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Abstract

Herbivory can be reduced by the production of defense compounds (secondary metabo-

lites), but generally defenses are costly, and growth is prioritized over defense. While

defense compounds may deter herbivory, nutrients may promote it. In a field study in boreal

forest in Norway, we investigated how simulated herbivory affected concentrations of phe-

nolics (generally a defense) and the carbon/nitrogen (C/N) ratio in annual shoots of bilberry

(Vaccinium myrtillus), a deciduous clonal dwarf shrub whose vegetative and generative

parts provide forage for many boreal forest animals. We measured concentrations of total

tannins, individual phenolics, nitrogen and carbon following several types and intensities of

herbivory. We identified 22 phenolics: 15 flavonoids, 1 hydroquinone and 6 phenolic acids.

After high levels of herbivory, the total tannin concentration and the concentration of these

22 phenolics together (called total phenolic concentration) were significantly lower in bilberry

annual shoots than in the control (natural herbivory at low to intermediate levels). Low-inten-

sive herbivory, including severe defoliation, gave no significantly different total tannin or total

phenolic concentration compared with the control. Many individual phenolics followed this

pattern, while phenolic acids (deterring insect herbivory) showed little response to the treat-

ments: their concentrations were maintained after both low-intensive and severe herbivory.

Contrary to our predictions, we found no significant difference in C/N ratio between treat-

ments. Neither the Carbon:Nutrient Balance hypothesis nor the Optimal Defense hypothe-

ses, theories predicting plant resource allocation to secondary compounds, can be used to

predict changes in phenolic concentrations (including total tannin concentration) in bilberry

annual shoots after herbivory: in this situation, carbon is primarily used for other functions

(e.g., maintenance, growth, reproduction) than defense.

Introduction

Bilberry (Vaccinium myrtillus L.) is an abundant species in boreal forests in Fennoscandia [1–

3], and a key understory component influencing soil properties and forest regeneration and
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succession [4]. This deciduous clonal dwarf shrub has evergreen shoots and grows on nutri-

ent-poor soil by ramets, i.e., orthotropic shoots branching from buds on a rhizome [1, 2, 5–8].

In this study, we called the aboveground orthotropic shoot (the stem) including side shoots

and leaves a ramet.

Vegetative and generative parts of bilberry are important forage for many mammal, bird,

and insect species in all seasons [9–16]. One of many strategies to minimize herbivory on vege-

tative plant tissue is the production of defense compounds (defense metabolites, secondary

compounds) by plants [17, 18]. Under resource limitation, trade-offs occur among growth,

maintenance, storage, reproduction, and defense in plants [19, and references herein]. Some of

the theories that predict plant resource allocation to secondary compounds are relevant for bil-

berry-herbivore interactions. In this study we focused on the Optimal Defense hypotheses

(consisting of several (sub)hypotheses, see [20]) and the Carbon:Nutrient Balance hypothesis.

The Optimal Defense hypotheses predict that production of inducible defenses is low when

herbivory is absent or nearly absent and increases when herbivory is present, as defenses are

costly [20–28]. In general, however, growth is prioritized over defense [19, 29–32, but see 33,

and references herein]. Therefore, a severe loss of photosynthetic tissue may not allow for pro-

duction of defense compounds and may even lead to the breakdown of existing defenses,

resulting in lower resistance to herbivory [34–37].

Like many deciduous woody species growing on nutrient-poor soils, bilberry stores carbon

in roots and other woody tissue, like stems [19, 30, 38, 39]. The Carbon:Nutrient Balance

(CNB) hypothesis predicts a mobilization of these carbon reserves and an increase in the level

of carbon-based defense compounds in bilberry after herbivory on shoots and leaves [19, 20,

38, 40]. Phenolic compounds (phenolics) are primarily composed of carbon [41] and can act

as such carbon-based defense compounds reducing herbivore performance and herbivory

[42–47]. Phenolics include tannins (condensed tannins or proanthocyanidins and hydrolyz-

able tannins), flavonoids and other small molecular mass phenolics, including cinnamic acids

[41, 42, 48]. Many different phenolics have been identified in bilberry stems, shoots, leaves,

berries, and rhizomes [49–55]. We expected that the effects of tissue damage, resulting from

herbivory or other causes, on phenolic concentration in bilberry vary depending on several

factors: the damage type (whether leaves, shoots or the whole ramet is damaged), damage

intensity, and the level the actual phenolic can function as a defense against herbivores, as dif-

ferent phenolics have multiple biological functions and efficacy [56–63].

Defense compounds may deter herbivory, while nutrients may promote it [18, 64–68].

Nitrogen concentration in bilberry, which is often used as a proxy for nutrient concentration,

increases after browsing in several woody species, often regardless of soil productivity [69–73].

Pruning, the partial or complete removal of stem and/or shoots, reduces bud numbers and

increases the root:shoot ratio. This results in decreased competition for nutrients among meri-

stems, causing an increase in new plant tissue nutrient concentration [32, 74–78]. On the

other hand, severe defoliation results in a loss of nitrogen [79], or at least in the loss of propor-

tionally more nutrients than carbon, as most nutrients are found within the foliage of decid-

uous species in the growing season [19]. Furthermore, severe defoliation results in increased

fine root mortality [80, 81]. This leads to reduced nutrient absorption which results in a

decreased nutrient concentration, especially on nutrient-poor soils [82, 83]. Therefore, we

expected that the effects of tissue damage, due to herbivory or other causes, on nitrogen con-

centration in bilberry vary, depending on type and intensity of damage.

Most research on phenolics in bilberry has focused on berries, although studies on leaves,

shoots and stems have been conducted [49, 50, 54, 84–86]. Previous studies of herbivory, nutri-

tional quality and defense responses of bilberry shoots and leaves did not involve controlled

clipping experiments, nor measurements of phenolic, nitrogen and carbon concentrations in
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annual shoots [87–92]. After herbivory, we expected a measurable response in the young tissue

of annual shoots [21, 39, 93]. For these reasons, we investigated how simulated herbivory

affected phenolic concentrations and the carbon/nitrogen (C/N) ratio, often used as indicator

of plant nutritional quality [94, 95], in bilberry annual shoots. We measured total tannin con-

centration and concentrations of individual phenolics, nitrogen and carbon in bilberry annual

shoots after several types and intensities of simulated herbivory. Persson and colleagues [55]

performed a simulated browsing study on bilberry investigating responses in phenolic and

nitrogen concentrations and C/N ratio in leaves and leafless shoots. Different from Persson

and colleagues, who performed different levels of simulated moose (Alces alces L.) browsing

only, we used three types of simulated herbivory, representing herbivory by large ungulates

(eating ramets), herbivory by smaller mammals, birds and insects (eating annual shoots) and

herbivory by insects (eating leaves). Our study was performed under ambient herbivory condi-

tions in boreal forest in southeastern Norway in 2014.

Our objective was to examine how different herbivory types (ramet herbivory, annual shoot

herbivory, leaf herbivory) and intensities affect the concentration of phenolics (total tannins as

well as several small molecular mass phenolics) and nitrogen (nutritional quality) in bilberry

annual shoots. We compared our simulated herbivory (from here often just called herbivory)

with ambient herbivory, which was at a low to intermediate level. We considered our results in

the context of the plant defense theories described above. We predicted that in bilberry annual

shoots, the concentration of:

I. phenolics is, at low to intermediate herbivory levels, positively correlated with intensity of

herbivory;

II. phenolics is, at high herbivory levels, lower than without herbivory;

III. nitrogen is, at low to intermediate herbivory levels, positively correlated with intensity of

herbivory, i.e., the C/N ratio is negatively correlated with intensity of herbivory;

IV. nitrogen is, at high herbivory levels, lower, i.e., the C/N ratio is higher, than without

herbivory.

Methods

Study area

We conducted our study in coniferous boreal forest at six locations (400–670 m a.s.l.) in the

Østerdalen valley close to Evenstad (latitude 61.43 ˚N, longitude 11.08 ˚E) in southeastern

Norway in 2014. In this year, mean annual temperature was 4.8 ˚C and total precipitation was

896 mm [96]. The forest was owned by the Norwegian state-owned land and forest enterprise

Statskog SF (www.statskog.no), who granted permission to do the experiment, including sam-

pling bilberry plants.

Study design

Field treatments. At each location, we used four lines, more or less parallel and spaced by

ten m, to select bilberry ramets with approximately two m distance between consecutive

ramets (Fig 1). Along each line, we selected 33 or 34 ramets at the beginning of the growing

season (May) and marked them with steel wire. Selected ramets had at least ten shoots longer

than 1.0 cm from the previous growing season (annual shoots from 2013, S1 File), and no

visual signs of extensive herbivory (most ramets had some past herbivory signs), so the initial

herbivory level for all ramets was low. In total we selected 135 ramets at each location. We
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Fig 1. Study design. Schematic bilberry ramet, eight treatments (see text): C (control), three leaf treatments (L), three shoot treatments (S), one

ramet treatment (R). 21 annual shoots are visible (1 at the top of the stem, 10 at each side of the stem). AGE: the stem and all shoots (same

schematic bilberry as in the treatments) are depicted with numbers: the stem is at least four years old and indicated with 4, shoots at least three

years old are indicated with 3, shoots at least two years old are indicated with 2, annual shoots (with leaves) are indicated with 1. NOTE: the upper

three-year-old shoot at the right side of the stem and the middle three-year-old shoot at the left side of the stem may also be two years old.

LOCATION: at four lines, 34 (upper three lines) and 33 (lower line) ramets are selected: 30 control ramets and 15 ramets for every one of the other

7 treatments, randomly appointed. Approximately 2 m between each ramet and 10 m between each line. This location is one of six locations

(namely: “Imsdalen 1”). Drawing: Marcel Schrijvers-Gonlag.

https://doi.org/10.1371/journal.pone.0298229.g001
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divided the ramets within each location randomly (S1 File) into four treatment groups: control

(n = 30), abbreviated to C, representing ambient, initially low, herbivory only; ’leaves cut’

(n = 45), abbreviated to L, representing additional herbivory by insects; ’annual shoots cut’

(n = 45), abbreviated to S, representing additional herbivory by insects and small-sized verte-

brates; and ’ramet cut’ (n = 15), abbreviated to R, representing additional herbivory by large

ungulates. At all six locations, we removed leaves by hand (treatment L) at three different

intensities: 10% from 15 ramets, 50% from another 15 ramets and 100% from the remaining

15 ramets (S1 File). At five locations, we removed annual shoots by hand (treatment S) at simi-

lar intensities (10%, 50% and 100%; n = 15 for each), and we cut the ramet in treatment R by

removing 90% of the ramet with garden scissors (Fig 1). In total this resulted in eight treat-

ments: ’control’ (C: ambient, initially low, herbivory), ’leaves cut’ (3 intensities: L10, L50,

L100), ’annual shoots cut’ (3 intensities: S10, S50, S100), ’ramet cut’ (R). Ramets in C that expe-

rienced severe herbivory between selecting and harvesting, were excluded from our analyses:

therefore, all control ramets experienced herbivory at low to intermediate levels (ambient her-

bivory). The shoots were removed and ramets cut on 24–27 May and leaves were removed in

the period 21 June– 2 July. In our experiment, we considered C as herbivory at the lowest level.

Within L, L10 represented leaf herbivory at a low level, L50 represented leaf herbivory at an

intermediate level and L100 represented leaf herbivory at a high level. Similar with S: within S,

S10 represented annual shoot herbivory at a low level, S50 represented annual shoot herbivory

at an intermediate level and S100 represented annual shoot herbivory at a high level. We con-

sidered R as herbivory at the highest level and S100 as herbivory at the second highest level in

our experiment: judging after proportion of biomass removed, these two treatments were the

two most severe herbivory treatments in our study.

Bilberry sampling. All ramets (n = 750) were harvested towards the end of the growing

season (19–28 August) by cutting the stem at ground level with garden scissors. The ramets

were dried for minimum 48 hours in a drying oven (Binder FED 720 E2, Germany) at 30 ˚C,

before the dried ramets were stored in a dark and dry place at room temperature. From each

location, we randomly selected a minimum of five dried ramets from each herbivory treatment

(including control), resulting in 232 ramets in total. From each of these ramets, we randomly

selected five annual shoots (S1 File), continued drying these annual shoots for minimum 24

hours at 30 ˚C and stored them in a dark and dry place at room temperature, prior to prepara-

tion and analyses of tannin, phenolic, carbon and nitrogen concentrations.

Chemical analyses

Bilberry shoots. Before analyses of acetone-soluble tannins, methanol-soluble phenolics,

and total carbon and nitrogen, the shoots were cut in fragments of maximum 0.5 cm and for

each ramet we transferred these subsamples to a 2 ml or 7 ml vial with three stainless steel

beads (2.8 mm) to pulverize the tissue; with large subsamples (approximately 200, 300 and 400

mg; all weight measurements in this study: scale Sartorius SE2, d = 0.1 μg) we used four, five or

six beads, respectively. The shoot fragments were pulverized by the beads using a Precellys 24

homogenizer (Bertin Technologies, France): 25 s at 5500 rpm, 15 times with two minutes in

between. When handling the shoots, we used disposable latex gloves.

Shoot tannins. The shoots were analyzed for acetone (70%)-soluble tannins (e.g., hydro-

lyzable tannins and polymeric condensed tannins (proanthocyanidins)) [97, 98: S1, 99] with a

spectrophotometer (Spectronic 20 Genesys; Spectronic Instruments, USA). We slightly

adjusted the acid butanol assay for proanthocyanidins [100] to measure tannins in our sub-

samples (S2 File). To relate tannin concentration in our subsamples to measured absorbance
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(at 550 nm) we built a standard reference curve, using Sephadex LH-20 (GE Healthcare Bio-

Sciences AB, Sweden) for tannin purification [98: S1, 101].

Shoot phenolics. Methanol-soluble phenolics (e.g., flavonoids and phenolic acids) were

extracted from the shoots and quantified using high performance liquid chromatography

(HPLC) with injection volume 10 μl (Agilent series 1100) and identified using a UHPLC

quadrupole time-of-flight liquid chromatograph–mass spectrometer (Agilent Technologies,

6540 UHD Accurate-Mass Q-TOF LC/MS, 1290 Infinity) as described by Nissinen and col-

leagues [102] (S3 File). Compounds that could not be identified were not used in this study.

We used D(-)-Salicin min. 99% CHR (Aldrich-Chemie, West-Germany) in methanol (100%)

as an internal standard in two out of five subsamples to evaluate extraction efficiency (S3

File).

Shoot carbon and nitrogen. The shoots were analyzed for carbon and nitrogen (total con-

centration (mg/g, dry weight) after destruction; micro CN-analyzer (thermo), Chemical Bio-

logical Soil Laboratory (quality system based on the ISO-17025 standard), Wageningen

University, July 2016).

Statistical analyses

The total tannin absorbance measurements were averaged per subsample and with the stan-

dard reference curve and subsample weight these subsample means were converted to concen-

trations (mg tannins/g shoots, dry weight), which were used in further analyses. In our HPLC

analyses we used the concentration (mg/g, dry weight) of every identified phenolic as the

response variable in our modeling, calculated as: ((rf x area) / weight) / (inj / tot) where rf is

the HPLC response factor for the actual phenolic at the used wavelength, area is the peak area

in the HPLC result table (mAU*s) at the used wavelength, weight is the initial shoot subsample

weight (mg), inj is the HPLC injection volume (10 or 15 μl) and tot is the total volume (600 μl)

in which the subsample was dissolved (300 μl methanol + 300 μl purified water, S3 File). The

HPLC response factor is the ratio between the concentration of a specific compound (mg/g)

and the response of the detector (area: mAU*s) to this compound at a specific wavelength; we

used response factors previously determined using standards with known concentrations (S1

Table). Before analyses, phenolic concentrations were converted to 100% to recover losses in

the extraction procedure (S3 File). When no value in the HPLC result table was present for a

phenolic, we used a concentration of 0 mg/g, although often a small peak on the HPLC chro-

matogram was visible.

Differences between treatments were investigated with a one-way ANOVA test. In all

ANOVA analyses we used equal sample sizes across groups, to avoid inflation of error rates

and to guarantee homogeneity of variance [103]. If necessary, samples were randomly

removed to obtain balanced sample sizes. We used the total tannin concentration, the con-

centration of each identified phenolic and the concentration of all identified phenolics

together as response variables in predictions I and II. We also used a one-way ANOVA test

to investigate differences between treatments on the response variable C/N ratio (predictions

III and IV). When the ANOVA test indicated a significant difference (we used a significance

level of 5%), differences between groups were investigated with Tukey’s HSD post-hoc test.

We used the package ‘emmeans’ in the software ‘R’ to calculate some general statistics and to

further investigate the relationship between several response variables and treatments [104,

105]. Figs 2–5 were created with the R-package ‘svglite’ [106] and the software ‘Inkscape’

(version 1.2.1). All model analyses were performed in R (version 4.1.2, 4.2.2, 4.2.3 and 4.3.1)

[105].
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Results

Shoot tannins

On average, bilberry annual shoots consisted of 25–30% tannins (dry weight; Table 1). The

intensity of herbivory affected tannin concentrations (ANOVA: F7,192 = 6.18, P< 0.001; Fig 2;

Table 1). S100 and R resulted in significantly lower tannin concentrations than C. All other

treatments did not differ significantly from each other nor from C (Fig 2).

Shoot phenolics

We identified 22 phenolics: 15 flavonoids, 1 hydroquinone and 6 phenolic acids (Fig 3). The

recovery of the internal standard was around 95%: min = 58.9%, mean = 94.5%,

max = 107.5%, sd = 6.1% (n = 90). In one subsample the recovery of the internal standard was

58.9%, quite different from all others. Therefore, we excluded this subsample from the pheno-

lic analyses. Without this subsample, the recovery of the internal standard changed to:

min = 83.1%, mean = 94.9%, max = 107.5%, sd = 4.7% (n = 89).

The phenolic concentration of all these 22 identified phenolics together (analyzed together)

is from here called total phenolic concentration. On average, almost 10% of bilberry annual

shoots consisted of these 22 phenolics (dry weight; Table 1). Compared to C and L10, which

Fig 2. Tannin concentration in bilberry annual shoots after simulated herbivory. Boxplot with total concentration (mg/g, dry weight), n = 200, every

treatment n = 25. Treatments: see text. The bottom and top of each box indicate the first and third quartiles. Bold horizontal lines within each

box indicate median values. The plot whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range away from

the box; extreme data points more than 1.5 times the interquartile range away from the box are indicated with black points. Treatments with the same

letter above the box are not different from each other (P> 0.05).

https://doi.org/10.1371/journal.pone.0298229.g002
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had very similar total phenolic concentrations, all other treatments except S10 resulted in

lower mean total phenolic concentrations (Table 1; S2 Table). The differences between C, L10

and S10 were not significant (Fig 4), but a significant difference in total phenolic concentration

between one or more other treatments was present (ANOVA: F7,192 = 6.64, P< 0.001). Within

L, the total phenolic concentration did not differ significantly, but it did within S (Fig 4). S100

and R resulted in significantly lower total phenolic concentrations than C. R resulted in the

lowest mean (S2 Table) and median (Fig 4) total phenolic concentration.

As the total phenolic concentration is the sum of all identified phenolic concentrations,

many of these individual phenolics showed a similar pattern: R resulted in the lowest mean

phenolic concentration in 15 phenolics (68%). Considering R and S100 together, this number

increased to 19 phenolics (86%) (S2 Table). Investigating significant differences between treat-

ments, one or more herbivory treatments resulted in significantly different phenolic concen-

trations in nine phenolics; phenolic acids showed little response to the treatments (Table 2).

Fig 3. HPLC chromatogram of phenolics in bilberry annual shoots. The chromatograms shown here (A wavelength 280 nm, B wavelength 320 nm;

retention time (x-axis) in minutes (min), response (y-axis) in mAU (AU = absorption units)) are from the subsample which was used to identify the

peaks with mass spectrometry. Phenolics identified (for footnotes, see S1 Table): 1. protocatechuic acid derivative, 2. arbutin derivative7, 3. gallocatechin

derivative, 4. procyanidin 1, 5. procyanidin 2, 6. epicatechin (formerly called: (-)-epicatechin), 7. procyanidin 3, 8. procyanidin 4, 9. procyanidin 5, 10.

procyanidin 6, 11. chlorogenic acid, 12. para-hydroxycinnamic acid derivative 1, 13. cinnamic acid derivative, 14. para-hydroxycinnamic acid derivative

2, 15. hyperin1, 16. quercetin 3-glucuronide5, 17. quercetin 3-arabinoside4, 18. kaempferol 3-glucoside2, 19. quercitrin6, 20. isorhamnetin 3-glucoside,

21. para-hydroxycinnamic acid derivative 3, 22. monocoumaroyl-isoquercitrin3,8.

https://doi.org/10.1371/journal.pone.0298229.g003
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Considering the leaf (L) removal treatments only, there were no significant differences in indi-

vidual phenolic concentration between treatments, nor were any L treatments significantly dif-

ferent from C (Fig 5). Considering the annual shoot (S) removal treatments, in two phenolics

(procyanidin 2 and 4) the phenolic concentration was significantly lower in S100 than in S10.

Compared to the other treatments, S10 resulted in the highest mean phenolic concentration in

eight phenolics (36%) and in the total phenolic concentration (S2 Table), although no signifi-

cant difference between S10 and C was present in any of the phenolics. In three phenolics (epi-

catechin, procyanidin 2 and quercetin 3-glucuronide) S100 resulted in a significantly lower

concentration than C (Fig 5). In seven phenolics, R resulted in a significantly lower phenolic

concentration than C (Fig 5).

Shoot carbon and nitrogen

On average, half of the bilberry annual shoots (dry weight) consisted of carbon and slightly

over 1% consisted of nitrogen (Table 1). There was little variation in carbon and nitrogen con-

centration and in C/N ratio between treatments (Table 1). We found no significant difference

in C/N ratio between treatments (ANOVA: F7,192 = 0.40, P = 0.90). Analyses of carbon concen-

tration and nitrogen concentration yielded similar results: no significant difference between

Fig 4. Total phenolic concentration in bilberry annual shoots after simulated herbivory. Boxplot with total phenolic concentration (mg/g, dry

weight), n = 200, every treatment n = 25. Treatments: see text. The bottom and top of each box indicate the first and third quartiles. Bold horizontal

lines within each box indicate median values. The plot whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile

range away from the box; extreme data points more than 1.5 times the interquartile range away from the box are indicated with black points.

Treatments with the same letter above the box are not different from each other (P> 0.05).

https://doi.org/10.1371/journal.pone.0298229.g004
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treatments (carbon: ANOVA: F7,192 = 1.04, P = 0.40; nitrogen: ANOVA: F7,192 = 0.37,

P = 0.92).

Discussion

Shoot tannins and total phenolics

The two most severe herbivory treatments, concerning removed biomass, resulted in signifi-

cantly lower tannin and total phenolic concentrations than the control, while less severe her-

bivory treatments did not differ significantly from the control. These results support our

second prediction but suggest that little to intermediate loss of photosynthetic tissue does not

increase carbon-based defense compound concentrations in bilberry, contrary to our first pre-

diction. Several factors may contribute to these results.

Fig 5. Individual phenolic concentration in bilberry annual shoots after simulated herbivory. Boxplots with individual phenolic concentration (mg/

g, dry weight). Only phenolics with at least one treatment significantly different from another treatment are shown (n = 200, every treatment n = 25).

Treatments: see text. The bottom and top of each box indicate the first and third quartiles. Bold horizontal lines within each box indicate median values.

The plot whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range away from the box; extreme data

points more than 1.5 times the interquartile range away from the box are indicated with black points. Treatments with the same letter above the box are

not different from each other (P> 0.05).

https://doi.org/10.1371/journal.pone.0298229.g005
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Table 1. Tannins, phenolics, carbon, nitrogen, and C/N in bilberry annual shoots after simulated herbivory. Mean concentration (mg/g ± se (standard error of the

sample mean), dry weight) of tannins, 22 phenolics (see text), carbon (C) and nitrogen (N) and mean C/N ratio (± standard error), per treatment (see text). For all treat-

ments together (All) also the sd (standard deviation of the sample) is given. Number of observations between parentheses.

Treatment Tannins Phenolics Carbon (C) Nitrogen (N) C/N

C 291.1 ± 7.1 (33) 106.4 ± 4.1 (33) 498 ± 2.0 (33) 12.27 ± 0.36 (33) 41.9 ± 1.2 (33)

L10 278.2 ± 7.1 (33) 106.1 ± 4.2 (32) 497 ± 2.0 (33) 12.40 ± 0.36 (33) 40.9 ± 1.2 (33)

L50 275.7 ± 7.2 (32) 100 9 ± 4.2 (32) 498 ± 2.1 (32) 12.64 ± 0.37 (32) 40.1 ± 1.2 (32)

L100 274.4 ± 7.2 (32) 101.4 ± 4.2 (32) 498 ± 2.0 (32) 12.26 ± 0.37 (32) 41.7 ± 1.2 (32)

S10 292.8 ± 8.2 (25) 110.2 ± 4.7 (25) 500 ± 2.4 (25) 12.17 ± 0.42 (25) 42.1 ± 1.4 (25)

S50 257.1 ± 8.2 (25) 88.6 ± 4.7 (25) 498 ± 2.4 (25) 12.94 ± 0.42 (25) 39.6 ± 1.4 (25)

S100 249.3 ± 8.0 (26) 84.9 ± 4.6 (26) 504 ± 2.3 (26) 12.76 ± 0.41 (26) 40.7 ± 1.4 (26)

R 235.7 ± 8.0 (26) 75.1 ± 4.6 (26) 500 ± 2.3 (26) 12.62 ± 0.41 (26) 41.3 ± 1.4 (26)

All 270.5 ± 2.9, sd = 44.1 (232) 97.5 ± 1.7, sd = 25.9 (231) 499 ± 0.8, sd = 11.8 (232) 12.50 ± 0.14, sd = 2.08 (232) 41.0 ± 0.5, sd = 6.9 (232)

https://doi.org/10.1371/journal.pone.0298229.t001

Table 2. Differences in individual phenolic concentration in bilberry annual shoots between simulated herbivory

treatments. The number of differences (#) between treatments (P< 0.05) is given for 22 phenolics separately, and for

all 22 phenolics analyzed together (n = 200, every treatment n = 25).

Flavonoids #

Epicatechin 6

Gallocatechin derivative ns

Hyperin 0

Isorhamnetin 3-glucoside ns

Kaempferol 3-glucoside ns

Monocoumaroyl-isoquercitrin1 ns

Procyanidin 1 1

Procyanidin 2 8

Procyanidin 3 ns

Procyanidin 4 6

Procyanidin 5 4

Procyanidin 6 ns

Quercetin 3-arabinoside 2

Quercetin 3-glucuronide 5

Quercitrin ns

Sum flavonoids 32
Hydroquinones

Arbutin derivative 7

Sum hydroquinones 7
Phenolic acids

Chlorogenic acid ns

Cinnamic acid derivative ns

Para-hydroxycinnamic acid derivative 1 ns

Para-hydroxycinnamic acid derivative 2 ns

Para-hydroxycinnamic acid derivative 3 ns

Protocatechuic acid derivative 1

Sum phenolic acids 1
Sum all individual phenolics 40
All 22 phenolics together 9

1Monocoumaroyl-isoquercitrin: identification uncertain.

If the ANOVA test result P < 0.05 but the Tukey’s HSD test gave only Padj values > 0.05 a ‘0’ is shown in the table.

ANOVA test results P> 0.05 show ‘ns’ in the table (irrespective of the Tukey’s HSD test result).

https://doi.org/10.1371/journal.pone.0298229.t002
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First, not all phenolics respond to herbivory as predicted by the CNB hypothesis, as many

phenolics compete with proteins for the nitrogen containing precursor phenylalanine as

described by Jones & Hartley [107] in their Protein Competition Model (PCM) [42, 108, 109].

As the boreal forest is a nitrogen-limited ecosystem [110–113], competition for nitrogen

between biosynthesis of proteins and of many phenolics is expected in boreal forest ecosys-

tems. Therefore, the nutrient-poor soil may not provide sufficient nitrogen for bilberry to

increase these secondary compound concentrations while continuing protein demanding pri-

mary processes as growth and reproduction.

As bilberry is a clonal plant, connected ramets may translocate compounds from nondefo-

liated to defoliated ramets, as has been documented in perennial graminoid species and herbs

[114–116, and references herein]. Translocation of carbohydrates or even phenolics between

connected ramets may be another reason for the absence of a correlation between leaf herbiv-

ory and subsequent phenolic concentrations in bilberry annual shoots. Also, high fine root

mortality may not, or to a lesser extent, occur in clonal bilberry, which possibly translocates

carbohydrates between connected ramets to maintain its root activity.

Furthermore, our simulated leaf herbivory (mechanical wounding by hand) is not equiva-

lent to leaf herbivory by insects, birds, or small mammals [27, 117–125, reviewed by 126].

Although most of these studies indicate that simulated leaf and shoot herbivory performed by

mechanical wounding induces a less pronounced plant response, such simulated herbivory

generally does induce a plant response [see the aformentioned references and 87, 127, 128], as

the general response of plants to wounding and herbivore damage is essentially the same

[129]. This is particularly true in nutrient-poor sites [130], like our study system. Nevertheless,

this indicates that bilberry responses to simulated leaf herbivory may differ from responses to

natural herbivory, which can further contribute to our observed absence of a correlation

between simulated leaf herbivory and subsequent phenolic concentrations in bilberry annual

shoots.

Additionally, this observed absence can be due to other reasons. A response can have been

counteracted by transport of existing phenolics from shoots to leaves, as some plant species

store phenolics in shoots which are transported to leaves following herbivory [127]–although

such reallocation of phenolics may not be very important [107]. Furthermore, the time

between our leaf herbivory treatments and bilberry ramet harvesting was 48–68 days. Possibly,

bilberry only responds with a short-term response that was no longer detectable after 48 days.

For instance, in another woody species, the condensed tannin concentration returned to pre-

herbivory values less than 66 hours after herbivory [131, see also 132]. An alternative possible

reason is a very delayed response: responses remain undetectable until at least 68 days after the

treatment. This last option seems very unlikely in terms of plant fitness, but cannot be ruled

out with the data available. Experiments measuring how long induction lasts in different bil-

berry tissues are needed to support or reject these speculations.

Another possible reason for our observed results is that an herbivory-induced change in

phenolics occurs in other plant parts, e.g., leaves, and is not detectable in annual shoots. This

seems unlikely, as Persson and colleagues found that bilberry leaves and bilberry leafless shoots

were comparable in their response to simulated moose herbivory, at least for flavonoids and

condensed tannins [55]. In contrast with our results, Persson and colleagues found an increase

in flavonoid and condensed tannin concentration in bilberry shoots with increasing simulated

moose herbivory. Possibly their results were influenced by a side-effect of the treatment: a

more open canopy resulted in more solar radiation which could have induced production of

secondary compounds, as has been found and discussed in other studies [50, 55, 133–139, and

references herein].
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Shoot individual phenolics

In seven phenolics, R resulted in a significantly lower phenolic concentration than C, while in

fifteen phenolics no significant difference between the control and other treatments was pres-

ent. The concentrations of all phenolic acids found in our study were unaffected by severe her-

bivory. Interestingly, these phenolics are known to deter herbivory by insects: all reduce larval

growth rate, some also promote larval mortality and chlorogenic acid even shows strong anti-

nutritive properties against various invertebrate herbivores, including adult beetles and grass-

hopper nymphs [45, 140–147]. This indicates that bilberry responds to severe herbivory by

maintaining concentrations of phenolics which deter herbivory on a certain level. As we could

not find information about biological functions related to herbivory for other specific phenolics

identified in our study, we don’t know how bilberry responds to severe herbivory in the case of

phenolics which promote herbivory (possibly by decreasing their concentrations?). Herbivory

experiments with specific phenolics are necessary to support or reject these speculations.

We did not find (+)-catechin in our bilberry annual shoots, as has been found in other bil-

berry studies [49, 50]. In the HPLC chromatogram (Fig 3), (+)-catechin, if present, comes

shortly after chlorogenic acid. This means that when a large quantity of chlorogenic acid is

present, as with our subsamples (Fig 3, S2 Table), the chlorogenic acid peak overlaps with the

peak of (+)-catechin and it is not possible to separate the latter from the former, especially

when only little (+)-catechin is present. Therefore, unidentified amounts of (+)-catechin may

have been present in our subsamples, but if so, (+)-catechin was present in much lower

amounts than epicatechin (S2 Table).

Shoot carbon and nitrogen

The carbon and nitrogen concentrations and C/N ratio in our study are comparable with

results from other studies [6, 50, 136, 148, 149] but differ from bilberry nitrogen concentra-

tions found by Selås and colleagues [150]. Our results show that both the carbon and nitrogen

concentration, as well as the C/N ratio, in bilberry annual shoots are not affected by herbivory.

These findings do not support our predictions III and IV. Apparently, mechanisms that either

increase or decrease nutrient concentration after herbivory (see Introduction), cause this over-

all result. Additionally, in clonal bilberry carbohydrates may be translocated from source

ramets to connecting ramets under herbivory pressure, and to their root system, to compen-

sate for a lack of carbon (see before). This may prevent an increase in fine root mortality and,

consequently, a decrease in nutrient concentration. Thus, clonality can further explain the lack

of support for our predictions III and IV.

Another possible reason is, as with phenolics (see before), that a change in C/N ratio does

not occur in bilberry annual shoots but in other plant parts, e.g., leaves, as shown in other

woody species [70, 72, 75, 95, 151] (although Laine and Henttonen [148] did not find a correla-

tion between microtine density and nitrogen concentration in bilberry leaves). As we do not

have data about carbon and nitrogen concentrations in plant parts other than annual shoots,

we cannot rule out this possibility.

Finally, Flower-Ellis [6] reported much variation in nitrogen concentration between long,

vegetative shoots and short, predominantly flowering shoots, as well as in ramets from differ-

ent ages and positions in the stand (causing variation in light and water conditions). Such vari-

ation may obscure effects from herbivory.

Study design

In this study, we removed annual shoots in four treatments, at different intensities: S10, S50,

S100 and R. Only with the last two treatments (S100 and R), all (or almost all in some R
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treatments) annual shoots were removed. Approximately three months after removal, we har-

vested annual shoots from the ramets: therefore, only with S100 and R the harvested annual

shoots were all (or almost all in some R treatments) new shoots, grown after the clipping event

had occurred. In all other treatments, most likely the analyzed annual shoots had all (L treat-

ments) or partly (S10: around 90 percent, S50: around 50 percent) been present at the ramet

before the clipping event took place. Interestingly, only at high herbivory levels (S100 and R),

we found a significant difference in tannin concentration and total phenolic concentration

compared to the control. This means that all treatments from which we analyzed many older

annual shoots (from before the clipping event) did not yield a significant difference in phenolic

concentration in the annual shoots compared to the control. Although many of these annual

shoots probably were not fully grown at the time of clipping and therefore also their tissue had

(partly) developed after the clipping event took place, this means that we analyzed annual

shoots in S10, S50 and all L treatments, that were present before the clipping event occurred–at

least an important part of them. If a chemical response to the treatment does not occur in

older shoots but only, or mainly, occurs in new tissue (this we don’t know) this shortcoming in

our study design has serious consequences for our results regarding to the S10, S50 and all L

treatments.

Defense and other metabolic processes

As our results do not support our first prediction (I: phenolic concentration is, at low to inter-

mediate herbivory levels, positively correlated with intensity of herbivory) but do support our

second prediction (II: phenolic concentration is, at high herbivory levels, lower than without

herbivory), we conclude that after herbivory, bilberry uses carbon primarily for functions

other that defense. This is no more than a speculation, as we have no metric of growth (as total

biomass or compensatory growth), or metabolic processes other than phenolic concentrations.

Possibly, little herbivory may be almost inconsequential for plant fitness and responses may be

absent, or non-detectable, or only morphological, not chemical. Severe herbivory may force

bilberry to divert resources from other pools, as existing defense chemical compounds, to com-

pensate for biomass losses. Experiments which specifically focus on morphological responses

(as compensatory growth) and reproduction, preferably also chemical responses, after herbiv-

ory, are needed to support or reject our speculation.

Conclusions

We conclude that neither the Carbon:Nutrient Balance hypothesis nor the Optimal Defense

hypotheses can be used to predict changes in phenolic concentrations (including total tannin

concentration) after herbivory in bilberry annual shoots. After herbivory, bilberry uses carbon

primarily for functions other than defense (e.g., maintenance, growth, reproduction). Herbiv-

ory experiments focusing on morphological responses and reproduction are necessary to fur-

ther investigate this response. Furthermore, we conclude that bilberry responds to severe

herbivory by maintaining concentrations of specific phenolics, which deter herbivory, on a

certain level, while decreasing concentrations of other phenolics. Herbivory experiments with

specific phenolics, to clearify their function as anti-herbivore compound (i.e., do they affect

bilberry’s palatability to herbivores), are necessary to further investigate this response.
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work and analytical insights, Sinikka Sorsa, Katri Nissinen, Virpi Virjamo and Md. Nazmul

Hasan for help in the lab, Anne Mehlhoop, Andreja Kovše and Umer Qureshi for soil sam-
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136. Atlegrim O, Sjöberg K. Response of bilberry (Vaccinium myrtillus) to clear-cutting and single-tree

selection harvests in uneven-aged boreal Picea abies forests. For Ecol Manage. 1996; 86(1–3):39–50.

https://doi.org/10.1016/S0378-1127(96)03794-2

137. Close DC, McArthur C. Rethinking the role of many plant phenolics—protection from photodamage

not herbivores? Oikos. 2002; 99(1):166–72. https://doi.org/10.1034/j.1600-0706.2002.990117.x
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