short individuals. These epigenetic variations might reflect the different environmental life histories between seeds of different geographical origin, and/or to the adaptability of traits and capacity to respond to environmental signals, thereby influencing growth and development of Scots pine trees.

Furthermore, our detailed analysis contributes to a deeper understanding of the underlying genetic and epigenetic mechanisms governing Scots pine traits. These findings provide valuable insights for conservation practices and sustainable forest management as well as breeding approaches directed towards enhancing resilience and productivity in *Pinus sylvestris*.

- Alakärppä, E., Salo, H. M., Valledor, L., Cañal, M. J., Häggman, H., & Vuosku, J. (2018). Natural variation of DNA methylation and gene expression may determine local adaptations of Scots pine populations. *Journal of Experimental Botany*, 69(21), 5293– 5305.
- Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: Tool for the unification of biology. *Nature Genetics*, *25*(1), 25–29. https://doi.org/10.1038/75556
- Bartels, A., Han, Q., Nair, P., Stacey, L., Gaynier, H., Mosley, M., Huang, Q. Q., Pearson, J. K., Hsieh, T.-F., An, Y.-Q. C., & Xiao, W. (2018). Dynamic DNA Methylation in Plant Growth and Development. *International Journal of Molecular Sciences*, *19*(7), Article 7. https://doi.org/10.3390/ijms19072144
- Bewick, A. J., & Schmitz, R. J. (2017). Gene body DNA methylation in plants. *Current Opinion in Plant Biology*, *36*, 103–110. https://www.sciencedirect.com/science/article/pii/S1369526616301297
- Bilginer, U., Ergin, M., Demir, E., Yolcu, H. I., & Karsli, B. A. (2022). Detection of genetic diversity in cattle by microsatellite and SNP markers-a review. https://www.researchgate.net/profile/EymenDemir/publication/366696320\_Detection\_of\_genetic\_diversity\_in\_cattle\_by\_microsa

tellite\_and\_SNP\_markers\_- a\_review/links/63d681acc465a873a26a5602/Detectionof-genetic-diversity-in-cattle-by-microsatellite-and-SNP-markers-a-review.pdf

Botton, A., Galla, G., Conesa, A., Bachem, C., Ramina, A., & Barcaccia, G. (2008). Largescale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology. *BMC Genomics*, 9(1), 347. https://doi.org/10.1186/1471-2164-9-347

- Brichta, J., Šim\uunek, V., Bílek, L., Vacek, Z., Gallo, J., Drozdowski, S., Bravo-Fernández, J. A., Mason, B., Roig Gomez, S., & Hájek, V. (2024). Effects of Climate Change on Scots Pine (Pinus sylvestris L.) Growth across Europe: Decrease of Tree-Ring Fluctuation and Amplification of Climate Stress. *Forests*, 15(1), 91. https://www.mdpi.com/1999-4907/15/1/91
- Brichta, J., Vacek, S., Vacek, Z., Cukor, J., Mikeska, M., Bílek, L., Šimůnek, V., Gallo, J., & Brabec, P. (2023). Importance and potential of Scots pine (*Pinus sylvestris* L.) in 21 st century. *Central European Forestry Journal*, 69(1), 3–20. https://doi.org/10.2478/forj-2022-0020
- Burghardt, L. T., Young, N. D., & Tiffin, P. (2017). A Guide to Genome-Wide Association Mapping in Plants. *Current Protocols in Plant Biology*, 2(1), 22–38. https://doi.org/10.1002/cppb.20041
- Carlisle, A., & Brown, A. H. F. (1968). Pinus Sylvestris L. Journal of Ecology, 56(1), 269– 307. https://www.jstor.org/stable/2258078
- Catoni, M., Tsang, J. M., Greco, A. P., & Zabet, N. R. (2018). DMRcaller: A versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts. *Nucleic Acids Research*. https://doi.org/10.1093/nar/gky602
- Chen, Y., Wu, H., Yang, W., Zhao, W., & Tong, C. (2021). Multivariate linear mixed model enhanced the power of identifying genome-wide association to poplar tree heights in a randomized complete block design. G3 Genes|Genomes|Genetics, 11(2), jkaa053. https://doi.org/10.1093/g3journal/jkaa053

- Cuervo-Alarcon, L., Arend, M., Müller, M., Sperisen, C., Finkeldey, R., & Krutovsky, K. V. (2021). A candidate gene association analysis identifies SNPs potentially involved in drought tolerance in European beech (Fagus sylvatica L.). *Scientific Reports*, 11(1), 2386. https://doi.org/10.1038/s41598-021-81594-w
- Cukras, A. R., Southworth, D. R., Brunelle, J. L., Culver, G. M., & Green, R. (2003).
  Ribosomal Proteins S12 and S13 Function as Control Elements for Translocation of the mRNA:tRNA Complex. *Molecular Cell*, *12*(2), 321–328. https://doi.org/10.1016/S1097-2765(03)00275-2
- Durrant, T. H., De Rigo, D., & Caudullo, G. (2016). Pinus sylvestris in Europe: Distribution, habitat, usage and threats. *European Atlas of Forest Tree Species*, 14, 845–846. https://www.researchgate.net/profile/Giovanni-

Caudullo/publication/299470777\_Pinus\_sylvestris\_in\_Europe\_distribution\_habitat\_u sage\_and\_threats/links/61ee73a8dafcdb25fd4a0b70/Pinus-sylvestris-in-Europe-distribution-habitat-usage-and-threats.pdf

- Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics Resources*, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7
- Elhamamsy, A. R. (2016). DNA methylation dynamics in plants and mammals: Overview of regulation and dysregulation. *Cell Biochemistry and Function*, 34(5), 289–298. https://doi.org/10.1002/cbf.3183
- Erdmann, R. M., & Picard, C. L. (2020). RNA-directed DNA Methylation. *PLOS Genetics*, *16*(10), e1009034. https://doi.org/10.1371/journal.pgen.1009034
- Fjellstad, K. B., & Skrøppa, T. (2020). State of forest genetic resources in Norway 2020. *NIBIO Rapport*. https://nibio.brage.unit.no/nibio-xmlui/handle/11250/2720189

- Foerster, A. M., & Scheid, O. M. (2010). Analysis of DNA Methylation in Plants by Bisulfite
  Sequencing. In I. Kovalchuk & F. J. Zemp (Eds.), *Plant Epigenetics* (Vol. 631, pp. 1–
  11). Humana Press. https://doi.org/10.1007/978-1-60761-646-7\_1
- Fraga, M. F., & Esteller, M. (2002). DNA Methylation: A Profile of Methods and Applications. *BioTechniques*, *33*(3), 632–649. https://doi.org/10.2144/02333rv01
- Galdina, T., & Khazova, E. (2019). Adaptability of Pinus sylvestris L. to various environmental conditions. *IOP Conference Series: Earth and Environmental Science*, 316(1), 012002. https://iopscience.iop.org/article/10.1088/1755-1315/316/1/012002/meta
- Gallego-Bartolomé, J. (2020). DNA methylation in plants: Mechanisms and tools for targeted manipulation. *New Phytologist*, *227*(1), 38–44. https://doi.org/10.1111/nph.16529
- Gardner, S. T., Bertucci, E. M., Sutton, R., Horcher, A., Aubrey, D., & Parrott, B. B. (2023).
  Development of DNA methylation-based epigenetic age predictors in loblolly pine (Pinus taeda). *Molecular Ecology Resources*, 23(1), 131–144. https://doi.org/10.1111/1755-0998.13698
- Gawehns, F., Postuma, M., van Antro, M., Nunn, A., Sepers, B., Fatma, S., van Gurp, T. P., Wagemaker, N. C. A. M., Mateman, A. C., Milanovic-Ivanovic, S., Groβe, I., van Oers, K., Vergeer, P., & Verhoeven, K. J. F. (2022). epiGBS2: Improvements and evaluation of highly multiplexed, epiGBS-based reduced representation bisulfite sequencing. *Molecular Ecology Resources*, 22(5), 2087–2104. https://doi.org/10.1111/1755-0998.13597
- Gruntman, E., Qi, Y., Slotkin, R. K., Roeder, T., Martienssen, R. A., & Sachidanandam, R.
  (2008). Kismeth: Analyzer of plant methylation states through bisulfite sequencing. *BMC Bioinformatics*, 9(1), 371. https://doi.org/10.1186/1471-2105-9-371

- He, X.-J., Chen, T., & Zhu, J.-K. (2011). Regulation and function of DNA methylation in plants and animals. *Cell Research*, *21*(3), 442–465. https://doi.org/10.1038/cr.2011.23
- Hellmann, H., Hobbie, L., Chapman, A., Dharmasiri, S., Dharmasiri, N., del Pozo, C., Reinhardt, D., & Estelle, M. (2003). Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. *The EMBO Journal*, 22(13), 3314–3325. https://doi.org/10.1093/emboj/cdg335
- Henderson, I. R., Chan, S. R., Cao, X., Johnson, L., & Jacobsen, S. E. (2010). Accurate sodium
  bisulfite sequencing in plants. *Epigenetics*, 5(1), 47–49.
  https://doi.org/10.4161/epi.5.1.10560
- Howe, G. T., Jayawickrama, K., Kolpak, S. E., Kling, J., Trappe, M., Hipkins, V., Ye, T., Guida, S., Cronn, R., Cushman, S. A., & McEvoy, S. (2020). An Axiom SNP genotyping array for Douglas-fir. *BMC Genomics*, 21(1), 9. https://doi.org/10.1186/s12864-019-6383-9
- Hsu, F.-M., Yen, M.-R., Wang, C.-T., Lin, C.-Y., Wang, C.-J. R., & Chen, P.-Y. (2017). Optimized reduced representation bisulfite sequencing reveals tissue-specific mCHH islands in maize. *Epigenetics & Chromatin*, 10(1), 42. https://doi.org/10.1186/s13072-017-0148-y
- Hu, Y., Morota, G., Rosa, G. J. M., & Gianola, D. (2015). Prediction of Plant Height in Arabidopsis thaliana Using DNA Methylation Data. *Genetics*, 201(2), 779–793. https://doi.org/10.1534/genetics.115.177204
- Ibáñez, M. D., & Blázquez, M. A. (2019). Phytotoxic effects of commercial Eucalyptus citriodora, Lavandula angustifolia, and Pinus sylvestris essential oils on weeds, crops, and invasive species. *Molecules*, 24(15), 2847. https://www.mdpi.com/1420-3049/24/15/2847

- Kastally, C., Niskanen, A. K., Perry, A., Kujala, S. T., Avia, K., Cervantes, S., Haapanen, M., Kesälahti, R., Kumpula, T. A., Mattila, T. M., Ojeda, D. I., Tyrmi, J. S., Wachowiak, W., Cavers, S., Kärkkäinen, K., Savolainen, O., & Pyhäjärvi, T. (2022). Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. *The Plant Journal*, *109*(5), 1337–1350. https://doi.org/10.1111/tpj.15628
- Kerfeld, C. A., & Scott, K. M. (2011). Using BLAST to Teach "E-value-tionary" Concepts. *PLoS Biology*, 9(2), e1001014. https://doi.org/10.1371/journal.pbio.1001014
- Klughammer, J., Datlinger, P., Printz, D., Sheffield, N. C., Farlik, M., Hadler, J., Fritsch, G.,
  & Bock, C. (2015a). Differential DNA Methylation Analysis without a Reference
  Genome. *Cell Reports*, *13*(11), 2621–2633.
  https://doi.org/10.1016/j.celrep.2015.11.024
- Klughammer, J., Datlinger, P., Printz, D., Sheffield, N. C., Farlik, M., Hadler, J., Fritsch, G.,
  & Bock, C. (2015b). Differential DNA Methylation Analysis without a Reference
  Genome. *Cell Reports*, *13*(11), 2621–2633.
  https://doi.org/10.1016/j.celrep.2015.11.024
- Komar, A. A. (Ed.). (2009). Single Nucleotide Polymorphisms (Vol. 578). Humana Press. https://doi.org/10.1007/978-1-60327-411-1
- Krakau, U.-K., Liesebach, M., Aronen, T., Lelu-Walter, M.-A., & Schneck, V. (2013). Scots
  Pine (Pinus sylvestris L.). In L. E. Pâques (Ed.), *Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives* (pp. 267–323). Springer Netherlands. https://doi.org/10.1007/978-94-007-6146-9 6
- Landi, M., & Guidi, L. (2023). Effects of abiotic stress on photosystem II proteins. *Photosynthetica*, 61(SPECIAL ISSUE 2023/1), 148–156. https://doi.org/10.32615/ps.2022.043

- Li, B., Zhou, W., Zhao, Y., Ju, Q., Yu, Z., Liang, Z., & Acharya, K. (2015). Using the SPEI to Assess Recent Climate Change in the Yarlung Zangbo River Basin, South Tibet. *Water*, 7(10), Article 10. https://doi.org/10.3390/w7105474
- Li, Q., Liu, C., Xin, Y., Shen, W., Zhao, W., Wang, F., Cao, Z., Bai, B., & Xin, P. (2024).
  Pinus Armandii Growth Gene Identification Using Genome-Wide Association Study
  Approaches. *Journal of Tropical Forest Science*, *36*(1), 26–39.
  https://www.jstor.org/stable/48758626
- Lu, Y. (2016). Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. *Frontiers in Plant Science*, 7. https://doi.org/10.3389/fpls.2016.00168
- Ma, X., Feng, F., Wei, H., Mei, H., Xu, K., Chen, S., Li, T., Liang, X., Liu, H., & Luo, L. (2016). Genome-Wide Association Study for Plant Height and Grain Yield in Rice under Contrasting Moisture Regimes. *Frontiers in Plant Science*, 7. https://doi.org/10.3389/fpls.2016.01801
- Ma, Y., Liu, Y., Song, H., Sun, J., Lei, Y., & Wang, Y. (2015). A standardized precipitation evapotranspiration index reconstruction in the Taihe Mountains using tree-ring widths for the last 283 years. *PLoS One*, 10(7), e0133605. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133605
- Malinowska, M., Nagy, I., Wagemaker, C. A. M., Ruud, A. K., Svane, S. F., Thorup-Kristensen, K., Jensen, C. S., Eriksen, B., Krusell, L., Jahoor, A., Jensen, J., Eriksen, L. B., & Asp, T. (2020). The cytosine methylation landscape of spring barley revealed by a new reduced representation bisulfite sequencing pipeline, WellMeth. *The Plant Genome*, *13*(3), e20049. https://doi.org/10.1002/tpg2.20049
- Marek, S., Tomaszewski, D., Żytkowiak, R., Jasińska, A., Zadworny, M., Boratyńska, K., Dering, M., Danusevičius, D., Oleksyn, J., & Wyka, T. P. (2022). Stomatal density in

- Meissner, A., Gnirke, A., Bell, G. W., Ramsahoye, B., Lander, E. S., & Jaenisch, R. (2005).
  Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. *Nucleic Acids Research*, 33(18), 5868–5877. https://doi.org/10.1093/nar/gki901
- NIBIO\_RAPPORT\_2020\_6\_167.pdf. (n.d.). Retrieved September 29, 2023, from https://nibio.brage.unit.no/nibioxmlui/bitstream/handle/11250/2720189/NIBIO\_RAPPORT\_2020\_6\_167.pdf?sequen ce=2&isAllowed=y
- Oellrich, A., Walls, R. L., Cannon, E. K., Cannon, S. B., Cooper, L., Gardiner, J., Gkoutos, G. V., Harper, L., He, M., Hoehndorf, R., Jaiswal, P., Kalberer, S. R., Lloyd, J. P., Meinke, D., Menda, N., Moore, L., Nelson, R. T., Pujar, A., Lawrence, C. J., & Huala, E. (2015). An ontology approach to comparative phenomics in plants. *Plant Methods*, *11*(1), 10. https://doi.org/10.1186/s13007-015-0053-y
- Ojeda, D. I., Mattila, T. M., Ruttink, T., Kujala, S. T., Kärkkäinen, K., Verta, J.-P., & Pyhäjärvi, T. (2019). Utilization of Tissue Ploidy Level Variation in de Novo Transcriptome Assembly of Pinus sylvestris. *G3 Genes*|*Genomes*|*Genetics*, 9(10), 3409–3421. https://doi.org/10.1534/g3.119.400357
- Parchman, T. L., Gompert, Z., Mudge, J., Schilkey, F. D., Benkman, C. W., & Buerkle, C. A. (2012). Genome-wide association genetics of an adaptive trait in lodgepole pine. *Molecular Ecology*, 21(12), 2991–3005. https://doi.org/10.1111/j.1365-294X.2012.05513.x

- Pasho, E., & Alla, A. Q. (2015). Climate impacts on radial growth and vegetation activity of two co-existing Mediterranean pine species. *Canadian Journal of Forest Research*, 45(12), 1748–1756. https://doi.org/10.1139/cjfr-2015-0146
- Paun, O., Verhoeven, K. J. F., & Richards, C. L. (2019). Opportunities and limitations of reduced representation bisulfite sequencing in plant ecological epigenomics. *New Phytologist*, 221(2), 738–742. https://doi.org/10.1111/nph.15388
- Peña-Gallardo, M., Vicente-Serrano, S. M., Camarero, J. J., Gazol, A., Sánchez-Salguero, R., Domínguez-Castro, F., El Kenawy, A., Beguería-Portugés, S., Gutiérrez, E., & De Luis, M. (2018). Drought sensitiveness on forest growth in peninsular Spain and the Balearic Islands. *Forests*, 9(9), 524. https://www.mdpi.com/1999-4907/9/9/524
- Perry, A., Wachowiak, W., Beaton, J., Iason, G., Cottrell, J., & Cavers, S. (2022a). Identifying and testing marker-trait associations for growth and phenology in three pine species:
  Implications for genomic prediction. *Evolutionary Applications*, 15(2), 330–348. https://doi.org/10.1111/eva.13345
- Perry, A., Wachowiak, W., Beaton, J., Iason, G., Cottrell, J., & Cavers, S. (2022b). Identifying and testing marker-trait associations for growth and phenology in three pine species:
  Implications for genomic prediction. *Evolutionary Applications*, 15(2), 330–348. https://doi.org/10.1111/eva.13345
- Racolta, A., Nodine, M. D., Davies, K., Lee, C., Rowe, S., Velazco, Y., Wellington, R., & Tax, F. E. (2018). A Common Pathway of Root Growth Control and Response to CLE
  Peptides Through Two Receptor Kinases in *Arabidopsis. Genetics*, 208(2), 687–704. https://doi.org/10.1534/genetics.117.300148
- Schmidt, M., Van Bel, M., Woloszynska, M., Slabbinck, B., Martens, C., De Block, M., Coppens, F., & Van Lijsebettens, M. (2017). Plant-RRBS, a bisulfite and nextgeneration sequencing-based methylome profiling method enriching for coverage of

cytosine positions. *BMC Plant Biology*, 17(1), 115. https://doi.org/10.1186/s12870-017-1070-y

- Shaikh, A. A., Chachar, S., Chachar, M., Ahmed, N., Guan, C., & Zhang, P. (2022). Recent Advances in DNA Methylation and Their Potential Breeding Applications in Plants. *Horticulturae*, 8(7), Article 7. https://doi.org/10.3390/horticulturae8070562
- Sheller, M., Tóth, E. G., Ciocîrlan, E., Mikhaylov, P., Kulakov, S., Kulakova, N., Melnichenko, N., Ibe, A., Sukhikh, T., & Curtu, A. L. (2023). Genetic Diversity and Population Structure of Scots Pine (Pinus sylvestris L.) in Middle Siberia. *Forests*, *14*(1), Article 1. https://doi.org/10.3390/f14010119
- Solvin, T., & Sundheim Fløistad, I. (2023). *Statistics: Forest Seeds and Plants in the Nordic Region–Version* 2023. https://www.divaportal.org/smash/record.jsf?pid=diva2:1792548
- Stevenson, D., & Zumajo-Cardona, C. (2018). From Plant Ontology to Gene Ontology and back. *Current Plant Biology*, 14, 66–69. https://doi.org/10.1016/j.cpb.2018.09.009
- Tabakova, M. A., Arzac, A., Martínez, E., & Kirdyanov, A. V. (2020). Climatic factors controlling Pinus sylvestris radial growth along a transect of increasing continentality in southern Siberia. *Dendrochronologia*, 62, 125709. https://www.sciencedirect.com/science/article/pii/S1125786520300473
- Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., & Meyre, D. (2019). Benefits and limitations of genome-wide association studies. *Nature Reviews Genetics*, 20(8), 467– 484. https://doi.org/10.1038/s41576-019-0127-1
- Tibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. *The Plant Genome*, 14(1), e20077. https://doi.org/10.1002/tpg2.20077

- Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. *Nature Reviews Methods Primers*, 1(1), 1–21. https://doi.org/10.1038/s43586-021-00056-9
- Upadhyaya, H. D., Wang, Y.-H., Gowda, C. L. L., & Sharma, S. (2013). Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. *Theoretical and Applied Genetics*, *126*(8), 2003–2015. https://doi.org/10.1007/s00122-013-2113-x
- Vacek, Z., Linda, R., Cukor, J., Vacek, S., Šim\uunek, V., Gallo, J., & Vančura, K. (2021). Scots pine (Pinus sylvestris L.), the suitable pioneer species for afforestation of reclamation sites? *Forest Ecology and Management*, 485, 118951. https://www.sciencedirect.com/science/article/pii/S0378112721000402
- Verissimo, A. F., & Daldal, F. (2014). Cytochrome c biogenesis System I: An intricate process catalyzed by a maturase supercomplex? *Biochimica et Biophysica Acta (BBA)* -*Bioenergetics*, 1837(7), 989–998. https://doi.org/10.1016/j.bbabio.2014.03.003
- Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010a). A Multiscalar Drought Index Sensitive Global Warming: The Standardized Precipitation to Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
- Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010b). A Multiscalar Drought Index Sensitive Global Warming: The Standardized Precipitation to Evapotranspiration Index. Journal of *Climate*, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
- Wang, Y., Zuo, L., Wei, T., Zhang, Y., Zhang, Y., Ming, R., Bachar, D., Xiao, W., Madiha, K., Chen, C., Fan, Q., Li, C., & Liu, J.-H. (2022). CHH methylation of genes associated

with fatty acid and jasmonate biosynthesis contributes to cold tolerance in autotetraploids of Poncirus trifoliata. *Journal of Integrative Plant Biology*, *64*(12), 2327–2343. https://doi.org/10.1111/jipb.13379

- Waszak, N., Robertson, I., Puchałka, R., Przybylak, R., Pospieszyńska, A., & Koprowski, M. (2021). Investigating the climate-growth response of Scots Pine (Pinus sylvestris L.) in northern Poland. *Atmosphere*, *12*(12), 1690. https://www.mdpi.com/2073-4433/12/12/1690
- Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., & Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The Innovation*, 2(3), 100141. https://doi.org/10.1016/j.xinn.2021.100141
- Xiao, D., Zhou, K., Yang, X., Yang, Y., Ma, Y., & Wang, Y. (2021). Crosstalk of DNA Methylation Triggered by Pathogen in Poplars With Different Resistances. *Frontiers in Microbiology*, 12. https://doi.org/10.3389/fmicb.2021.750089
- Xiao, Q., Bai, X., Zhang, C., & He, Y. (2022). Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. *Journal of Advanced Research*, 35, 215–230. https://doi.org/10.1016/j.jare.2021.05.002
- Yang, S., Gill, R. A., Zaman, Q. U., Ulhassan, Z., & Zhou, W. (2020). Insights on SNP types, detection methods and their utilization in Brassica species: Recent progress and future perspectives. *Journal of Biotechnology*, *324*, 11–20. https://www.sciencedirect.com/science/article/pii/S0168165620302546
- Yuan, C., Xu, J., Chen, Q., Liu, Q., Hu, Y., Jin, Y., & Qin, C. (2021). C-terminal domain phosphatase-like 1 (CPL1) is involved in floral transition in Arabidopsis. *BMC Genomics*, 22(1), 642. https://doi.org/10.1186/s12864-021-07966-8

- Zhang, H., Lang, Z., & Zhu, J.-K. (2018). Dynamics and function of DNA methylation in plants. *Nature Reviews Molecular Cell Biology*, 19(8), 489–506. https://doi.org/10.1038/s41580-018-0016-z
- Zhang, J., Yang, J., Zhang, L., Luo, J., Zhao, H., Zhang, J., & Wen, C. (2020). A new SNP genotyping technology Target SNP-seq and its application in genetic analysis of cucumber varieties. *Scientific Reports*, 10(1), 5623. https://www.nature.com/articles/s41598-020-62518-6
- Zhang, Y.-L., Jia, Q.-L., Li, D.-W., Wang, J.-E., Yin, Y.-X., & Gong, Z.-H. (2013). Characteristic of the Pepper CaRGA2 Gene in Defense Responses against Phytophthora capsici Leonian. *International Journal of Molecular Sciences*, 14(5), Article 5. https://doi.org/10.3390/ijms14058985
- Zhou, T., Yao, J., & Liu, Z. (2017). Gene Ontology, Enrichment Analysis, and Pathway Analysis. In Z. (John) Liu (Ed.), *Bioinformatics in Aquaculture* (1st ed., pp. 150–168).
  Wiley. https://doi.org/10.1002/9781118782392.ch10
- Zhou, Y., Lei, Z., Zhou, F., Han, Y., Yu, D., & Zhang, Y. (2019). Impact of climate factors on height growth of Pinus sylvestris var. Mongolica. *PLoS One*, *14*(3), e0213509. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213509&sid=QN
  QNb9

# Appendix

Figure A1. EnrichGo command used in R-studio for gene ontology analysis.

```
library(clusterProfiler)
library(org.At.tair.db)
library(readxl)
library(svglite)
library(tidyverse)
library(RColorBrewer)
library(AnnotationDbi)
library(ggplot2)
library(enrichplot)
## setwd('/Users/prativapaudel/Documents/Gene ontology High SPEI LTHP(march-may)')
## GO_LTHP_RWC <- read.csv("GO_LTHP_RWC.csv", header = F,sep=",")
class(GO_LTHP_RWC)
##Convert DEG object from dataframe to character
'GO LTHP RWC' <- as.character(GO LTHP RWC[,1])
##Check if object is character
class(GO LTHP RWC)
head(GO LTHP RWC)
####Molecular function enrichment
EnrichGO_GO_LTHP_RWC <- enrichGO(GO_LTHP_RWC,
                                     'org.At.tair.db',
pvalueCutoff=0.05,
                                     qvalueCutoff=0.1,
                                     pAdjustMethod="BH",
                                     keyType = "SYMBOL",
                                     ont="ALL")
as.data.frame(EnrichGO_GO_LTHP_RWC)
#####reduce redundancy of GO enriched terms
EnrichGO_GO_LTHP_RWC_redun <- clusterProfiler::simplify(EnrichGO_GO_LTHP_RWC,cutoff = 0.7, by
"p.adjust",select_fun = min,measure = "Wang",semData = NULL)
#####Extract results
head(EnrichGO_GO_LTHP_RWC_redun@result)
##Since R identifies the GeneRatio, as character and not numeric, we need to format results to convert Ratio to fraction
EnrichGO_GO_LTHP_RWC_redun.df <- EnrichGO_GO_LTHP_RWC_redun@result %>%
  ##Separate ratios into 2 columns of data
  separate(BgRatio, into = c("size.term", "size.category"), sep = "/") %>%
  separate(GeneRatio, into = c("size.overlap.term", "size.overlap.category"), sep = "/") %>%
  ##Convert to numeric
mutate_at(vars("size.term", "size.category", "size.overlap.term", "size.overlap.category"), as.numeric) %>%
###Calculate k/K
mutate(k.k=size.overlap.term/size.term)
View(EnrichGO_GO_LTHP_RWC_redun.df)
###Export enrichment results
write.csv(EnrichGO_GO_LTHP_RWC_redun.df, "EnrichGO_GO_LTHP_RWC_redun.df.csv")
barplot(EnrichGO\_GO\_HTLP\_GWC\_redun, showCategory = 10, font.size = 10) + ggtitle("EnrichGO for trees with Low SPEI") + ggtitle("EnrichGO for trees with Low SP
dotplot(EnrichGO_GO_LTHP_RWC_redun,showCategory=10)+ggtitle("Enrich GO")
```

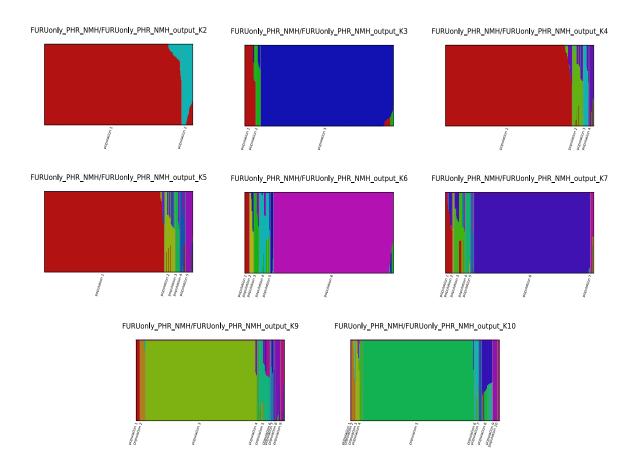
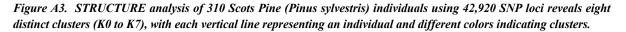
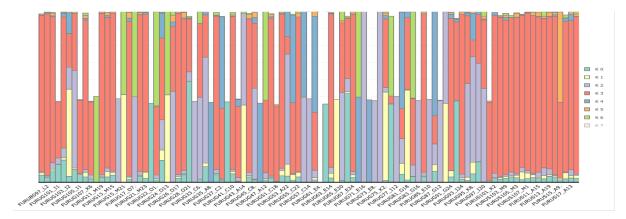
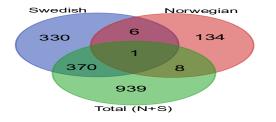
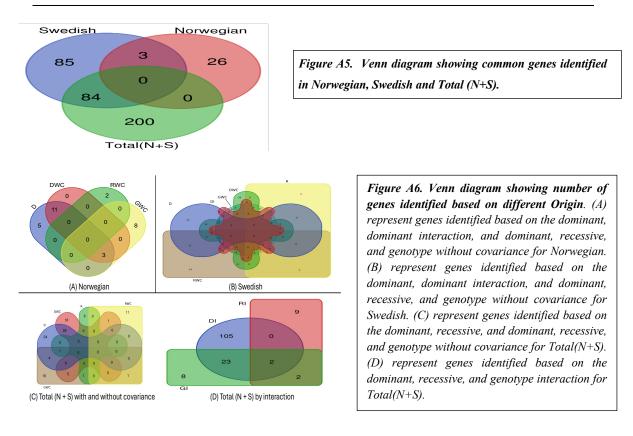
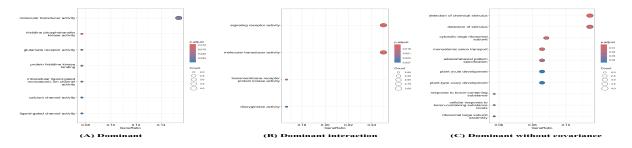
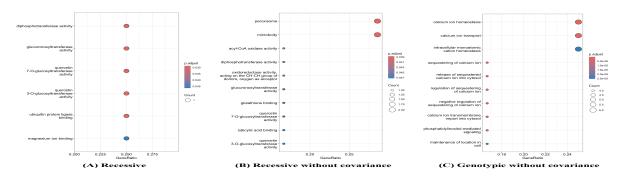





Figure A2. Admixture plots of Scots Pine generated by fastStructure software at different K value (2-7, 9 & 10).

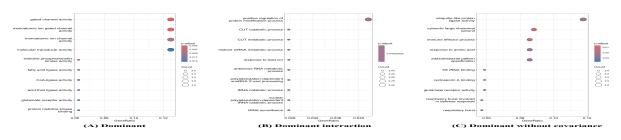




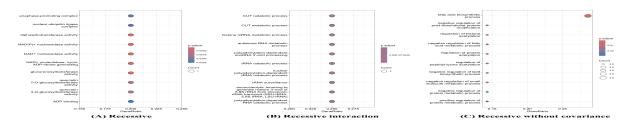






Figure A4. Venn diagram showing significantly associated SNPs of Norwegian, Swedish, and Total (N+S).

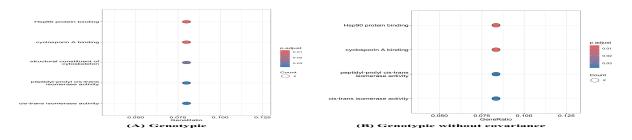



*Figure A7. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in Swedish trees.* (*A*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele.* (*B*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant interaction.* (*C*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele without covariance.* 




*Figure A8. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in Swedish trees.* (*A*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive allele.* (*B*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive without covariance.* (*C*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with genotype without covariance.* 




*Figure A9. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in Total (N+S) trees. (A) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele. (B) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant interaction. (C) Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with dominant allele without covariance.* 



*Figure A10. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in Total (N+S) trees.* (*A*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive allele.* (*B*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive interaction.* (*C*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive interaction.* (*C*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with recessive allele without covariance.* 



*Figure A 11. Dot plots showing top 10 GO terms in the GO enrichment analysis of genes identified in Total (N+S) trees.* (*A*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with genotype.* (*B*) *Dot plot of the top 10 GO terms in GO enrichment analysis for genes associated with genotype without covariance.* 



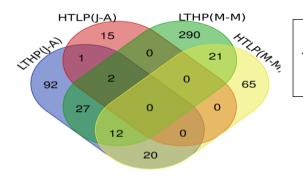
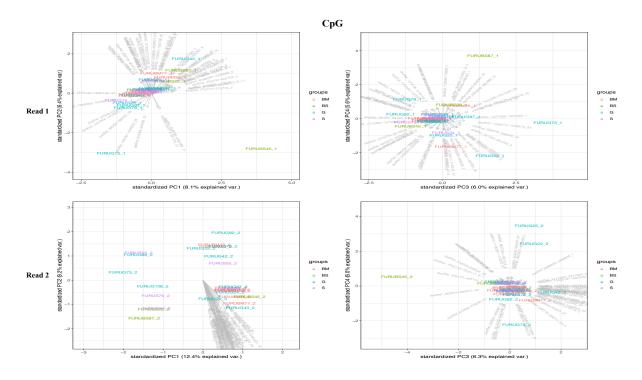
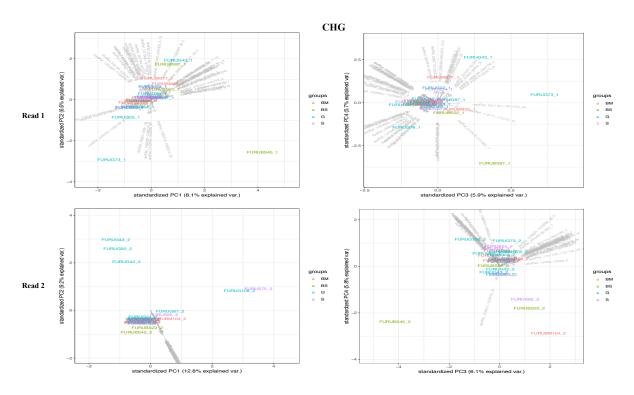
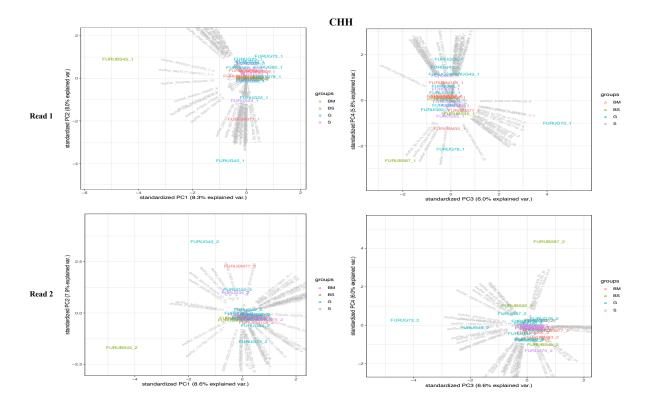
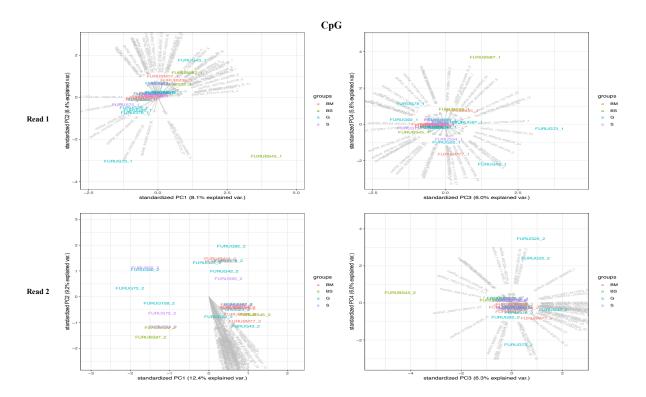




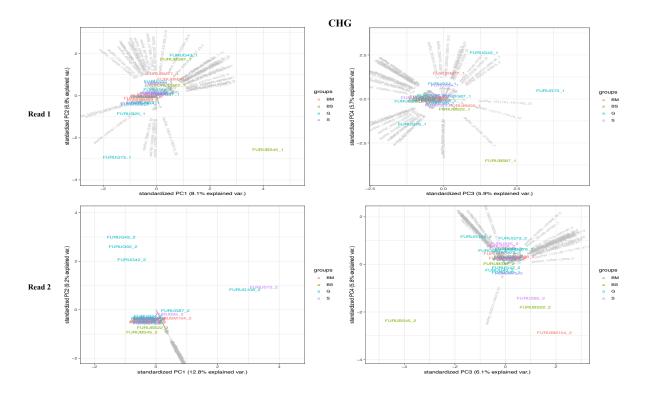

Figure A12. Venn diagram showing common genes between LTHP (March-May), HTLP (March-May), LTHP (June-August), and HTLP (June-August).


*Figure A13. Principal component analysis (PCA 1, 2, 3, and 4) of DNA methylation profiles* based on CpG site of NvS for Read 1 and 2, along with clustering of 27 Pinus sylvestris individuals from 4 locations BM, BS, G, and S indicated by different color.




*Figure A14. Principal component analysis (PCA 1, 2, 3, and 4) of DNA methylation profiles* based on CHG site of NvS for Read 1 and 2, along with clustering of 27 Pinus sylvestris individuals from 4 locations BM, BS, G, and S indicated by different color.




*Figure A15. Principal component analysis (PCA 1, 2, 3, and 4) of DNA methylation profiles* based on CHH site of NvS for Read 1 and 2, along with clustering of 27 Pinus sylvestris individuals from 4 locations BM, BS, G, and S indicated by different color.



*Figure A16. Principal component analysis (PCA 1, 2, 3, and 4) of DNA methylation profiles* based on CpG site of TvS for Read 1 and 2, along with clustering of 27 Pinus sylvestris individuals from 4 locations BM, BS, G, and S indicated by different color.



*Figure A17. Principal component analysis (PCA 1, 2, 3, and 4) of DNA methylation profiles* based on CHG site of TvS for Read 1 and 2, along with clustering of 27 Pinus sylvestris individuals from 4 locations BM, BS, G, and S indicated by different color.



*Figure A18. Principal component analysis (PCA 1, 2, 3, and 4) of DNA methylation profiles* based on CHH site of TvS for Read 1 and 2, along with clustering of 27 Pinus sylvestris individuals from 4 locations BM, BS, G, and S indicated by different color.

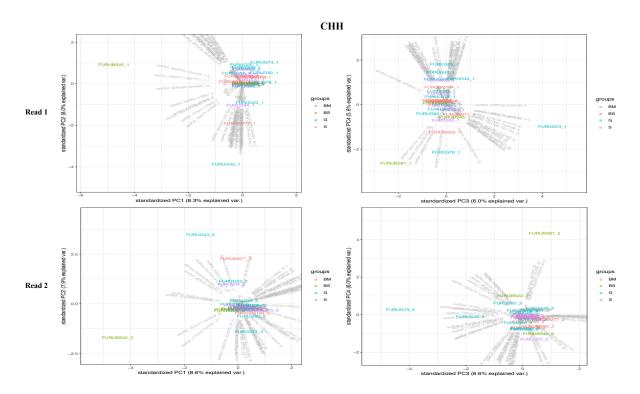



Figure A19. Parameters set during BLASTn and BLASTx search.

| BLAST 1.2 (Sun Apr 14 21:18:04 CEST 2024)                                                                                                                                                                                                                                                                                                                                                                 | BLAST 1.2 (Tue Apr 16 14:03:16 CEST 2024)                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version: CLC Genomics Workbench 22.0.2                                                                                                                                                                                                                                                                                                                                                                    | Version: CLC Genomics Workbench 22.0.2                                                                                                                                                                                                                                                                                                                                                                                            |
| User: robertw                                                                                                                                                                                                                                                                                                                                                                                             | User: robertw                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <pre>Parameters:<br/>Program = blastn<br/>Blast database path = /Volumes/MyPassport/CLCdatabases<br/>Name of database = Pinus_jeffreyimainGenome<br/>Match/Mismatch and Gap Costs = Match 2 Mismatch 3 Existence 5 Ext<br/>2<br/>Expectation value = 10.0<br/>Word size = 11<br/>Mask lower case = No<br/>Mask low complexity regions = No<br/>Maximum number of hits = 1<br/>Number of threads = 4</pre> | Parameters:<br>Program = blastx<br>Blast database path = /Volumes/MyPassport/CLCdatabases<br>Name of database = refseq_protein<br>Expectation value = 10.0<br>Word size = 3<br>Mask lower case = No<br>Mask lower case = No<br>Mask low complexity regions = Yes<br>Maximum number of hits = 5<br>Protein Matrix And Gap Costs = BLOSUM62_Existence_11_Extension_1<br>Number of threads = 10<br>Filter out redundant results = No |
| Filter out redundant results = No                                                                                                                                                                                                                                                                                                                                                                         | Query genetic code = 1                                                                                                                                                                                                                                                                                                                                                                                                            |
| Comments: Edit                                                                                                                                                                                                                                                                                                                                                                                            | Comments: Edit                                                                                                                                                                                                                                                                                                                                                                                                                    |
| No Comment                                                                                                                                                                                                                                                                                                                                                                                                | No Comment                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Originates from:                                                                                                                                                                                                                                                                                                                                                                                          | Originates from:                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1_NvS_skog_chh_motif50_cov8_200 (history)                                                                                                                                                                                                                                                                                                                                                                 | 1_NvS_skog_cpg_15_cov8_200 (history)                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>2_NvS_skog_chh_motif50_cov8_200 (history)</pre>                                                                                                                                                                                                                                                                                                                                                      | IF 2_NvS_skog_cpg_15_cov8_200 (history)                                                                                                                                                                                                                                                                                                                                                                                           |
| (A)                                                                                                                                                                                                                                                                                                                                                                                                       | (B)                                                                                                                                                                                                                                                                                                                                                                                                                               |



| Sample trees      | Age |      |      | Total Height |      |      |      |      |      |      |      |     |
|-------------------|-----|------|------|--------------|------|------|------|------|------|------|------|-----|
|                   |     | 2020 | 2019 | 2018         | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 |     |
| FURUBM101_N13.CEL | 7   | 20   | 25   | 9            | 13   | 7    | 7    | 6    |      |      |      | 87  |
| FURUBM102_F5.CEL  | 8   | 44   | 36   | 18           | 25   | 25   | 35   | 23   | 14   |      |      | 220 |
| FURUBM103_F13.CEL | 8   | 44   | 37   | 28           | 27   | 24   | 28   | 14   | 12   |      |      | 214 |
| FURUBM104_B15.CEL | 8   | 51   | 37   | 31           | 42   | 37   | 33   | 22   | 26   |      |      | 279 |
| FURUBM106_F17.CEL | 7   | 34   | 21   | 11           | 13   | 17   | 22   | 5    |      |      |      | 123 |
| FURUBM107_J23.CEL | 9   | 30   | 26   | 18           | 22   | 17   | 29   | 19   | 9    | 3    |      | 173 |
| FURUBM108_D17.CEL | 9   | 57   | 58   | 37           | 40   | 35   | 37   | 26   | 14   | 10   |      | 314 |
| FURUBM11_K24.CEL  | 8   | 47   | 37   | 26           | 25   | 18   | 24   | 17   | 8    |      |      | 202 |
| FURUBM13_B3.CEL   | 8   | 45   | 39   | 34           | 38   | 28   | 28   | 17   | 5    |      |      | 234 |
| FURUBM14_02.CEL   | 8   | 45   | 38   | 29           | 30   | 25   | 29   | 19   | 5    |      |      | 220 |
| FURUBM15_M16.CEL  | 8   | 30   | 33   | 27           | 29   | 26   | 16   | 9    | 3    |      |      | 173 |
| FURUBM16_K12.CEL  | 9   | 22   | 16   | 9            | 13   | 15   | 21   | 8    | 3    | 2    |      | 109 |
| FURUBM17_K14.CEL  | 7   | 17   | 16   | 9            | 19   | 9    | 5    | 4    |      |      |      | 79  |
| FURUBM18_012.CEL  | 9   | 18   | 13   | 10           | 16   | 11   | 17   | 13   | 8    | 5    |      | 111 |
| FURUBM21_014.CEL  | 8   | 36   | 29   | 27           | 39   | 26   | 22   | 14   | 7    |      |      | 200 |
| FURUBM22_K22.CEL  | 8   | 38   | 18   | 15           | 26   | 21   | 17   | 8    | 3    |      |      | 146 |
| FURUBM23_O18.CEL  | 9   | 24   | 19   | 14           | 14   | 13   | 21   | 10   | 4    | 3    |      | 122 |
| FURUBM24_K20.CEL  | 8   | 53   | 44   | 29           | 36   | 37   | 35   | 22   | 12   |      |      | 268 |
| FURUBM25_M8.CEL   | 8   | 47   | 34   | 23           | 28   | 25   | 25   | 13   | 13   |      |      | 208 |
| FURUBM26_O16.CEL  | 8   | 42   | 30   | 22           | 24   | 22   | 32   | 19   | 4    |      |      | 195 |
| FURUBM27_B5.CEL   | 8   | 36   | 26   | 18           | 23   | 18   | 25   | 5    | 4    |      |      | 155 |
| FURUBM28_B7.CEL   | 10  | 45   | 36   | 28           | 24   | 21   | 22   | 18   | 21   | 19   | 4    | 238 |
| FURUBM31_04.CEL   | 9   | 39   | 33   | 20           | 20   | 14   | 21   | 12   | 20   | 2    |      | 181 |
| FURUBM32_B1.CEL   | 6   | 10   | 12   | 6            | 10   | 9    | 3    |      |      |      |      | 50  |
| FURUBM33_M4.CEL   | 7   | 11   | 13   | 8            | 8    | 7    | 8    | 2    |      |      |      | 57  |
| FURUBM34_06.CEL   | 9   | 49   | 41   | 34           | 34   | 26   | 31   | 18   | 13   | 24   |      | 270 |
| FURUBM35_K18.CEL  | 7   | 8    | 5    | 5            | 5    | 3    | 5    | 3    |      |      |      | 34  |
| FURUBM38_K16.CEL  | 7   | 22   | 20   | 13           | 16   | 10   | 10   | 7    |      |      |      | 98  |

### Table S1. Total Samples (300) with annual growth measurement, total height (cm), and age.

| FURUBM41_M18.CEL                     | 8       | 40 | 30 | 20 | 26 | 18 | 22       | 14       | 14 |    |    | 184 |
|--------------------------------------|---------|----|----|----|----|----|----------|----------|----|----|----|-----|
| FURUBM42_M20.CEL                     | 7       | 14 | 15 | 9  | 10 | 11 | 13       | 3        |    |    |    | 75  |
| FURUBM43_M14.CEL                     | 7       | 44 | 45 | 29 | 32 | 23 | 22       | 25       |    |    |    | 220 |
| FURUBM45_M2.CEL                      | 8       | 25 | 23 | 16 | 18 | 19 | 19       | 6        | 4  |    |    | 130 |
| FURUBM46_B9.CEL                      | 8       | 47 | 34 | 18 | 31 | 20 | 33       | 20       | 13 |    |    | 216 |
| FURUBM47_M24.CEL                     | 7       | 25 | 19 | 15 | 16 | 20 | 17       | 5        |    |    |    | 117 |
| FURUBM48_O8.CEL                      | 8       | 44 | 36 | 27 | 32 | 24 | 28       | 16       | 3  |    |    | 210 |
| FURUBM51_O10.CEL                     | 8       | 37 | 28 | 14 | 16 | 13 | 18       | 12       | 6  |    |    | 144 |
| FURUBM52_H23.CEL                     | 8       | 41 | 31 | 20 | 28 | 29 | 30       | 14       | 5  |    |    | 198 |
| FURUBM53_M12.CEL                     | 8       | 48 | 39 | 29 | 24 | 30 | 36       | 28       | 19 |    |    | 253 |
| FURUBM55_M6.CEL                      | 8       | 53 | 51 | 41 | 37 | 36 | 24       | 14       | 13 |    |    | 269 |
| FURUBM56_M22.CEL                     | 6       | 7  | 9  | 5  | 10 | 8  | 2        |          |    |    |    | 41  |
| FURUBM57_O20.CEL                     | 8       | 35 | 28 | 18 | 29 | 16 | 15       | 14       | 2  |    |    | 157 |
| FURUBM58_B11.CEL                     | 7       | 20 | 15 | 12 | 13 | 13 | 14       | 5        |    |    |    | 92  |
| FURUBM61_024.CEL                     | 8       | 24 | 23 | 15 | 20 | 14 | 18       | 6        | 4  |    |    | 124 |
| FURUBM62_B17.CEL                     | 9       | 35 | 35 | 33 | 40 | 32 | 34       | 19       | 9  | 7  |    | 244 |
| FURUBM63_F9.CEL                      | 9       | 44 | 30 | 20 | 24 | 27 | 19       | 18       | 8  | 4  |    | 194 |
| FURUBM64_D11.CEL                     | 9       | 52 | 36 | 37 | 43 | 36 | 22       | 24       | 19 | 2  |    | 271 |
| FURUBM65_D19.CEL                     | 8       | 50 | 38 | 29 | 35 | 37 | 34       | 20       | 16 |    |    | 259 |
| FURUBM66_F7.CEL                      | 7       | 9  | 10 | 8  | 11 | 6  | 4        | 2        |    |    |    | 50  |
| FURUBM67_D3.CEL                      | 7       | 16 | 9  | 11 | 13 | 7  | 7        | 5        |    |    |    | 68  |
| FURUBM68_B21.CEL<br>FURUBM71_F15.CEL | 8       | 41 | 38 | 39 | 41 | 18 | 13       | 14       | 16 |    |    | 220 |
|                                      | 10      | 48 | 45 | 39 | 40 | 28 | 30       | 29       | 19 | 20 | 12 | 310 |
| FURUBM72_022.CEL<br>FURUBM74 L24.CEL | 10<br>8 | 36 | 31 | 27 | 28 | 23 | 25<br>24 | 15<br>20 | 9  | 10 | 4  | 208 |
| FURUBM74_L24.CEL                     | 8       | 11 | 18 | 13 | 11 | 6  | 5        | 6        | 15 |    |    | 64  |
| FURUBM75_D9.CEL                      | 7       | 36 | 33 | 24 | 11 | 12 | 16       | 18       |    |    |    | 158 |
| FURUBM76_N24.CEL                     | 7       | 46 | 44 | 38 | 48 | 23 | 16       | 8        |    |    |    | 220 |
| FURUBM78_P18.CEL                     | 7       | 22 | 23 | 16 | 13 | 18 | 15       | 8        |    |    |    | 115 |
| FURUBM/8_P18.CEL                     | 9       | 44 | 37 | 32 | 33 | 23 | 15       | 8        | 10 | 4  |    | 209 |
| FURUBM82_B13.CEL                     | 9       | 56 | 48 | 32 | 33 | 33 | 42       | 35       | 20 | 8  |    | 316 |
| FUNDDINO2_B13.CEL                    | 7       | 50 | 40 | 33 | 37 |    | 42       | 33       | 20 | 0  |    | 510 |

| FURUBM83_D5.CEL   | 9  | 59 | 42 | 35 | 40 | 33 | 28 | 21 | 11 | 4  |    | 273 |
|-------------------|----|----|----|----|----|----|----|----|----|----|----|-----|
| FURUBM84_D1.CEL   | 9  | 38 | 31 | 22 | 22 | 20 | 23 | 11 | 7  | 5  |    | 179 |
| FURUBM85_D15.CEL  | 8  | 43 | 25 | 21 | 31 | 24 | 19 | 7  | 6  |    |    | 176 |
| FURUBM86_D21.CEL  | 8  | 30 | 31 | 12 | 10 | 8  | 17 | 10 | 10 |    |    | 128 |
| FURUBM87_D13.CEL  | 8  | 43 | 36 | 23 | 30 | 18 | 26 | 21 | 15 |    |    | 212 |
| FURUBM88_D7.CEL   | 9  | 48 | 41 | 20 | 23 | 19 | 28 | 15 | 4  | 6  |    | 204 |
| FURUBM91_B23.CEL  | 9  | 50 | 43 | 31 | 34 | 27 | 23 | 18 | 21 | 8  |    | 255 |
| FURUBM92_D23.CEL  | 8  | 41 | 33 | 22 | 24 | 17 | 22 | 12 | 9  |    |    | 180 |
| FURUBM93_L9.CEL   | 8  | 28 | 27 | 7  | 16 | 10 | 18 | 9  | 8  |    |    | 123 |
| FURUBM94_J19.CEL  | 8  | 50 | 39 | 30 | 27 | 21 | 27 | 17 | 11 |    |    | 222 |
| FURUBM96_F11.CEL  | 8  | 49 | 37 | 23 | 34 | 30 | 40 | 29 | 21 |    |    | 263 |
| FURUBM97_F19.CEL  | 8  | 52 | 39 | 26 | 24 | 17 | 29 | 21 | 17 |    |    | 225 |
| FURUBM98_B19.CEL  | 9  | 38 | 30 | 24 | 25 | 17 | 17 | 10 | 9  | 8  |    | 178 |
| FURUBS101_N22.CEL | 10 | 27 | 22 | 18 | 18 | 11 | 14 | 15 | 17 | 16 | 9  | 167 |
| FURUBS102_H20.CEL | 10 | 33 | 29 | 19 | 19 | 13 | 18 | 15 | 15 | 21 | 7  | 189 |
| FURUBS103_F22.CEL | 10 | 14 | 12 | 10 | 13 | 9  | 14 | 10 | 11 | 16 | 9  | 118 |
| FURUBS104_N20.CEL | 10 | 20 | 12 | 7  | 12 | 12 | 22 | 17 | 18 | 21 | 9  | 150 |
| FURUBS105_P22.CEL | 8  | 18 | 11 | 8  | 10 | 8  | 7  | 4  | 4  |    |    | 70  |
| FURUBS106_L22.CEL | 9  | 38 | 25 | 17 | 18 | 13 | 13 | 14 | 10 | 4  |    | 152 |
| FURUBS107_D24.CEL | 9  | 50 | 45 | 29 | 34 | 31 | 39 | 24 | 13 | 8  |    | 273 |
| FURUBS108_B20.CEL | 9  | 20 | 13 | 9  | 12 | 8  | 16 | 14 | 5  | 4  |    | 101 |
| FURUBS11_H17.CEL  | 9  | 42 | 29 | 15 | 23 | 27 | 30 | 10 | 5  | 3  |    | 184 |
| FURUBS12_J13.CEL  | 9  | 28 | 23 | 13 | 20 | 14 | 17 | 14 | 5  | 3  |    | 137 |
| FURUBS13_F23.CEL  | 8  | 37 | 25 | 24 | 33 | 27 | 23 | 19 | 11 |    |    | 199 |
| FURUBS14_H7.CEL   | 9  | 32 | 27 | 20 | 22 | 15 | 22 | 12 | 5  | 5  |    | 160 |
| FURUBS15_H9.CEL   | 9  | 51 | 33 | 29 | 32 | 26 | 32 | 20 | 15 | 14 |    | 252 |
| FURUBS16_L21.CEL  | 10 | 60 | 47 | 36 | 35 | 33 | 32 | 23 | 20 | 17 | 13 | 316 |
| FURUBS17_H19.CEL  | 9  | 42 | 26 | 17 | 26 | 17 | 17 | 13 | 5  | 7  |    | 170 |
| FURUBS18_H15.CEL  | 9  | 29 | 17 | 7  | 14 | 16 | 26 | 22 | 7  | 5  |    | 143 |
| FURUBS21_H1.CEL   | 9  | 17 | 18 | 10 | 14 | 11 | 14 | 8  | 7  | 6  |    | 105 |
| FURUBS22_L7.CEL   | 8  | 11 | 8  | 6  | 6  | 4  | 13 | 12 | 5  |    |    | 65  |

| FURUBS23_J7.CEL  | 10 | 42 | 32 | 26 | 29 | 23 | 33 | 30 | 21 | 13 | 8  | 257 |
|------------------|----|----|----|----|----|----|----|----|----|----|----|-----|
| FURUBS24_H11.CEL | 10 | 52 | 34 | 35 | 39 | 32 | 38 | 34 | 25 | 21 | 9  | 319 |
| FURUBS25_L1.CEL  | 10 | 49 | 45 | 38 | 43 | 33 | 42 | 32 | 26 | 17 | 6  | 331 |
| FURUBS26_H13.CEL | 9  | 31 | 25 | 18 | 25 | 19 | 18 | 15 | 22 | 19 |    | 192 |
| FURUBS27_J21.CEL | 8  | 13 | 9  | 6  | 16 | 14 | 11 | 9  | 6  |    |    | 84  |
| FURUBS28_J5.CEL  | 10 | 34 | 23 | 15 | 16 | 11 | 13 | 17 | 18 | 21 | 11 | 179 |
| FURUBS31_L17.CEL | 10 | 29 | 23 | 15 | 21 | 14 | 15 | 13 | 13 | 22 | 15 | 180 |
| FURUBS32_L5.CEL  | 10 | 36 | 33 | 22 | 34 | 21 | 17 | 15 | 25 | 22 | 13 | 238 |
| FURUBS34_L19.CEL | 10 | 45 | 40 | 29 | 29 | 22 | 21 | 18 | 24 | 17 | 9  | 254 |
| FURUBS35_F20.CEL | 10 | 36 | 30 | 21 | 18 | 11 | 16 | 14 | 16 | 17 | 14 | 193 |
| FURUBS36_J20.CEL | 10 | 34 | 36 | 26 | 32 | 20 | 24 | 18 | 21 | 22 | 13 | 246 |
| FURUBS37_H21.CEL | 10 | 41 | 34 | 20 | 18 | 10 | 22 | 21 | 20 | 17 | 6  | 209 |
| FURUBS38_L13.CEL | 10 | 22 | 18 | 10 | 8  | 7  | 18 | 16 | 13 | 6  | 2  | 120 |
| FURUBS41_J17.CEL | 10 | 30 | 28 | 13 | 12 | 6  | 13 | 15 | 14 | 16 | 10 | 157 |
| FURUBS42_P11.CEL | 9  | 36 | 29 | 22 | 22 | 13 | 23 | 20 | 10 | 2  |    | 177 |
| FURUBS43_J3.CEL  | 9  | 29 | 23 | 10 | 18 | 16 | 22 | 20 | 10 | 6  |    | 154 |
| FURUBS44_J11.CEL | 7  | 11 | 14 | 9  | 11 | 10 | 13 | 6  |    |    |    | 74  |
| FURUBS45_J1.CEL  | 8  | 15 | 14 | 5  | 6  | 8  | 6  | 6  | 5  |    |    | 65  |
| FURUBS46_N3.CEL  | 9  | 38 | 31 | 17 | 18 | 17 | 20 | 19 | 24 | 17 |    | 201 |
| FURUBS47_L23.CEL | 8  | 42 | 28 | 18 | 15 | 12 | 19 | 17 | 21 |    |    | 172 |
| FURUBS48_D22.CEL | 9  | 37 | 30 | 16 | 19 | 18 | 25 | 12 | 10 | 14 |    | 181 |
| FURUBS51_N23.CEL | 10 | 48 | 39 | 30 | 32 | 19 | 23 | 17 | 23 | 26 | 18 | 275 |
| FURUBS52_N17.CEL | 10 | 53 | 46 | 31 | 31 | 21 | 27 | 21 | 26 | 29 | 12 | 297 |
| FURUBS53_L3.CEL  | 9  | 22 | 27 | 15 | 20 | 18 | 25 | 18 | 13 | 10 |    | 168 |
| FURUBS54_J9.CEL  | 10 | 50 | 48 | 37 | 37 | 16 | 17 | 20 | 23 | 16 | 6  | 270 |
| FURUBS55_N7.CEL  | 9  | 36 | 32 | 20 | 23 | 11 | 10 | 20 | 15 | 9  |    | 176 |
| FURUBS56_L15.CEL | 10 | 41 | 40 | 28 | 34 | 25 | 32 | 27 | 16 | 17 | 11 | 271 |
| FURUBS57_J22.CEL | 10 | 43 | 41 | 29 | 30 | 18 | 17 | 16 | 28 | 27 | 12 | 261 |
| FURUBS58_P7.CEL  | 10 | 35 | 29 | 20 | 20 | 11 | 15 | 14 | 20 | 14 | 6  | 184 |
| FURUBS61_P1.CEL  | 10 | 22 | 17 | 12 | 11 | 9  | 10 | 10 | 10 | 10 | 6  | 117 |
| FURUBS62_P15.CEL | 9  | 44 | 39 | 21 | 12 | 17 | 21 | 17 | 5  | 5  |    | 181 |

| FURUBS63_J15.CEL | 9  | 48 | 42 | 21 | 23 | 14 | 20 | 17 | 20 | 18 |    | 223 |
|------------------|----|----|----|----|----|----|----|----|----|----|----|-----|
| FURUBS64_L11.CEL | 9  | 17 | 18 | 12 | 18 | 10 | 7  | 10 | 11 | 12 |    | 115 |
| FURUBS65_N21.CEL | 10 | 52 | 51 | 39 | 41 | 30 | 22 | 19 | 23 | 23 | 11 | 311 |
| FURUBS66_P3.CEL  | 9  | 28 | 25 | 14 | 16 | 9  | 12 | 13 | 17 | 8  |    | 142 |
| FURUBS68_N9.CEL  | 10 | 42 | 42 | 23 | 22 | 12 | 19 | 21 | 21 | 21 | 10 | 233 |
| FURUBS71_N1.CEL  | 9  | 39 | 33 | 18 | 21 | 17 | 22 | 19 | 22 | 13 |    | 204 |
| FURUBS72_N5.CEL  | 9  | 24 | 20 | 19 | 21 | 18 | 20 | 12 | 18 | 16 |    | 168 |
| FURUBS73_H3.CEL  | 9  | 30 | 19 | 17 | 19 | 13 | 16 | 17 | 16 | 16 |    | 163 |
| FURUBS74_N19.CEL | 8  | 11 | 13 | 9  | 13 | 8  | 10 | 10 | 9  |    |    | 83  |
| FURUBS76_P13.CEL | 10 | 48 | 35 | 16 | 16 | 13 | 20 | 22 | 24 | 12 | 6  | 212 |
| FURUBS77_N15.CEL | 9  | 38 | 25 | 15 | 20 | 11 | 16 | 8  | 14 | 25 |    | 172 |
| FURUBS78_D20.CEL | 10 | 36 | 28 | 19 | 20 | 13 | 12 | 10 | 11 | 11 | 10 | 170 |
| FURUBS81_P17.CEL | 9  | 37 | 29 | 19 | 25 | 22 | 29 | 28 | 18 | 22 |    | 229 |
| FURUBS82_H5.CEL  | 10 | 45 | 42 | 22 | 22 | 20 | 28 | 22 | 13 | 12 | 10 | 236 |
| FURUBS84_P5.CEL  | 9  | 46 | 41 | 29 | 31 | 21 | 16 | 26 | 26 | 11 |    | 247 |
| FURUBS85_J24.CEL | 10 | 56 | 47 | 31 | 31 | 20 | 28 | 28 | 25 | 17 | 15 | 298 |
| FURUBS86_P9.CEL  | 10 | 28 | 22 | 11 | 10 | 10 | 12 | 11 | 9  | 11 | 7  | 131 |
| FURUBS87_P20.CEL | 9  | 14 | 12 | 7  | 11 | 10 | 15 | 7  | 2  | 4  |    | 82  |
| FURUBS88_P23.CEL | 9  | 25 | 17 | 13 | 13 | 8  | 14 | 13 | 6  | 5  |    | 114 |
| FURUBS91_F24.CEL | 10 | 51 | 41 | 30 | 26 | 14 | 15 | 12 | 20 | 22 | 13 | 244 |
| FURUBS92_B22.CEL | 10 | 34 | 30 | 15 | 21 | 11 | 17 | 12 | 10 | 13 | 9  | 172 |
| FURUBS93_H24.CEL | 9  | 29 | 24 | 8  | 5  | 6  | 6  | 9  | 8  | 7  |    | 102 |
| FURUBS94_P19.CEL | 10 | 52 | 44 | 43 | 44 | 34 | 37 | 30 | 21 | 18 | 15 | 338 |
| FURUBS95_P21.CEL | 9  | 56 | 41 | 28 | 32 | 33 | 38 | 24 | 17 | 29 |    | 298 |
| FURUBS96_B24.CEL | 10 | 33 | 29 | 24 | 32 | 19 | 16 | 13 | 15 | 12 | 6  | 199 |
| FURUBS97_L20.CEL | 10 | 30 | 20 | 15 | 17 | 14 | 17 | 15 | 25 | 19 | 11 | 183 |
| FURUBS98_H22.CEL | 8  | 21 | 17 | 12 | 17 | 8  | 13 | 12 | 6  |    |    | 106 |
| FURUG101_118.CEL | 9  | 43 | 39 | 25 | 19 | 16 | 21 | 13 | 6  | 2  |    | 184 |
| FURUG102_I14.CEL | 8  | 21 | 22 | 14 | 14 | 12 | 15 | 4  | 4  |    |    | 106 |
| FURUG103_I22.CEL | 9  | 39 | 31 | 28 | 27 | 19 | 14 | 12 | 10 | 4  |    | 184 |
| FURUG104_K4.CEL  | 10 | 43 | 41 | 35 | 34 | 27 | 23 | 17 | 16 | 3  | 5  | 244 |

| FURUG105_I16.CEL | 8  | 37 | 36 | 26 | 24 | 20 | 29 | 7  | 3  |    |    | 182 |
|------------------|----|----|----|----|----|----|----|----|----|----|----|-----|
| FURUG106_18.CEL  | 8  | 45 | 41 | 38 | 40 | 39 | 18 | 13 | 5  |    |    | 239 |
| FURUG107_K6.CEL  | 8  | 30 | 33 | 27 | 29 | 26 | 12 | 4  | 5  |    |    | 166 |
| FURUG108_K10.CEL | 9  | 41 | 42 | 31 | 35 | 30 | 35 | 20 | 10 | 4  |    | 248 |
| FURUG11_M19.CEL  | 10 | 35 | 18 | 12 | 24 | 18 | 15 | 11 | 10 | 12 | 12 | 167 |
| FURUG12_M13.CEL  | 10 | 51 | 44 | 28 | 33 | 23 | 24 | 20 | 26 | 20 | 12 | 281 |
| FURUG13_M15.CEL  | 9  | 33 | 37 | 26 | 28 | 28 | 34 | 19 | 18 | 15 |    | 238 |
| FURUG14_O3.CEL   | 7  | 37 | 36 | 21 | 20 | 16 | 13 | 10 |    |    |    | 153 |
| FURUG15_M21.CEL  | 6  | 45 | 44 | 24 | 15 | 12 | 16 |    |    |    |    | 156 |
| FURUG16_A2.CEL   | 5  | 17 | 13 | 12 | 12 | 5  |    |    |    |    |    | 59  |
| FURUG17_07.CEL   | 8  | 39 | 36 | 32 | 35 | 26 | 17 | 11 | 8  |    |    | 204 |
| FURUG18_015.CEL  | 8  | 41 | 42 | 30 | 33 | 28 | 17 | 11 | 4  |    |    | 206 |
| FURUG21_09.CEL   | 8  | 49 | 53 | 34 | 30 | 23 | 19 | 22 | 5  |    |    | 235 |
| FURUG22_O1.CEL   | 7  | 40 | 38 | 35 | 45 | 33 | 23 | 15 |    |    |    | 229 |
| FURUG23_019.CEL  | 7  | 35 | 35 | 26 | 22 | 16 | 15 | 13 |    |    |    | 162 |
| FURUG24_013.CEL  | 9  | 53 | 46 | 36 | 42 | 30 | 38 | 16 | 10 | 3  |    | 274 |
| FURUG25_011.CEL  | 7  | 45 | 37 | 34 | 42 | 40 | 26 | 8  |    |    |    | 232 |
| FURUG26_017.CEL  | 6  | 13 | 26 | 23 | 19 | 4  | 4  |    |    |    |    | 89  |
| FURUG27_O5.CEL   | 8  | 40 | 36 | 31 | 44 | 38 | 18 | 10 | 4  |    |    | 221 |
| FURUG28_O21.CEL  | 9  | 37 | 34 | 23 | 26 | 17 | 26 | 13 | 20 | 10 |    | 206 |
| FURUG41_C10.CEL  | 8  | 15 | 14 | 14 | 15 | 11 | 12 | 10 | 8  |    |    | 99  |
| FURUG42_A16.CEL  | 7  | 12 | 10 | 6  | 8  | 4  | 9  | 2  |    |    |    | 51  |
| FURUG43_A14.CEL  | 8  | 29 | 21 | 15 | 15 | 9  | 11 | 9  | 9  |    |    | 118 |
| FURUG44_A20.CEL  | 7  | 20 | 22 | 28 | 10 | 13 | 5  | 9  |    |    |    | 107 |
| FURUG45_C8.CEL   | 7  | 31 | 33 | 20 | 11 | 7  | 8  | 2  |    |    |    | 112 |
| FURUG46_A18.CEL  | 8  | 41 | 26 | 16 | 19 | 11 | 12 | 10 | 8  |    |    | 143 |
| FURUG47_A12.CEL  | 8  | 31 | 23 | 24 | 24 | 11 | 9  | 14 | 10 |    |    | 146 |
| FURUG48_C4.CEL   | 9  | 32 | 26 | 25 | 26 | 14 | 11 | 10 | 14 | 9  |    | 167 |
| FURUG51_C18.CEL  | 8  | 46 | 42 | 24 | 19 | 22 | 25 | 18 | 6  |    |    | 202 |
| FURUG52_C20.CEL  | 8  | 38 | 38 | 30 | 23 | 19 | 22 | 12 | 3  |    |    | 185 |
| FURUG53_A22.CEL  | 8  | 29 | 31 | 22 | 14 | 10 | 11 | 5  | 6  |    |    | 128 |
|                  |    |    |    |    |    |    |    |    |    |    |    |     |

| FURUG54_A24.CEL | 9 | 44 | 32 | 23 | 18 | 7  | 22 | 11 | 7  | 4 | I | 168 |
|-----------------|---|----|----|----|----|----|----|----|----|---|---|-----|
|                 |   |    |    |    |    |    |    |    |    |   |   |     |
| FURUG55_C22.CEL | 6 | 26 | 16 | 9  | 15 | 21 | 19 |    |    |   |   | 106 |
| FURUG56_C16.CEL | 7 | 46 | 48 | 35 | 39 | 26 | 21 | 10 |    |   |   | 225 |
| FURUG57_C14.CEL | 8 | 48 | 38 | 29 | 28 | 21 | 18 | 9  | 4  |   |   | 195 |
| FURUG58_E12.CEL | 7 | 42 | 35 | 29 | 30 | 25 | 19 | 3  |    |   |   | 183 |
| FURUG61_E4.CEL  | 9 | 31 | 24 | 19 | 19 | 16 | 25 | 20 | 4  | 3 |   | 161 |
| FURUG62_C24.CEL | 8 | 36 | 31 | 24 | 33 | 18 | 28 | 19 | 10 |   |   | 199 |
| FURUG63_E14.CEL | 9 | 41 | 34 | 20 | 26 | 13 | 12 | 7  | 8  | 4 |   | 165 |
| FURUG64_E2.CEL  | 8 | 49 | 32 | 30 | 33 | 19 | 22 | 20 | 6  |   |   | 211 |
| FURUG65_E20.CEL | 8 | 42 | 29 | 26 | 31 | 18 | 14 | 19 | 18 |   |   | 197 |
|                 |   |    |    |    |    |    |    |    |    |   |   |     |
| FURUG66_G4.CEL  | 8 | 28 | 27 | 22 | 23 | 20 | 12 | 9  | 6  |   |   | 147 |
| FURUG67_E24.CEL | 6 | 31 | 27 | 21 | 8  | 9  | 10 |    |    |   |   | 106 |
| FURUG68_G8.CEL  | 8 | 40 | 35 | 25 | 25 | 19 | 16 | 6  | 3  |   |   | 169 |
| FURUG71_E16.CEL | 8 | 38 | 21 | 21 | 25 | 15 | 14 | 6  | 10 |   |   | 150 |
| FURUG72_E18.CEL | 8 | 37 | 33 | 30 | 35 | 22 | 18 | 20 | 5  |   |   | 200 |
| FURUG73_E8.CEL  | 6 | 43 | 35 | 28 | 28 | 28 | 17 |    |    |   |   | 179 |
| FURUG74_G2.CEL  | 8 | 33 | 32 | 20 | 22 | 9  | 12 | 9  | 17 |   |   | 154 |
| FURUG75_K2.CEL  | 8 | 39 | 33 | 20 | 23 | 12 | 14 | 11 | 8  |   |   | 160 |
| FURUG76_E22.CEL | 9 | 40 | 39 | 31 | 37 | 11 | 14 | 16 | 16 | 4 |   | 208 |
| FURUG77_I12.CEL | 7 | 33 | 24 | 16 | 20 | 11 | 9  | 11 |    |   |   | 124 |
| FURUG78_G10.CEL | 8 | 31 | 18 | 15 | 17 | 15 | 20 | 6  | 6  |   |   | 128 |
| FURUG81_G18.CEL | 7 | 37 | 31 | 26 | 20 | 12 | 17 | 15 |    |   |   | 158 |
| FURUG82_G6.CEL  | 7 | 22 | 20 | 12 | 17 | 13 | 8  | 4  |    |   |   | 96  |
| FURUG83_G16.CEL | 7 | 32 | 32 | 32 | 28 | 19 | 22 | 4  |    |   |   | 169 |
| FURUG84_G20.CEL | 6 | 13 | 14 | 7  | 8  | 7  | 4  |    |    |   |   | 53  |
| FURUG85_E10.CEL | 9 | 45 | 40 | 30 | 30 | 15 | 14 | 17 | 14 | 5 |   | 210 |
| FURUG86_I4.CEL  | 9 | 37 | 30 | 15 | 20 | 9  | 12 | 6  | 11 | 3 |   | 143 |
| FURUG87_G12.CEL | 8 | 33 | 25 | 18 | 12 | 9  | 9  | 6  | 5  |   |   | 117 |
| FURUG88_G14.CEL | 8 | 49 | 52 | 32 | 38 | 22 | 23 | 13 | 4  |   |   | 233 |
| FURUG91_G24.CEL | 9 | 48 | 34 | 25 | 49 | 37 | 8  | 12 | 8  | 6 |   | 227 |
| FURUG92_I2.CEL  | 8 | 54 | 56 | 48 | 50 | 33 | 13 | 9  | 15 |   |   | 278 |
|                 |   |    |    |    |    |    |    |    |    |   |   |     |

| FURUG93_124.CEL  | 7 | 37 | 24  | 14 | 12 | 13 | 8  | 5  |   |  | 113 |
|------------------|---|----|-----|----|----|----|----|----|---|--|-----|
| FURUG94_G22.CEL  | 8 | 56 | 59  | 45 | 45 | 22 | 22 | 10 | 5 |  | 264 |
| FURUG95_K8.CEL   | 8 | 41 | 35  | 39 | 29 | 19 | 18 | 6  | 5 |  | 192 |
| FURUG96_I6.CEL   | 7 | 49 | 49  | 37 | 23 | 16 | 19 | 9  |   |  | 202 |
| FURUG97_I20.CEL  | 7 | 28 | 29  | 29 | 28 | 22 | 17 | 7  |   |  | 160 |
| FURUG98_110.CEL  | 6 | 26 | 21  | 13 | 16 | 14 | 15 |    |   |  | 105 |
| FURUS101_K21.CEL | 6 | 18 | 16  | 12 | 16 | 14 | 7  |    |   |  | 83  |
| FURUS102_K11.CEL | 6 | 12 | 12  | 8  | 3  | 4  | 11 |    |   |  | 50  |
| FURUS103_M9.CEL  | 6 | 21 | 22  | 21 | 21 | 9  | 8  |    |   |  | 102 |
| FURUS104_I21.CEL | 6 | 39 | 24  | 17 | 18 | 8  | 10 |    |   |  | 116 |
| FURUS105_M3.CEL  | 6 | 21 | 16  | 13 | 13 | 10 | 5  |    |   |  | 78  |
| FURUS106_M7.CEL  | 7 | 34 | 29  | 18 | 14 | 10 | 11 | 6  |   |  | 122 |
| FURUS107_M1.CEL  | 6 | 14 | 10  | 8  | 9  | 6  | 8  |    |   |  | 55  |
| FURUS108_I19.CEL | 7 | 26 | 18  | 14 | 18 | 9  | 8  | 4  |   |  | 97  |
| FURUS11_A15.CEL  | 6 | 41 | 38  | 27 | 31 | 19 | 8  |    |   |  | 164 |
| FURUS12_A3.CEL   | 7 | 41 | 34  | 33 | 36 | 20 | 6  | 4  |   |  | 174 |
| FURUS13_A19.CEL  | 6 | 37 | 34  | 27 | 28 | 19 | 9  |    |   |  | 154 |
| FURUS14_A23.CEL  | 5 | 12 | 11  | 7  | 9  | 14 |    |    |   |  | 53  |
| FURUS15_A9.CEL   | 6 | 12 | 19  | 6  | 6  | 6  | 5  |    |   |  | 54  |
| FURUS16_A17.CEL  | 7 | 19 | 16  | 17 | 14 | 9  | 8  | 4  |   |  | 87  |
| FURUS17_A13.CEL  | 6 | 38 | 30  | 25 | 21 | 19 | 8  |    |   |  | 141 |
| FURUS18_A7.CEL   | 6 | 18 | 18  | 16 | 11 | 9  | 17 |    |   |  | 89  |
| FURUS21_A11.CEL  | 7 | 21 | 13  | 12 | 9  | 6  | 12 | 4  |   |  | 77  |
| FURUS22_E3.CEL   | 7 | 21 | 29  | 34 | 35 | 21 | 18 | 6  |   |  | 164 |
| FURUS23_A21.CEL  | 7 | 12 | 9   | 9  | 8  | 4  | 4  | 3  |   |  | 49  |
| FURUS24_E11.CEL  | 7 | 11 | 8   | 7  | 11 | 10 | 8  | 3  |   |  | 58  |
| FURUS25_C21.CEL  | 6 | 15 | 13  | 11 | 14 | 12 | 12 |    |   |  | 77  |
| FURUS26_C1.CEL   | 6 | 19 | 111 | 14 | 17 | 16 | 5  |    |   |  | 182 |
| FURUS27_II1.CEL  | 7 | 25 | 20  | 15 | 13 | 8  | 10 | 7  |   |  | 98  |
| FURUS28_C3.CEL   | 8 | 49 | 47  | 40 | 38 | 31 | 28 | 14 | 6 |  | 253 |
| FURUS31_C5.CEL   | 7 | 28 | 24  | 17 | 17 | 8  | 5  | 4  |   |  | 103 |
|                  |   |    |     |    |    |    |    |    |   |  |     |

| EUDUS22 M17 CEL |   | 44 | 42 | 24 | 27 |    | 1.5 |    | 1 | 1 | 162 |
|-----------------|---|----|----|----|----|----|-----|----|---|---|-----|
| FURUS32_M17.CEL | 6 | 44 | 42 | 24 | 27 | 11 | 15  |    |   |   | 163 |
| FURUS33_A5.CEL  | 6 | 14 | 11 | 7  | 9  | 7  | 3   |    |   |   | 51  |
| FURUS34_E9.CEL  | 7 | 47 | 51 | 43 | 39 | 22 | 15  | 6  |   |   | 223 |
| FURUS35_A1.CEL  | 7 | 34 | 41 | 25 | 23 | 18 | 19  | 4  |   |   | 164 |
| FURUS36_E13.CEL | 6 | 32 | 26 | 17 | 19 | 9  | 15  |    |   |   | 118 |
| FURUS37_C15.CEL | 6 | 34 | 37 | 21 | 21 | 12 | 15  |    |   |   | 140 |
| FURUS38_E1.CEL  | 6 | 27 | 21 | 19 | 25 | 15 | 8   |    |   |   | 115 |
| FURUS41_C11.CEL | 6 | 29 | 24 | 19 | 24 | 13 | 10  |    |   |   | 119 |
| FURUS42_G3.CEL  | 7 | 22 | 20 | 7  | 10 | 8  | 10  | 5  |   |   | 82  |
| FURUS43_G1.CEL  | 6 | 24 | 13 | 10 | 13 | 10 | 6   |    |   |   | 76  |
| FURUS44_E7.CEL  | 6 | 30 | 21 | 16 | 28 | 8  | 7   |    |   |   | 110 |
| FURUS45_C23.CEL | 5 | 15 | 11 | 13 | 8  | 4  |     |    |   |   | 51  |
| FURUS46_C17.CEL | 8 | 49 | 45 | 40 | 43 | 23 | 20  | 12 | 8 |   | 240 |
| FURUS47_C13.CEL | 6 | 24 | 18 | 13 | 13 | 7  | 9   |    |   |   | 84  |
| FURUS48_C9.CEL  | 7 | 38 | 30 | 23 | 26 | 23 | 17  | 12 |   |   | 169 |
| FURUS51_E5.CEL  | 6 | 53 | 44 | 26 | 33 | 19 | 10  |    |   |   | 185 |
| FURUS52_G5.CEL  | 7 | 48 | 43 | 27 | 36 | 18 | 12  | 4  |   |   | 188 |
| FURUS53_E15.CEL | 7 | 42 | 38 | 28 | 30 | 17 | 12  | 3  |   |   | 170 |
| FURUS54_G7.CEL  | 4 | 11 | 8  | 7  | 10 |    |     |    |   |   | 36  |
| FURUS55_K7.CEL  | 6 | 47 | 48 | 41 | 42 | 19 | 14  |    |   |   | 211 |
| FURUS56_C7.CEL  | 6 | 50 | 42 | 22 | 27 | 20 | 12  |    |   |   | 173 |
| FURUS57_G15.CEL | 7 | 31 | 25 | 21 | 31 | 17 | 12  | 5  |   |   | 142 |
| FURUS58_G13.CEL | 7 | 27 | 20 | 16 | 13 | 10 | 12  | 4  |   |   | 102 |
| FURUS61_E23.CEL | 7 | 35 | 30 | 25 | 22 | 9  | 16  | 5  |   |   | 142 |
| FURUS62_E19.CEL | 6 | 18 | 8  | 9  | 18 | 9  | 8   |    |   |   | 70  |
| FURUS63_E17.CEL | 6 | 15 | 15 | 16 | 8  | 11 | 3   |    |   |   | 68  |
| FURUS64_113.CEL | 6 | 21 | 13 | 10 | 11 | 8  | 3   |    |   |   | 66  |
| FURUS65_E21.CEL | 7 | 16 | 16 | 15 | 7  | 6  | 5   | 4  |   |   | 69  |
| FURUS66_G11.CEL | 7 | 32 | 36 | 26 | 30 | 21 | 19  | 5  |   |   | 169 |
| FURUS67_19.CEL  | 6 | 24 | 23 | 10 | 12 | 9  | 13  |    |   |   | 91  |
| FURUS68_K1.CEL  | 7 | 15 | 12 | 7  | 8  | 11 | 3   | 3  |   |   | 59  |

| FURUS71_G9.CEL  | 6 | 53 | 34 | 24 | 22 | 10 | 4  |   |   |  | 147 |
|-----------------|---|----|----|----|----|----|----|---|---|--|-----|
| FURUS72_I7.CEL  | 7 | 53 | 47 | 34 | 37 | 21 | 9  | 5 |   |  | 206 |
| FURUS73_I1.CEL  | 6 | 34 | 23 | 14 | 12 | 11 | 4  |   |   |  | 98  |
| FURUS74_G21.CEL | 7 | 38 | 19 | 21 | 22 | 21 | 13 | 5 |   |  | 139 |
| FURUS75_G23.CEL | 6 | 12 | 17 | 7  | 7  | 3  | 4  |   |   |  | 50  |
| FURUS76_G19.CEL | 7 | 44 | 49 | 36 | 35 | 27 | 5  | 5 |   |  | 201 |
| FURUS77_I3.CEL  | 6 | 32 | 20 | 13 | 14 | 11 | 7  |   |   |  | 97  |
| FURUS78_G17.CEL | 7 | 45 | 39 | 32 | 35 | 26 | 19 | 3 |   |  | 199 |
| FURUS81_117.CEL | 6 | 17 | 22 | 10 | 15 | 9  | 6  |   |   |  | 79  |
| FURUS82_15.CEL  | 6 | 41 | 50 | 39 | 38 | 15 | 15 |   |   |  | 198 |
| FURUS83_C19.CEL | 7 | 41 | 23 | 25 | 39 | 23 | 9  | 4 |   |  | 164 |
| FURUS84_K3.CEL  | 5 | 37 | 41 | 32 | 27 | 18 |    |   |   |  | 155 |
| FURUS85_K9.CEL  | 6 | 36 | 41 | 17 | 16 | 8  | 15 |   |   |  | 133 |
| FURUS86_K5.CEL  | 6 | 21 | 20 | 9  | 12 | 6  | 6  |   |   |  | 74  |
| FURUS87_115.CEL | 6 | 32 | 31 | 19 | 25 | 18 | 18 |   |   |  | 143 |
| FURUS88_023.CEL | 6 | 33 | 26 | 17 | 17 | 13 | 5  |   |   |  | 111 |
| FURUS91_M5.CEL  | 7 | 27 | 22 | 14 | 12 | 7  | 7  | 4 |   |  | 93  |
| FURUS92_K19.CEL | 6 | 17 | 12 | 13 | 8  | 6  | 4  |   |   |  | 60  |
| FURUS93_K15.CEL | 6 | 23 | 17 | 14 | 11 | 9  | 9  |   |   |  | 83  |
| FURUS94_K17.CEL | 7 | 22 | 16 | 13 | 18 | 10 | 9  | 5 |   |  | 93  |
| FURUS95_K13.CEL | 7 | 11 | 8  | 4  | 3  | 6  | 8  | 4 |   |  | 44  |
| FURUS96_123.CEL | 8 | 48 | 33 | 10 | 24 | 10 | 14 | 5 | 5 |  | 149 |
| FURUS97_M11.CEL | 6 | 18 | 13 | 12 | 13 | 13 | 5  |   |   |  | 74  |
| FURUS98_K23.CEL | 6 | 41 | 23 | 18 | 28 | 19 | 15 |   |   |  | 144 |
|                 |   |    |    |    |    |    |    |   |   |  |     |

| Origin                        | Dominant | Dominant<br>Interaction | Dominant<br>without<br>covariance | Recessive     | <b>Recessive</b><br>interaction | Recessive<br>without<br>covariance | Genotypic<br>interaction | Genotypic<br>without<br>covariance |  |  |  |  |  |
|-------------------------------|----------|-------------------------|-----------------------------------|---------------|---------------------------------|------------------------------------|--------------------------|------------------------------------|--|--|--|--|--|
|                               |          |                         | N                                 | orwegian      |                                 |                                    |                          |                                    |  |  |  |  |  |
| SNPs with genes identified    | 8        | 0                       | 14                                | 0             | 0                               | 2                                  | 0                        | 10                                 |  |  |  |  |  |
| Swedish                       |          |                         |                                   |               |                                 |                                    |                          |                                    |  |  |  |  |  |
| SNPs with genes<br>identified | 38       | 18                      | 57                                | 5             | 0                               | 16                                 | 0                        | 42                                 |  |  |  |  |  |
|                               |          |                         | Total (Nor                        | wegian + Swee | lish)                           |                                    |                          |                                    |  |  |  |  |  |
| SNPs with genes identified    | 60       | 115                     | 56                                | 10            | 9                               | 29                                 | 26                       | 43                                 |  |  |  |  |  |

### Table S2. Significant SNPs with genes identified based on Origin of 300 Scots Pine (Pinus sylvestris) samples.

Table S3. Growth associated significant SNPs with genes identified based on seasonal temperature and precipitation for different time-period.

| Time period with SPEI      | Dominant without covariance | Recessive without covariance | Genotypic without covariance |
|----------------------------|-----------------------------|------------------------------|------------------------------|
| March-May                  |                             |                              |                              |
| HTLP (Low SPEI), 2019      |                             |                              |                              |
| SNPs with identified genes | 72                          | 16                           | 44                           |
| LTHP (High SPEI), 2017     |                             |                              |                              |
| SNPs with identified genes | 78                          | 226                          | 64                           |
| Jun-August                 |                             |                              |                              |
| HTLP (Low SPEI), 2012      |                             |                              |                              |
| SNPs with identified genes | 6                           | 10                           | 3                            |
| LTHP (High SPEI), 2018     |                             |                              |                              |
| SNPs with identified genes | 108                         | 23                           | 73                           |

\* Significance determined at p-value  $\leq 0.01$ 

Table S4. Gene Ontology Analysis of genes corresponding to significant SNPs in association analysis for Norwegian samples.

| Genes                | ONTOL<br>OGY | GO ID                    | Gene Ontology term                                         | Size<br>overlap<br>term /<br>Count | Size<br>overlap<br>category | p. adjust          | Association                                             |
|----------------------|--------------|--------------------------|------------------------------------------------------------|------------------------------------|-----------------------------|--------------------|---------------------------------------------------------|
| RPK2/SIA2            | BP           | GO:0009846               | pollen germination                                         | 2                                  | 7                           | 0.0405330538716311 | Dominant                                                |
| E2FE                 | BP           | GO:0032876               | negative regulation of DNA<br>endoreduplication            | 1                                  | 7                           | 0.0495629689636819 | Dominant                                                |
| E2FE                 | BP           | GO:0008156               | negative regulation of DNA replication                     | 1                                  | 7                           | 0.0495629689636819 | Dominant                                                |
| E2FE                 | BP           | GO:2000104               | negative regulation of DNA-templated DNA replication       | 1                                  | 7                           | 0.0495629689636819 | Dominant                                                |
| RPK2/BAM1            | BP           | GO:0048443               | stamen development                                         | 2                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| RPK2/BAM1            | BP           | GO:0048466               | androecium development                                     | 2                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| ABCC5/NRAMP6         | BP           | GO:0030003               | intracellular monoatomic cation homeostasis                | 2                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| MPK12                | BP           | GO:0071244               | cellular response to carbon dioxide                        | 1                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| ABCC5/NRAMP6         | BP           | GO:0006873               | intracellular monoatomic ion homeostasis                   | 2                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| MPK12                | BP           | GO:0080026               | response to indolebutyric acid                             | 1                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| RPK2/BAM1            | BP           | GO:0010073               | meristem maintenance                                       | 2                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| MPK12/ABCC5          | BP           | GO:0010118               | stomatal movement                                          | 2                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| NRAMP6               | BP           | GO:0015691               | cadmium ion transport                                      | 1                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| ABCC5/NRAMP6         | BP           | GO:0055082               | intracellular chemical homeostasis                         | 2                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| RPK2/BAM1            | BP           | GO:0048438               | floral whorl development                                   | 2                                  | 7                           | 0.0289889408562439 | Dominant without covariance                             |
| RPK2                 | BP           | GO:0000578               | embryonic axis specification                               | 1                                  | 7                           | 0.0353167039850309 | Dominant without covariance                             |
| MPK12                | BP           | GO:0010037               | response to carbon dioxide                                 | 1                                  | 7                           | 0.0371477124200839 | Dominant without covariance                             |
| ABCC5                | BP<br>BP     | GO:0055075<br>GO:0005983 | potassium ion homeostasis                                  | 1                                  | 7                           | 0.0402916472001392 | Dominant without covariance Dominant without covariance |
| BAM 1,00<br>BAM 1,00 | BP           | GO:0005983<br>GO:0009251 | starch catabolic process                                   | 1                                  | 7                           | 0.0424400327957071 | Dominant without covariance                             |
| BAM 1,00             | Br           | GO:0009231               | glucan catabolic process regulation of meristem structural | 1                                  | /                           | 0.0440032012378877 | Dominant without covariance                             |
| BAM 1,00             | BP           | GO:0009934               | regulation of mension structural                           | 1                                  | 7                           | 0.0440032012578877 | Dominant without covariance                             |
| NRAMP6               | MF           | GO:0015086               | cadmium ion transmembrane transporter<br>activity          | 1                                  | 7                           | 0.042920502142744  | Dominant without covariance                             |
| MPK12                | MF           | GO:0004707               | MAP kinase activity                                        | 1                                  | 7                           | 0.0458367797105691 | Dominant without covariance                             |
| ABCC5                | MF           | GO:0008559               | ABC-type xenobiotic transporter activity                   | 1                                  | 7                           | 0.0458367797105691 | Dominant without covariance                             |
| RPK2                 | BP           | GO:0010152               | pollen maturation                                          | 1                                  | 7                           | 0.0362841657812691 | Dominant without covariance                             |

| RPK2      | BP | GO:0009956 | radial pattern formation                                                   | 1 | 7 | 0.04531764088098    | Dominant without covariance  |
|-----------|----|------------|----------------------------------------------------------------------------|---|---|---------------------|------------------------------|
| RPK2/BAM1 | BP | GO:0048653 | anther development                                                         | 2 | 7 | 0.0289889408562439  | Dominant without covariance  |
| SH3P2     | BP | GO:0009920 | cell plate formation involved in plant-type<br>cell wall biogenesis        | 1 | 1 | 0.00926833319491722 | Recessive without covariance |
| SH3P2     | BP | GO:0007009 | plasma membrane organization                                               | 1 | 1 | 0.00926833319491722 | Recessive without covariance |
| SH3P2     | BP | GO:0000919 | cell plate assembly                                                        | 1 | 1 | 0.00926833319491722 | Recessive without covariance |
| SH3P2     | BP | GO:0072583 | clathrin-dependent endocytosis                                             | 1 | 1 | 0.00926833319491722 | Recessive without covariance |
| SH3P2     | BP | GO:0006898 | receptor-mediated endocytosis                                              | 1 | 1 | 0.00926833319491722 | Recessive without covariance |
| SH3P2     | BP | GO:0051130 | positive regulation of cellular component<br>organization                  | 1 | 1 | 0.0107845812521503  | Recessive without covariance |
| SH3P2     | BP | GO:0140014 | mitotic nuclear division                                                   | 1 | 1 | 0.0107845812521503  | Recessive without covariance |
| SH3P2     | BP | GO:0098657 | import into cell                                                           | 1 | 1 | 0.014512914209783   | Recessive without covariance |
| SH3P2     | BP | GO:0000280 | nuclear division                                                           | 1 | 1 | 0.016977707119722   | Recessive without covariance |
| SH3P2     | BP | GO:1903047 | mitotic cell cycle process                                                 | 1 | 1 | 0.0178390499127978  | Recessive without covariance |
| SH3P2     | CC | GO:0005776 | autophagosome                                                              | 1 | 1 | 0.0097126057808549  | Recessive without covariance |
| SH3P2     | CC | GO:0030136 | clathrin-coated vesicle                                                    | 1 | 1 | 0.0097126057808549  | Recessive without covariance |
| SH3P2     | CC | GO:0009504 | cell plate                                                                 | 1 | 1 | 0.0097126057808549  | Recessive without covariance |
| SH3P2     | CC | GO:0090406 | pollen tube                                                                | 1 | 1 | 0.0097126057808549  | Recessive without covariance |
| SH3P2     | CC | GO:0030135 | coated vesicle                                                             | 1 | 1 | 0.0097126057808549  | Recessive without covariance |
| SH3P2     | CC | GO:0120025 | plasma membrane bounded cell projection                                    | 1 | 1 | 0.0097126057808549  | Recessive without covariance |
| SH3P2     | MF | GO:0032266 | phosphatidylinositol-3-phosphate binding                                   | 1 | 1 | 0.00762076982691817 | Recessive without covariance |
| SH3P2     | MF | GO:0043130 | ubiquitin binding                                                          | 1 | 1 | 0.00762076982691817 | Recessive without covariance |
| SH3P2     | MF | GO:0005546 | phosphatidylinositol-4,5-bisphosphate<br>binding                           | 1 | 1 | 0.00762076982691817 | Recessive without covariance |
| SH3P2     | MF | GO:1902936 | phosphatidylinositol bisphosphate binding                                  | 1 | 1 | 0.00762076982691817 | Recessive without covariance |
| SH3P2     | MF | GO:0032182 | ubiquitin-like protein binding                                             | 1 | 1 | 0.00762076982691817 | Recessive without covariance |
| SH3P2     | MF | GO:1901981 | phosphatidylinositol phosphate binding                                     | 1 | 1 | 0.00762076982691817 | Recessive without covariance |
| SGR6/PYL4 | CC | GO:0009705 | plant-type vacuole membrane                                                | 2 | 6 | 0.0113387740799476  | Genotypic without covariance |
| AVPL1     | CC | GO:0000137 | Golgi cis cistema                                                          | 1 | 6 | 0.0197030646467404  | Genotypic without covariance |
| AVPL1     | MF | GO:0009678 | diphosphate hydrolysis-driven proton<br>transmembrane transporter activity | 1 | 6 | 0.0302215747690859  | Genotypic without covariance |
| CPL1      | MF | GO:0008420 | RNA polymerase II CTD heptapeptide repeat<br>phosphatase activity          | 1 | 6 | 0.0302215747690859  | Genotypic without covariance |
| PYL4      | MF | GO:0004864 | protein phosphatase inhibitor activity                                     | 1 | 6 | 0.0302215747690859  | Genotypic without covariance |

| PYL4       | MF | GO:0010427 | abscisic acid binding                                                       | 1 | 6 | 0.0302215747690859 | Genotypic without covariance |
|------------|----|------------|-----------------------------------------------------------------------------|---|---|--------------------|------------------------------|
| PYL4       | MF | GO:0019212 | phosphatase inhibitor activity                                              | 1 | 6 | 0.0302215747690859 | Genotypic without covariance |
| AVPL1      | MF | GO:0004427 | inorganic diphosphate phosphatase activity                                  | 1 | 6 | 0.0302215747690859 | Genotypic without covariance |
| PYL4       | MF | GO:0019840 | isoprenoid binding                                                          | 1 | 6 | 0.0316445907022511 | Genotypic without covariance |
| PYL4       | MF | GO:0043178 | alcohol binding                                                             | 1 | 6 | 0.0316445907022511 | Genotypic without covariance |
| CPL1       | MF | GO:0140994 | RNA polymerase II CTD heptapeptide repeat<br>modifying activity             | 1 | 6 | 0.0316445907022511 | Genotypic without covariance |
| PYL4       | MF | GO:0042562 | hormone binding                                                             | 1 | 6 | 0.0323332562780103 | Genotypic without covariance |
| BAM 1,00   | MF | GO:0033612 | receptor serine/threonine kinase binding                                    | 1 | 6 | 0.0484508054001727 | Genotypic without covariance |
| PYL4       | MF | GO:0044389 | ubiquitin-like protein ligase binding                                       | 1 | 6 | 0.0484508054001727 | Genotypic without covariance |
| CUL1       | BP | GO:0010265 | SCF complex assembly                                                        | 1 | 7 | 0.0495629689636819 | Dominant                     |
| CUL1       | BP | GO:0010265 | SCF complex assembly                                                        | 1 | 7 | 0.0289889408562439 | Dominant without covariance  |
| ABCC5      | BP | GO:0030007 | intracellular potassium ion homeostasis                                     | 1 | 7 | 0.0495629689636819 | Dominant                     |
| ABCC5      | BP | GO:0030007 | intracellular potassium ion homeostasis                                     | 1 | 7 | 0.0289889408562439 | Dominant without covariance  |
| RPK2       | BP | GO:0009942 | longitudinal axis specification                                             | 1 | 7 | 0.0495629689636819 | Dominant                     |
| RPK2       | BP | GO:0009942 | longitudinal axis specification                                             | 1 | 7 | 0.0289889408562439 | Dominant without covariance  |
| ABCC5      | BP | GO:1901527 | abscisic acid-activated signalling pathway<br>involved in stomatal movement | 1 | 7 | 0.0495629689636819 | Dominant                     |
| ABCC5      | BP | GO:1901527 | abscisic acid-activated signalling pathway<br>involved in stomatal movement | 1 | 7 | 0.0289889408562439 | Dominant without covariance  |
| ABCC5/BAM1 | MF | GO:0038023 | signalling receptor activity                                                | 2 | 7 | 0.042920502142744  | Dominant without covariance  |
| PYL4/BAM1  | MF | GO:0038023 | signalling receptor activity                                                | 2 | 6 | 0.0302215747690859 | Genotypic without covariance |
| ABCC5/BAM1 | MF | GO:0060089 | molecular transducer activity                                               | 2 | 7 | 0.042920502142744  | Dominant without covariance  |
| PYL4/BAM1  | MF | GO:0060089 | molecular transducer activity                                               | 2 | 6 | 0.0302215747690859 | Genotypic without covariance |
| BAM 1,00   | MF | GO:0016161 | beta-amylase activity                                                       | 1 | 7 | 0.042920502142744  | Dominant without covariance  |
| BAM 1,00   | MF | GO:0016161 | beta-amylase activity                                                       | 1 | 6 | 0.0302215747690859 | Genotypic without covariance |
| BAM 1,00   | MF | GO:0102229 | amylopectin maltohydrolase activity                                         | 1 | 7 | 0.042920502142744  | Dominant without covariance  |
| BAM 1,00   | MF | GO:0102229 | amylopectin maltohydrolase activity                                         | 1 | 6 | 0.0302215747690859 | Genotypic without covariance |
| BAM 1,00   | MF | GO:0016160 | amylase activity                                                            | 1 | 7 | 0.042920502142744  | Dominant without covariance  |
| BAM 1,00   | MF | GO:0016160 | amylase activity                                                            | 1 | 6 | 0.0302215747690859 | Genotypic without covariance |

|                              |          |            |                                                                                                                                        | Size                       |                             | [                        | [                           |
|------------------------------|----------|------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|--------------------------|-----------------------------|
| Genes                        | ONTOLOGY | GO ID      | Gene Ontology term                                                                                                                     | overlap<br>term /<br>Count | Size<br>overlap<br>category | p.adjust                 | Association                 |
| AHP1/ATHP2                   | MF       | GO:0009927 | histidine phosphotransfer kinase activity                                                                                              | 2                          | 26                          | 0.00890309749591109      | Dominant                    |
| AHP1/ATHP2/G<br>LR3.1/GLR3.3 | MF       | GO:0060089 | molecular transducer activity                                                                                                          | 4                          | 26                          | 0.0233743397026329       | Dominant                    |
| AHP1/ATHP2                   | MF       | GO:0043424 | protein histidine kinase binding                                                                                                       | 2                          | 26                          | 0.0233743397026329       | Dominant                    |
| ACR4/NIK3/TH<br>E1           | MF       | GO:0038023 | signaling receptor activity                                                                                                            | 3                          | 12                          | 0.0150441459338126       | Dominant interaction        |
| ACR4/NIK3/TH<br>E1           | MF       | GO:0060089 | molecular transducer activity                                                                                                          | 3                          | 12                          | 0.0150441459338126       | Dominant interaction        |
| ACR4/THE1                    | MF       | GO:0019199 | transmembrane receptor protein kinase<br>activity                                                                                      | 2                          | 12                          | 0.017904308621623        | Dominant interaction        |
| ANS/F6'H1                    | MF       | GO:0051213 | dioxygenase activity                                                                                                                   | 2                          | 12                          | 0.0270324053419468       | Dominant interaction        |
| PCO4/PCO5/SIZ<br>1/BOR1      | BP       | GO:0009593 | detection of chemical stimulus                                                                                                         | 4                          | 35                          | 0.00119971527404993      | Dominant without covariance |
| PCO4/PCO5/SIZ<br>1/BOR1      | BP       | GO:0051606 | detection of stimulus                                                                                                                  | 4                          | 35                          | 0.00826607493163302      | Dominant without covariance |
| BOR1/BOR4/B<br>OR5           | BP       | GO:0006820 | monoatomic anion transport                                                                                                             | 3                          | 35                          | 0.00826607493163302      | Dominant without covariance |
| BOR1/BOR4                    | BP       | GO:0010036 | response to boron-containing substance                                                                                                 | 2                          | 35                          | 0.0185225219224622       | Dominant without covariance |
| BOR1/BOR4                    | BP       | GO:0080029 | cellular response to boron-containing<br>substance levels                                                                              | 2                          | 35                          | 0.0185225219224622       | Dominant without covariance |
| RPL5A/RPL5B/<br>LUG          | BP       | GO:0009955 | adaxial/abaxial pattern specification                                                                                                  | 3                          | 35                          | 0.0185225219224622       | Dominant without covariance |
| RPL5A/RPL5B                  | BP       | GO:0000027 | ribosomal large subunit assembly                                                                                                       | 2                          | 35                          | 0.0465138348029082       | Dominant without covariance |
| SIZ1/MYB56/A<br>TL72         | BP       | GO:0048481 | plant ovule development                                                                                                                | 3                          | 35                          | 0.0465138348029082       | Dominant without covariance |
| SIZ1/MYB56/A<br>TL72         | BP       | GO:0035670 | plant-type ovary development                                                                                                           | 3                          | 35                          | 0.0465138348029082       | Dominant without covariance |
| RPL5/RPL5A/R<br>PL5B         | CC       | GO:0022625 | cytosolic large ribosomal subunit                                                                                                      | 3                          | 34                          | 0.00935445742877732      | Dominant without covariance |
| BOR1/BOR4/B<br>OR5           | MF       | GO:0005452 | solute: inorganic anion antiporter activity                                                                                            | 3                          | 35                          | 0.00021407630173300<br>1 | Dominant without covariance |
| RPL5A/RPL5B                  | MF       | GO:0008097 | 5S rRNA binding                                                                                                                        | 2                          | 35                          | 0.014129143718872        | Dominant without covariance |
| BOR1/BOR4                    | MF       | GO:0015562 | efflux transmembrane transporter activity                                                                                              | 2                          | 35                          | 0.0340759839170525       | Dominant without covariance |
| AHL23/AHL22                  | MF       | GO:0000217 | DNA secondary structure binding                                                                                                        | 2                          | 35                          | 0.0340759839170525       | Dominant without covariance |
| RPL5/RPL5A/R<br>PL5B         | MF       | GO:0003735 | structural constituent of ribosome                                                                                                     | 3                          | 35                          | 0.0340759839170525       | Dominant without covariance |
| PCO4/PCO5                    | MF       | GO:0016702 | oxidoreductase activity, acting on single<br>donors with incorporation of molecular<br>oxygen, incorporation of two atoms of<br>oxygen | 2                          | 35                          | 0.0340759839170525       | Dominant without covariance |
| BOR1/BOR4/B<br>OR5           | MF       | GO:0015297 | antiporter activity                                                                                                                    | 3                          | 35                          | 0.0340759839170525       | Dominant without covariance |
| GLR3.1/GLR3.3                | MF       | GO:0015276 | ligand-gated monoatomic ion channel activity                                                                                           | 2                          | 35                          | 0.0340759839170525       | Dominant without covariance |

| CULI                                      | MF | GO:0031625 | ubiquitin protein ligase binding                                                     | 1 | 4  | 0.0294597491937438       | Recessive                    |
|-------------------------------------------|----|------------|--------------------------------------------------------------------------------------|---|----|--------------------------|------------------------------|
| PRS4                                      | MF | GO:0000287 | magnesium ion binding                                                                | 1 | 4  | 0.0464181471200038       | Recessive                    |
| ACX4/PEX16                                | CC | GO:0005777 | peroxisome                                                                           | 2 | 7  | 0.0387025089349737       | Recessive without covariance |
| ACX4/PEX16                                | CC | GO:0042579 | microbody                                                                            | 2 | 7  | 0.0387025089349737       | Recessive without covariance |
| ACX4                                      | MF | GO:0003997 | acyl-CoA oxidase activity                                                            | 1 | 6  | 0.0434687992811413       | Recessive without covariance |
| ACX4                                      | MF | GO:0016634 | oxidoreductase activity, acting on the CH-<br>CH group of donors, oxygen as acceptor | 1 | 6  | 0.0434687992811413       | Recessive without covariance |
| GSTU20                                    | MF | GO:0043295 | glutathione binding                                                                  | 1 | 6  | 0.0472606268664637       | Recessive without covariance |
| ACX4                                      | MF | GO:1901149 | salicylic acid binding                                                               | 1 | 6  | 0.0472606268664637       | Recessive without covariance |
| PLC2/PLC4/PL<br>C8/PLC7/GLR3.<br>1/GLR3.3 | BP | GO:0006873 | intracellular monoatomic ion homeostasis                                             | 6 | 24 | 2.53588829902931e-<br>05 | Genotypic without covariance |
| PK1/ATPK2                                 | BP | GO:0045727 | positive regulation of translation                                                   | 2 | 24 | 0.00844154082559766      | Genotypic without covariance |
| PK1/ATPK2                                 | BP | GO:0034250 | positive regulation of amide metabolic<br>process                                    | 2 | 24 | 0.00889246345089576      | Genotypic without covariance |
| GLR3.1/GLR3.3                             | BP | GO:0071230 | cellular response to amino acid stimulus                                             | 2 | 24 | 0.0134717231132706       | Genotypic without covariance |
| GLR3.1/GLR3.3                             | BP | GO:0043200 | response to amino acid                                                               | 2 | 24 | 0.0338889726740765       | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7/GLR3.<br>1/GLR3.3 | BP | GO:0006816 | calcium ion transport                                                                | 6 | 24 | 1.83073561150744e-<br>07 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7/GLR3.<br>1/GLR3.3 | BP | GO:0030003 | intracellular monoatomic cation<br>homeostasis                                       | 6 | 24 | 2.53588829902931e-<br>05 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0032879 | regulation of localization                                                           | 4 | 24 | 0.00380476190200272      | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0048015 | phosphatidylinositol-mediated signalling                                             | 4 | 24 | 1.65912296423998e-<br>06 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0051208 | sequestering of calcium ion                                                          | 4 | 24 | 6.70999411433369e-<br>08 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0051209 | release of sequestered calcium ion into<br>cytosol                                   | 4 | 24 | 6.70999411433369e-<br>08 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0051282 | regulation of sequestering of calcium ion                                            | 4 | 24 | 6.70999411433369e-<br>08 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0051283 | negative regulation of sequestering of calcium ion                                   | 4 | 24 | 6.70999411433369e-<br>08 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0051651 | maintenance of location in cell                                                      | 4 | 24 | 2.15437136593546e-<br>05 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7/GLR3.<br>1/GLR3.3 | BP | GO:0055074 | calcium ion homeostasis                                                              | 6 | 24 | 1.20317353719638e-<br>07 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0070588 | calcium ion transmembrane transport                                                  | 4 | 24 | 2.53588829902931e-<br>05 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7                   | BP | GO:0097553 | calcium ion transmembrane import into<br>cytosol                                     | 4 | 24 | 6.70999411433369e-<br>08 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7/GLR3.<br>1/GLR3.3 | BP | GO:0098771 | inorganic ion homeostasis                                                            | 6 | 24 | 7.96472031389336e-<br>05 | Genotypic without covariance |
| MUR3/GAUT11<br>/HPAT3                     | CC | GO:0031985 | Golgi cisterna                                                                       | 3 | 24 | 0.00982401343264397      | Genotypic without covariance |

| MUR3/GAUT11<br>/HPAT3   | CC | GO:0005795 | Golgi stack                                                   | 3 | 24 | 0.00982401343264397      | Genotypic without covariance |
|-------------------------|----|------------|---------------------------------------------------------------|---|----|--------------------------|------------------------------|
| PLC2/PLC4/PL<br>C8/PLC7 | MF | GO:0004435 | phosphatidylinositol phospholipase C<br>activity              | 4 | 24 | 1.01263933048928e-<br>07 | Genotypic without covariance |
| PLC2/PLC4/PL<br>C8/PLC7 | MF | GO:0008081 | phosphoric diester hydrolase activity                         | 4 | 24 | 2.94827845993127e-<br>05 | Genotypic without covariance |
| AHL23/AHL22             | MF | GO:0003680 | minor groove of adenine-thymine-rich<br>DNA binding           | 2 | 35 | 0.0340759839170525       | Dominant without covariance  |
| AHL23/AHL22             | MF | GO:0003680 | minor groove of adenine-thymine-rich<br>DNA binding           | 2 | 24 | 0.00750108779028555      | Genotypic without covariance |
| GLR3.1/GLR3.3           | MF | GO:0005217 | intracellular ligand-gated monoatomic ion<br>channel activity | 2 | 26 | 0.0262946079525596       | Dominant                     |
| GLR3.1/GLR3.3           | MF | GO:0005217 | intracellular ligand-gated monoatomic ion<br>channel activity | 2 | 35 | 0.0340759839170525       | Dominant without covariance  |
| GLR3.1/GLR3.3           | MF | GO:0005217 | intracellular ligand-gated monoatomic ion<br>channel activity | 2 | 24 | 0.0112178294939552       | Genotypic without covariance |
| GLR3.1/GLR3.3           | MF | GO:0005262 | calcium channel activity                                      | 2 | 26 | 0.0297182417834704       | Dominant                     |
| GLR3.1/GLR3.3           | MF | GO:0005262 | calcium channel activity                                      | 2 | 35 | 0.0340759839170525       | Dominant without covariance  |
| GLR3.1/GLR3.3           | MF | GO:0005262 | calcium channel activity                                      | 2 | 24 | 0.0152314467742527       | Genotypic without covariance |
| GLR3.1/GLR3.3           | MF | GO:0008066 | glutamate receptor activity                                   | 2 | 26 | 0.0233743397026329       | Dominant                     |
| GLR3.1/GLR3.3           | MF | GO:0008066 | glutamate receptor activity                                   | 2 | 35 | 0.0340759839170525       | Dominant without covariance  |
| GLR3.1/GLR3.3           | MF | GO:0008066 | glutamate receptor activity                                   | 2 | 24 | 0.0102516294465573       | Genotypic without covariance |
| GLR3.1/GLR3.3           | MF | GO:0022834 | ligand-gated channel activity                                 | 2 | 26 | 0.0297182417834704       | Dominant                     |
| GLR3.1/GLR3.3           | MF | GO:0022834 | ligand-gated channel activity                                 | 2 | 35 | 0.0340759839170525       | Dominant without covariance  |
| GLR3.1/GLR3.3           | MF | GO:0022834 | ligand-gated channel activity                                 | 2 | 24 | 0.0152314467742527       | Genotypic without covariance |
| UGT85A3                 | MF | GO:0015020 | glucuronosyltransferase activity                              | 1 | 4  | 0.0287242465807536       | Recessive                    |
| UGT85A3                 | MF | GO:0015020 | glucuronosyltransferase activity                              | 1 | 6  | 0.0472606268664637       | Recessive without covariance |
| PRS4                    | MF | GO:0016778 | diphosphotransferase activity                                 | 1 | 4  | 0.0287242465807536       | Recessive                    |
| PRS4                    | MF | GO:0016778 | diphosphotransferase activity                                 | 1 | 6  | 0.0434687992811413       | Recessive without covariance |
| UGT85A3                 | MF | GO:0080043 | quercetin 3-O-glucosyltransferase activity                    | 1 | 4  | 0.0287242465807536       | Recessive                    |
| UGT85A3                 | MF | GO:0080043 | quercetin 3-O-glucosyltransferase activity                    | 1 | 6  | 0.0472606268664637       | Recessive without covariance |
| UGT85A3                 | MF | GO:0080044 | quercetin 7-O-glucosyltransferase activity                    | 1 | 4  | 0.0287242465807536       | Recessive                    |
| UGT85A3                 | MF | GO:0080044 | quercetin 7-O-glucosyltransferase activity                    | 1 | 6  | 0.0472606268664637       | Recessive without covariance |
| PLP6/PLP7               | MF | GO:0004620 | phospholipase activity                                        | 2 | 35 | 0.0380817463165705       | Dominant without covariance  |
| PLC2/PLC4/PL<br>C8/PLC7 | MF | GO:0004620 | phospholipase activity                                        | 4 | 24 | 2.94827845993127e-<br>05 | Genotypic without covariance |

Table S6. Gene Ontology Analysis of genes corresponding to significant SNPs in association analysis for Total (Norwegian+ Swedish) samples.

| Genes                                           | ONTO<br>LOGY | GO ID      | Gene Ontology term                                     | Size<br>overlap<br>term /<br>Count | Size<br>overlap<br>category | p.adjust            | Association          |
|-------------------------------------------------|--------------|------------|--------------------------------------------------------|------------------------------------|-----------------------------|---------------------|----------------------|
| SLAH2/CLC-<br>F/GLR3.1/GLR3.3                   | MF           | GO:0022836 | gated channel activity                                 | 4                                  | 32                          | 0.00490653211643329 | Dominant             |
| SLAH2/CLC-<br>F/GLR3.1/GLR3.3                   | MF           | GO:0022839 | monoatomic ion gated channel activity                  | 4                                  | 32                          | 0.00490653211643329 | Dominant             |
| AHP1/AHP3                                       | MF           | GO:0009927 | histidine phosphotransfer kinase activity              | 2                                  | 32                          | 0.00509187352087977 | Dominant             |
| SLAH2/CLC-<br>F/GLR3.1/GLR3.3                   | MF           | GO:0005216 | monoatomic ion channel activity                        | 4                                  | 32                          | 0.00801366126391258 | Dominant             |
| AAE7/AAE13                                      | MF           | GO:0015645 | fatty acid ligase activity                             | 2                                  | 32                          | 0.0093672628670177  | Dominant             |
| AAE7/AAE13                                      | MF           | GO:0016405 | CoA-ligase activity                                    | 2                                  | 32                          | 0.0127814585354019  | Dominant             |
| AAE7/AAE13                                      | MF           | GO:0016878 | acid-thiol ligase activity                             | 2                                  | 32                          | 0.0127814585354019  | Dominant             |
| AHP1/AHP3                                       | MF           | GO:0043424 | protein histidine kinase binding                       | 2                                  | 32                          | 0.0127814585354019  | Dominant             |
| SLAH2/CLC-F                                     | MF           | GO:0008509 | monoatomic anion transmembrane<br>transporter activity | 2                                  | 32                          | 0.0154835393172079  | Dominant             |
| AHP1/AHP3/GLR3.1/GLR3.<br>3                     | MF           | GO:0060089 | molecular transducer activity                          | 4                                  | 32                          | 0.0134164081892897  | Dominant             |
| FZR3/TPX2/BRCA1                                 | BP           | GO:0031401 | positive regulation of protein<br>modification process | 3                                  | 72                          | 0.0463262483147009  | Dominant interaction |
| ACBP1/ACBP2                                     | BP           | GO:0010288 | response to lead ion                                   | 2                                  | 72                          | 0.0463262483147009  | Dominant interaction |
| FZR3/MIEL1/TPX2/BRCA1                           | BP           | GO:0051247 | positive regulation of protein metabolic<br>process    | 4                                  | 72                          | 0.0463262483147009  | Dominant interaction |
| BLH2/BLH4                                       | BP           | GO:0048363 | mucilage pectin metabolic process                      | 2                                  | 72                          | 0.048051215885284   | Dominant interaction |
| FZR3/TTM3/BRCA1                                 | CC           | GO:0000152 | nuclear ubiquitin ligase complex                       | 3                                  | 72                          | 0.0316555861180195  | Dominant interaction |
| IQD1/WRKY15/WRKY74/<br>WRKY11/WRKY21/WRKY<br>39 | MF           | GO:0005516 | calmodulin binding                                     | 6                                  | 68                          | 0.00840955874525533 | Dominant interaction |
| ACBP1/ACBP2                                     | MF           | GO:000062  | fatty-acyl-CoA binding                                 | 2                                  | 68                          | 0.0224260645976265  | Dominant interaction |
| ACBP1/ACBP2                                     | MF           | GO:0120227 | acyl-CoA binding                                       | 2                                  | 68                          | 0.0224260645976265  | Dominant interaction |
| ACBP1/ACBP2                                     | MF           | GO:1901567 | fatty acid derivative binding                          | 2                                  | 68                          | 0.0224260645976265  | Dominant interaction |
| SRO2/RCD1                                       | MF           | GO:0003950 | NAD+ ADP-ribosyltransferase activity                   | 2                                  | 68                          | 0.0366210040349881  | Dominant interaction |
| TTM3                                            | CC           | GO:0005680 | anaphase-promoting complex                             | 1                                  | 5                           | 0.0317801164383721  | Recessive            |
| PRS4                                            | MF           | GO:0016778 | diphosphotransferase activity                          | 1                                  | 5                           | 0.0228695052075852  | Recessive            |
| TAOI                                            | MF           | GO:0050135 | NAD(P)+ nucleosidase activity                          | 1                                  | 5                           | 0.0228695052075852  | Recessive            |
| TAOI                                            | MF           | GO:0003953 | NAD+ nucleosidase activity                             | 1                                  | 5                           | 0.0228695052075852  | Recessive            |
| TAO1                                            | MF           | GO:0061809 | NAD+ nucleotidase, cyclic ADP-ribose<br>generating     | 1                                  | 5                           | 0.0228695052075852  | Recessive            |
| UGT85A3                                         | MF           | GO:0015020 | glucuronosyltransferase activity                       | 1                                  | 5                           | 0.0228695052075852  | Recessive            |
| UGT85A3                                         | MF           | GO:0080044 | quercetin 7-O-glucosyltransferase activity             | 1                                  | 5                           | 0.0266346668418021  | Recessive            |

| UGT85A3                         | MF | GO:0080043 | quercetin 3-O-glucosyltransferase activity             | 1 | 5 | 0.0266346668418021  | Recessive             |
|---------------------------------|----|------------|--------------------------------------------------------|---|---|---------------------|-----------------------|
| TAO1                            | MF | GO:0043531 | ADP binding                                            | 1 | 5 | 0.0326644427185983  | Recessive             |
| RRP6L1/RRP6L2                   | BP | GO:0070918 | regulatory ncRNA processing                            | 2 | 8 | 0.00636181238819481 | Recessive interaction |
| UGP1                            | BP | GO:0006011 | UDP-glucose metabolic process                          | 1 | 8 | 0.0127036868680328  | Recessive interaction |
| ABCG40                          | BP | GO:0015692 | lead ion transport                                     | 1 | 8 | 0.0130157144347934  | Recessive interaction |
| VHA-d2                          | BP | GO:0007035 | vacuolar acidification                                 | 1 | 8 | 0.0130409352586312  | Recessive interaction |
| VHA-d2                          | BP | GO:0051452 | intracellular pH reduction                             | 1 | 8 | 0.0130409352586312  | Recessive interaction |
| ABCG40/ABCG39                   | BP | GO:0000302 | response to reactive oxygen species                    | 2 | 8 | 0.0175829392665519  | Recessive interaction |
| RRP6L1/RRP6L2                   | BP | GO:0046700 | heterocycle catabolic process                          | 2 | 8 | 0.0186960039428179  | Recessive interaction |
| ABCG40                          | BP | GO:0080168 | abscisic acid transport                                | 1 | 8 | 0.0186960039428179  | Recessive interaction |
| RRP6L1/RRP6L2                   | BP | GO:0042254 | ribosome biogenesis                                    | 2 | 8 | 0.0186960039428179  | Recessive interaction |
| RRP6L1/RRP6L2                   | BP | GO:0044270 | cellular nitrogen compound catabolic process           | 2 | 8 | 0.0186960039428179  | Recessive interaction |
| ABCG40                          | BP | GO:0046864 | isoprenoid transport                                   | 1 | 8 | 0.0216938761173796  | Recessive interaction |
| ABCG40                          | BP | GO:0046865 | terpenoid transport                                    | 1 | 8 | 0.0216938761173796  | Recessive interaction |
| RRP6L1/RRP6L2                   | BP | GO:0019439 | aromatic compound catabolic process                    | 2 | 8 | 0.0219797840984286  | Recessive interaction |
| UGP1                            | BP | GO:0005977 | glycogen metabolic process                             | 1 | 8 | 0.0219797840984286  | Recessive interaction |
| UGP1                            | BP | GO:0006112 | energy reserve metabolic process                       | 1 | 8 | 0.0219797840984286  | Recessive interaction |
| UGP1/ABCG40                     | BP | GO:0031668 | cellular response to extracellular stimulus            | 2 | 8 | 0.0219797840984286  | Recessive interaction |
| UGP1/ABCG40                     | BP | GO:0071496 | cellular response to external stimulus                 | 2 | 8 | 0.0221505219634807  | Recessive interaction |
| RRP6L1/RRP6L2                   | BP | GO:1901361 | organic cyclic compound catabolic process              | 2 | 8 | 0.0221939396345991  | Recessive interaction |
| RRP6L1                          | BP | GO:0006346 | DNA methylation-dependent<br>heterochromatin formation | 1 | 8 | 0.0271296119788101  | Recessive interaction |
| ABCG39                          | BP | GO:0042908 | xenobiotic transport                                   | 1 | 8 | 0.0279700827218098  | Recessive interaction |
| RRP6L1                          | BP | GO:0044030 | regulation of DNA methylation                          | 1 | 8 | 0.0279700827218098  | Recessive interaction |
| ABCG40                          | BP | GO:0015850 | organic hydroxy compound transport                     | 1 | 8 | 0.0279700827218098  | Recessive interaction |
| RRP6L1                          | BP | GO:0140718 | facultative heterochromatin formation                  | 1 | 8 | 0.0279700827218098  | Recessive interaction |
| ABCG40                          | BP | GO:0010496 | intercellular transport                                | 1 | 8 | 0.0392131787200863  | Recessive interaction |
| ABCG40                          | BP | GO:0015718 | monocarboxylic acid transport                          | 1 | 8 | 0.0452789577699014  | Recessive interaction |
| ABCG40                          | BP | GO:0042631 | cellular response to water deprivation                 | 1 | 8 | 0.0468613949082055  | Recessive interaction |
| ABCG40                          | BP | GO:0071462 | cellular response to water stimulus                    | 1 | 8 | 0.0468613949082055  | Recessive interaction |
| ABCG40                          | BP | GO:0098739 | import across plasma membrane                          | 1 | 8 | 0.0484819432439376  | Recessive interaction |
| UGP1                            | BP | GO:0052543 | callose deposition in cell wall                        | 1 | 8 | 0.0498976848829883  | Recessive interaction |
| VHA-d2                          | CC | GO:0016471 | vacuolar proton-transporting V-type<br>ATPase complex  | 1 | 8 | 0.0170978205584357  | Recessive interaction |
| ABCG34/ABCG40/ABCG39<br>/VHA-d2 | MF | GO:0042626 | ATPase-coupled transmembrane<br>transporter activity   | 4 | 8 | 0.00032506291277331 | Recessive interaction |

| RRP6L1/RRP6L2        | MF | GO:0000175 | 3'-5'-RNA exonuclease activity                                                         | 2 | 8  | 0.00096302296225152      | Recessive interaction          |
|----------------------|----|------------|----------------------------------------------------------------------------------------|---|----|--------------------------|--------------------------------|
| RRP6L1/RRP6L2        | MF | GO:0004532 | RNA exonuclease activity                                                               | 2 | 8  | 0.00096302296225152      | Recessive interaction          |
| RRP6L1/RRP6L2        | MF | GO:0016896 | RNA exonuclease activity, producing 5'-<br>phosphomonoesters                           | 2 | 8  | 0.00096302296225152      | Recessive interaction          |
| RRP6L1/RRP6L2        | MF | GO:0003727 | single-stranded RNA binding                                                            | 2 | 8  | 0.0025931906602261       | Recessive interaction          |
| UGP1                 | MF | GO:0003983 | UTP:glucose-1-phosphate<br>uridylyltransferase activity                                | 1 | 8  | 0.00687949461441506      | Recessive interaction          |
| UGP1                 | MF | GO:0051748 | UTP-monosaccharide-1-phosphate<br>uridylyltransferase activity                         | 1 | 8  | 0.00687949461441506      | Recessive interaction          |
| ABCG40               | MF | GO:0015562 | efflux transmembrane transporter activity                                              | 1 | 8  | 0.0241506316091161       | Recessive interaction          |
| VHA-d2               | MF | GO:0042625 | ATPase-coupled ion transmembrane<br>transporter activity                               | 1 | 8  | 0.0241506316091161       | Recessive interaction          |
| VHA-d2               | MF | GO:0044769 | ATPase activity, coupled to<br>transmembrane movement of ions,<br>rotational mechanism | 1 | 8  | 0.0241506316091161       | Recessive interaction          |
| VHA-d2               | MF | GO:0046961 | proton-transporting ATPase activity,<br>rotational mechanism                           | 1 | 8  | 0.0241506316091161       | Recessive interaction          |
| RR21                 | MF | GO:0000156 | phosphorelay response regulator activity                                               | 1 | 8  | 0.0301410456453292       | Recessive interaction          |
| RAR1/PUB23/GLR3.3    | BP | GO:0002252 | immune effector process                                                                | 3 | 35 | 0.0112384272339697       | Dominant without<br>covariance |
| RAR1/PUB23           | BP | GO:0002679 | respiratory burst involved in defense response                                         | 2 | 35 | 0.0238889267898048       | Dominant without covariance    |
| RAR1/PUB23           | BP | GO:0045730 | respiratory burst                                                                      | 2 | 35 | 0.0238889267898048       | Dominant without covariance    |
| GLR3.1/GLR3.3/MKP1   | BP | GO:0043200 | response to amino acid                                                                 | 3 | 35 | 0.0238889267898048       | Dominant without covariance    |
| RPL5A/RPL5B/LUG      | BP | GO:0009955 | adaxial/abaxial pattern specification                                                  | 3 | 35 | 0.0246862311949652       | Dominant without covariance    |
| RPL5/RPL5A/RPL5B     | CC | GO:0022625 | cytosolic large ribosomal subunit                                                      | 3 | 34 | 0.00636899229193349      | Dominant without covariance    |
| RPL5A/RPL5B          | MF | GO:0008097 | 5S rRNA binding                                                                        | 2 | 34 | 0.016131890942939        | Dominant without covariance    |
| SIZ1/ROC1/PUB23/PRT6 | MF | GO:0061659 | ubiquitin-like protein ligase activity                                                 | 4 | 34 | 0.0215920925165603       | Dominant without covariance    |
| GLR3.1/GLR3.3        | MF | GO:0005217 | intracellular ligand-gated monoatomic<br>ion channel activity                          | 2 | 34 | 0.0371975731500519       | Dominant without covariance    |
| RPL5/RPL5A/RPL5B     | MF | GO:0003735 | structural constituent of ribosome                                                     | 3 | 34 | 0.0371975731500519       | Dominant without covariance    |
| GLR3.1/GLR3.3        | MF | GO:0015276 | ligand-gated monoatomic ion channel<br>activity                                        | 2 | 34 | 0.0371975731500519       | Dominant without covariance    |
| GLR3.1/GLR3.3        | MF | GO:0022834 | ligand-gated channel activity                                                          | 2 | 34 | 0.0371975731500519       | Dominant without covariance    |
| BARD1/BRCA1          | BP | GO:1901874 | negative regulation of post-translational<br>protein modification                      | 2 | 14 | 0.00083088310287244<br>7 | Recessive without covariance   |
| BARD1/BRCA1          | BP | GO:0035065 | regulation of histone acetylation                                                      | 2 | 14 | 0.00083088310287244<br>7 | Recessive without covariance   |
| BARD1/BRCA1          | BP | GO:0045922 | negative regulation of fatty acid<br>metabolic process                                 | 2 | 14 | 0.00083088310287244<br>7 | Recessive without covariance   |

| BARD1/BRCA1                | BP | GO:1901983 | regulation of protein acetylation                            | 2 | 14 | 0.00083088310287244<br>7 | Recessive without covariance    |
|----------------------------|----|------------|--------------------------------------------------------------|---|----|--------------------------|---------------------------------|
| BARD1/BRCA1                | BP | GO:2000756 | regulation of peptidyl-lysine acetylation                    | 2 | 14 | 0.00083088310287244<br>7 | Recessive without covariance    |
| ACC1/BARD1/BRCA1/PEX<br>16 | BP | GO:0006633 | fatty acid biosynthetic process                              | 4 | 14 | 0.00083088310287244<br>7 | Recessive without covariance    |
| BARD1/BRCA1                | BP | GO:0051055 | negative regulation of lipid biosynthetic<br>process         | 2 | 14 | 0.00165987642915213      | Recessive without covariance    |
| BARD1/BRCA1                | BP | GO:0062014 | negative regulation of small molecule<br>metabolic process   | 2 | 14 | 0.00305206338630234      | Recessive without<br>covariance |
| BARD1/BRCA1                | BP | GO:0051248 | negative regulation of protein metabolic<br>process          | 2 | 14 | 0.0283932709937266       | Recessive without covariance    |
| FIPS5/HEN2                 | BP | GO:0016441 | post-transcriptional gene silencing                          | 2 | 14 | 0.0323067245614534       | Recessive without covariance    |
| ACC1/BARD1                 | BP | GO:0009933 | meristem structural organization                             | 2 | 14 | 0.0347709142093554       | Recessive without covariance    |
| BARD1/BRCA1                | BP | GO:0000724 | double-strand break repair via<br>homologous recombination   | 2 | 14 | 0.0352445345711777       | Recessive without covariance    |
| MGL                        | BP | GO:0009068 | aspartate family amino acid catabolic<br>process             | 1 | 14 | 0.0352445345711777       | Recessive without covariance    |
| BARD1/BRCA1                | BP | GO:0000725 | recombinational repair                                       | 2 | 14 | 0.0352445345711777       | Recessive without covariance    |
| PAO5                       | BP | GO:0046208 | spermine catabolic process                                   | 1 | 14 | 0.0352445345711777       | Recessive without covariance    |
| BRCA1                      | BP | GO:0071479 | cellular response to ionizing radiation                      | 1 | 14 | 0.0352445345711777       | Recessive without covariance    |
| ACC1                       | BP | GO:2001295 | malonyl-CoA biosynthetic process                             | 1 | 14 | 0.0374526163420365       | Recessive without covariance    |
| BARD1/BRCA1                | BP | GO:0010565 | regulation of cellular ketone metabolic<br>process           | 2 | 14 | 0.0402286588613247       | Recessive without covariance    |
| MGL                        | BP | GO:0051289 | protein homotetramerization                                  | 1 | 14 | 0.0405189829160176       | Recessive without covariance    |
| MGL                        | BP | GO:0009092 | homoserine metabolic process                                 | 1 | 14 | 0.0405189829160176       | Recessive without covariance    |
| ACC1                       | BP | GO:2001293 | malonyl-CoA metabolic process                                | 1 | 14 | 0.0405189829160176       | Recessive without covariance    |
| BARD1/BRCA1                | BP | GO:0045944 | positive regulation of transcription by<br>RNA polymerase II | 2 | 14 | 0.0405189829160176       | Recessive without covariance    |
| ASHH2                      | BP | GO:0090548 | response to nitrate starvation                               | 1 | 14 | 0.0405189829160176       | Recessive without covariance    |
| MIP2                       | BP | GO:0006624 | vacuolar protein processing                                  | 1 | 14 | 0.0420660590418347       | Recessive without covariance    |
| PAO5                       | BP | GO:0008215 | spermine metabolic process                                   | 1 | 14 | 0.0435535219271546       | Recessive without covariance    |
| TTM3/BARD1/BRCA1           | СС | GO:0000151 | ubiquitin ligase complex                                     | 3 | 14 | 0.0110931654670881       | Recessive without covariance    |
| FIPS5/HEN2                 | СС | GO:0016607 | nuclear speck                                                | 2 | 14 | 0.0179217588501413       | Recessive without covariance    |
| TPR2/TPR3                  | MF | GO:0051879 | Hsp90 protein binding                                        | 2 | 24 | 0.00567084911103001      | Genotypic without<br>covariance |
| ABCG40                     | BP | GO:0010496 | intercellular transport                                      | 1 | 8  | 0.0392131787200863       | Genotypic interaction           |

| FAR5            | BP | GO:0035336 | long-chain fatty-acyl-CoA metabolic process                                                                                               | 1 | 17 | 0.0440257273572053       | Genotypic interaction |
|-----------------|----|------------|-------------------------------------------------------------------------------------------------------------------------------------------|---|----|--------------------------|-----------------------|
| ABCG40          | BP | GO:0015718 | monocarboxylic acid transport                                                                                                             | 1 | 8  | 0.0452789577699014       | Genotypic interaction |
| ACBP1           | BP | GO:0055089 | fatty acid homeostasis                                                                                                                    | 1 | 17 | 0.0462185008805991       | Genotypic interaction |
| ACBP1/MFT       | BP | GO:0010029 | regulation of seed germination                                                                                                            | 2 | 17 | 0.0462185008805991       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0071034 | CUT catabolic process                                                                                                                     | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0071043 | CUT metabolic process                                                                                                                     | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| FZR3/TPX2/BRCA1 | BP | GO:0031401 | positive regulation of protein<br>modification process                                                                                    | 3 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0008334 | histone mRNA metabolic process                                                                                                            | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| ACBP1/ACBP2     | BP | GO:0010288 | response to lead ion                                                                                                                      | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0042868 | antisense RNA metabolic process                                                                                                           | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0071051 | polyadenylation-dependent snoRNA 3'-<br>end processing                                                                                    | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0016078 | tRNA catabolic process                                                                                                                    | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0071038 | nuclear polyadenylation-dependent tRNA<br>catabolic process                                                                               | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0106354 | tRNA surveillance                                                                                                                         | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0043633 | polyadenylation-dependent RNA<br>catabolic process                                                                                        | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0043634 | polyadenylation-dependent ncRNA<br>catabolic process                                                                                      | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0071029 | nuclear ncRNA surveillance                                                                                                                | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0071035 | nuclear polyadenylation-dependent rRNA<br>catabolic process                                                                               | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0071046 | nuclear polyadenylation-dependent<br>ncRNA catabolic process                                                                              | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| ABCG40          | BP | GO:0042631 | cellular response to water deprivation                                                                                                    | 1 | 8  | 0.0468613949082055       | Genotypic interaction |
| ABCG40          | BP | GO:0071462 | cellular response to water stimulus                                                                                                       | 1 | 8  | 0.0468613949082055       | Genotypic interaction |
| ACBP1/ACBP2     | BP | GO:0010876 | lipid localization                                                                                                                        | 2 | 17 | 0.0471526176104414       | Genotypic interaction |
| BLH2/BLH4       | BP | GO:0048363 | mucilage pectin metabolic process                                                                                                         | 2 | 72 | 0.048051215885284        | Genotypic interaction |
| ABCG40          | BP | GO:0098739 | import across plasma membrane                                                                                                             | 1 | 8  | 0.0484819432439376       | Genotypic interaction |
| UGP1            | BP | GO:0052543 | callose deposition in cell wall                                                                                                           | 1 | 8  | 0.0498976848829883       | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0000467 | exonucleolytic trimming to generate<br>mature 3'-end of 5.8S rRNA from<br>tricistronic rRNA transcript (SSU-rRNA,<br>5.8S rRNA, LSU-rRNA) | 2 | 72 | 0.0463262483147009       | Genotypic interaction |
| RRP6L1/RRP6L2   | СС | GO:0000176 | nuclear exosome (RNase complex)                                                                                                           | 2 | 8  | 9.49036543114154e-<br>05 | Genotypic interaction |
| RRP6L1/RRP6L2   | СС | GO:0000178 | exosome (RNase complex)                                                                                                                   | 2 | 8  | 9.49036543114154e-<br>05 | Genotypic interaction |
| RRP6L1/RRP6L2   | СС | GO:1905354 | exoribonuclease complex                                                                                                                   | 2 | 8  | 9.49036543114154e-<br>05 | Genotypic interaction |
| RRP6L1/RRP6L2   | BP | GO:0070918 | regulatory ncRNA processing                                                                                                               | 2 | 17 | 0.039257961124556        | Genotypic interaction |

| VHA-d2                | BP | GO:0007035 | vacuolar acidification                              | 1 | 17 | 0.0441028046785886       | Genotypic interaction           |
|-----------------------|----|------------|-----------------------------------------------------|---|----|--------------------------|---------------------------------|
| VHA-d2                | BP | GO:0051452 | intracellular pH reduction                          | 1 | 17 | 0.0441028046785886       | Genotypic interaction           |
| GLR3.1/GLR3.3         | MF | GO:0008066 | glutamate receptor activity                         | 2 | 32 | 0.0127814585354019       | Dominant                        |
| GLR3.1/GLR3.3         | MF | GO:0008066 | glutamate receptor activity                         | 2 | 34 | 0.0371975731500519       | Dominant without<br>covariance  |
| GLR3.1/GLR3.3         | MF | GO:0005262 | calcium channel activity                            | 2 | 32 | 0.0201805318050439       | Dominant                        |
| GLR3.1/GLR3.3         | MF | GO:0005262 | calcium channel activity                            | 2 | 34 | 0.0371975731500519       | Dominant without<br>covariance  |
| TTM3                  | CC | GO:0000152 | nuclear ubiquitin ligase complex                    | 1 | 5  | 0.0317801164383721       | Recessive                       |
| TTM3/BARD1/BRCA1      | СС | GO:0000152 | nuclear ubiquitin ligase complex                    | 3 | 14 | 9.63545526318309e-<br>05 | Recessive without covariance    |
| ROC1/ROC2             | MF | GO:0016018 | cyclosporin A binding                               | 2 | 34 | 0.016131890942939        | Dominant without<br>covariance  |
| ROC1/ROC2             | MF | GO:0016018 | cyclosporin A binding                               | 2 | 24 | 0.00567084911103001      | Genotypic without<br>covariance |
| ROC1/ROC2             | MF | GO:0003755 | peptidyl-prolyl cis-trans isomerase<br>activity     | 2 | 34 | 0.0371975731500519       | Dominant without<br>covariance  |
| ROC1/ROC2             | MF | GO:0003755 | peptidyl-prolyl cis-trans isomerase<br>activity     | 2 | 24 | 0.0363259596532817       | Genotypic without<br>covariance |
| ROC1/ROC2             | MF | GO:0016859 | cis-trans isomerase activity                        | 2 | 34 | 0.0371975731500519       | Dominant without<br>covariance  |
| ROC1/ROC2             | MF | GO:0016859 | cis-trans isomerase activity                        | 2 | 24 | 0.0363259596532817       | Genotypic without<br>covariance |
| BARD1/BRCA1           | BP | GO:0051247 | positive regulation of protein metabolic<br>process | 2 | 14 | 0.0291036022601861       | Recessive without covariance    |
| FZR3/MIEL1/TPX2/BRCA1 | BP | GO:0051247 | positive regulation of protein metabolic<br>process | 4 | 72 | 0.0463262483147009       | Genotypic interaction           |
| RRP6L1/RRP6L2         | BP | GO:0071034 | CUT catabolic process                               | 2 | 72 | 0.0463262483147009       | Dominant interaction            |
| RRP6L1/RRP6L2         | BP | GO:0071034 | CUT catabolic process                               | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction           |
| RRP6L1/RRP6L2         | BP | GO:0071043 | CUT metabolic process                               | 2 | 72 | 0.0463262483147009       | Dominant interaction            |
| RRP6L1/RRP6L2         | BP | GO:0071043 | CUT metabolic process                               | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction           |
| RRP6L1/RRP6L2         | BP | GO:0106354 | tRNA surveillance                                   | 2 | 72 | 0.0463262483147009       | Dominant interaction            |
| RRP6L1/RRP6L2         | BP | GO:0106354 | tRNA surveillance                                   | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction           |
| RRP6L1/RRP6L2         | BP | GO:0008334 | histone mRNA metabolic process                      | 2 | 72 | 0.0463262483147009       | Dominant interaction            |
| RRP6L1/RRP6L2         | BP | GO:0008334 | histone mRNA metabolic process                      | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction           |
| RRP6L1/RRP6L2         | BP | GO:0016078 | tRNA catabolic process                              | 2 | 72 | 0.0463262483147009       | Dominant interaction            |
| RRP6L1/RRP6L2         | BP | GO:0016078 | tRNA catabolic process                              | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction           |
| RRP6L1/RRP6L2         | BP | GO:0071029 | nuclear ncRNA surveillance                          | 2 | 72 | 0.0463262483147009       | Dominant interaction            |
| RRP6L1/RRP6L2         | BP | GO:0071029 | nuclear ncRNA surveillance                          | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction           |

| RRP6L1/RRP6L2 | BP | GO:0071035 | nuclear polyadenylation-dependent rRNA<br>catabolic process                                                                               | 2 | 72 | 0.0463262483147009       | Dominant interaction  |
|---------------|----|------------|-------------------------------------------------------------------------------------------------------------------------------------------|---|----|--------------------------|-----------------------|
| RRP6L1/RRP6L2 | BP | GO:0071035 | nuclear polyadenylation-dependent rRNA<br>catabolic process                                                                               | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction |
| RRP6L1/RRP6L2 | BP | GO:0071046 | nuclear polyadenylation-dependent<br>ncRNA catabolic process                                                                              | 2 | 72 | 0.0463262483147009       | Dominant interaction  |
| RRP6L1/RRP6L2 | BP | GO:0071046 | nuclear polyadenylation-dependent<br>ncRNA catabolic process                                                                              | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction |
| RRP6L1/RRP6L2 | BP | GO:0043633 | polyadenylation-dependent RNA<br>catabolic process                                                                                        | 2 | 72 | 0.0463262483147009       | Dominant interaction  |
| RRP6L1/RRP6L2 | BP | GO:0043633 | polyadenylation-dependent RNA<br>catabolic process                                                                                        | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction |
| RRP6L1/RRP6L2 | BP | GO:0043634 | polyadenylation-dependent ncRNA<br>catabolic process                                                                                      | 2 | 72 | 0.0463262483147009       | Dominant interaction  |
| RRP6L1/RRP6L2 | BP | GO:0043634 | polyadenylation-dependent ncRNA<br>catabolic process                                                                                      | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction |
| RRP6L1/RRP6L2 | BP | GO:0000467 | exonucleolytic trimming to generate<br>mature 3'-end of 5.85 rRNA from<br>tricistronic rRNA transcript (SSU-rRNA,<br>5.85 rRNA, LSU-rRNA) | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction |
| RRP6L1/RRP6L2 | BP | GO:0000467 | exonucleolytic trimming to generate<br>mature 3'-end of 5.85 rRNA from<br>tricistronic rRNA transcript (SSU-rRNA,<br>5.85 rRNA, LSU-rRNA) | 2 | 72 | 0.0463262483147009       | Dominant interaction  |
| RRP6L1/RRP6L2 | BP | GO:0042868 | antisense RNA metabolic process                                                                                                           | 2 | 72 | 0.0463262483147009       | Dominant interaction  |
| RRP6L1/RRP6L2 | BP | GO:0042868 | antisense RNA metabolic process                                                                                                           | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction |
| RRP6L1/RRP6L2 | BP | GO:0071051 | polyadenylation-dependent snoRNA 3'-<br>end processing                                                                                    | 2 | 72 | 0.0463262483147009       | Dominant interaction  |
| RRP6L1/RRP6L2 | BP | GO:0071051 | polyadenylation-dependent snoRNA 3'-<br>end processing                                                                                    | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction |
| RRP6L1/RRP6L2 | BP | GO:0071038 | nuclear polyadenylation-dependent tRNA<br>catabolic process                                                                               | 2 | 72 | 0.0463262483147009       | Dominant interaction  |
| RRP6L1/RRP6L2 | BP | GO:0071038 | nuclear polyadenylation-dependent tRNA<br>catabolic process                                                                               | 2 | 8  | 0.00012735478470375<br>4 | Recessive interaction |
| RRP6L1/RRP6L2 | CC | GO:0000176 | nuclear exosome (RNase complex)                                                                                                           | 2 | 72 | 0.0316555861180195       | Dominant interaction  |
| RRP6L1/RRP6L2 | СС | GO:0000176 | nuclear exosome (RNase complex)                                                                                                           | 2 | 8  | 9.49036543114154e-<br>05 | Recessive interaction |
| RRP6L1/RRP6L2 | CC | GO:0000178 | exosome (RNase complex)                                                                                                                   | 2 | 72 | 0.0316555861180195       | Dominant interaction  |
| RRP6L1/RRP6L2 | СС | GO:0000178 | exosome (RNase complex)                                                                                                                   | 2 | 8  | 9.49036543114154e-<br>05 | Recessive interaction |
| VHA-e1/VHA-e2 | СС | GO:0033179 | proton-transporting V-type ATPase, V0<br>domain                                                                                           | 2 | 72 | 0.0316555861180195       | Dominant interaction  |
| VHA-d2        | СС | GO:0033179 | proton-transporting V-type ATPase, V0<br>domain                                                                                           | 1 | 8  | 0.0170978205584357       | Recessive interaction |
| RRP6L1/RRP6L2 | CC | GO:1905354 | exoribonuclease complex                                                                                                                   | 2 | 72 | 0.0316555861180195       | Dominant interaction  |
| RRP6L1/RRP6L2 | СС | GO:1905354 | exoribonuclease complex                                                                                                                   | 2 | 8  | 9.49036543114154e-<br>05 | Recessive interaction |

| Genes                                  | Ontology | GO ID      | Gene Ontology term                                         | Size<br>overlap<br>term /<br>Count | Size<br>overlap<br>category | p.adjust            | SPEI /<br>Temperature and<br>Precipitation | Associa<br>tion |
|----------------------------------------|----------|------------|------------------------------------------------------------|------------------------------------|-----------------------------|---------------------|--------------------------------------------|-----------------|
| PCAP1/MYB98/C<br>LV2/LUG               | BP       | GO:0045595 | regulation of cell differentiation                         | 4                                  | 52                          | 0.0271838422076058  | High SPEI / LTHP                           | DWC             |
| PCAP1/TFIIB/RA<br>C6/RAC7/LUG          | BP       | GO:0022604 | regulation of cell morphogenesis                           | 5                                  | 52                          | 0.0271838422076058  | High SPEI / LTHP                           | DWC             |
| PCAP1/CS11/TFII<br>B/RAC6/RAC7/L<br>UG | BP       | GO:0022603 | regulation of anatomical structure<br>morphogenesis        | 6                                  | 52                          | 0.0271838422076058  | High SPEI / LTHP                           | DWC             |
| ANP1/MKK1/MK<br>K2                     | BP       | GO:0000165 | MAPK cascade                                               | 3                                  | 52                          | 0.0271838422076058  | High SPEI / LTHP                           | DWC             |
| PCAP1/CSI1/RAC<br>6/RAC7               | BP       | GO:0030865 | cortical cytoskeleton organization                         | 4                                  | 52                          | 0.0379962671239935  | High SPEI / LTHP                           | DWC             |
| PCAP1/CSI1/RAC<br>6/RAC7               | BP       | GO:0051493 | regulation of cytoskeleton organization                    | 4                                  | 52                          | 0.0379962671239935  | High SPEI / LTHP                           | DWC             |
| ACBP2/PCAP1/S<br>BP1/CSE/CS11/LU<br>G  | BP       | GO:0010038 | response to metal ion                                      | 6                                  | 52                          | 0.0379962671239935  | High SPEI / LTHP                           | DWC             |
| ATG18C/ATG18D                          | BP       | GO:0034497 | protein localization to phagophore<br>assembly site        | 2                                  | 52                          | 0.0379962671239935  | High SPEI / LTHP                           | DWC             |
| WOX8/RAC6/RA<br>C7                     | BP       | GO:0007163 | establishment or maintenance of cell polarity              | 3                                  | 52                          | 0.0427333644488191  | High SPEI / LTHP                           | DWC             |
| ATG18C/ATG18D<br>/PCAP1                | MF       | GO:0080025 | phosphatidylinositol-3,5-bisphosphate<br>binding           | 3                                  | 52                          | 0.00144477519907477 | High SPEI / LTHP                           | DWC             |
| MKK1/MKK2/M<br>KK6                     | MF       | GO:0004708 | MAP kinase kinase activity                                 | 3                                  | 52                          | 0.00405019348910528 | High SPEI / LTHP                           | DWC             |
| ATG18C/ATG18D                          | MF       | GO:0032266 | phosphatidylinositol-3-phosphate binding                   | 2                                  | 52                          | 0.0271476482980617  | High SPEI / LTHP                           | DWC             |
| SRS1/MYB56/AT<br>L72/KAN2/SEU          | BP       | GO:0048440 | carpel development                                         | 5                                  | 52                          | 0.00885876135826332 | Low SPEI / HTLP                            | DWC             |
| SRS1/MYB56/AT<br>L72/KAN2/SEU          | BP       | GO:0048467 | gynoecium development                                      | 5                                  | 52                          | 0.00885876135826332 | Low SPEI / HTLP                            | DWC             |
| UPS1/UPS5                              | BP       | GO:0015855 | pyrimidine nucleobase transport                            | 2                                  | 52                          | 0.00885876135826332 | Low SPEI / HTLP                            | DWC             |
| UPS1/UPS5                              | BP       | GO:0015857 | uracil transport                                           | 2                                  | 52                          | 0.00885876135826332 | Low SPEI / HTLP                            | DWC             |
| MYB56/ATL72/K<br>AN2/SEU               | BP       | GO:0048481 | plant ovule development                                    | 4                                  | 52                          | 0.00885876135826332 | Low SPEI / HTLP                            | DWC             |
| MYB56/ATL72/K<br>AN2/SEU               | BP       | GO:0035670 | plant-type ovary development                               | 4                                  | 52                          | 0.00885876135826332 | Low SPEI / HTLP                            | DWC             |
| ALA3/ALA9                              | BP       | GO:0034204 | lipid translocation                                        | 2                                  | 52                          | 0.00900227028222802 | Low SPEI / HTLP                            | DWC             |
| ALA3/ALA9                              | BP       | GO:0045332 | phospholipid translocation                                 | 2                                  | 52                          | 0.00900227028222802 | Low SPEI / HTLP                            | DWC             |
| MKP1/GLR3.1/GL<br>R3.3/PUX10/SEU       | BP       | GO:0010243 | response to organonitrogen compound                        | 5                                  | 52                          | 0.0107614664380553  | Low SPEI / HTLP                            | DWC             |
| ALA3/ALA9                              | BP       | GO:0097035 | regulation of membrane lipid distribution                  | 2                                  | 52                          | 0.0122598303417154  | Low SPEI / HTLP                            | DWC             |
| PUX10/DGAT2                            | BP       | GO:0034389 | lipid droplet organization                                 | 2                                  | 52                          | 0.0153410074517151  | Low SPEI / HTLP                            | DWC             |
| CTF7/BARD1/BR<br>CA1/RAD51B            | BP       | GO:0000724 | double-strand break repair via<br>homologous recombination | 4                                  | 52                          | 0.0153410074517151  | Low SPEI / HTLP                            | DWC             |

Table S7. Gene Ontology Analysis of genes corresponding to significant SNPs in association analysis of growth in term of SPEI value during the time-period March-May.

| CTF7/BARD1/BR<br>CA1/RAD51B         | BP | GO:0000725 | recombinational repair                                                    | 4 | 52  | 0.0153410074517151  | Low SPEI / HTLP | DWC |
|-------------------------------------|----|------------|---------------------------------------------------------------------------|---|-----|---------------------|-----------------|-----|
| ALA3/ALA9                           | BP | GO:1901703 | protein localization involved in auxin<br>polar transport                 | 2 | 52  | 0.0160703285093218  | Low SPEI / HTLP | DWC |
| ATL73/BARD1/B<br>RCA1/PRT6          | BP | GO:0019216 | regulation of lipid metabolic process                                     | 4 | 52  | 0.0160703285093218  | Low SPEI / HTLP | DWC |
| RPL5A/RPL5B/K<br>AN2                | BP | GO:0009955 | adaxial/abaxial pattern specification                                     | 3 | 52  | 0.0167325751185803  | Low SPEI / HTLP | DWC |
| MAKR1/MYB56/<br>ROC1/RAV1           | BP | GO:0009741 | response to brassinosteroid                                               | 4 | 52  | 0.0209183112790456  | Low SPEI / HTLP | DWC |
| RPL5A/RPL5B                         | BP | GO:0000027 | ribosomal large subunit assembly                                          | 2 | 52  | 0.0278956008241408  | Low SPEI / HTLP | DWC |
| GLR3.1/GLR3.3                       | BP | GO:0071230 | cellular response to amino acid stimulus                                  | 2 | 52  | 0.0489655938183312  | Low SPEI / HTLP | DWC |
| RPL5/RPL5A/RPL<br>5B                | CC | GO:0022625 | cytosolic large ribosomal subunit                                         | 3 | 50  | 0.00862574638997222 | Low SPEI / HTLP | DWC |
| VPS2.2/VPS2.3                       | CC | GO:0005771 | multivesicular body                                                       | 2 | 50  | 0.026709147548549   | Low SPEI / HTLP | DWC |
| UPS1/UPS5                           | MF | GO:0005274 | allantoin:proton symporter activity                                       | 2 | 52  | 0.00781729174264489 | Low SPEI / HTLP | DWC |
| UPS1/UPS5                           | MF | GO:0015391 | nucleobase:monoatomic cation symporter<br>activity                        | 2 | 52  | 0.00781729174264489 | Low SPEI / HTLP | DWC |
| UPS1/UPS5                           | MF | GO:0015505 | uracil:monoatomic cation symporter<br>activity                            | 2 | 52  | 0.00781729174264489 | Low SPEI / HTLP | DWC |
| ALA3/ALA9                           | MF | GO:0140303 | intramembrane lipid transporter activity                                  | 2 | 52  | 0.00781729174264489 | Low SPEI / HTLP | DWC |
| ALA3/ALA9                           | MF | GO:0140326 | ATPase-coupled intramembrane lipid<br>transporter activity                | 2 | 52  | 0.00781729174264489 | Low SPEI / HTLP | DWC |
| UPS1/UPS5                           | MF | GO:0005350 | pyrimidine nucleobase transmembrane<br>transporter activity               | 2 | 52  | 0.00781729174264489 | Low SPEI / HTLP | DWC |
| UPS1/UPS5                           | MF | GO:0015210 | uracil transmembrane transporter activity                                 | 2 | 52  | 0.00781729174264489 | Low SPEI / HTLP | DWC |
| RPL5A/RPL5B                         | MF | GO:0008097 | 5S rRNA binding                                                           | 2 | 52  | 0.0091407743136777  | Low SPEI / HTLP | DWC |
| HMA5/ALA3/AL<br>A9                  | MF | GO:0015662 | P-type ion transporter activity                                           | 3 | 52  | 0.0091407743136777  | Low SPEI / HTLP | DWC |
| HMA5/ALA3/AL<br>A9                  | MF | GO:0140358 | P-type transmembrane transporter<br>activity                              | 3 | 52  | 0.0091407743136777  | Low SPEI / HTLP | DWC |
| GLR3.1/GLR3.3                       | MF | GO:0008066 | glutamate receptor activity                                               | 2 | 52  | 0.0431354699257004  | Low SPEI / HTLP | DWC |
| AHL10/RAD51B                        | MF | GO:0000217 | DNA secondary structure binding                                           | 2 | 52  | 0.0468173483213023  | Low SPEI / HTLP | DWC |
| GDPDL1/GDPDL<br>4/GDPDL6/GDPD<br>L7 | MF | GO:0008889 | glycerophosphodiester phosphodiesterase<br>activity                       | 4 | 144 | 0.00753696297817989 | High SPEI /LTHP | RWC |
| ILL3/ILL5                           | MF | GO:0016810 | hydrolase activity, acting on carbon-<br>nitrogen (but not peptide) bonds | 2 | 13  | 0.025441326560056   | Low SPEI / HTLP | RWC |
| SCRM                                | MF | GO:0001046 | core promoter sequence-specific DNA<br>binding                            | 1 | 13  | 0.025441326560056   | Low SPEI / HTLP | RWC |
| RBOHF                               | MF | GO:0016174 | NAD(P)H oxidase H2O2-forming<br>activity                                  | 1 | 13  | 0.0423890066658027  | Low SPEI / HTLP | RWC |
| BARD1/BRCA1                         | BP | GO:0051055 | negative regulation of lipid biosynthetic<br>process                      | 2 | 25  | 0.00535012667331132 | Low SPEI / HTLP | GWC |
| PILS5/EMS1/CR4/<br>RAV1             | BP | GO:0090696 | post-embryonic plant organ development                                    | 4 | 25  | 0.014710315687284   | Low SPEI / HTLP | GWC |

|                                          |    |            |                                                                                                                                        |   |    |                     |                  | 1   |
|------------------------------------------|----|------------|----------------------------------------------------------------------------------------------------------------------------------------|---|----|---------------------|------------------|-----|
| ATL73/BARD1/B<br>RCA1                    | BP | GO:0010565 | regulation of cellular ketone metabolic process                                                                                        | 3 | 25 | 0.0154426559916529  | Low SPEI / HTLP  | GWC |
| BARD1/BRCA1                              | BP | GO:0006475 | internal protein amino acid acetylation                                                                                                | 2 | 25 | 0.0187011505402629  | Low SPEI / HTLP  | GWC |
| PCO4/PCO5                                | BP | GO:0009593 | detection of chemical stimulus                                                                                                         | 2 | 25 | 0.0187011505402629  | Low SPEI / HTLP  | GWC |
| EMS1/KAN2                                | BP | GO:0001708 | cell fate specification                                                                                                                | 2 | 25 | 0.0261759753552301  | Low SPEI / HTLP  | GWC |
| PILS5/EMS1/CR4                           | BP | GO:1905393 | plant organ formation                                                                                                                  | 3 | 25 | 0.0261759753552301  | Low SPEI / HTLP  | GWC |
| HSP18.2/ROC1/R<br>OC2                    | BP | GO:0006457 | protein folding                                                                                                                        | 3 | 25 | 0.0283137047504845  | Low SPEI / HTLP  | GWC |
| ATL73/BARD1/B<br>RCA1                    | BP | GO:0042180 | cellular ketone metabolic process                                                                                                      | 3 | 25 | 0.0283137047504845  | Low SPEI / HTLP  | GWC |
| PCO4/PCO5/RAV<br>l                       | BP | GO:0071456 | cellular response to hypoxia                                                                                                           | 3 | 25 | 0.0314225709431548  | Low SPEI / HTLP  | GWC |
| PCO4/PCO5/RAV<br>1                       | BP | GO:0036294 | cellular response to decreased oxygen<br>levels                                                                                        | 3 | 25 | 0.0314225709431548  | Low SPEI / HTLP  | GWC |
| PCO4/PCO5/RAV<br>1                       | BP | GO:0071453 | cellular response to oxygen levels                                                                                                     | 3 | 25 | 0.0314225709431548  | Low SPEI / HTLP  | GWC |
| BARD1/BRCA1                              | BP | GO:0051248 | negative regulation of protein metabolic<br>process                                                                                    | 2 | 25 | 0.0463224989219289  | Low SPEI / HTLP  | GWC |
| BRCA1                                    | BP | GO:0071479 | cellular response to ionizing radiation                                                                                                | 1 | 25 | 0.0463224989219289  | Low SPEI / HTLP  | GWC |
| CR4                                      | BP | GO:0090392 | sepal giant cell differentiation                                                                                                       | 1 | 25 | 0.0463224989219289  | Low SPEI / HTLP  | GWC |
| PCO4/PCO5/RAV<br>1                       | BP | GO:0036293 | response to decreased oxygen levels                                                                                                    | 3 | 25 | 0.0463224989219289  | Low SPEI / HTLP  | GWC |
| HSP18.2/ROC1/R<br>OC2                    | BP | GO:0051604 | protein maturation                                                                                                                     | 3 | 25 | 0.0463224989219289  | Low SPEI / HTLP  | GWC |
| PCO4/PCO5/RAV<br>1                       | BP | GO:0070482 | response to oxygen levels                                                                                                              | 3 | 25 | 0.0463224989219289  | Low SPEI / HTLP  | GWC |
| PILS5/EMS1/CR4                           | BP | GO:0090698 | post-embryonic plant morphogenesis                                                                                                     | 3 | 25 | 0.0463224989219289  | Low SPEI / HTLP  | GWC |
| EMS1                                     | BP | GO:0048656 | anther wall tapetum formation                                                                                                          | 1 | 25 | 0.047791428625312   | Low SPEI / HTLP  | GWC |
| EMS1                                     | BP | GO:0048657 | anther wall tapetum cell differentiation                                                                                               | 1 | 25 | 0.047791428625312   | Low SPEI / HTLP  | GWC |
| RBOHF                                    | BP | GO:0002679 | respiratory burst involved in defense<br>response                                                                                      | 1 | 25 | 0.0491387106791164  | Low SPEI / HTLP  | GWC |
| CR4                                      | BP | GO:0032877 | positive regulation of DNA<br>endoreduplication                                                                                        | 1 | 25 | 0.0491387106791164  | Low SPEI / HTLP  | GWC |
| CR4                                      | BP | GO:2000105 | positive regulation of DNA-templated<br>DNA replication                                                                                | 1 | 25 | 0.0491387106791164  | Low SPEI / HTLP  | GWC |
| PCO4/PCO5                                | MF | GO:0016702 | oxidoreductase activity, acting on single<br>donors with incorporation of molecular<br>oxygen, incorporation of two atoms of<br>oxygen | 2 | 26 | 0.0341005157678652  | Low SPEI / HTLP  | GWC |
| PUB43/SBP1/ATL<br>73/PUB23/UPL1/P<br>RT6 | MF | GO:0004842 | ubiquitin-protein transferase activity                                                                                                 | 6 | 52 | 0.0254434633418956  | High SPEI / LTHP | DWC |
| ROC1/ATL73/UP<br>L2/BARD1/BRCA<br>1/PRT6 | MF | GO:0004842 | ubiquitin-protein transferase activity                                                                                                 | 6 | 52 | 0.0091407743136777  | Low SPEI / HTLP  | DWC |
| ROC1/ATL73/BA<br>RD1/BRCA1               | MF | GO:0004842 | ubiquitin-protein transferase activity                                                                                                 | 4 | 26 | 0.0341005157678652  | Low SPEI / HTLP  | GWC |
| ROC2/ROC1                                | MF | GO:0016018 | cyclosporin A binding                                                                                                                  | 2 | 25 | 0.00939780570147978 | High SPEI / LTHP | RWC |

| ROC2/ROC1                                    | MF | GO:0016018 | cyclosporin A binding                                             | 2 | 25 | 0.00939780570147978 | High SPEI / LTHP | GWC |
|----------------------------------------------|----|------------|-------------------------------------------------------------------|---|----|---------------------|------------------|-----|
| ROC1/ROC2                                    | MF | GO:0016018 | cyclosporin A binding                                             | 2 | 52 | 0.0091407743136777  | Low SPEI / HTLP  | DWC |
| ROC1/ROC2                                    | MF | GO:0016018 | cyclosporin A binding                                             | 2 | 13 | 0.00158444578096837 | Low SPEI / HTLP  | RWC |
| ROC1/ROC2                                    | MF | GO:0016018 | cyclosporin A binding                                             | 2 | 26 | 0.011758586133132   | Low SPEI / HTLP  | GWC |
| ROC2/ROC1                                    | MF | GO:0003755 | peptidyl-prolyl cis-trans isomerase<br>activity                   | 2 | 25 | 0.0476551726418193  | High SPEI / LTHP | RWC |
| ROC2/ROC1                                    | MF | GO:0003755 | peptidyl-prolyl cis-trans isomerase<br>activity                   | 2 | 25 | 0.0476551726418193  | High SPEI / LTHP | GWC |
| ROC1/ROC2                                    | MF | GO:0003755 | peptidyl-prolyl cis-trans isomerase<br>activity                   | 2 | 13 | 0.00819606676817156 | Low SPEI / HTLP  | RWC |
| ROC1/ROC2                                    | MF | GO:0003755 | peptidyl-prolyl cis-trans isomerase<br>activity                   | 2 | 26 | 0.0341005157678652  | Low SPEI / HTLP  | GWC |
| ROC2/ROC1                                    | MF | GO:0016859 | cis-trans isomerase activity                                      | 2 | 25 | 0.0476551726418193  | High SPEI / LTHP | RWC |
| ROC2/ROC1                                    | MF | GO:0016859 | cis-trans isomerase activity                                      | 2 | 25 | 0.0476551726418193  | High SPEI / LTHP | GWC |
| ROC1/ROC2                                    | MF | GO:0016859 | cis-trans isomerase activity                                      | 2 | 13 | 0.00819606676817156 | Low SPEI / HTLP  | RWC |
| CTF7/SRS1/MYB<br>56/ATL72/ATL73/<br>KAN2/SEU | BP | GO:0048438 | floral whorl development                                          | 7 | 52 | 0.00885876135826332 | Low SPEI / HTLP  | DWC |
| ATL72/ATL73/E<br>MS1/KAN2                    | BP | GO:0048438 | floral whorl development                                          | 4 | 25 | 0.0133851206006658  | Low SPEI / HTLP  | GWC |
| ATL73/BARD1/B<br>RCA1                        | BP | GO:0042304 | regulation of fatty acid biosynthetic process                     | 3 | 52 | 0.00885876135826332 | Low SPEI / HTLP  | DWC |
| ATL73/BARD1/B<br>RCA1                        | BP | GO:0042304 | regulation of fatty acid biosynthetic<br>process                  | 3 | 25 | 0.002210035276728   | Low SPEI / HTLP  | GWC |
| BARD1/BRCA1                                  | BP | GO:1901874 | negative regulation of post-translational<br>protein modification | 2 | 52 | 0.00885876135826332 | Low SPEI / HTLP  | DWC |
| BARD1/BRCA1                                  | BP | GO:1901874 | negative regulation of post-translational<br>protein modification | 2 | 25 | 0.002210035276728   | Low SPEI / HTLP  | GWC |
| BARD1/BRCA1                                  | BP | GO:0035065 | regulation of histone acetylation                                 | 2 | 52 | 0.00885876135826332 | Low SPEI / HTLP  | DWC |
| BARD1/BRCA1                                  | BP | GO:0035065 | regulation of histone acetylation                                 | 2 | 25 | 0.002210035276728   | Low SPEI / HTLP  | GWC |
| BARD1/BRCA1                                  | BP | GO:0045922 | negative regulation of fatty acid<br>metabolic process            | 2 | 52 | 0.00885876135826332 | Low SPEI / HTLP  | DWC |
| BARD1/BRCA1                                  | BP | GO:0045922 | negative regulation of fatty acid<br>metabolic process            | 2 | 25 | 0.002210035276728   | Low SPEI / HTLP  | GWC |
| BARD1/BRCA1                                  | BP | GO:1901983 | regulation of protein acetylation                                 | 2 | 52 | 0.00885876135826332 | Low SPEI / HTLP  | DWC |
| BARD1/BRCA1                                  | BP | GO:1901983 | regulation of protein acetylation                                 | 2 | 25 | 0.002210035276728   | Low SPEI / HTLP  | GWC |
| BARD1/BRCA1                                  | BP | GO:2000756 | regulation of peptidyl-lysine acetylation                         | 2 | 52 | 0.00885876135826332 | Low SPEI / HTLP  | DWC |
| BARD1/BRCA1                                  | BP | GO:2000756 | regulation of peptidyl-lysine acetylation                         | 2 | 25 | 0.002210035276728   | Low SPEI / HTLP  | GWC |
| ATL73/BARD1/B<br>RCA1                        | BP | GO:0019217 | regulation of fatty acid metabolic process                        | 3 | 52 | 0.00885876135826332 | Low SPEI / HTLP  | DWC |
| ATL73/BARD1/B<br>RCA1                        | BP | GO:0019217 | regulation of fatty acid metabolic process                        | 3 | 25 | 0.002210035276728   | Low SPEI / HTLP  | GWC |
| PCO4/PCO5/ATP<br>K2/SEU/RAV1                 | BP | GO:0001666 | response to hypoxia                                               | 5 | 52 | 0.0320433224645579  | Low SPEI / HTLP  | DWC |
| PCO4/PCO5/RAV<br>1                           | BP | GO:0001666 | response to hypoxia                                               | 3 | 25 | 0.0463224989219289  | Low SPEI / HTLP  | GWC |
|                                              |    | 1          |                                                                   |   |    |                     |                  |     |

| BARD1/BRCA1                               | BP | GO:0062014 | negative regulation of small molecule<br>metabolic process    | 2 | 52 | 0.0320811557366797       | Low SPEI / HTLP | DWC |
|-------------------------------------------|----|------------|---------------------------------------------------------------|---|----|--------------------------|-----------------|-----|
| BARD1/BRCA1                               | BP | GO:0062014 | negative regulation of small molecule<br>metabolic process    | 2 | 25 | 0.00953400046325518      | Low SPEI / HTLP | GWC |
| VPS2.2/VPS2.3                             | BP | GO:0032509 | endosome transport via multivesicular<br>body sorting pathway | 2 | 52 | 0.0363703407570858       | Low SPEI / HTLP | DWC |
| VPS2.2/VPS2.3                             | BP | GO:0032509 | endosome transport via multivesicular<br>body sorting pathway | 2 | 25 | 0.0104211060491972       | Low SPEI / HTLP | GWC |
| PCO4/PCO5/ROC<br>l                        | BP | GO:0051606 | detection of stimulus                                         | 3 | 52 | 0.0380395850491969       | Low SPEI / HTLP | DWC |
| PCO4/PCO5/ROC<br>1                        | BP | GO:0051606 | detection of stimulus                                         | 3 | 25 | 0.00771466735267972      | Low SPEI / HTLP | GWC |
| VPS2.2/VPS2.3                             | BP | GO:0071985 | multivesicular body sorting pathway                           | 2 | 52 | 0.0380395850491969       | Low SPEI / HTLP | DWC |
| VPS2.2/VPS2.3                             | BP | GO:0071985 | multivesicular body sorting pathway                           | 2 | 25 | 0.0108635867688454       | Low SPEI / HTLP | GWC |
| ATL73/BARD1/B<br>RCA1/AAE13               | BP | GO:0006633 | fatty acid biosynthetic process                               | 4 | 52 | 0.0399531726328381       | Low SPEI / HTLP | DWC |
| ATL73/BARD1/B<br>RCA1/AAE13               | BP | GO:0006633 | fatty acid biosynthetic process                               | 4 | 25 | 0.00535012667331132      | Low SPEI / HTLP | GWC |
| ATPK2/BARD1/B<br>RCA1                     | BP | GO:0051247 | positive regulation of protein metabolic<br>process           | 3 | 52 | 0.0423876142630169       | Low SPEI / HTLP | DWC |
| BARD1/BRCA1                               | BP | GO:0051247 | positive regulation of protein metabolic<br>process           | 2 | 25 | 0.0463224989219289       | Low SPEI / HTLP | GWC |
| RING1A/BARD1/<br>BRCA1                    | СС | GO:0000152 | nuclear ubiquitin ligase complex                              | 3 | 50 | 0.00786034645113005      | Low SPEI / HTLP | DWC |
| TTM3/BARD1/BR<br>CA1                      | CC | GO:0000152 | nuclear ubiquitin ligase complex                              | 3 | 25 | 0.00077226028620362<br>3 | Low SPEI / HTLP | GWC |
| RING1A/ROC1/U<br>PL2/BARD1/BRC<br>A1/PRT6 | CC | GO:0000151 | ubiquitin ligase complex                                      | 6 | 50 | 0.00786034645113005      | Low SPEI / HTLP | DWC |
| TTM3/ROC1/BAR<br>D1/BRCA1                 | CC | GO:0000151 | ubiquitin ligase complex                                      | 4 | 25 | 0.00346626060289898      | Low SPEI / HTLP | GWC |
| VPS2.2/VPS2.3                             | CC | GO:0000815 | ESCRT III complex                                             | 2 | 50 | 0.00862574638997222      | Low SPEI / HTLP | DWC |
| VPS2.2/VPS2.3                             | CC | GO:0000815 | ESCRT III complex                                             | 2 | 25 | 0.0013334468254685       | Low SPEI / HTLP | GWC |
|                                           |    |            |                                                               |   |    |                          |                 |     |

| Genes                         | ONTO<br>LOGY | GO ID      | Gene Ontology term                                 | Size overlap<br>term / Count | Size<br>overlap<br>category | p.adjust                 | SPEI / Temperature<br>and Precipitation | Associ<br>ation |
|-------------------------------|--------------|------------|----------------------------------------------------|------------------------------|-----------------------------|--------------------------|-----------------------------------------|-----------------|
| ATG18C/ATG18D                 | CC           | GO:0034045 | phagophore assembly site<br>membrane               | 2                            | 48                          | 0.027497619213474        | High SPEI or LTHP                       | DWC             |
| ATG18C/ATG18D<br>/PCAP1       | MF           | GO:0080025 | phosphatidylinositol-3,5-<br>bisphosphate binding  | 3                            | 49                          | 0.00117701906024141      | High SPEI or LTHP                       | DWC             |
| INT1/INT2                     | MF           | GO:0005365 | myo-inositol transmembrane<br>transporter activity | 2                            | 49                          | 0.00936977293333363      | High SPEI or LTHP                       | DWC             |
| MAN1/MAN7                     | MF           | GO:0016985 | mannan endo-1,4-beta-<br>mannosidase activity      | 2                            | 49                          | 0.00936977293333363      | High SPEI or LTHP                       | DWC             |
| MAN1/MAN7                     | MF           | GO:0004567 | beta-mannosidase activity                          | 2                            | 49                          | 0.00936977293333363      | High SPEI or LTHP                       | DWC             |
| INT1/INT2                     | MF           | GO:0015166 | polyol transmembrane transporter<br>activity       | 2                            | 49                          | 0.00936977293333363      | High SPEI or LTHP                       | DWC             |
| RPL5A/RPL5B                   | MF           | GO:0008097 | 5S rRNA binding                                    | 2                            | 49                          | 0.0130574043802036       | High SPEI or LTHP                       | DWC             |
| ATG18C/ATG18D                 | MF           | GO:0032266 | phosphatidylinositol-3-phosphate<br>binding        | 2                            | 49                          | 0.0147061487397375       | High SPEI or LTHP                       | DWC             |
| MIEL1/PUB62/<br>ATL73/PRT6/BB | MF           | GO:0004842 | ubiquitin-protein transferase<br>activity          | 5                            | 49                          | 0.0383056687317896       | High SPEI or LTHP                       | DWC             |
| AHL10/RAD51B                  | MF           | GO:0000217 | DNA secondary structure binding                    | 2                            | 49                          | 0.0498965754024184       | High SPEI or LTHP                       | DWC             |
| GAD1/GAD3                     | BP           | GO:0006538 | glutamate catabolic process                        | 2                            | 20                          | 0.00808194382547344      | High SPEI or LTHP                       | RWC             |
| GAD1/GAD3                     | BP           | GO:0043649 | dicarboxylic acid catabolic process                | 2                            | 20                          | 0.00808194382547344      | High SPEI or LTHP                       | RWC             |
| CSE/CINV1/MKK<br>1            | BP           | GO:0042542 | response to hydrogen peroxide                      | 3                            | 20                          | 0.0127076717439428       | High SPEI or LTHP                       | RWC             |
| GAD1/GAD3                     | BP           | GO:0006536 | glutamate metabolic process                        | 2                            | 20                          | 0.0197128877370343       | High SPEI or LTHP                       | RWC             |
| MKK1/MKK2                     | BP           | GO:0000165 | MAPK cascade                                       | 2                            | 20                          | 0.0197128877370343       | High SPEI or LTHP                       | RWC             |
| MKK1/MKK2                     | BP           | GO:0009875 | pollen-pistil interaction                          | 2                            | 20                          | 0.0197128877370343       | High SPEI or LTHP                       | RWC             |
| MKK1/MKK2/M<br>KK6            | MF           | GO:0004708 | MAP kinase kinase activity                         | 3                            | 20                          | 0.00015098548031664<br>7 | High SPEI or LTHP                       | RWC             |
| GAD1/GAD3/UX<br>S4            | MF           | GO:0016831 | carboxy-lyase activity                             | 3                            | 20                          | 0.00112979242046737      | High SPEI or LTHP                       | RWC             |
| ACBP1/ACBP2                   | BP           | GO:0010288 | response to lead ion                               | 2                            | 28                          | 0.0159866749816312       | High SPEI or LTHP                       | GWC             |
| RING1A/ACBP1/                 |              |            |                                                    |                              |                             |                          |                                         |                 |
| ZOP1/PRT6/GAU<br>T11          | BP           | GO:0009845 | seed germination                                   | 5                            | 28                          | 0.0159866749816312       | High SPEI or LTHP                       | GWC             |
| ACBP1/ACBP2                   | MF           | GO:0000062 | fatty-acyl-CoA binding                             | 2                            | 28                          | 0.00208104538304689      | High SPEI or LTHP                       | GWC             |

Table S8. Gene Ontology Analysis of genes corresponding to significant SNPs in association analysis of growth in termof SPEI value during the time-period June-August.

| ACBP1/ACBP2 | MF | GO:0120227 | acyl-CoA binding                                           | 2 | 28 | 0.00208104538304689 | High SPEI or LTHP | GWC |
|-------------|----|------------|------------------------------------------------------------|---|----|---------------------|-------------------|-----|
| ACBP1/ACBP2 | MF | GO:1901567 | fatty acid derivative binding                              | 2 | 28 | 0.00208104538304689 | High SPEI or LTHP | GWC |
| JMJ30       | BP | GO:0042060 | wound healing                                              | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30       | BP | GO:0009742 | brassinosteroid mediated signaling<br>pathway              | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30       | BP | GO:0043401 | steroid hormone mediated signaling<br>pathway              | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30       | BP | GO:0071383 | cellular response to steroid<br>hormone stimulus           | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30       | BP | GO:0071367 | cellular response to brassinosteroid<br>stimulus           | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| RPL34       | CC | GO:0015934 | large ribosomal subunit                                    | 1 | 3  | 0.0351246995084778  | Low SPEI or HTLP  | DWC |
| RPL34       | MF | GO:0003735 | structural constituent of ribosome                         | 1 | 3  | 0.0354826869941103  | Low SPEI or HTLP  | DWC |
| PUB23       | BP | GO:0002679 | respiratory burst involved in defense response             | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| DSP1        | BP | GO:0034472 | snRNA 3'-end processing                                    | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| PUB23       | BP | GO:0045730 | respiratory burst                                          | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| DSP1        | BP | GO:0016180 | snRNA processing                                           | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:0051176 | positive regulation of sulfur<br>metabolic process         | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:0010120 | camalexin biosynthetic process                             | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:0052317 | camalexin metabolic process                                | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| DSP1        | BP | GO:0016073 | snRNA metabolic process                                    | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| KCR1        | BP | GO:0042761 | very long-chain fatty acid<br>biosynthetic process         | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| PUB23       | BP | GO:0002252 | immune effector process                                    | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:0009403 | toxin biosynthetic process                                 | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:0009700 | indole phytoalexin biosynthetic process                    | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:0046217 | indole phytoalexin metabolic process                       | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:0052314 | phytoalexin metabolic process                              | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:0052315 | phytoalexin biosynthetic process                           | 1 | 7  | 0.0296830827548597  | Low SPEI or HTLP  | RWC |
| MYB26       | BP | GO:0009901 | anther dehiscence                                          | 1 | 7  | 0.0297141449403069  | Low SPEI or HTLP  | RWC |
| MYB26       | BP | GO:0009900 | dehiscence                                                 | 1 | 7  | 0.0387390505491611  | Low SPEI or HTLP  | RWC |
| GH3.5       | BP | GO:1900376 | regulation of secondary metabolite<br>biosynthetic process | 1 | 7  | 0.0387390505491611  | Low SPEI or HTLP  | RWC |

|                       |    |            | very long-chain fatty acid                                  |   |   |                          |                  |     |
|-----------------------|----|------------|-------------------------------------------------------------|---|---|--------------------------|------------------|-----|
| KCR1                  | BP | GO:0000038 | metabolic process                                           | 1 | 7 | 0.0417914377961174       | Low SPEI or HTLP | RWC |
| DSP1                  | BP | GO:0031123 | RNA 3'-end processing                                       | 1 | 7 | 0.0492692988126216       | Low SPEI or HTLP | RWC |
| GH3.5                 | MF | GO:0010279 | indole-3-acetic acid amido<br>synthetase activity           | 1 | 6 | 0.0274398990190381       | Low SPEI or HTLP | RWC |
| RBP47C'               | MF | GO:0008143 | poly(A) binding                                             | 1 | 6 | 0.0274398990190381       | Low SPEI or HTLP | RWC |
| RBP47C'               | MF | GO:0070717 | poly-purine tract binding                                   | 1 | 6 | 0.0274398990190381       | Low SPEI or HTLP | RWC |
| TIR                   | MF | GO:0050135 | NAD(P)+ nucleosidase activity                               | 1 | 6 | 0.0274398990190381       | Low SPEI or HTLP | RWO |
| TIR                   | MF | GO:0003953 | NAD+ nucleosidase activity                                  | 1 | 6 | 0.0274398990190381       | Low SPEI or HTLP | RWC |
| TIR                   | MF | GO:0061809 | NAD+ nucleotidase, cyclic ADP-<br>ribose generating         | 1 | 6 | 0.0274398990190381       | Low SPEI or HTLP | RWC |
| SYP41/SYP43           | BP | GO:0043001 | Golgi to plasma membrane protein<br>transport               | 2 | 4 | 6.72834354172023e-<br>05 | Low SPEI or HTLP | GWC |
| SYP41/SYP43           | BP | GO:0061951 | establishment of protein<br>localization to plasma membrane | 2 | 4 | 6.72834354172023e-<br>05 | Low SPEI or HTLP | GWC |
| SYP41/SYP43           | BP | GO:0072659 | protein localization to plasma<br>membrane                  | 2 | 4 | 6.72834354172023e-<br>05 | Low SPEI or HTLP | GWC |
| SYP41/SYP43           | BP | GO:1990778 | protein localization to cell<br>periphery                   | 2 | 4 | 6.72834354172023e-<br>05 | Low SPEI or HTLP | GWG |
| SYP41/SYP43           | BP | GO:0006893 | Golgi to plasma membrane<br>transport                       | 2 | 4 | 9.68505796772033e-<br>05 | Low SPEI or HTLP | GWC |
| SYP41/SYP43/JM<br>J30 | BP | GO:0071407 | cellular response to organic cyclic compound                | 3 | 4 | 0.00021497317085675<br>8 | Low SPEI or HTLP | GWC |
| SYP41/SYP43           | BP | GO:0007030 | Golgi organization                                          | 2 | 4 | 0.00021497317085675<br>8 | Low SPEI or HTLP | GWO |
| SYP41/SYP43           | BP | GO:0006896 | Golgi to vacuole transport                                  | 2 | 4 | 0.00024313176375718<br>5 | Low SPEI or HTLP | GWO |
| SYP41/SYP43           | BP | GO:0048278 | vesicle docking                                             | 2 | 4 | 0.00055140376744399<br>7 | Low SPEI or HTLP | GWG |
| SYP41/SYP43           | BP | GO:0022406 | membrane docking                                            | 2 | 4 | 0.00060669599674878<br>4 | Low SPEI or HTLP | GWG |
| SYP41/SYP43           | BP | GO:0006906 | vesicle fusion                                              | 2 | 4 | 0.00062711912617501<br>6 | Low SPEI or HTLP | GWG |
| SYP41/SYP43           | BP | GO:0051668 | localization within membrane                                | 2 | 4 | 0.00079907686974608<br>5 | Low SPEI or HTLP | GWG |
| SYP41/SYP43           | BP | GO:0061025 | membrane fusion                                             | 2 | 4 | 0.00079907686974608<br>5 | Low SPEI or HTLP | GWO |
| SYP41/SYP43           | BP | GO:0048284 | organelle fusion                                            | 2 | 4 | 0.0010801505903157       | Low SPEI or HTLP | GWO |
| SYP41/SYP43           | BP | GO:0007034 | vacuolar transport                                          | 2 | 4 | 0.00131143529127551      | Low SPEI or HTLP | GWG |
| SYP41/SYP43           | BP | GO:0016050 | vesicle organization                                        | 2 | 4 | 0.00131143529127551      | Low SPEI or HTLP | GW  |

| SYP41/SYP43          | BP | GO:0009658 | chloroplast organization                                         | 2 | 4  | 0.00449504799701774 | Low SPEI or HTLP  | GWC |
|----------------------|----|------------|------------------------------------------------------------------|---|----|---------------------|-------------------|-----|
| SYP 43               | BP | GO:0009306 | protein secretion                                                | 1 | 4  | 0.0187077401848535  | Low SPEI or HTLP  | GWC |
| SYP 43               | BP | GO:0035592 | establishment of protein<br>localization to extracellular region | 1 | 4  | 0.0187077401848535  | Low SPEI or HTLP  | GWC |
| SYP 43               | BP | GO:0071692 | protein localization to extracellular<br>region                  | 1 | 4  | 0.0187077401848535  | Low SPEI or HTLP  | GWC |
| SYP 43               | BP | GO:1900150 | regulation of defense response to<br>fungus                      | 1 | 4  | 0.0210723510219699  | Low SPEI or HTLP  | GWC |
| SYP 43               | BP | GO:0032940 | secretion by cell                                                | 1 | 4  | 0.0405117770854127  | Low SPEI or HTLP  | GWC |
| SYP 43               | BP | GO:0046903 | secretion                                                        | 1 | 4  | 0.0435673954306648  | Low SPEI or HTLP  | GWC |
| JMJ30                | BP | GO:2000028 | regulation of photoperiodism,<br>flowering                       | 1 | 4  | 0.0447769791108422  | Low SPEI or HTLP  | GWC |
| JMJ30                | BP | GO:1900140 | regulation of seedling development                               | 1 | 4  | 0.0488778970870973  | Low SPEI or HTLP  | GWC |
| SYP41/SYP43          | CC | GO:0031201 | SNARE complex                                                    | 2 | 4  | 0.00167112237131154 | Low SPEI or HTLP  | GWC |
| SYP41/SYP43          | CC | GO:0005802 | trans-Golgi network                                              | 2 | 4  | 0.00973775300169354 | Low SPEI or HTLP  | GWC |
| SYP 41               | СС | GO:0030140 | trans-Golgi network transport<br>vesicle                         | 1 | 4  | 0.0197249854039083  | Low SPEI or HTLP  | GWC |
| SYP41/SYP43          | MF | GO:0005484 | SNAP receptor activity                                           | 2 | 4  | 0.00332763196755325 | Low SPEI or HTLP  | GWC |
| SYP41/SYP43          | MF | GO:0000149 | SNARE binding                                                    | 2 | 4  | 0.00332763196755325 | Low SPEI or HTLP  | GWC |
| MBF1A                | MF | GO:0003713 | transcription coactivator activity                               | 1 | 4  | 0.0222683326175012  | Low SPEI or HTLP  | GWC |
| RPL5/RPL5A/RPL<br>5B | СС | GO:0022625 | cytosolic large ribosomal subunit                                | 3 | 48 | 0.027497619213474   | High SPEI or LTHP | DWC |
| RPL34                | CC | GO:0022625 | cytosolic large ribosomal subunit                                | 1 | 3  | 0.0351246995084778  | Low SPEI or HTLP  | DWC |
| JMJ30                | BP | GO:1900457 | regulation of brassinosteroid<br>mediated signaling pathway      | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30                | BP | GO:1900457 | regulation of brassinosteroid<br>mediated signaling pathway      | 1 | 4  | 0.0130142872181786  | Low SPEI or HTLP  | GWC |
| JMJ30                | BP | GO:1990110 | callus formation                                                 | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30                | BP | GO:1990110 | callus formation                                                 | 1 | 4  | 0.0187077401848535  | Low SPEI or HTLP  | GWC |
| JMJ30                | BP | GO:0080022 | primary root development                                         | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30                | BP | GO:0080022 | primary root development                                         | 1 | 4  | 0.0227080250107758  | Low SPEI or HTLP  | GWC |
| JMJ30                | BP | GO:0042752 | regulation of circadian rhythm                                   | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30                | BP | GO:0042752 | regulation of circadian rhythm                                   | 1 | 4  | 0.0354816609793298  | Low SPEI or HTLP  | GWC |
| JMJ30                | BP | GO:0048545 | response to steroid hormone                                      | 1 | 3  | 0.049506524947887   | Low SPEI or HTLP  | DWC |
| JMJ30                | BP | GO:0048545 | response to steroid hormone                                      | 1 | 4  | 0.037236411179565   | Low SPEI or HTLP  | GWC |

| JMJ30  | BP   | GO:0045814 | negative regulation of gene                 | 1 | 3 | 0.040506524047887  | Low SPEI or HTLP | DWC  |
|--------|------|------------|---------------------------------------------|---|---|--------------------|------------------|------|
| JMJ30  | BP   | 60:0043814 | expression, epigenetic                      | I | 3 | 0.049506524947887  | Low SPEI of HILP | Dwc  |
|        |      |            | negative regulation of gene                 |   |   |                    |                  |      |
| JMJ30  | BP   | GO:0045814 | expression, epigenetic                      | 1 | 4 | 0.0377667013919315 | Low SPEI or HTLP | GWC  |
| JMJ30  | CC   | GO:0000791 | euchromatin                                 | 1 | 3 | 0.0256906222268034 | Low SPEI or HTLP | DWC  |
|        |      |            |                                             |   | - |                    |                  |      |
| JMJ30  | CC   | GO:0000791 | euchromatin                                 | 1 | 4 | 0.0142652169748869 | Low SPEI or HTLP | GWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0046975 | histone H3K36 methyltransferase<br>activity | 1 | 3 | 0.0173043590524825 | Low SPEI or HTLP | DWC  |
|        |      |            | ,                                           |   | - |                    |                  |      |
|        |      |            | histone H3K36 methyltransferase             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0046975 | activity                                    | 1 | 4 | 0.016239160088453  | Low SPEI or HTLP | GWC  |
| JMJ30  | MF   | GO:0141052 | histone H3 demethylase activity             | 1 | 3 | 0.0173043590524825 | Low SPEI or HTLP | DWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0141052 | histone H3 demethylase activity             | 1 | 4 | 0.016239160088453  | Low SPEI or HTLP | GWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0032452 | histone demethylase activity                | 1 | 3 | 0.0173043590524825 | Low SPEI or HTLP | DWC  |
| JMJ30  | MF   | GO:0032452 | histone demethylase activity                | 1 | 4 | 0.016239160088453  | Low SPEI or HTLP | GWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0140457 | protein demethylase activity                | 1 | 3 | 0.0173043590524825 | Low SPEI or HTLP | DWC  |
| JMJ30  | MF   | GO:0140457 | protein demethylase activity                | 1 | 4 | 0.016239160088453  | Low SPEI or HTLP | GWC  |
| JMJ30  | IVIT | 60:0140437 | protein demethylase activity                | I | 4 | 0.016239160088433  | Low SPEI of HILP | GwC  |
| JMJ30  | MF   | GO:0035064 | methylated histone binding                  | 1 | 3 | 0.0173043590524825 | Low SPEI or HTLP | DWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0035064 | methylated histone binding                  | 1 | 4 | 0.016239160088453  | Low SPEI or HTLP | GWC  |
|        |      |            | methylation-dependent protein               |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0140034 | binding                                     | 1 | 3 | 0.0173043590524825 | Low SPEI or HTLP | DWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0140034 | methylation-dependent protein<br>binding    | 1 | 4 | 0.016239160088453  | Low SPEI or HTLP | GWC  |
| 011000 |      | 0010110001 | omang                                       |   |   | 0.010209100000100  |                  | 0.00 |
| JMJ30  | MF   | GO:0032451 | demethylase activity                        | 1 | 3 | 0.0183120689022238 | Low SPEI or HTLP | DWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0032451 | demethylase activity                        | 1 | 4 | 0.0202292283048687 | Low SPEI or HTLP | GWC  |
|        |      |            | histone H3 methyltransferase                |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0140938 | activity                                    | 1 | 3 | 0.0183120689022238 | Low SPEI or HTLP | DWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0140938 | histone H3 methyltransferase<br>activity    | 1 | 4 | 0.0209887797096461 | Low SPEI or HTLP | GWC  |
|        |      |            | ,                                           |   |   |                    |                  |      |
|        |      |            | 2-oxoglutarate-dependent                    |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0016706 | dioxygenase activity                        | 1 | 3 | 0.0269748063060552 | Low SPEI or HTLP | DWC  |
|        |      |            | 2-oxoglutarate-dependent                    |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0016706 | dioxygenase activity                        | 1 | 4 | 0.0307622934869159 | Low SPEI or HTLP | GWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0042393 | histone binding                             | 1 | 3 | 0.0349955686191481 | Low SPEI or HTLP | DWC  |
| JMJ30  | MF   | GO:0042393 | histone binding                             | 1 | 4 | 0.0403116703690184 | Low SPEI or HTLP | GWC  |
|        |      |            |                                             |   |   |                    |                  |      |
| JMJ30  | MF   | GO:0140993 | histone modifying activity                  | 1 | 3 | 0.039283951789194  | Low SPEI or HTLP | DWC  |
| 134120 | ME   | 60-0140003 | history and their and the                   | 1 | 4 | 0.0494127592202204 | Low ODEL UPLD    | CWC  |
| JMJ30  | MF   | GO:0140993 | histone modifying activity                  | 1 | 4 | 0.0484137582303306 | Low SPEI or HTLP | GWC  |
|        |      |            |                                             |   |   |                    |                  |      |

Table S9. Sequencing information for the 29 RRBS samples.

| Sample    | Reads     | Bases    | Q20      | Q20(%) | Q30      | Q30(%) | GC (%) | % coverage | BS- conversion |
|-----------|-----------|----------|----------|--------|----------|--------|--------|------------|----------------|
| FURUBM104 | 219778377 | 6,59E+10 | 6,39E+10 | 96,89  | 6,08E+10 | 92,18  | 30     | 3          | 99,75          |
| FURUBM108 | 209150582 | 6,27E+10 | 6,03E+10 | 96,07  | 5,70E+10 | 90,9   | 32     | 2,85       | 99,32          |
| FURUBM35  | 205754747 | 6,17E+10 | 5,98E+10 | 96,81  | 5,67E+10 | 91,82  | 28     | 2,81       | 99,83          |
| FURUBM43  | 278885563 | 8,37E+10 | 8,05E+10 | 96,26  | 7,62E+10 | 91,04  | 30     | 3,8        | 99,83          |
| FURUBM56  | 156157900 | 4,68E+10 | 4,54E+10 | 96,85  | 4,32E+10 | 92,23  | 37     | 2,13       | 99,03          |
| FURUBM66  | 211611899 | 6,35E+10 | 6,14E+10 | 96,65  | 5,81E+10 | 91,58  | 29     | 2,89       | 99,35          |
| FURUBM77  | 268999490 | 8,07E+10 | 7,72E+10 | 95,61  | 7,25E+10 | 89,8   | 33     | 3,67       | 99,77          |
| FURUBM82  | 304770247 | 4,55E+10 | 4,38E+10 | 96,45  | 4,15E+10 | 91,36  | 26     | 2,07       | 99,89          |
| FURUBM83  | 220210327 | 6,61E+10 | 6,38E+10 | 96,6   | 6,05E+10 | 91,62  | 29     | 3          | 99,44          |
| FURUBS22  | 247415516 | 7,42E+10 | 7,22E+10 | 97,27  | 6,90E+10 | 92,92  | 28     | 3,37       | 99,75          |
| FURUBS45  | 201133026 | 6,03E+10 | 5,86E+10 | 97,18  | 5,58E+10 | 92,53  | 29     | 2,74       | 99,31          |
| FURUBS87  | 228603400 | 6,86E+10 | 6,69E+10 | 97,49  | 6,40E+10 | 93,31  | 27     | 3,12       | 99,85          |
| FURUG108  | 267747275 | 8,03E+10 | 7,76E+10 | 96,67  | 7,36E+10 | 91,61  | 28     | 3,65       | 99,88          |
| FURUG22   | 282789645 | 8,48E+10 | 8,11E+10 | 95,57  | 7,60E+10 | 89,64  | 31     | 3,86       | 99,88          |
| FURUG24   | 230188025 | 6,91E+10 | 6,68E+10 | 96,76  | 6,36E+10 | 92,05  | 28     | 3,14       | 99,86          |
| FURUG25   | 237499478 | 7,12E+10 | 6,91E+10 | 96,94  | 6,56E+10 | 92,08  | 28     | 3,24       | 99,38          |
| FURUG42   | 257213561 | 7,72E+10 | 7,41E+10 | 96,07  | 7,01E+10 | 90,9   | 31     | 3,51       | 99,81          |
| FURUG43   | 272274729 | 8,17E+10 | 7,80E+10 | 95,53  | 7,31E+10 | 89,48  | 32     | 3,71       | 99,78          |
| FURUG73   | 234612648 | 7,04E+10 | 6,81E+10 | 96,7   | 6,45E+10 | 91,57  | 30     | 3,2        | 99,91          |
| FURUG78   | 226306247 | 6,79E+10 | 6,57E+10 | 96,83  | 6,23E+10 | 91,76  | 27     | 3,09       | 99,49          |
| FURUG86   | 279432855 | 8,38E+10 | 8,08E+10 | 96,39  | 7,64E+10 | 91,09  | 29     | 3,81       | 99,59          |
| FURUG87   | 216773103 | 6,50E+10 | 6,30E+10 | 96,86  | 5,98E+10 | 91,96  | 29     | 2,96       | 99,87          |
| FURUG92   | 306136510 | 4,58E+10 | 4,41E+10 | 96,46  | 4,17E+10 | 91,17  | 24     | 2,08       | 99,1           |
| FURUS23   | 206946745 | 6,21E+10 | 6,01E+10 | 96,81  | 5,70E+10 | 91,78  | 28     | 2,82       | 99,87          |
| FURUS34   | 328683713 | 9,86E+10 | 9,43E+10 | 95,58  | 8,83E+10 | 89,55  | 31     | 4,48       | 99,82          |
| FURUS55   | 323593471 | 4,84E+10 | 4,66E+10 | 96,42  | 4,41E+10 | 91,11  | 25     | 2,2        | 99,89          |
| FURUS75   | 222081252 | 6,66E+10 | 6,42E+10 | 96,3   | 6,06E+10 | 90,92  | 27     | 3,03       | 99,87          |
| FURUS82   | 316780240 | 9,50E+10 | 9,07E+10 | 95,39  | 8,49E+10 | 89,34  | 32     | 4,32       | 99,83          |
| FURUS95   | 292089982 | 8,76E+10 | 8,46E+10 | 96,51  | 8,03E+10 | 91,66  | 30     | 3.98       | 99,89          |

| Query                        | meth.sites | meth.meth_hi | Number of HSPs | Lowest E-value | Accession     |
|------------------------------|------------|--------------|----------------|----------------|---------------|
|                              |            | CpG          |                |                |               |
| dedRef_2315294-2315295_8     | 1          | S            | 27232          | 2,01E-58       | ChrUn38       |
| dedRef_755097-755098_9       | 1          | S            | 64             | 9,77E-50       | ChrUn62       |
| dedRef_1054162-1054163_53    | 3          | Ν            | 2              | 5,06E-47       | scaffold_698  |
| dedRef_2173022-2173022_10    | 3          | Ν            | 6251           | 5,11E-47       | ChrUn01       |
| dedRef_2907510-2907511_16-2  | 5          | S            | 1              | 7,38E-45       | scaffold_567  |
| dedRef_4857208-4857210_5     | 2          | S            | 1              | 3,93E-42       | scaffold_2731 |
| dedRef_253744-253745_43      | 2          | Ν            | 3              | 1,29E-41       | ChrUn45       |
| dedRef_664348-664349_46      | 1          | S            | 1              | 4,74E-41       | ChrUn70       |
| dedRef_1142677-1142678_31    | 3          | S            | 1              | 5,78E-40       | scaffold_6382 |
| dedRef_1005891-1005892_55    | 2          | Ν            | 1              | 5,78E-40       | scaffold_250  |
|                              |            | СНС          |                |                |               |
| dedRef_90022-90023_4         | 2          | N            | 3              | 6,98E-39       | scaffold_1230 |
| dedDef 255777 255779 42      | 3          | N            | 1              | 1,48E-34       | coeffeld 4115 |
| dedRef_255777-255778_43      |            |              |                |                | scaffold_4115 |
| dedRef_1049112-1049113_23    | 2          | S            | 23             | 6,59E-33       | ChrUn47       |
| dedRef_973251-973252_36      | 3          | S            | 48             | 2,8E-31        | ChrUn23       |
| dedRef_676286-676287_33      | 3          | S            | 90             | 9,78E-31       | ChrUn75       |
| dedRef_614715-614716_35      | 2          | S            | 1              | 4,01E-29       | scaffold_5404 |
| dedRef_772016-772016_23      | 3          | Ν            | 1              | 4,01E-29       | scaffold_8625 |
| dedRef_526259-526259_27      | 2          | S            | 1              | 4,16E-29       | scaffold_4983 |
| dedRef_1212718-1212719_31    | 3          | Ν            | 1              | 1,41E-28       | scaffold_7589 |
| dedRef_236188-236189_34      | 3          | Ν            | 10             | 1,45E-28       | ChrUn80       |
|                              |            | СНН          |                |                |               |
| dedRef_1632067-1632068_34    | 30         | N            | 1              | 7,51E-45       | scaffold_8320 |
| dedRef_4715855-4715858_13-62 | 1          | S            | 2              | 1,37E-41       | scaffold_149  |
| dedRef_4581053-4581054_11    | 1          | Ν            | 6              | 6,98E-39       | scaffold_1277 |
| dedRef_647431-647432_17      | 15         | S            | 5              | 8,5E-38        | scaffold_321  |
| dedRef_545611-545612_7       | 13         | S            | 2              | 1,26E-35       | scaffold_2162 |
| dedRef_3889593-3889594_10    | 1          | Ν            | 1              | 1,89E-33       | scaffold_2768 |
| dedRef_639626-639627_22      | 16         | Ν            | 7              | 6,59E-33       | scaffold_126  |
| dedRef_22713-22714_4         | 1          | S            | 15             | 2,46E-31       | ChrUn18       |
| dedRef_1923928-1923929_6     | 1          | S            | 5              | 1,26E-28       | scaffold_4149 |
| dedRef_21888-21889_27        | 14         | Ν            | 5              | 1,75E-27       | ChrUn169      |

## Table S10. BLASTn of NvS showing top 10 hits of differentially methylated fragments for read 1 and 2 together.

134

| meth.ID         | Query                         | Number of HSPs | Lowest E-value | Accession      |
|-----------------|-------------------------------|----------------|----------------|----------------|
|                 |                               | CpG            |                |                |
| 536953          | dedRef_948667-948668_37-1     | 1              | 3,1945E-43     | scaffold_13857 |
| 360543          | dedRef_1005891-1005892_55     | 1              | 5,7757E-40     | scaffold_2506  |
| 472183          | dedRef_351881-351882_5-1      | 6              | 1,609E-33      | ChrUn68        |
| 395681          | dedRef_1081898-1081899_35     | 31             | 1,8881E-33     | ChrUn30        |
| 867534          | dedRef_2245176-2245177_4      | 2              | 1,9045E-33     | scaffold_11619 |
| 78352           | dedRef_938801-938802_41-1     | 3              | 6,5901E-33     | scaffold_2915  |
| 84207           | dedRef_824291-824292_30-1     | 35             | 7,8887E-32     | ChrUn109       |
| 76196           | dedRef_969876-969877_25-1     | 1              | 8,0283E-32     | scaffold_41037 |
| 144456          | dedRef_965818-965819_46-2     | 1              | 9,7805E-31     | scaffold_69642 |
| 194514          | dedRef_1378288-1378289_35-1   | 1              | 3,4137E-30     | scaffold_60464 |
|                 |                               | CHG            |                |                |
| 365974          | dedRef_2226864-2226867_8-1    | 34             | 8,5719E-38     | ChrUn66        |
| 1130248         | dedRef_2068626-2068631_11     | 1              | 8,2634E-37     | scaffold_4355  |
| 271908          | dedRef_255777-255778_43       | 1              | 1,4825E-34     | scaffold_41156 |
| 313804          | dedRef_1209028-1209029_30     | 1              | 3,2653E-30     | scaffold_45259 |
| 33714           | dedRef_907955-907956_37-4     | 171            | 1,1915E-29     | ChrUn37        |
| 330141          | dedRef_1557051-1557052_36     | 3              | 1,1915E-29     | scaffold_34497 |
| 313951          | dedRef_1212718-1212719_31     | 1              | 1,4137E-28     | scaffold_75899 |
| 169318          | dedRef_292153-292154_38       | 4              | 1,4516E-28     | ChrUn61        |
| 1100894         | dedRef_343903-343904_29       | 1              | 1,4516E-28     | scaffold_4294  |
| 1492355         | dedRef_697818-697819_39       | 9              | 1,4516E-28     | ChrUn32        |
|                 |                               | СНН            |                |                |
| 1468074/1311832 | dedRef_899225-899226_33       | 2              | 3,61E-55       | ChrUn103       |
| 2845051         | dedRef_976008-976009_37       | 1              | 1,6548E-40     | scaffold_12988 |
| 2891618         | dedRef_756654-756655_36       | 3              | 5,7757E-40     | scaffold_3504  |
| 11773566        |                               | 1              | 5,4095E-34     | scaffold_75233 |
| 599291          | <br>dedRef_790086-790087_32-2 | 1              | 6,5328E-33     | scaffold_29057 |
| 389986          | <br>dedRef_925549-925550_31   | 1              | 2,3002E-32     | -<br>ChrUn222  |
| 586701          | dedRef_676254-676256_35-14    | 1              | 3,4137E-30     | scaffold_60937 |
| 1007820         | dedRef_1217920-1217921_36-8   | 33             | 3,4137E-30     | ChrUn108       |
| 1134599         | dedRef_1349776-1349777_34     | 5              | 3,4434E-30     | ChrUn156       |
| 1134599         | dedRef_1109816-1109817_31     | 2              | 1,1708E-29     | ChrUn40        |
| 11575//         | uuuuu_110/010-110/01/_31      | 2              | .,17002-27     | Cin On40       |

Table S11. BLASTn of NvS showing top 10 hits of differentially methylated motifs for read 1 & read 2 together.

| Query                       | meth.sites | meth.meth_hi | Number of HSPs | Lowest E-value | Accession      |
|-----------------------------|------------|--------------|----------------|----------------|----------------|
|                             |            | Read 1 - CpG |                |                |                |
| dedRef_1529438-1529439_10   | 4          | Tall         | 2              | 2,1356E-26     | scaffold_12478 |
| dedRef_319768-319769_37     | 4          | Tall         | 2              | 5,4142E-15     | scaffold_2422  |
| dedRef_2018734-2018736_2    | 1          | Short        | 1              | 0,00039324     | scaffold_62495 |
|                             |            | Read 2 - CpG |                |                |                |
| dedRef_2173022-2173022_10   | 3          | Tall         | 6251           | 5,106E-47      | ChrUn01        |
| dedRef_4857208-4857210_5    | 2          | Short        | 1              | 3,9255E-42     | scaffold_27319 |
| dedRef_2869945-2869946_7-1  | 3          | Tall         | 1              | 2,0159E-39     | scaffold_1769  |
| dedRef_4823635-4823636_6    | 3          | Tall         | 26             | 2,0335E-39     | ChrUn186       |
| dedRef_623102-623103_46     | 5          | Tall         | 14             | 2,4345E-38     | ChrUn172       |
| dedRef_823610-823611_38     | 4          | Short        | 1              | 2,9919E-37     | scaffold_24384 |
| dedRef_208019-208020_47     | 4          | Tall         | 11             | 1,2169E-35     | ChrUn106       |
| dedRef_255757-255758_27     | 3          | Tall         | 26             | 1,2722E-35     | ChrUn13        |
| dedRef_282377-282379_28     | 1          | Short        | 1              | 1,2722E-35     | scaffold_3779  |
| dedRef_1556511-1556515_33   | 3          | Short        | 2              | 1,5229E-34     | scaffold_37859 |
|                             |            | Read 1 - CHG |                |                |                |
| dedRef_334714-334715_38     | 2          | Short        | 1              | 5,0179E-47     | scaffold_58740 |
|                             |            |              | 7              |                |                |
| dedRef_1165881-1165882_42   | 2          | Tall         |                | 7,5126E-45     | ChrUn60        |
| dedRef_1294492-1294493_3-1  | 1          | Short        | 11             | 2,6222E-44     | ChrUn32        |
| dedRef_1107886-1107887_48   | 2          | Tall         | 2              | 9,8071E-37     | scaffold_34174 |
| dedRef_1379316-1379317_1    | 1          | Tall         | 2              | 3,6449E-36     | scaffold_15634 |
| dedRef_268993-268994_31     | 3          | Short        | 121            | 1,8717E-33     | ChrUn54        |
| dedRef_3645364-3645365_1    | 1          | Tall         | 1              | 5,0428E-33     | scaffold_4617  |
| dedRef_250037-250038_30     | 2          | Short        | 1              | 6,5328E-33     | scaffold_81503 |
| dedRef_3109089-3109090_7    | 3          | Short        | 684            | 2,2002E-32     | ChrUn18        |
| dedRef_837175-837176_27     | 1          | Short        | 1              | 2,3002E-32     | scaffold_3927  |
|                             |            | Read 2 - CHG |                |                |                |
| dedRef_3069618-3069619_3    | 2          | Tall         | 97             | 1,9028E-52     | ChrUn31        |
| dedRef_1577893-1577894_33-3 | 1          | Short        | 1              | 4,1551E-48     | scaffold_5452  |
| dedRef_1541112-1541113_36   | 3          | Short        | 1              | 5,4095E-34     | scaffold_65379 |
| dedRef_1049112-1049113_23   | 2          | Tall         | 23             | 6,5901E-33     | ChrUn47        |
| dedRef_1010182-1010183_35   | 2          | Short        | 1              | 2,2202E-32     | scaffold_96683 |
| dedRef_1056635-1056636_31   | 3          | Tall         | 1              | 7,9585E-32     | scaffold_45023 |

## Table S12. BLASTn of TvS showing top 10 hits of differentially methylated fragments for read 1 and read 2 together.

| dedRef_973251-973252_36     | 3  | Short        | 48   | 2,8022E-31 | ChrUn23        |
|-----------------------------|----|--------------|------|------------|----------------|
| dedRef_536389-536389_39     | 2  | Tall         | 1    | 3,4137E-30 | scaffold_36806 |
| dedRef_614715-614716_35     | 3  | Short        | 1    | 4,0141E-29 | scaffold_54049 |
| dedRef_1212718-1212719_31   | 3  | Short        | 1    | 1,4137E-28 | scaffold_75899 |
|                             |    | Read 1 - CHH | [    |            |                |
|                             |    |              |      |            |                |
| dedRef_105983-105984_3      | 1  | Tall         | 30   | 1,7668E-46 | ChrUn04        |
| dedRef_1506865-1506869_10   | 2  | Tall         | 12   | 9,1522E-44 | ChrUn16        |
| dedRef_1334186-1334187_32   | 1  | Tall         | 1    | 1,6548E-40 | scaffold_1054  |
| dedRef_560523-560524_35     | 1  | Short        | 11   | 1,0352E-36 | ChrUn28        |
| dedRef_4150913-4150914_14   | 1  | Short        | 1    | 1,5498E-34 | scaffold_9690  |
| dedRef_1452098-1452099_34   | 1  | Tall         | 4    | 7,9585E-32 | scaffold_515   |
| dedRef_22713-22714_4        | 1  | Short        | 15   | 2,461E-31  | ChrUn18        |
| dedRef_4979461-4979462_11   | 1  | Short        | 10   | 9,8656E-31 | ChrUn156       |
| dedRef_875349-875350_10     | 2  | Short        | 2    | 2,1356E-26 | scaffold_83111 |
| dedRef_3576178-3576179_2    | 3  | Tall         | 2    | 2,1452E-25 | scaffold_43898 |
|                             |    | Read 2 - CHH | I    |            |                |
| dedRef_1436209-1436210_36   | 20 | Tall         | 306  | 1,0443E-36 | ChrUn42        |
| dedRef_802343-802344_32     | 27 | Tall         | 3    | 2,8022E-31 | scaffold_4186  |
| dedRef_41277-41280_29-4     | 13 | Tall         | 2    | 1,4263E-28 | scaffold_17687 |
| dedRef_334942-334943_37     | 29 | Tall         | 5    | 7,3885E-26 | scaffold_10240 |
| dedRef_1428971-1428972_20   | 10 | Tall         | 3    | 7,5193E-26 | scaffold_32343 |
| dedRef_1455166-1455167_23   | 11 | Tall         | 3    | 7,5193E-26 | scaffold_16569 |
| dedRef_1247741-1247742_13-2 | 13 | Short        | 1085 | 2,6245E-25 | ChrUn107       |
| dedRef_335913-335914_23     | 17 | Tall         | 1    | 3,1139E-24 | scaffold_34480 |
| dedRef_1550897-1550898_28   | 15 | Tall         | 1    | 1,116E-23  | scaffold_25985 |
| dedRef_762892-762893_25     | 24 | Tall         | 2    | 1,3595E-22 | scaffold_95739 |
|                             |    |              |      |            |                |

## Table S13. BLASTn of TvS showing top 10 hits of differentially methylated motifs for read 1 and read 2 together.

| meth.ID | Query                     | Number of HSPs | Lowest E-value | Accession      |
|---------|---------------------------|----------------|----------------|----------------|
|         |                           | CpG            |                |                |
| 267161  | dedRef_1855544-1855544_0  | 2              | 2,1524E-45     | scaffold_66244 |
| 272558  | dedRef_293145-293146_44-4 | 80             | 7,51262E-45    | ChrUn143       |
| 2500703 | dedRef_2904326-2904327_9  | 1              | 8,91349E-44    | scaffold_69079 |
| 536953  | dedRef_948667-948668_37-1 | 1              | 3,19445E-43    | scaffold_13857 |
| 1114383 | dedRef_3436919-3436920_18 | 7              | 3,89163E-42    | ChrUn03        |

| 1005069 | dedRef_293665-293666_27     | 9   | 6,30202E-39 | ChrUn168       |
|---------|-----------------------------|-----|-------------|----------------|
| 1499785 | dedRef_68373-68374_46       | 21  | 1,04427E-36 | ChrUn19        |
| 1236594 | dedRef_987810-987811_35     | 1   | 3,61317E-36 | scaffold_30690 |
| 1480823 | dedRef_612144-612145_43     | 3   | 4,32451E-35 | ChrUn166       |
| 1472188 | dedRef_58487-58488_46       | 11  | 1,54983E-34 | ChrUn75        |
|         |                             | СНG |             |                |
| 402829  | dedRef_1167033-1167034_4    | 9   | 8,56432E-57 | ChrUn89        |
| 2075369 | dedRef_741894-741894_6      | 4   | 5,40468E-53 | ChrUn166       |
| 832050  | dedRef_130428-130429_42     | 177 | 9,68691E-50 | ChrUn27        |
| 338557  | dedRef_1852002-1852003_3-1  | 2   | 1,16976E-48 | scaffold_25904 |
| 129721  | dedRef_1577893-1577894_33-3 | 1   | 4,15511E-48 | scaffold_54523 |
| 2133704 | dedRef_820087-820088_37     | 6   | 1,29894E-47 | ChrUn16        |
| 1903999 | dedRef_504740-504741_7      | 13  | 1,33678E-47 | ChrUn89        |
| 26293   | dedRef_3153216-3153217_11-1 | 19  | 4,70983E-47 | ChrUn63        |
| 876352  | dedRef_3323316-3323317_8-3  | 1   | 6,16673E-46 | scaffold_76113 |
| 87998   | dedRef_1402718-1402719_38   | 2   | 6,16673E-46 | scaffold_13619 |
|         |                             | СНН |             |                |
| 839294  | dedRef_899225-899226_33     | 2   | 3,60998E-55 | ChrUn103       |
| 842329  | dedRef_960473-960474_67-2   | 54  | 6,11311E-46 | scaffold_78080 |
| 3603314 | dedRef_4150913-4150914_14   | 1   | 1,54983E-34 | scaffold_9690  |
| 506987  | dedRef_141417-141418_37     | 1   | 5,40945E-34 | scaffold_75233 |
| 3935573 | dedRef_988170-988171_31     | 3   | 6,59006E-33 | ChrUn121       |
| 724445  | dedRef_1349776-1349777_34   | 5   | 3,44342E-30 | ChrUn156       |
| 353336  | dedRef_1109816-1109817_31   | 2   | 1,17079E-29 | ChrUn40        |
| 814034  | dedRef_1485964-1485965_44-2 | 2   | 4,12262E-29 | scaffold_42180 |
| 6811852 | dedRef_271941-271942_40     | 18  | 4,15878E-29 | ChrUn81        |
| 1329428 | dedRef_1211719-1211720_22-2 | 219 | 4,93427E-28 | ChrUn49        |

## Table S14. BLASTx of NvS showing top 10 hits of differentially methylated fragments for read 1 and 2 together.

| Query                     | meth.sites | meth.meth_hi | Number of HSPs | Lowest E-value | Accession    |
|---------------------------|------------|--------------|----------------|----------------|--------------|
|                           |            | CpG          |                |                |              |
| dedRef_426340-426343_31-1 | 1          | Ν            | 5              | 3,8645E-26     | WP_206682097 |
| dedRef_25086-25087_42     | 4          | Ν            | 5              | 5,4959E-25     | XP_036010831 |
| dedRef_817851-817852_40   | 1          | Ν            | 5              | 1,0549E-23     | WP_302758310 |
| dedRef_172015-172016_39-3 | 3          | Ν            | 5              | 2,026E-23      | WP_214284958 |

| dedRef_1649087-1649089_45   | 16 | Ν   | 5  | 1,0283E-22 | NP_775626    |
|-----------------------------|----|-----|----|------------|--------------|
| dedRef_1112190-1112190_24-2 | 1  | S   | 5  | 1,051E-22  | WP_334412441 |
| dedRef_1329529-1329530_47   | 8  | S   | 5  | 6,0515E-22 | WP_029550487 |
| dedRef_412516-412517_25     | 2  | S   | 5  | 1,3905E-21 | WP_228029457 |
| dedRef_901472-901473_28     | 1  | S   | 5  | 2,0371E-21 | WP_227649065 |
| dedRef_1504774-1504775_29   | 2  | Ν   | 5  | 3,0851E-21 | WP_217806349 |
|                             |    | СНС |    |            |              |
| dedRef_179953-179954_18     | 1  | S   | 10 | 2,7001E-20 | WP_206338328 |
| dedRef_18060-18060_20       | 4  | S   | 5  | 4,5839E-20 | YP_003541050 |
| dedRef_1003498-1003499_34   | 14 | S   | 6  | 9,6109E-17 | WP_303273946 |
| dedRef_796422-796422_44     | 4  | S   | 19 | 2,4789E-13 | WP_271019098 |
| dedRef_973251-973252_36     | 3  | S   | 5  | 9,7943E-10 | XP_020262272 |
| dedRef_772423-772424_30     | 2  | Ν   | 5  | 1,3734E-08 | YP_009388296 |
| dedRef_1501133-1501133_29   | 3  | Ν   | 5  | 2,3297E-08 | YP_009388272 |
| dedRef_582116-582117_24     | 3  | Ν   | 5  | 1,5257E-07 | WP_214280456 |
| dedRef_526259-526259_27     | 2  | S   | 5  | 2,001E-07  | YP_003934484 |
| dedRef_1603247-1603249_31   | 2  | Ν   | 5  | 2,593E-07  | WP_111034173 |
|                             |    | СНН |    |            |              |
| dedRef_883412-883413_50     | 41 | S   | 5  | 1,1002E-27 | WP_192529997 |
| dedRef_132239-132239_45-3   | 51 | S   | 6  | 2,8399E-16 | XP_054110662 |
| dedRef_347674-347675_31     | 1  | S   | 5  | 4,1815E-12 | XP_048322314 |
| dedRef_860255-860255_34     | 52 | Ν   | 5  | 7,4317E-12 | WP_236882086 |
| dedRef_1371339-1371340_31   | 16 | Ν   | 5  | 4,0462E-07 | WP_254062628 |
| dedRef_1362256-1362257_31   | 13 | S   | 5  | 1,1016E-06 | WP_214280456 |
| dedRef_639723-639724_26     | 14 | Ν   | 5  | 1,1664E-06 | WP_294211963 |
| dedRef_785307-785308_25     | 14 | Ν   | 5  | 1,6454E-06 | WP_214280456 |
| dedRef_1591560-1591561_26   | 14 | Ν   | 5  | 2,3447E-06 | WP_214280456 |
| dedRef_723056-723057_22     | 11 | Ν   | 5  | 2,9407E-06 | WP_214280456 |
|                             |    |     |    |            |              |

## Table S15. BLASTx of NvS showing differentially methylated motifs for read 1 and read 2 together.

| meth.1D               | Query                     | Number of HSPs | Lowest E-value | Accession    |
|-----------------------|---------------------------|----------------|----------------|--------------|
|                       | Read 1 - Cr               | oG             |                |              |
| 665556                | dedRef_1473565-1473566_32 | 5              | 1,4065E-26     | WP_305238619 |
| 1109014               | dedRef_3416496-3416497_47 | 5              | 5,0067E-24     | WP_106376840 |
| 714546/714550/714543/ | dedRef_1649087-1649089_45 | 5              | 1,0283E-22     | NP_775626    |

| 714539/714540/714541/ |                             |    |            |              |
|-----------------------|-----------------------------|----|------------|--------------|
| 714542                |                             |    |            |              |
| 286912                | dedRef_848521-848522_36     | 5  | 3,5988E-19 | XP_058285325 |
| 530127                | dedRef_776352-776353_60     | 5  | 3,9406E-14 | XP_047302963 |
| 294448                | dedRef_1816149-1816150_28-1 | 5  | 2,1076E-13 | XP_054532921 |
| 330795                | dedRef_1430779-1430780_18   | 35 | 6,4791E-12 | WP_275218940 |
| 2581194               | dedRef_3531305-3531306_47   | 5  | 1,8944E-09 | XP_040845861 |
| 533885                | dedRef_855587-855589_33     | 17 | 7,6873E-09 | WP_208325343 |
| 358557                | dedRef_3376029-3376030_57   | 3  | 3,0199E-08 | XP_047302963 |
|                       | Read 2 - CpG                |    |            |              |
| 249577                | dedRef_4994647-4994647_37   | 5  | 2,1182E-26 | WP_143768019 |
| 104725                | dedRef_426340-426343_31-1   | 5  | 3,8645E-26 | WP_206682097 |
| 763502                | dedRef_25086-25087_42       | 5  | 5,4959E-25 | XP_036010831 |
| 23764                 | dedRef_805625-805625_33-4   | 5  | 9,5514E-25 | XP_054309898 |
| 294640                | dedRef_2014210-2014210_16   | 5  | 2,5718E-21 | WP_205923115 |
| 18063                 | dedRef_3003772-3003773_3-7  | 6  | 2,9027E-20 | XP_063450681 |
| 352260                | dedRef_865278-865278_51     | 11 | 1,0951E-19 | WP_316486000 |
| 27464                 | dedRef_2608414-2608415_37-1 | 6  | 2,3777E-19 | XP_063468535 |
| 165902                | dedRef_459298-459299_32-1   | 5  | 2,8144E-17 | WP_218012903 |
| 76184                 | dedRef_961322-961323_46-5   | 5  | 5,2744E-17 | XP_055219682 |
|                       | Read 1 - CHG                |    |            |              |
| 480487/480473/480475/ |                             |    |            |              |
| 480477                | dedRef_1020880-1020883_24   | 10 | 1,0852E-25 | WP_335896943 |
| 1462295               | dedRef_3416496-3416497_47   | 5  | 5,0067E-24 | WP_106376840 |
| 382486                | dedRef_411196-411197_26     | 5  | 4,6113E-23 | WP_198670135 |
| 1017209               | dedRef_1700526-1700528_33   | 5  | 2,172E-13  | XP_040584748 |
| 646382                | dedRef_796422-796422_44     | 19 | 2,4789E-13 | WP_271019098 |
| 232310                | dedRef_175309-175310_40     | 5  | 3,1347E-13 | XP_017744634 |
| 382985                | dedRef_416648-416648_44     | 6  | 5,4318E-13 | XP_011514698 |
| 365974                | dedRef_2226864-2226867_8-1  | 1  | 2,34528    | WP_149265971 |
|                       | Read 2 - CHG                |    |            |              |
| 147397                | dedRef_3336423-3336424_31-2 | 5  | 8,5012E-28 | WP_220085038 |
| 191761                | dedRef_720424-720425_20-3   | 5  | 8,4949E-24 | WP_223009790 |
| 215993                | dedRef_887106-887106_34-1   | 5  | 6,7395E-14 | WP_236882086 |
| 169318                | dedRef_292153-292154_38     | 5  | 3,6479E-10 | XP_005822623 |
|                       |                             |    |            |              |

714535/714537/714538/

| 214910                                  | dedRef_772423-772424_30               | 5  | 1,3734E-08 | YP_009388296 |
|-----------------------------------------|---------------------------------------|----|------------|--------------|
| 70398                                   | dedRef_906030-906031_23-1             | 5  | 1,3693E-07 | WP_214280456 |
| 124226                                  | dedRef_1517149-1517152_32             | 5  | 1,5931E-07 | WP_214280456 |
| 332465                                  | dedRef_1603247-1603249_31             | 5  | 2,593E-07  | WP_111034173 |
| 203385                                  | dedRef_241954-241955_34-1             | 5  | 3,6736E-07 | WP_267994702 |
| 340976                                  | dedRef_197472-197473_30               | 5  | 4,3418E-07 | WP_254602374 |
|                                         | Read 1 - CHH                          |    |            |              |
| 568802                                  | dedRef_382319-382320_27-1             | 5  | 3,2166E-27 | WP_15797634  |
| 407400                                  | J. JD - 6 722527 722527 24            | E  | 2 722(E 2) | WD 142210120 |
| 497409                                  | dedRef_733537-733537_34               | 5  | 2,7336E-26 | WP_142319120 |
| 1027015                                 | dedRef_1020880-1020883_24             | 10 | 1,0852E-25 | WP_335896943 |
| 680955                                  | dedRef_2514724-2514724_35-1           | 5  | 2,674E-24  | WP_249080693 |
| 3163960/3163961/3163959/                |                                       |    |            |              |
| 3163962                                 | dedRef_3416496-3416497_47             | 5  | 5,0067E-24 | WP_106376840 |
| 970524 dedRef_4817575-4817576_28        |                                       | 5  | 6,7637E-24 | WP_25830490  |
| 839254/839294                           | 839254/839294 dedRef_899225-899226_33 |    | 7,0827E-24 | XP_047953659 |
| 1090459                                 | 1090459 dedRef_1562593-1562593_33-2   |    | 8,5418E-24 | WP_220152734 |
| 623359/623335/623336/                   |                                       |    |            |              |
| 623354/623333 dedRef_346773-346774_36   |                                       | 5  | 1,0978E-23 | WP_323563410 |
| 1232605/1232625 dedRef_36081-36081_23-2 |                                       | 5  | 4,5829E-23 | WP_146032260 |
|                                         | Read 2 - CHH                          |    |            |              |
| 1142826                                 | dedRef_1523346-1523347_36-1           | 5  | 7,1117E-27 | WP_283748784 |
| 1090994                                 | dedRef_879036-879037_37               | 5  | 2,4715E-26 | WP_330949972 |
| 1457815                                 | dedRef_66709-66712_34                 | 5  | 8,1703E-25 | WP_257205104 |
| 1026519                                 | dedRef_2107264-2107265_17-3           | 5  | 3,22E-22   | WP_141021492 |
| 9877898                                 | dedRef_3993608-3993608_27             | 5  | 5,1135E-22 | WP_30116138  |
| 1079144                                 | dedRef_693208-693209_37-1             | 5  | 7,3829E-22 | WP_002874006 |
| 1085615                                 | dedRef_801010-801011_53               | 78 | 5,7736E-21 | WP_305212016 |
| 91276                                   | dedRef_4944954-4944955_13-3           | 58 | 1,1487E-18 | WP_255054528 |
| 10679562                                | dedRef_4864839-4864839_13             | 5  | 7,0298E-18 | WP_208399076 |
|                                         |                                       |    |            |              |

| Query                       | meth.<br>sites | meth.<br>meth_<br>hi | Number<br>of HSPs | Lowest E-<br>value | Accession    | Description (E-value)                                                                                                                     |
|-----------------------------|----------------|----------------------|-------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                |                      |                   | Read 1 - CpG       |              |                                                                                                                                           |
|                             |                |                      |                   | iteau i ° epo      |              |                                                                                                                                           |
| dedRef_1649087-1649089_45   | 16             | Tall                 | 5                 | 1,02057E-22        | NP_775626    | pseudouridylate synthase RPUSD2 [Mus musculu                                                                                              |
| dedRef_1648079-1648080_21   | 9              | Short                | 40                | 2,50208E-19        | XP_047298760 | extensin-like [Homo sapiens]<br>>ref]XP_047298761.1  extensin-like [Homo<br>sapiens] >ref]XP_047298762.1  extensin-like<br>[Homo sapiens] |
| dedRef_800731-800731_52     | 4              | Tall                 | 59                | 6,62922E-16        | WP_259600334 | hypothetical protein, partial [Burkholderia<br>thailandensis]                                                                             |
|                             |                |                      |                   | Read 2 - CpG       |              |                                                                                                                                           |
|                             |                |                      |                   |                    |              | endonuclease/exonuclease/phosphatase family                                                                                               |
| dedRef_1545141-1545141_29   | 2              | Short                | 5                 | 8,11936E-28        | WP_207567937 | protein, partial [Cronobacter sakazakii]                                                                                                  |
| dedRef_592472-592473_24-2   | 1              | Tall                 | 5                 | 3,54782E-24        | WP_323567329 | hypothetical protein, partial [Pseudomonas sp.<br>CCI2.4]                                                                                 |
| dedRef_1475486-1475486_32   | 4              | Short                | 5                 | 6,17721E-24        | WP_164646752 | hypothetical protein, partial [Pseudomonas<br>viridiflava]                                                                                |
| dedRef_411196-411197_26     | 2              | Tall                 | 5                 | 4,57678E-23        | WP_198670135 | reverse transcriptase domain-containing protein<br>partial [Salmonella enterica]                                                          |
| dedRef_860782-860783_23     | 4              | Short                | 6                 | 1,50845E-22        | WP_205903887 | hypothetical protein, partial [Pseudomonas<br>viridiflava]                                                                                |
| dedRef_917560-917560_23     | 3              | Short                | 5                 | 2,57572E-21        | WP_213055896 | hypothetical protein, partial [Escherichia coli]                                                                                          |
| dedRef_199573-199573_55     | 6              | Short                | 7                 | 8,06871E-21        | XP_063455816 | uncharacterized protein LOC134729584 [Pan<br>paniscus]                                                                                    |
| dedRef_724392-724392_21     | 7              | Tall                 | 6                 | 1,6404E-19         | WP_207838564 | hypothetical protein, partial [Pseudomonas sp. 43(2021)]                                                                                  |
| dedRef_1479655-1479656_31-2 | 1              | Short                | 5                 | 2,6909E-19         | WP_212578393 | hypothetical protein, partial [Vibrio<br>parahaemolyticus]                                                                                |
| dedRef_1846774-1846774_54   | 14             | Tall                 | 65                | 8,59651E-18        | WP_214645256 | hypothetical protein, partial [Mycobacterium<br>tuberculosis]                                                                             |
|                             |                |                      |                   | Read 1 - CHG       |              |                                                                                                                                           |
| dedRef_732447-732447_37     | 6              | Tall                 | 5                 | 9,21577E-26        | WP_227645212 | hypothetical protein, partial [Klebsiella<br>pneumoniae]                                                                                  |
| dedRef_377192-377193_42-1   | 11             | Short                | 5                 | 8,37072E-24        | WP_227645212 | hypothetical protein, partial [Klebsiella<br>pneumoniae]                                                                                  |
| dedRef_689981-689982_35     | 1              | Short                | 26                | 1,58498E-23        | WP_323510696 | hypothetical protein, partial [Cryobacterium sp.<br>1083]                                                                                 |

# Table S16. BLASTx of TvS showing top 10 hits of differentially methylated fragments for read 1 and read 2 together.

| L ID 6 400407 400407 05     | 7  | <u> </u> | ç  | 2 280C4E 22  | NUD 217004242 | DUF1725 domain-containing protein                                                                                 |
|-----------------------------|----|----------|----|--------------|---------------|-------------------------------------------------------------------------------------------------------------------|
| dedRef_433436-433437_25     | 7  | Short    | 5  | 2,38964E-23  | WP_217884343  | [Thioflexithrix psekupsensis]                                                                                     |
| dedRef_2496177-2496179_44-1 | 15 | Tall     | 5  | 2,64361E-23  | XP_036016766  | igE-binding protein-like [Mus musculus]                                                                           |
| dedRef_1872316-1872317_3-2  | 22 | Short    | 5  | 3,03145E-23  | WP_311050758  | reverse transcriptase domain-containing protein<br>[Enterococcus faecalis]                                        |
| dedRef_1478089-1478092_23   | 12 | Short    | 5  | 5,41014E-22  | XP_006498466  | rho GTPase-activating protein 15 isoform X5 [Mus<br>musculus]                                                     |
| dedRef_473265-473265_34     | 7  | Short    | 5  | 7,51216E-22  | WP_334412441  | hypothetical protein, partial [Enterococcus<br>faecium]                                                           |
| dedRef_695459-695459_23-1   | 4  | Short    | 5  | 1,04402E-21  | WP_334412441  | hypothetical protein, partial [Enterococcus faecium]                                                              |
| dedRef_1314859-1314859_34   | 5  | Short    | 5  | 2,23411E-21  | WP_228003977  | hypothetical protein, partial [Leptospira<br>borgpetersenii]                                                      |
|                             |    |          |    | Read 2 - CHG |               |                                                                                                                   |
|                             |    |          |    |              |               |                                                                                                                   |
| dedRef_179953-179954_18     | 1  | Short    | 8  | 2,67984E-20  | WP_206338328  | hypothetical protein, partial [Pseudomonas<br>viridiflava]                                                        |
| dedRef_18060-18060_20       | 4  | Short    | 5  | 4,5495E-20   | YP_003541050  | ATP synthase F0 subunit 6 [Homo sapiens subsp.<br>'Denisova']                                                     |
| dedRef_3069618-3069619_3    | 2  | Tall     | 5  | 2,97206E-12  | WP_287256559  | DDE-type integrase/transposase/recombinase,<br>partial [Stenotrophomonas sp.]                                     |
| dedRef_4956546-4956546_20   | 2  | Tall     | 43 | 3,03115E-11  | WP_203744308  | hypothetical protein, partial [Escherichia coli]                                                                  |
| dedRef_1010182-1010183_35   | 2  | Short    | 5  | 3,89727E-10  | YP_008082327  | RNA polymerase beta' subunit [Pinus taeda]<br>>ref YP_010449301.1  RNA polymerase beta'<br>subunit [Pinus rigida] |
| dedRef_973251-973252_36     | 3  | Short    | 5  | 9,72089E-10  | XP_020262272  | uncharacterized protein LOC109838225<br>[Asparagus officinalis]                                                   |
| dedRef_1369164-1369165_24   | 3  | Short    | 5  | 2,82479E-08  | WP_254062609  | hypothetical protein [Enterococcus faecalis]                                                                      |
| dedRef_80571-80572_33       | 3  | Short    | 5  | 3,47192E-08  | WP_294211963  | hypothetical protein, partial [uncultured<br>Sphingomonas sp.]                                                    |
| dedRef_1509534-1509535_29-1 | 3  | Short    | 5  | 1,48577E-07  | WP_267992283  | reverse transcriptase family protein, partial<br>[Actinobacillus pleuropneumoniae]                                |
| dedRef_582116-582117_24     | 3  | Short    | 5  | 1,51422E-07  | WP_214280456  | hypothetical protein [Escherichia coli]                                                                           |
|                             |    |          |    | Read 1 - CHH |               |                                                                                                                   |
|                             |    |          |    |              |               |                                                                                                                   |
| dedRef_2480-2482_31-2       | 49 | Short    | 5  | 7,26458E-28  | WP_311050758  | reverse transcriptase domain-containing protein<br>[Enterococcus faecalis]                                        |
| dedRef_383569-383570_37     | 49 | Short    | 5  | 1,46277E-27  | WP_330949972  | reverse transcriptase domain-containing protein<br>[Streptococcus anginosus]                                      |
|                             |    |          |    |              |               |                                                                                                                   |

|  | 143 |  |
|--|-----|--|
|  | _   |  |
|  |     |  |

| dedRef_689981-689982_35       38       Short       26       1,58498E-23       WP_323510696       10S3]         ledRef_2496177-2496179_44-1       42       Tall       5       2,64361E-23       XP_036016766       igE-binding protein-like [Mus musculus]         dedRef_1649087-1649089_45       22       Tall       5       1,02057E-22       NP_775626       pseudouridylate synthase RPUSD2 [Mus musculus]         ledRef_1112190-1112190_24-2       50       Short       5       1,04308E-22       WP_334412441       faecium]         dedRef_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       pneumoniae]         hypothetical protein, partial [Enterococccus       hypothetical protein, partial [Klebsiella       pneumoniae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dedRef_3817988-3817990_34-2<br>dedRef_689981-689982_35<br>dedRef_2496177-2496179_44-1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| dedRef_689981-689982_35       38       Short       26       1,58498E-23       WP_323510696       10S3]         ledRef_2496177-2496179_44-1       42       Tall       5       2,64361E-23       XP_036016766       igE-binding protein-like [Mus musculus]         dedRef_1649087-1649089_45       22       Tall       5       1,02057E-22       NP_775626       pseudouridylate synthase RPUSD2 [Mus muscul         ledRef_112190-1112190_24-2       50       Short       5       1,04308E-22       WP_334412441       faecium]         dedRef_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       hypothetical protein, partial [Enterococcus         dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faecium]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       proton-conducting transporter membrane subun         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormacchei]                                                                                                                                                      | dedRef_689981-689982_35                                                               |
| dedRef_689981-689982_35       38       Short       26       1,58498E-23       WP_323510696       1083]         ledRef_2496177-2496179_44-1       42       Tall       5       2,64361E-23       XP_036016766       igE-binding protein-like [Mus musculus]         dedRef_1649087-1649089_45       22       Tall       5       1,02057E-22       NP_775626       pseudouridylate synthase RPUSD2 [Mus musculus]         ledRef_1112190-1112190_24-2       50       Short       5       1,04308E-22       WP_334412441       faecium]         dedRef_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       pneumoniae]         dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faecium]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Enterococcus faecium]         reverse transcriptase domain-containing protein         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       proton-conducting transporter membrane subun partial [Enterobacter hormaechei]         reverse transcriptase domain-containing protein                                   |                                                                                       |
| LedRef_2496177-2496179_44-1       42       Tall       5       2,64361E-23       XP_036016766       igE-binding protein-like [Mus musculus]         dedRef_1649087-1649089_45       22       Tall       5       1,02057E-22       NP_775626       pseudouridylate synthase RPUSD2 [Mus musculus]         dedRef_1112190-1112190_24-2       50       Short       5       1,04308E-22       WP_334412441       hypothetical protein, partial [Enterococcus faccium]         dedRef_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       pneumoniae]         dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faccium]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormacchei]         reverse transcriptase domain-containing protein         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormacchei]                                                             |                                                                                       |
| dedRef_1649087-1649089_45       22       Tall       5       1,02057E-22       NP_775626       pseudouridylate synthase RPUSD2 [Mus muscul         ledRef_1112190-1112190_24-2       50       Short       5       1,04308E-22       WP_334412441       faecium]         dedRef_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       pneumoniae]         dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faecium]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         Read 2 - CHH         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormaechei]         reverse transcriptase domain-containing proteit         reverse transcriptase domain-containing proteit                                                                                                                                                                                                                                                                                                                           | dedRef_2496177-2496179_44-1                                                           |
| Led Ref_1112190-1112190_24-2       50       Short       5       1,04308E-22       WP_334412441       hypothetical protein, partial [Enterococcus         ded Ref_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       pneumoniae]         ded Ref_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faecium]         ded Ref_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         Proton-conducting transporter membrane subun         ded Ref_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormacchei]         reverse transcriptase domain-containing protein         proton-conducting transporter membrane subun         proton-conducting transporter membrane subun         proton-conducting transporter membrane subun         partial [Enterobacter hormacchei]         proton-conducting transporter membrane subun         partial [Enterobacter hormacchei]         proton-conducting transporter membrane subun         partial [Enterobacter hormacchei]         proton-conducting transporter membrane subun |                                                                                       |
| Led Ref_1112190-1112190_24-2       50       Short       5       1,04308E-22       WP_334412441       hypothetical protein, partial [Enterococcus         ded Ref_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       pneumoniae]         ded Ref_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faecium]         ded Ref_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         Proton-conducting transporter membrane subun         ded Ref_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormacchei]         reverse transcriptase domain-containing protein         proton-conducting transporter membrane subun         proton-conducting transporter membrane subun         proton-conducting transporter membrane subun         partial [Enterobacter hormacchei]         proton-conducting transporter membrane subun         partial [Enterobacter hormacchei]         proton-conducting transporter membrane subun         partial [Enterobacter hormacchei]         proton-conducting transporter membrane subun | L ID 6 1640087 1640080 45                                                             |
| edRef_1112190-1112190_24-2       50       Short       5       1,04308E-22       WP_334412441       faccium]         dedRef_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       pneumoniae]         dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faccium]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       reverse transcriptase domain-containing protein         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormacchei]         reverse transcriptase domain-containing protein         reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dedRef_1649087-1649089_45                                                             |
| dedRef_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       hypothetical protein, partial [Klebsiella<br>pneumoniae]         dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faccium]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         Proton-conducting transporter membrane subun<br>partial [Enterobacter hormaechei]<br>reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
| dedRef_32467-32467_31       37       Short       5       7,28239E-22       WP_227645862       pneumoniae]         dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faceium]         dedRef_695459-695459_23-1       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         reverse transcriptase domain-containing protein         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormaechei]         reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dedRef_1112190-1112190_24-2                                                           |
| dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faceium]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         Read 2 - CHH         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormaechei]         reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       |
| dedRef_695459-695459_23-1       42       Short       5       1,04402E-21       WP_334412441       faccium]         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         reverse transcriptase domain-containing protein         dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         reverse transcriptase domain-containing protein         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormacchei]         reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dedRef_32467-32467_31                                                                 |
| dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         reverse transcriptase domain-containing protein         Read 2 - CHH         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormaechei]         reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |
| dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         Read 2 - CHH         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormaechei]         reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dedRef_695459-695459_23-1                                                             |
| dedRef_22135-22137_26       42       Short       5       7,4278E-21       WP_228029457       partial [Leptospira borgpetersenii]         Read 2 - CHH         dedRef_3510320-3510321_2       5       Tall       5       1,75185E-13       WP_271080373       partial [Enterobacter hormaechei]         reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |
| proton-conducting transporter membrane subun<br>dedRef_3510320-3510321_2 5 Tall 5 1,75185E-13 WP_271080373 partial [Enterobacter hormaechei]<br>reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dedRef_22135-22137_26                                                                 |
| proton-conducting transporter membrane subun<br>dedRef_3510320-3510321_2 5 Tall 5 1,75185E-13 WP_271080373 partial [Enterobacter hormaechei]<br>reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
| dedRef_3510320-3510321_2 5 Tall 5 1,75185E-13 WP_271080373 partial [Enterobacter hormaechei]<br>reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
| reverse transcriptase domain-containing protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dedRef_3510320-3510321_2                                                              |
| dedRef_802343-802344_32 27 Tall 5 1,02822E-08 WP_267992538 partial [Actinobacillus pleuropneumoniae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dedRef_802343-802344_32                                                               |
| dedRef_601720-601721_35 24 Tall 5 2,00566E-07 WP_214280456 hypothetical protein [Escherichia coli]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dedRef_601720-601721_35                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
| dedRef_633310-633311_31-16 20 Short 5 7,03037E-07 WP_214280456 hypothetical protein [Escherichia coli]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dedRef_633310-633311_31-16                                                            |
| NAD-dependent succinate-semialdehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |
| dedRef_812402-812403_29 17 Tall 5 1,14106E-06 WP_254602374 dehydrogenase, partial [Burkholderia lata]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dedRef_812402-812403_29                                                               |
| SMC-Scp complex subunit ScpB, partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |
| dedRef_613800-613801_27 13 Tall 5 1,44263E-06 WP_158405218 [Faecalibacterium prausnitzii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       |
| dedRef 1039075-1039076 27 15 Tall 5 1,63478E-06 WP 254062609 hypothetical protein [Enterococcus faecalis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dedRef_613800-613801_27                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |
| NAD-dependent succinate-semialdehyde<br>dedRef_1211072-1211072_23 16 Tall 5 2,4726E-06 WP_254602374 dehydrogenase, partial [Burkholderia lata]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dedRef_613800-613801_27<br>dedRef_1039075-1039076_27                                  |
| dedRef_1211072-1211072_23 16 Tall 5 2,4726E-06 WP_254602374 dehydrogenase, partial [Burkholderia lata]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dedRef_1039075-1039076_27                                                             |
| dedRef_723056-723057_22 11 Tall 5 2,91862E-06 WP_214280456 hypothetical protein [Escherichia coli]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       |
| SMC-Scp complex subunit ScpB, partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dedRef_1039075-1039076_27<br>dedRef_1211072-1211072_23                                |
| Since sep complex subuint septs, partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dedRef_1039075-1039076_27<br>dedRef_1211072-1211072_23                                |
| dedRef 1163173-1163174 27 13 Tall 5 2,98082E-06 WP 158405218 [Faecalibacterium prausnitzii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dedRef_1039075-1039076_27<br>dedRef_1211072-1211072_23                                |

| Number Lowest E-     |                             |         |             |              |                                                                         |  |  |  |
|----------------------|-----------------------------|---------|-------------|--------------|-------------------------------------------------------------------------|--|--|--|
| meth.ID              | Query                       | of HSPs | value       | Accession    | Description (E-value)                                                   |  |  |  |
|                      |                             | D       | ad 1 CpC    |              |                                                                         |  |  |  |
| Read 1 - CpG         |                             |         |             |              |                                                                         |  |  |  |
| 345947/345949/345951 | dedRef_2497661-2497662_35   | 5       | 1,39857E-28 | WP_098733516 | replication protein P, partial [Escherichia coli]                       |  |  |  |
| 1564181/1564179      | dedRef_857302-857303_35     | 5       | 2,03381E-28 | WP_252146668 | excisionase [Escherichia coli]                                          |  |  |  |
| 1514083              | dedRef_714684-714685_43     | 5       | 1,02144E-27 | WP_032254233 | replication protein P, partial [Escherichia coli]                       |  |  |  |
| 638591               | dedRef_136580-136581_35     | 5       | 3,11153E-27 | WP_187267031 | terminase gpA endonuclease subunit, partial<br>[Escherichia coli]       |  |  |  |
| 236122               | dedRef_389796-389796_24-2   | 6       | 1,67224E-24 | WP_165766559 | hypothetical protein, partial [Staphylococcus capitis]                  |  |  |  |
| 401548               | dedRef_1430190-1430191_24   | 37      | 4,31959E-23 | WP_331708159 | hypothetical protein, partial [Pseudomonas<br>aeruginosa]               |  |  |  |
| 714550               | dedRef_1649087-1649089_45   | 5       | 1,02828E-22 | NP_775626    | pseudouridylate synthase RPUSD2 [Mus<br>musculus]                       |  |  |  |
| 1423149              | dedRef_4941418-4941418_16   | 11      | 1,14991E-21 | WP_021666093 | MULTISPECIES: hypothetical protein<br>[Bacteria]                        |  |  |  |
| 1591147              | dedRef_948692-948693_56     | 5       | 2,71438E-20 | NP_008211    | cytochrome b [Pan paniscus]                                             |  |  |  |
| 265568               | dedRef_1613544-1613544_33   | 5       | 4,21209E-20 | WP_228003977 | hypothetical protein, partial [Leptospira<br>borgpetersenii]            |  |  |  |
|                      |                             | Re      | ead 2 - CpG |              |                                                                         |  |  |  |
|                      |                             |         |             |              |                                                                         |  |  |  |
| 34443                | dedRef_4349474-4349475_27-6 | 5       | 3,3289E-26  | XP_055219682 | Bardet-Biedl syndrome 4 protein isoform X5<br>[Gorilla gorilla gorilla] |  |  |  |
| 140684               | dedRef_3501534-3501534_25   | 5       | 4,16852E-25 | WP_146136603 | RBD-like domain-containing protein<br>[Aphanothece hegewaldii]          |  |  |  |
| 763502               | dedRef_25086-25087_42       | 5       | 5,45474E-25 | XP_036010831 | contactin-5 isoform X1 [Mus musculus]                                   |  |  |  |
| 31033                | dedRef_932878-932878_38-1   | 5       | 1,04694E-24 | XP_054385603 | DNA mismatch repair protein Mlh3 isoform<br>X7 [Pongo abelii]           |  |  |  |
| 28922                | dedRef_1587864-1587864_34-7 | 5       | 2,91491E-24 | XP_042750896 | protein GVQW1-like, partial [Lagopus<br>leucura]                        |  |  |  |
| 339202               | dedRef_592472-592473_24-2   | 5       | 3,54782E-24 | WP_323567329 | hypothetical protein, partial [Pseudomonas sp.<br>CCI2.4]               |  |  |  |
| 79766/79764          | dedRef_369428-369430_45     | 5       | 1,18358E-23 | XP_054961064 | protein FRG1B-like [Pan paniscus]                                       |  |  |  |
| 10587                | dedRef_2731331-2731332_7-3  | 6       | 4,10855E-23 | WP_206671226 | hypothetical protein, partial [Staphylococcus aureus]                   |  |  |  |
| 15889                | dedRef_1597560-1597560_32-1 | 5       | 2,79757E-22 | XP_054385603 | DNA mismatch repair protein Mlh3 isoform<br>X7 [Pongo abelii]           |  |  |  |

 Table S17. BLASTx of TvS showing top 10 hits of differentially methylated motifs for read 1 and read 2 together.

| 257392                                         | dedRef_848433-848433_51     | 5 | 1,16941E-21  | XP_054961064 | protein FRG1B-like [Pan paniscus]                                                          |
|------------------------------------------------|-----------------------------|---|--------------|--------------|--------------------------------------------------------------------------------------------|
|                                                |                             | 1 | Read 1 - CHG |              |                                                                                            |
| 21/22/05                                       |                             |   | 2.02201E-20  | WD 070146660 | ···                                                                                        |
| 2163495                                        | dedRef_857302-857303_35     | 5 | 2,03381E-28  | WP_252146668 | excisionase [Escherichia coli]                                                             |
| 268805/268807                                  | dedRef_498143-498144_54     | 5 | 3,23499E-28  | WP_174714868 | C40 family peptidase, partial [Escherichia coli]                                           |
| 524317                                         | dedRef_2013374-2013382_30   | 5 | 5,31202E-28  | WP_146627548 | antitermination protein, partial [Streptococcus<br>pneumoniae]                             |
| 2045831/2045833/20458<br>35/2045821/2045829/20 |                             |   |              |              |                                                                                            |
| 45826                                          | dedRef_714684-714685_43     | 5 | 1,02144E-27  | WP_032254233 | replication protein P, partial [Escherichia coli                                           |
| 835373                                         | dedRef_13123-13124_50       | 5 | 6,90857E-27  | WP_136694900 | tail assembly protein, partial [Escherichia coli]                                          |
| 62331                                          | dedRef_1587864-1587864_34-7 | 5 | 2,93692E-24  | XP_042750896 | protein GVQW1-like, partial [Lagopus<br>leucura]                                           |
| 1717804                                        | dedRef_4285559-4285560_31   | 5 | 1,18508E-23  | WP_240491102 | MULTISPECIES: hypothetical protein<br>[Bacilli]                                            |
| 430179                                         | dedRef_2797613-2797614_23   | 5 | 1,34138E-23  | WP_218641054 | endonuclease/exonuclease/phosphatase family protein, partial [Paenibacillus odorifer]      |
| 261298                                         | dedRef_2496177-2496179_44-1 | 5 | 2,66357E-23  | XP_036016766 | igE-binding protein-like [Mus musculus]                                                    |
| 880719                                         | dedRef_1418514-1418514_40   | 5 | 8,35351E-22  | XP_045002940 | LOW QUALITY PROTEIN: uncharacterized<br>protein LOC123460056, partial [Jaculus<br>jaculus] |
|                                                |                             | 1 | Read 2 - CHG |              |                                                                                            |
| 173906                                         | dedRef_530079-530080_29     | 5 | 1,10171E-25  | WP_143768019 | hypothetical protein, partial [Paenibacillus<br>odorifer]                                  |
| 298355                                         | dedRef_831942-831942_23     | 5 | 4,96532E-24  | WP_139312580 | hypothetical protein, partial [Pseudomonas<br>aeruginosa]                                  |
| 191754                                         | dedRef_720424-720425_20-3   | 5 | 8,43125E-24  | WP_223009790 | hypothetical protein, partial<br>[Stenotrophomonas maltophilia]                            |
| 181269                                         | dedRef_1584780-1584781_38   | 5 | 1,05765E-23  | WP_219861017 | hypothetical protein, partial [Corynebacteriun<br>diphtheriae]                             |
| 133759                                         | dedRef_699133-699133_35-1   | 5 | 8,42362E-23  | WP_000352757 | reverse transcriptase family protein, partial<br>[Helicobacter pylori]                     |
| 306529                                         | dedRef_1060000-1060000_33-2 | 5 | 1,0509E-22   | WP_206603989 | hypothetical protein, partial [Vibrio<br>vulnificus]                                       |
| 19040                                          | dedRef_1597560-1597560_32-1 | 5 | 2,79757E-22  | XP_054385603 | DNA mismatch repair protein Mlh3 isoform<br>X7 [Pongo abelii]                              |
| 1849144                                        | dedRef_4229842-4229843_31-2 | 5 | 3,28846E-22  | WP_205976132 | DUF1725 domain-containing protein, partial<br>[Pseudomonas viridiflava]                    |

| 241514          | dedRef_4972335-4972337_27-1 | 5  | 4,11348E-22  | WP_258304901 | hypothetical protein, partial [Escherichia c                                |
|-----------------|-----------------------------|----|--------------|--------------|-----------------------------------------------------------------------------|
| 241703          | dedRef_5004293-5004293_30   | 5  | 9,52036E-22  | WP_139372712 | hypothetical protein, partial [Bacillus anthracis]                          |
|                 |                             | I  | Read 1 - CHH |              |                                                                             |
|                 |                             |    |              |              | hypothetical protein, partial [Iodidimonas                                  |
| 458959          | dedRef_375863-375864_24     | 5  | 4,69301E-25  | WP_281302239 | MBR-14]                                                                     |
| 2619715         | dedRef_2268147-2268148_35   | 6  | 5,10597E-25  | WP_141607967 | hypothetical protein [Leptospira interroga                                  |
| 655326          | dedRef_1059269-1059270_27-2 | 7  | 4,49854E-24  | WP_219553321 | hypothetical protein, partial [Klebsiella<br>pneumoniae]                    |
| 839254/839294   | dedRef_899225-899226_33     | 5  | 7,0827E-24   | XP_047953659 | 30S ribosomal protein S12-B, chloroplast<br>[Salvia hispanica]              |
| 1964729         | dedRef_1430787-1430787_21   | 37 | 1,61182E-23  | WP_157464686 | hypothetical protein [Crocosphaera<br>chwakensis]                           |
| 498649          | dedRef_780728-780729_49-2   | 23 | 2,86151E-23  | WP_213842745 | hypothetical protein, partial [Enterobacto<br>hormaechei]                   |
| 1075659         | dedRef_1434088-1434089_22   | 5  | 2,95952E-23  | WP_303704525 | hypothetical protein, partial [Klebsiella<br>pneumoniae]                    |
| 1269561         | dedRef_4150744-4150745_22   | 5  | 6,99859E-23  | WP_142951599 | hypothetical protein, partial [Bacillus<br>thuringiensis]                   |
| 494862          | dedRef_552007-552011_32-1   | 5  | 9,05656E-23  | WP_206682097 | DUF1725 domain-containing protein, part<br>[Escherichia coli]               |
| 637207          | dedRef_494841-494842_29-2   | 5  | 9,5152E-23   | WP_142319120 | hypothetical protein, partial [Bacillus cere                                |
|                 |                             | I  | Read 2 - CHH |              |                                                                             |
| 1463819/1463834 | dedRef_720879-720880_33     | 5  | 7,07049E-27  | WP_227645212 | hypothetical protein, partial [Klebsiella<br>pneumoniae]                    |
| 873381          | dedRef_590435-590437_32     | 5  | 4,81022E-26  | WP_218140791 | hypothetical protein [Cylindrospermopsi<br>raciborskii]                     |
| 6958622         | dedRef_1649422-1649422_34   | 5  | 7,94701E-26  | XP_036016762 | igE-binding protein-like [Mus musculus                                      |
| 443754          | dedRef_394207-394212_34-3   | 5  | 1,96797E-24  | XP_054112079 | ubiquitin carboxyl-terminal hydrolase 3.<br>isoform X2 [Callithrix jacchus] |
| 2477134         | dedRef_3186886-3186887_14   | 28 | 1,12757E-21  | WP_232783055 | hypothetical protein, partial [Bacillus sp<br>BA3]                          |
| 216018          | dedRef_952293-952293_43-1   | 5  | 4,05735E-21  | XP_035169934 | protein GVQW1-like, partial [Oxyura<br>jamaicensis]                         |
| 1085615         | dedRef_801010-801011_53     | 78 | 5,7303E-21   | WP_305212016 | hypothetical protein, partial [Klebsiella<br>variicola]                     |
| 13044749        | dedRef 865645-865647 53     | 29 | 6,03534E-21  | WP 141394363 | hypothetical protein [Enterobacter<br>hormaechei]                           |

| 10679562 | dedRef_4864839-4864839_13 | 5 | 6,97707E-18 | WP_208399076 | hypothetical protein, partial [Staphylococcus<br>epidermidis]    |
|----------|---------------------------|---|-------------|--------------|------------------------------------------------------------------|
| 4971534  | dedRef_1334571-1334572_30 | 5 | 1,08936E-16 | WP_206682097 | DUF1725 domain-containing protein, partial<br>[Escherichia coli] |