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ABSTRACT
Bark beetle infestations are among the most substantial forest disturbance agents worldwide. 
Moreover, as a consequence of global climate change, they have increased in frequency and in the 
size and number of affected areas. Controlling bark beetle outbreaks requires consistent operational 
monitoring, as is possible using satellite data. However, while many satellite-based approaches have 
been developed, the full potential of dense, multi-sensor time series has yet to be fully explored. Here, 
for the first time, we used all available multispectral data from Landsat and Sentinel-2, Sentinel-1 SAR 
data, and combinations thereof to detect bark beetle infestations in the Bavarian Forest National Park. 
Based on a multi-year reference dataset of annual infested areas, we assessed the separability between 
healthy and infested forests for various vegetation indices calculated from the satellite data. We used 
two approaches to compute infestation probability time series from the different datasets: Bayesian 
conditional probabilities, based on the best-separating index from each satellite type, and random 
forest regression, based on all indices from each satellite type. Five different sensor configurations were 
tested for their detection capabilities: Landsat alone, Sentinel-1 alone, Sentinel-2 alone, Landsat and 
Sentinel-2 combined, and data from all satellite types combined. The best overall results in terms of 
spatial accuracy were achieved with Sentinel-2 (max. overall accuracy: 0.93). The detections of Sentinel- 
2 also were the closest to the onset of infestation estimated for each year. Sentinel-2 detected infested 
areas in larger contiguous patches with higher reliability compared to smaller patches. The results 
achieved with Landsat were somewhat inferior to those of Sentinel-2 (max. accuracy: 0.89). While 
yielding similar results, the combination of Landsat and Sentinel-2 did not provide any advantages over 
using Landsat or Sentinel-2 alone (max. accuracy: 0.87), while Sentinel-1 was unable to detect infested 
areas (max. accuracy: 0.62). The combined data of all three satellite types did not achieve satisfactory 
results either (max. accuracy: 0.67). Spatial accuracies were typically higher for Bayesian conditional 
probabilities than for random forest-derived probabilities, but the latter resulted in earlier detections. 
The approach presented herein provides a flexible disturbance detection pipeline well-suited for the 
monitoring of bark beetle outbreaks. Furthermore, it can also be applied to other disturbance types.
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Introduction

Natural disturbances are key to the functioning of 
forest ecosystems. They include abiotic processes, 
such as wildfire, drought, and windthrow, as well as 
biotic processes, such as insect outbreaks, pathogens, 
and herbivory. By increasing ecosystem heterogene
ity in terms of structure, composition, and function, 
disturbances are essential drivers of ecosystem 
renewal, succession, and biodiversity (Seidl et al.  
2017; Thom and Seidl 2016). In recent decades, how
ever, distinct changes in disturbance regimes have 
occurred in forests around the globe, with 

disturbances becoming more frequent and more 
severe (Seidl et al. 2017). In particular, so-called 
mega-disturbances, which can alter a forest’s charac
teristics beyond its recovery potential, are emerging 
(Millar and Stephenson 2015). Climate change has 
strongly contributed to shifting disturbance regimes 
and its impact can be expected to increase in the 
coming decades (Seidl et al. 2017). Among others, 
this includes disturbances caused by bark beetles.

Bark beetle outbreaks are among the most common 
disturbances in forest ecosystems (Hlásny et al. 2021; 
Schelhaas, Nabuurs, and Schuck 2003; Seidl et al. 2017). 
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Under favorable conditions, they can induce major for
est die-off events. For instance, outbreaks of the moun
tain pine beetle (Dendroctonus Ponderosae Hopkins) led 
to widespread forest mortality in Northwestern America 
(Raffa et al. 2008). In Europe, the combination of high 
growing stock of Norway spruce (Picea Abies L. H. Karst.) 
and a series of hot, dry summers have recently facilitated 
unprecedented outbreaks of the European spruce bark 
beetle (Ips typographus L.). This was the case in 2018, 
when the hot, dry summer severely weakened host trees 
(Schuldt et al. 2020) and supported massive outbreaks of 
I. typographus, resulting in large-scale forest die-off and 
thus substantial economic losses (Hlásny et al. 2021; 
Senf and Seidl 2021). In Germany alone, 16% of all 
spruce growing stock was affected between 2018 and 
2020 (Bundesministerium für Ernährung und 
Landwirtschaft 2021). These large-scale events and 
their distinct consequences demonstrate the need for 
early intervention and thus for consistent, operational 
monitoring over large areas.

Remote sensing has become a key asset in the mon
itoring of forest ecosystems (Lausch et al. 2016, 2017; 
Lechner, Foody, and Boyd 2020). In addition to enabling 
area-based assessments of forest condition, it provides a 
complementary perspective to ground-based analyses. 
In particular, time series obtained with Earth observation 
satellites have enabled continuous, frequent, and con
sistent monitoring of forests at large scales. In recent 
years, satellite monitoring of forests has benefited from 
multiple technological advancements, including the 
availability of satellite data free of cost, an increase in 
available computational power and data storage capa
cities, and from new and improved techniques of data 
analysis, such as deep learning and dense time series 
analyses (Holzwarth et al. 2020; Hostert et al. 2015). 
These tools have been employed in multiple, large- 
scale, high-impact studies conducted over the last 10  
years (Hansen et al. 2013; Hermosilla et al. 2019; Reiche 
et al. 2021; Thonfeld et al. 2022). Among forest distur
bances, bark beetle infestations have been studied par
ticularly frequently, especially in Europe and North 
America where large outbreaks have occurred in recent 
decades (Senf, Seidl, and Hostert 2017).

During a bark beetle infestation, various processes 
change the spectral traits of an attacked tree, enabling 
the infestation detection via remote sensing (Lausch et 
al. 2016). By feeding on the living tissue under the bark 
and inducing pathogens, bark beetle infestations dis
rupt water and nutrient transport and thus typically kill 

host trees (Hlásny et al. 2021; Krokene 2015). During the 
first phase of the infestation, the tree’s water and nutri
ent transport is disturbed but its crown remains visibly 
green. This so-called green attack phase is the most 
difficult to detect (Abdullah et al. 2018; Wulder et al.  
2009) but detection during this phase is crucial in man
aged forests, as the trees have to be removed within a 
few weeks to prevent the spread of a new generation of 
beetles (Hlásny et al. 2021). In the subsequent red attack 
phase, tree crowns turn visibly yellow, red, and brown 
before the trees starts to lose their needles, while during 
the final, gray attack phase, only the tree trunk and 
branches remain. In these two latter phases the spectral 
difference compared to healthy trees is more distinct 
(Huo, Persson, and Lindberg 2021) and, accordingly, 
they are more easily detected.

Most studies assessing bark beetle infestations via 
satellite remote sensing have relied on multispectral 
data, especially from the Landsat satellite family: in addi
tion to detections across Landsat’s visible and near-infra
red bands (Assal, Sibold, and Reich 2014; Bryk, Kołodziej, 
and Pliszka 2021), its shortwave infrared (SWIR) bands 
enable early detection, as they are sensitive to leaf water 
content, the alteration of which is an early effect of a bark 
beetle infestation (Abdullah et al. 2018; Goodwin et al.  
2008; Meigs, Kennedy, and Cohen 2011). Landsat’s ther
mal instruments have also been used (Abdullah et al.  
2019; Hais and Kučera 2008). In recent years, Sentinel-2 
complemented Landsat for mapping bark beetle infes
tations, with the additional advantage of a higher spatial 
and temporal resolution (Abdullah et al. 2019; Bárta, 
Lukeš, and Homolová 2021; Fernandez-Carrillo et al.  
2020; Huo, Persson, and Lindberg 2021). Its higher spec
tral resolution – incorporating three red edge bands – 
has proven to be beneficial, too, but has seldomly been 
exploited (Abdullah et al. 2019; Dalponte et al. 2022). To 
our knowledge, bark beetle infestations have yet to be 
analyzed based on a combination of Landsat and 
Sentinel-2 time series. However, this would yield time 
series with a higher observation density and hence 
higher chances for an early detection, especially in 
cloudy areas.

Synthetic aperture radar (SAR) data have also been 
used to assess bark beetle infestations (Senf, Seidl, and 
Hostert 2017), although a recent review found only four 
relevant articles (Hollaus and Vreugdenhil 2019). Of 
these, Tanase et al. (2018) used L-band ALOS data to 
map both windthrow and bark beetle infestations, but 
the accuracies for the latter were lower than those for 
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windthrows. Ortiz, Breidenbach, and Kändler (2013) 
combined TerraSAR-X data and RapidEye imagery and 
found that the combination of multispectral and SAR 
data was the most informative. Ranson et al. (2003) also 
noted the advantages of combining radar data from 
different sources but they pointed out that the accura
cies were consistently lower than those of Landsat 7 
imagery. Nonetheless, SAR imagery, with its cloud-inde
pendence, may be a valuable tool in the detection of 
bark beetle infestations, especially given the importance 
of quick responses during an ongoing infestation in 
managed forests. While Huo, Huo, Persson, and 
Lindberg (2021) found little benefit of including 
Sentinel-1 data in the monitoring of bark beetle infesta
tions, other studies have shown the value of Sentinel-1’s 
high spatial and temporal resolution (Hollaus and 
Vreugdenhil 2019), such as in the detection of insect 
defoliation (Bae et al. 2022). The combination of multi
spectral and SAR time series would enable time series 
with a higher temporal density than currently possible 
with either method alone.

Two additional aspects would strongly improve exist
ing bark beetle infestation assessments, referring to the 
temporal domain of analysis: the usage of temporally 
dense time series and the development of near-real-time 
(NRT) monitoring of insect disturbances. Many studies of 
bark beetle infestations have relied on a very limited 
number of satellite observations (e.g. Bryk, Kołodziej, 
and Pliszka 2021; Meddens et al. 2013; Skakun, Wulder, 
and Franklin 2003). In addition, many previous multi- 
date approaches were based on time series with rela
tively low, e.g. yearly, temporal resolution (Meddens et 
al. 2013; Meigs, Kennedy, and Cohen 2011) using tech
niques such as LandTrendr (Kennedy, Yang, and Cohen  
2010). Other studies relied solely on cloud-free or mostly 
cloud-free images, which limits assessments to regions 
and/or seasons with low cloud cover (Bárta, Lukeš, and 
Homolová 2021; Huo, Persson, and Lindberg 2021) and 
increases the difficulty of detection in areas and/or years 
with higher cloud cover. Senf, Seidl, and Hostert (2017) 
therefore advocated the use of dense time series.

Oeser et al. (2017) applied dense time series to map 
(among others) bark beetle infestations in Central 
Europe but performed a retrospective analysis of distur
bance types instead of assessing infestation timing itself. 
Thonfeld et al. (2022) assessed tree canopy cover loss in 
Germany between January 2018 and April 2021 at a high 
temporal resolution (monthly intervals) but did not spe
cifically target bark beetle infestations. In addition to 

dense time series, the application of NRT approaches 
where new scenes are processed immediately may be 
especially advantageous in the case of bark beetle infes
tation where quick management responses are crucial 
(Fahse and Heurich 2011; Hlásny et al. 2021). Such 
approaches have successfully been applied in similar 
scenarios where fast action is advised, e.g. tropical forest 
loss: in a series of studies, Reiche et al. (2018); Reiche et al. 
(2015), used a Bayesian approach to combine Landsat 
and Sentinel-1 imagery to quickly detect newly logged 
tropical forests. Combining the datasets improved the 
speed of detection and overcame problems in the 
Landsat imagery caused by cloud cover. However, to 
our knowledge, this approach has yet to be applied to 
the detection of bark-beetle-infested areas.

Here, we try to overcome these research gaps by 
continuously monitoring bark beetle infestations in 
the Bavarian Forest National Park (BFNP), a mountai
nous protected forest area in Germany (Figure 1), 

based on multi-sensor satellite time series with full 
temporal resolution. We evaluate the performance of 
Sentinel-1A/B, Sentinel-2A/B, and Landsat 7/8 data as 
well as combinations thereof in the detection of bark 
beetle infestations in spruce forests of the BFNP 
between 2016 and 2019. Specifically, we

(1) investigate the suitability of a large variety of 
multispectral and SAR-based indices in the 
separation of infested from healthy forest areas,

(2) compare Bayesian and random forest regres
sion approaches in the computation of infesta
tion probabilities and infestation detection,

(3) assess the spatial accuracy of the respective infes
tation maps derived from different sensor config
urations (Landsat, Sentinel-2, Landsat and Sentinel- 
2 combined, Sentinel-1, all sensors combined),

(4) and estimate the detection timeliness as well as 
determine the feasibility of early detection of 
infested areas.

Materials and methods

Study area

The BFNP encompasses an area of 242.5 km2 and is 
located in the country’s southeast, along the border 
with the Czech Republic, where it adjoins the Czech 
Šumava National Park (680.6 km2; Figure 1b). Together, 
the parks form the Bohemian Forest Ecosystem, the 
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largest strictly protected forested area in Central Europe 
(Heurich et al. 2015). The BFNP is characterized by altitu
dinal gradients between 550 m and 1453 m a.s.l. that 
strongly shape local climate and consequently vegeta
tion composition. Depending on the altitude, annual 
mean air temperatures range between 2.0 and 7.2°C; 
annual precipitation is between 830 and 2280 mm. 
These diverse conditions give rise to three key forest 
types in the BFNP: (1) montane spruce forests, the domi
nant vegetation community in the park’s highest areas 
(above 1150 m a.s.l) and largely consisting of Norway 
spruce; (2) (700 to 1150 m a.s.l.), montane mixed forests 
in intermediate slope areas, where Norway spruce is 
interspersed with European beech (Fagus sylvatica L.) 
and silver fir (Abies alba Mill.); (3) wetland forests in the 
park’s valley bottoms (below 800 m a.s.l.), where colder 
and wetter conditions limit beech growth, dominated by 
Norway spruce as well (Heurich et al. 2010).

Given the dominance of Norway spruce at nearly all 
elevations, the BFNP is highly susceptible to outbreaks of 
the European spruce bark beetle. As in many areas of 
Central Europe, this is at least partly due to past forestry 
practices, in which the preference for spruce resulted in 
large-scale, evenly-aged spruce forests (van der Knaap et 
al. 2020). In the BFNP’s core zone, outbreaks are unma
naged such that infested and dead trees remain standing. 
This core zone is surrounded by an intervention zone 
where outbreaks are actively managed through salvage 
logging (Heurich et al. 2010). In the 1980s, the decision 
was made to not intervene in ongoing outbreaks inside 
the core zone, such that vast areas have been affected. 
Between 1988 and 2020, forest dieback covered an area 
of 8910 ha (Figure 2), of which 6920 ha have been left 
standing. Distinct peaks of infestation occurred in 1999 
and 2019, causing extensive damage (991 and 624 ha, 
respectively) during those years (Figure 2).

Figure 1. The Bavarian Forest National Park. a) Yearly bark-beetle-infested areas based on aerial imagery. b) the location of the 
Bavarian Forest National Park and the adjacent Šumava National Park in Central Europe.
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The high infestation rates and vast uncleared areas 
allow for continuous monitoring of infestations, 
which makes the BFNP highly suitable for exploring 
the utility of remote sensing in the monitoring of bark 
beetle outbreaks. In fact, the park is already an impor
tant testing and validation site for remote-sensing- 
based approaches (Latifi et al. 2021) and is recognized 
as a “forest remote sensing hotspot” (Holzwarth et al.  
2020). As a result, numerous studies have mapped 
and monitored bark beetle outbreaks in the park 
using remote sensing data, including hyperspectral 
aerial (A. Lausch et al. 2013), very high spatial resolu
tion (VHR) satellite (Latifi et al. 2018), and medium- 
resolution satellite (Abdullah et al. 2019, 2019; 
Apdullah et al. 2019; Oeser et al. 2017) data as well 
as SAR imagery (Tanase et al. 2018).

Data

Reference data
Since 1989, color-infrared aerial imagery has been 
acquired over the BFNP during the summer months 
(June – August) and used to create orthoimages. 
Infested patches larger than five trees are delineated 
manually from these orthoimages each year using a 
stereoscopic screen. Each mapped polygon also encom
passes additional information, including the date of 
image acquisition and whether the stand was salvage 
logged after the infestation (Heurich et al. 2010). This 
dataset provides a unique long-term and spatially 

explicit record of bark beetle infestations (Figure 2). 
While it does not contain temporal information for 
each infested patch apart from the flight year, the sum
mer flight dates have been chosen to ensure that all die- 
offs that occurred during the previous year are captured. 
Consequently, we assume that polygons mapped in a 
certain year represent infestations from the previous 
year and adjusted the reference data accordingly. Only 
infested, uncleared patches in the core zone were con
sidered, to ensure proper assessments of bark beetle 
infestations and to avoid confusing infested with sal
vage logged areas.

Satellite data
We used all available data for the study area between 1 
January 2015 and 30 April 2021 as acquired by the 
Landsat, Sentinel-1, and Sentinel-2 satellites. The 
Landsat imagery includes Landsat 7 Enhanced 
Thematic Mapper (ETM+) imagery, as well as Landsat 8 
Operational Land Imager (OLI) data (Wulder et al. 2019). 
From the Landsat imagery, only Tier 1 data were con
sidered in this study. Sentinel-2 imagery from the twin 
satellites Sentinel-2A and Sentinel-2B, operating since 
2015 and 2017, respectively, were included (Drusch et 
al. 2012). To ensure the inclusion of all potential obser
vations, all Landsat/Sentinel-2 imagery, regardless of the 
cloudiness, was considered. In addition, all available 
Ground Range Detected (GRD) data from Sentinel-1A 
and Sentinel-1B were used. While the short-wavelength 
C-band data of Sentinel-1 are not well-suited for forestry 

Figure 2. Time series of area infested by bark beetles in the BFNP. Columns represent yearly increase in infested areas, and lines/dots 
the cumulative infested area. The study period is marked by the grey box. Infested areas that have been left standing, which were used 
in this study, are colored in blue.
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applications, as this wavelength does not adequately 
penetrate the forest canopy (Woodhouse 2006), 
Sentinel-1 images were nonetheless included due to 
their spatial and temporal resolution that is unmatched 
by any other SAR satellite. In total, we used 406 Landsat, 
662 Sentinel-2, and 1007 Sentinel-1 images.

Methods

The procedure used this study is outlined in Figure 3 and 
can be subdivided into data processing, sampling and 
class separability assessment, probability computation 
and infestation detection, as well as evaluation. Besides 
the Data processing, most steps were carried out using 
the R and Python programming languages (R Core Team  
2023; van Rossum, and Drake 2009). Processing of the 
multispectral data was carried out on an Ubuntu virtual 
machine on the CODE-DE platform of the German 
Aerospace Center with 64 GB of RAM and 8 vCPUs. For 
the analysis, we used a Microsoft Windows personal 
computer with 32 GB of RAM and an 8-core CPU.

Data processing

We applied extensive processing steps to generate 
analysis-ready data (ARD) from the multi-source data
sets (Frantz 2019; Truckenbrodt et al. 2019). A consis
tent preprocessing scheme was applied to both 
multispectral satellite types to ensure proper inter- 
calibration and enable the joint use of Landsat and 
Sentinel-2 as a virtual constellation (Wulder et al.  
2015). This was done using the Framework for 
Operational Correction for Environmental 
Monitoring (FORCE) (Frantz 2019), as the usage of 
the ready-to-use Harmonized Landsat Sentinel-2 
Dataset (Claverie et al. 2018) was not possible in our 
case due to its relatively low resolution of 30 m, which 
is lower than Sentinel-2”s native resolution of 10 m. 
FORCE applies a comprehensive radiometric correc
tion procedure that includes the correction of atmo
spheric and topographic effects and accounts for 
bidirectional reflectance distribution function (BRDF) 
effects (Frantz 2019; Frantz et al. 2016). FORCE com
putes quality flags for each pixel, including snow, 

Figure 3. Workflow of the methods used in this study. Gray boxes indicate the datasets, and white boxes the applied methods.
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water, insufficiently illuminated areas, and, especially, 
clouds and cloud shadows, using a modified version 
(Frantz et al. 2015) of the Fmask algorithm (Zhe and 
Woodcock 2012; Zhe, Wang, and Woodcock 2015). 
Considering parallax effects in the Sentinel-2 imagery, 
the detectability of clouds is increased, which com
pensates for Sentinel-2”s lack of a thermal band 
(Frantz et al. 2018). We used the 30-m Shuttle Radar 
Topography Mission digital elevation model (SRTM 
DEM) to account for terrain in the radiometric correc
tion process, and Moderate Resolution Imaging 
Spectroradiometer (MODIS)-based water vapor esti
mation in the atmospheric correction of the Landsat 
imagery (Frantz, Stellmes, and Hostert 2019).

After radiometric correction, the spatial characteris
tics of Landsat and Sentinel-2 were aligned. Thereby, 
both types of data were projected into one coordinate 
system (ETRS 89, UTM Zone 32 N) and cut into tiles of 30  
km × 30 km size, i.e. 3000 × 3000 10-m Sentinel-2 pixels 
or 1000 × 1000 30-m Landsat pixels (see supplementary 
materials). This the default setting of the FORCE soft
ware. Since our study area precisely fit into one of these 
tiles, all other data were omitted from further analysis. 
During this process, the 20-m Sentinel-2 data was 
adjusted to 10 m using the ImproPhe approach (Frantz 
et al. 2016). The previously generated quality flags were 
used to remove pixels with invalid values, e.g. due to 
cloud and snow cover, as well as saturated bands.

Next, several vegetation indices were computed 
from the multispectral data (Table 1) at a pixel size 
of 10 m, whereby the Landsat data was resampled 
using nearest neighbor interpolation. All of the 
indices have been used in vegetation monitoring (as 
indicated by the references in Table 1). They cover the 
whole range of Landsat and Sentinel-2 bands across 
the electromagnetic spectrum. Besides, all indices 
could be easily computed and exported through the 
FORCE software (Frantz 2021).

All Sentinel-1 data were processed using the Google 
Earth Engine cloud processing platform (Gorelick et al.  
2017). A consistent processing scheme was applied to 
the data. The Sentinel-1 Ground Range Detected (GRD) 
data available on Google Earth Engine are preprocessed, 
including thermal noise removal, radiometric calibration, 
and terrain correction based on SRTM 30 m DEM 
(Google Developers 2022). Additional processing steps 
were applied according to the workflow described in 
Mullissa et al. (2021). As a first step, we applied a border 
noise correction to remove faulty backscatter values 

along the edges of individual scenes and a multitem
poral Quegan speckle filter with a temporal window size 
of 10 images (Quegan and Yu 2001). Since the BFNP is 
situated in a mountainous area, radiometric terrain flat
tening (Hoekman and Reiche 2015; Vollrath, Mullissa, 
and Reiche 2020) was used to reduce the influence of 
terrain on the backscatter values and to ensure that 
ascending and descending Sentinel-1 orbits could be 
used in conjunction. Again, the SRTM 30 m DEM was 
applied during this process. The indices listed in Table 2 
were computed and all images were exported at a 
spatial resolution of 10 m. Analogous to the multispec
tral data, we reprojected the exported Sentinel-1 data, 
subdivided it into tiles, and discarded data not matching 
the study area. The final result was a consistent data 
cube comprising all available Landsat, Sentinel-2, and 
Sentinel-1 data, quality-masked and at a spatial resolu
tion of 10 m.

The computed index time series were then smoothed 
to remove seasonal/phenological effects as well as noise 
in each pixel’s time series, which is especially important 
when data from multiple sensors are combined, and 
thus obtain a time series with stronger contrasts 
between healthy and infested forest plots. Here, we 
applied Locally Estimated Scatterplot Smoothing 
(LOESS) (Cleveland 1979). LOESS is an implementation 
of local regression in which a new regression model is fit 
to each data point individually (Hastie, Tibshirani, and 
Friedman 2009). The algorithm utilizes a polynomial fit 
to the data and is hence similar to the Savitzky-Golay 
filter (Savitzky and Golay 1964). Here, we used the 
default options implemented in the respective function 
of the stats R package and thus applied a smoothing 
degree of 0.75.

Sampling and separability assessment

The identification of infested areas required reference 
data for both already infested areas and healthy forest 
areas. However, the available reference dataset was 
derived from a yearly deadwood inventory and thus 
covered only infested forest areas. We therefore 
adopted a sampling strategy that enabled data sam
pling from both infested and healthy areas. This strat
egy is based on the assumption that forests patches 
infested in a recent year and inventoried as such 
could not have been infested during the previous 
years, or they would have already been inventoried.

GISCIENCE & REMOTE SENSING 7
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First, we selected 50% of all pixels marked as 
infested between 2016 and 2019, leaving the other 
50% for the validation data set and using stratified 
random sampling to represent all infestation years 
equally in the training and validation data. This time
frame marked the period common to all sensors but 
excluded the year 2015, which was required for the 
data sampling of infestations occurring in 2016. We 
chose a 50/50 training/validation separation in order 
to ensure a sufficient number of pixels from the years 
2016 and 2017 in the validation data, as the total 
infested area and hence the corresponding pixel 
count was relatively low in these years (Figure 2).

For the training data, we computed yearly median 
composites of the satellite data for each calculated 
multispectral/SAR index. Median composites were 
suitable because seasonal and noise effects had 
already been removed with LOESS smoothing as 
described above. Consequently, forest areas that 
were (still) healthy as well as forests that had (already) 
fully died-off were expected to show relatively low 
changes in values during the sampling year. Every 
composite together with reference data from the 
year after each composite’s target year was then 
sampled to collect training data covering healthy for
ests. For example, the composite for 2018 was 
sampled together with 2019 infestation data, as 
areas marked as infested in 2019 were still healthy 
and stable in 2018. Conversely, the 2018 composite 
was sampled based on the 2017 reference data, as 
areas infested in 2017 were assumed to have died-off 
in 2018. This sampling design is illustrated in Figure 4.

To determine the indices that best separated healthy 
from infested areas, we compared the sampled values of 
both healthy and infested areas for every remote sensing 
index. This assessment was performed to select the most 
appropriate indices for the models of Bayesian approach 
described below. Specifically, we aimed at selecting the 
vegetation indices with the highest separability from a) 
the joint multispectral indices of Landsat and Sentinel-2, 
b) the indices based solely on Sentinel-2, and c) the 

Sentinel-1 SAR indices. Separability was estimated by 
computing the Jeffries-Matusita (JM) distance metric 
for every index, according to the procedure outlined in 
Reiche et al. (2015); Reiche et al. (2018). The JM distance 
has a finite range from 0 to 2, with 0 indicating complete 
inseparability, i.e. full overlap between the classes, and 2 
representing complete separability, i.e. no overlap 
between the classes (Laliberte, Browning, and Rango  
2012; Reiche et al. 2015). This distance metric was chosen 
because it has been suitable in analyzing class separabil
ity in a large variety of remote sensing studies (Dalponte 
et al. 2013; Laliberte, Browning, and Rango 2012; Padma 
and Sanjeevi 2014; Reiche et al. 2015, 2018). Besides, one 
of its properties is that it overemphasizes small distance 
values. This was especially important in our case, as the 
separability between healthy and infested was expected 
to be relatively low for the four SAR-based vegetation 
indices. With a metric over-emphasizing small differ
ences, the differences between these indices should be 
relatively large, allowing us to select the appropriate SAR 
vegetation index with higher confidence (Kavzoglu and 
Mather 2000).

Computation of infestation probabilities and 
infestation detection

With our sampling strategy, we gathered values for 
healthy forests on one side and gray-attack forest 
areas on the other. In the next step, infestation prob
ability time series were derived from the computed 
index time series using two different approaches: a 
Bayesian approach, based on studies by Reiche et al. 
(2018, 2015) and a random forest (RF) approach 
(Breiman 2001). This is based on the assumption that 
– once an infestation began – the spectral indices 
would start to resemble the gray-attack state and 
hence infestation probabilities should increase, even 
during the previous infestation stages. Of the 25- 
index set, the index of each satellite type that best 
separated infested from healthy plots according to 
the JM distance was selected. v1 denotes the best- 

Table 2. Overview of the indices computed from the SAR imagery. σ represents SAR backscatter in dB and γ linearly scaled SAR 
backscatter.

Index Sensor Formula Reference

VV Backscatter (VV) Sentinel-1 σ0
VV Holtgrave et al. (2020)

VH Backscatter (VV) Sentinel-1 σ0
VH Holtgrave et al. (2020)

VV/VH Ratio (RA) Sentinel-1 VVVH ¼ γVH=γVV Holtgrave et al. (2020)
Radar Vegetation Index (RVI) Sentinel-1 RVI ¼ 4γVH

γVVþγVH

Charbonneau, Trudel, and Fernandes (2005); Holtgrave et al.  
(2020); Nasirzadehdizaji et al. (2019)
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performing index from Landsat and Sentinel-2, v2 the 
best-performing Sentinel-2-only index (Table 1), and v3 
the best-performing Sentinel-1 index.

Univariate probability density functions based on a 
Gaussian fit were computed for v1, v2, and v3, respec
tively, after which the respective probability densities 
p v1jHð Þ; pðv2jHÞ, and pðv3jHÞ, i.e. that an observation 
represented a healthy forest, plus the probability den
sities pðv1jIÞ; pðv2jIÞ and pðv3jIÞ, i.e. that an observa
tion represented an infested forest, were computed 
for all observations (Reiche et al. 2015). Then, assum
ing equal priors for H (healthy) and I (infested), we 
derived the conditional probability of an infestation 
using Bayes’ theorem (McElreath 2020): 

P Ijv1tð Þ ¼
p v1tjIð Þ

p v1tjIð Þ þ p v1tjHð Þ
for t 2 Tv1 (1) 

where t represents the date in the time series of v1 
(Reiche et al. 2015). The conditional probabilities for 
v2 and v3 were computed analogously. For the detec
tion of infested plots, five different sensor configura
tions and their capabilities were considered:

(1) Landsat, using P Ijv1tð Þ with a subset of t.
(2) Sentinel-2, using P Ijv2tð Þ; if the best performing 

Sentinel-2-based index was one shared by Landsat 
and Sentinel-2, v2 ¼ v1, and v1 would be used 
with a different subset of t that was different from 
that used by the Landsat configuration.

(3) Landsat and Sentinel-2 combined, assessing 
the potential of this “virtual constellation” of 
satellites (Wulder et al. 2015) and using 
P Ijv1tð Þ for all t

(4) Sentinel-1 only, using P Ijv3tð Þ.

(5) All three sensors combined, using both P Ijv1tð Þ

and P Ijv3tð Þ, arranged by t.

In the RF regression approach to the derivation of 
infestation probabilities (Breiman 2001), the algo
rithm is based on two previously developed meth
ods: decision trees and bagging. The RF procedure 
fits a multitude of decision trees, each time incorpor
ating only a subset of the variables and observations 
in the dataset. The decision trees are thus decorre
lated and predictive accuracy is increased (James et 
al. 2013). RF has been widely employed in remote 
sensing, due to its high prediction accuracies and 
easy applicability to high-dimensional data (Belgiu 
and Drăguţ 2016). We employed this approach to 
also test the performance of a multivariate proce
dure, compared to the univariate Bayesian approach. 
We fit classification RF models and used the informa
tion whether a reference area was healthy or infested 
as the binary response variable. Continuous class 
probabilities were derived by averaging the binary 
class votes over all trees (instead of choosing a 
majority vote as in a classification scenario). The 
same five sensor configurations as in the Bayesian 
approach were considered:

(1) Landsat, using the same RF as Landsat/ 
Sentinel-2, but with a different subset of t 
than Landsat/Sentinel-2 (see below).

(2) Sentinel-2, using a RF fit to all 21 Sentinel-2 
indices.

(3) Landsat/Sentinel-2, using a RF fit to all 10 indices 
shared by Landsat and Sentinel-2, as well as all 
available observations of these two sensors.

Figure 4. Sampling design as exemplified for one pixel representing an infested area in 2018. The red line represents the changes in 
NBR values for one example pixel infested in 2018 over time. The left (right) gray column indicates the period covering the sampling of 
values representing healthy (infested) forest. The infestation occurred during the period represented by the orange box.
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(4) Sentinel-1, using a RF fit to all 4 Sentinel-1 
indices.

(5) Combination, combining the derived probabil
ities of Landsat/Sentinel-2 and Sentinel-1, 
arranged by t.

In this study, we used the RF implementation of the 
randomForest R package. All models were fit with 
1000 trees, otherwise retaining the standard para
meters of the R package (Liaw and Wiener 2022). In 
all random forest models, we iteratively removed the 
variable that had the lowest variable importance in 
the model and assessed the corresponding out of bag 
(OOB) errors in the models at each step. These errors 
consistently were the lowest with the largest respec
tive model, i.e. the one incorporating all parameters 
for a given data configuration. Thus, only the largest 
model per sensor configuration was used. In sum
mary, ten models were fit, consisting of five different 
sensor configurations and two different approaches 
(Bayesian and RF).

Evaluation

Every sensor configuration was assessed individu
ally, and the following steps were applied: all time 
series of infested plots between 2016 and 2019 
according to the reference data that had not been 
used to train the models were transformed into 
probability time series. For the probability thresh
olds, which increased from 0.01 to 1 by 0.01, each 
pixel’s time series was classified as healthy or 
infested, according to the respective threshold. The 
date at which this detection first occurred was then 
recorded. To reduce the possibility of false detec
tions due to data variability, each detection had to 
be confirmed by two additional consecutive obser
vations above the respective threshold, similar to 
various other remote sensing time series detection 
algorithms (Hirschmugl et al. 2020; Decuyper et al.  
2022).

To increase confidence in the results, detections 
before the probable beginning of the infestation for 
each year, as well as after September 30th of the 
following year (the approximate end of the bark bee
tle season) were marked as non-detections. To deter
mine the approximate beginning of the infestations 
for each year, we implemented a modified version of 
the PhenIps model (Baier, Pennerstorfer, and Schopf  

2007) which simulates bark beetle phenology based 
on topoclimatic data. Specifically, we used the RITY 
model (Ogris et al. 2019), a modified version of 
PhenIps that only requires air temperature data. 
Since PhenIps (originally developed for Austria) better 
represents climatic conditions in the BFNP, since RITY 
was developed for Slovenia, the specific thresholds in 
RITY were adapted to these in PhenIps (Bárta et al.  
2022). Daily mean and maximum air temperatures 
were provided by the nearby weather station of the 
BFNP. The infestation onsets for each year are listed in 
Table 3. 

Since the infestation dynamics in the BFNP typi
cally involve one major outbreak wave in spring (see 
supplementary materials), the estimated infestation 
onsets should represent a good approximation to 
the actual infestation dates for many infested patches 
in the BFNP. The latter cutoff date of September 30th 

of the following year was chosen to allow infestations 
occurring at the end of a given year, which likely only 
facilitate spectral changes in the following year, to be 
detected as well. All detections between these dates 
(beginning of the infestation in a given year and 
September 30th in the year after) were considered.

For every threshold/sensor configuration, the over
all accuracy plus the commission and omission errors 
of the infested class were evaluated, according to the 
recommendations of Olofsson et al. (2014). To deter
mine whether the size of an infested patch influenced 
its detectability, the recorded measures were evalu
ated separately according to the number of adjacent 
10 × 10 m pixels per patch.

Due to the importance of early infestation detec
tion, we performed a statistical comparison of the 
detection date by sensor combination and method. 
While the absolute accuracy of the detection date 
could not be determined, due to the lack of respective 
information in the reference data, this timeliness ana
lysis was still able to reveal differences between the 
sensor configurations and thus an earlier response of 
one sensor configuration or algorithm over another to 

Table 3. Infestation Onsets for the Investigated Years, as derived 
by using PhenIps.

Year Date of Infestation Onset

2016 7 May 2016 (day of year: 128)
2017 15 May 2017 (day of year: 135)
2018 21 April 2018 (day of year: 111)
2019 18 May 2019 (day of year: 138)
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the beginning of an infestation. Lastly, we chose the 
best possible index-configuration-threshold combina
tion in terms of spatial accuracy and produced a final, 
temporally explicit infestation map for the whole 
BFNP based on it.

Results

Computed vegetation indices

While none of the computed vegetation indices were 
able to fully separate healthy from infested forest 
plots, there were distinct differences among them 
(Figure 5). Seven indices achieved a JM distance >  
1.5, and ten a JM distance < 1. The best possible 
separability was achieved by the Chlorophyll Red 
Edge Index (CRE) and the Normalized Difference Red 
Edge Index 1 (ND1), with a distance of 1.73. The best 
multispectral index derived from both Landsat and 
Sentinel-2 data was the Normalized Burn Ratio 
(NBR), with a JM distance of 1.48, closely followed by 
the Normalized Difference Moisture Index (NDM). The 
results achieved with the “original” Normalized 
Difference Vegetation Index (NDVI) and the recently 
introduced Kernel NDVI (Camps-Valls et al. 2021) were 
comparably good as well (JM distances of 1.35 and 
1.37, respectively). Of the ten indices with a JM dis
tance < 1, four were SAR-based, whereby the JM-dis
tances calculated from the original satellite bands (VH 
and VV) were somewhat higher than those resulting 
from their transformations which, for one red edge 
index allowed almost no separability at all.

The best-performing multispectral and SAR indices 
were used in further analyses, i.e. the NBR of Landsat 
and Sentinel-2 (v1), the CRE for Sentinel-2 only (v2), 
and the VV band of Sentinel-1 (v3). The distribution of 
sampled healthy vs. infested values for the three 
indices is shown in Figure 6. The overlap between 
the value distributions representing healthy and 
infested pixels was relatively low for CRE and NBR 
whereas for VV the two populations largely over
lapped. Figure 6 also shows the Gaussian probability 
density functions computed from the samples. The 
results of the separability analysis are mirrored by the 
variable importances in the random forest models fit 
for the respective approach. While the ranks are not 
always identical, the overall patterns are well in line 
(see supplementary figure S3).

Spatial accuracy

Bayesian approach
Overall, the Bayesian approach (Figure 7) achieved 
better results than the RF regression in terms of spa
tial accuracy. Especially at higher probability thresh
olds, comparably good results were obtained with all 
three multispectral sensor configurations (Landsat, 
Sentinel-2, Landsat and Sentinel-2 combined), with 
overall accuracies > 0.8 or even 0.9. Sentinel-2 consis
tently outperformed all other sensor configurations in 
terms of overall accuracy, with a maximum of 0.93 at a 
probability threshold of 0.98. Commission and omis
sion errors consistently were lowest for Sentinel-2 as 

Figure 5. Jeffries-Matusita distance for all computed vegetation indices. For the abbreviations of the indices, see Tables 1 and 2.
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well, with omission errors (Figure 7b) close to 0 for 
most thresholds, and only increasing at very high 
probability thresholds. Commission errors were high 
for very low probability thresholds, but quickly 
decreased with increasing threshold values. Landsat 
performed slightly better than Landsat/Sentinel-2, 
even though their accuracy metrics are consistently 
very similar. Both exhibit similar values compared to 
Sentinel-2, but consistently score somewhat worse.

The results achieved with Sentinel-1 and the 
Combination configuration were clearly inferior. 
Commission errors (Figure 7c) were consistently very 

high for both configurations, even exhibiting values 
of 1 for thresholds < 0.3. Only for higher values, they 
decreased. At the same time, omission errors quickly 
increased for thresholds > 0.3, whereby they were 
much higher for the Sentinel-1 configuration com
pared to the Combination configuration, at higher 
thresholds.

Random forest
The overall accuracies and errors of the three multi
spectral configurations obtained with the RF approach 
differed from those obtained with the Bayesian 

Figure 6. Value distributions between healthy and infested forests for the three indices selected for processing: a) CRE, b) NBR, c) VH. 
Dashed lines represent the probability density functions derived from the data for the Bayesian probability computations.

Figure 7. Overall accuracy (a), omission error (b), omission error of the infested class (c) commission error for the infested class based 
on the Bayesian approach.
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approach (Figure 8). While the results achieved with 
Landsat and Landsat/Sentinel-2 were similar, those of 
Sentinel-2 were inferior to both, especially at low prob
ability thresholds, with lower overall accuracies com
pared to the Bayesian approach and especially high 
commission errors of 1 for thresholds < 0.25. Results 
were generally better at higher thresholds, but the 
RF-based overall accuracies of Sentinel-2 were never 
as high as either those of Landsat and Landsat/ 
Sentinel-2 or those obtained with the Bayesian 
approach. Maximum overall accuracies of Landsat/ 
Sentinel-2 did not greatly differ from the accuracies of 
Landsat. Similar to the Bayesian approach, the high 
overall accuracies obtained using RF were driven by 
low omission errors, which only increased for higher 
thresholds for all three multispectral sensor configura
tions. This was also the case for Sentinel-1 and the 
combination of all types of data, but the high commis
sion errors (Figure 8c) of these two configurations 
resulted in overall accuracies ≤ 0.68 for the 
Combination configuration and ≤ 0.54 for Sentinel-1.

In general, lower accuracies were achieved with the 
RF approach than with the Bayesian approach. The best 

results were those of the Bayesian Sentinel-2 sensor 
configuration based on the CRE and with a probability 
threshold of 0.98, which had the highest overall accura
cies and lowest omission errors. The overall accuracy 
for this configuration-approach-threshold combination 
was 0.931, with an omission error for the infested class 
of 0.087 (i.e. a producer’s accuracy/sensitivity of 0.913) 
and a commission error for the infested class of 0.053 (i. 
e. a user’s accuracy/specificity of 0.947). This equals a 
precision of 0.962, a recall of 0.909, and thus an F1 score 
of 0.935. The respective Cohen’s kappa was 0.879. A 
detailed confusion matrix for this configuration- 
approach-threshold configuration are given in Table 
4, expressed in terms of the proportion of area 
(Olofsson et al. 2014). The optimal probability thresh
olds and respective overall accuracies for every sensor 
configuration are listed in Table 5.

Influence of patch size
As shown in Figure 9 for Sentinel-2 (Bayesian approach), 
the spatial accuracies differed depending on the size of 
an infested forest patch, whereby the corresponding 
number of adjacent pixels within 10 × 10 m represented 

Figure 8. Overall accuracy (a), omission error (b), omission error of the infested class (c) commission error for the infested class based 
on the random forest approach.

Table 4. Confusion Matrix for the Classification using the Sentinel-2 configuration with the Bayesian 
approach based on the CRE and a probability threshold of 0.98.

Reference

Infested Healthy Total

Prediction Infested 43.93% 1.71% 45.64%
Healthy 4.44% 49.92% 54.36%

Total 48.37% 51.63% 100%
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the patch size. The patch size classes in Figure 9 were 
chosen to ensure approximately equal pixel counts in 
every class. The overall patterns were similar between all 
patch sizes and resembled the general metrics from 
Figure 7. However, for pixels originating from smaller 
patches the overall accuracies were consistently lower 
and the omission/commission errors consistently higher 
than those from larger patches. For example, pixels from 
a patch with a size > 100 pixels had maximum overall 
accuracies > 0.95 (Figure 9a), with comparably low omis
sion and commission errors. By contrast, pixels from 
patches with ≤ 5 pixels had lower maximum overall 
accuracies (<0.85) and correspondingly higher commis
sion errors. The omission errors (Figure 9c) also differed 
but these differences were less pronounced.

Timeliness of the detection

The detection dates obtained with the three sensors and 
their combinations were distinctly different (Figure 10). 
In each case, the probability threshold with the highest 

spatial accuracy was applied (Table 3). To ensure com
parability between the included years, all detection 
dates were standardized to the onset of the bark beetle 
season of the of the respective year (Table 3). With the 
exception of Sentinel-1, two distinct peaks in the detec
tion date were observed using either approach. The first 
peak developed 50–200 days after the onset of the bark 
beetle season and the second peak roughly one year 
later. Earlier detection dates were consistently achieved 
using the RF approach. For the majority of the infested 
areas, the earliest detections, achieved with Sentinel-2 
and the RF approach, were within the first 200 days after 
the infestation. Only a minority of pixels marked as 
infested fell between the two peaks. There were espe
cially few detections during the winter, although this 
varied among the configurations, with fewer detections 
for Sentinel-2 than for Landsat/Sentinel-2.

The pattern of two distinct peaks encompassing 
a large share of the infestations was consistent not 
only between most sensor configurations (Figure 
10) but also between the surveyed years. Figure 11 

Table 5. Optimal thresholds and overall accuracies (OA) for every sensor configuration and approach.

Sensor configuration Bayesian approach RF approach

Landsat Index: NBR; Threshold: .93, OA: .89 Threshold: .88, OA: .86

Sentinel-2 Index: CRE; Threshold: .98, OA: .93 Threshold: .90, OA: .78
Landsat/Sentinel-2 Index: NBR; Threshold: .96, OA: .87 Threshold: .96, OA: .87

Sentinel-1 Index: VH; Threshold: .67, OA: .62 Threshold: .93, OA: .58
Combination Indices: NBR, VH; Threshold: .77, OA: .67 Threshold: .94, OA: .67

Figure 9. Patch-size-specific spatial accuracies for the Sentinel-2 configuration based on the Bayesian approach: a) overall accuracy, b) 
omission error for the infested class, c) commission error for the infested class. The gray dashed lines represent the accuracy/errors 
regardless of patch size, as shown in Figure 7.
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shows the detection periods for the Sentinel-2 RF 
configuration for the years 2016–2019. While there 
were some differences between years, e.g. later 
detections in 2017 and 2018, the general pattern 
of two peaks was consistent. Most infestations 
were detected during the first 200 days after the 
onset and between 300 and 400 days, i.e. roughly 
one year after.

Likewise, the pattern of two distinct peaks was 
consistent among infested patches of different sizes 
(Figure 12; using the same classes as in Figure 9), 
without major differences between the surveyed 
patch sizes. In contrast to the spatial accuracies 
depicted in Figure 9, detections in larger infested 
patches were not distinctly earlier than those in 
small patches. It should be noted that the detection 
dates changed if different probability thresholds were 
applied. Figure 13 provides an example for the 
Sentinel-2 RF configuration: at thresholds <0.9, infes
tations were typically detected earlier, whereby 
detections per date stabilized at around 50 to 75  
days after the infestation onset.

Final infestation map

The final map of detected infestations in the BFNP 
was derived from the best index-configuration- 
threshold combination in terms of spatial accuracy, 
and thus based on Sentinel-2 based on the CRE and 
the Bayesian approach, with a probability threshold of 
0.98 (Figure 14). As Sentinel-2 was not launched until 
mid-2015, the map represents only the infestations 
occurring since then, with the exception of the dark 
green areas seen along the eastern margin of the 
park. These correspond to high elevations dominated 
by mountainous spruce forests, where infestations 
began between the mid-1990s and mid-2000s, but 
they were still detectable in the early years following 
the launch of Sentinel-2.

The subset of this map shown in Figure 15 demon
strates that the infested areas detected by Sentinel-2 
were in good agreement with the reference data. 
Typically, the areas detected by Sentinel-2 were 
somewhat larger than those manually mapped from 
the aerial imagery. Some infested areas were missed, 

Figure 10. Distribution of values regarding the timeliness of detection for all sensor configurations based on the Bayesian approach (a) 
and the random forest approach (b). All dates are standardized to days since the beginning of the bark beetle infestation in the 
respective year.
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Figure 11. Distribution of values regarding the timeliness of detection for the years 2016–2019, as determined using the Sentinel-2 
random forest configuration.

Figure 13. Distribution of values regarding the timeliness of detection according to three different probability thresholds (0.5, 0.75, 
0.9), as determined using the Sentinel-2 random forest configuration.

Figure 12. Distribution of values regarding the timeliness of detection in patches of different sizes for the years 2016–2019, as 
determined using Sentinel-2 random forest configuratio
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as indicated by the red boxes in the northwestern and 
southeastern parts of the map (Figure 15).

Discussion

Distinct differences in the spectral separability of 
healthy vs. infested forest plots could be discerned 
based on the JM distances of the tested indices. 
While for seven indices the JM distance was > 1.5, 
indicating only slight overlap, for 10 indices it was <  
1. There were also differences between the five 
tested sensor configurations. Based on the 
Bayesian approach, which yielded a higher spatial 
accuracy, Sentinel-2 consistently outperformed the 
other four sensor configurations. Landsat and the 
combination of Landsat and Sentinel-2 achieved 

satisfactory results but failed to provide any advan
tages over Sentinel-2 alone. The two configurations 
that included SAR data performed worse than the 
three multispectral configurations.

Influence of indices

All indices with the greatest ability to separate 
infested from healthy plots incorporated at least one 
Sentinel-2 red edge band. While red edge satellite 
imagery has rarely been applied in bark beetle infes
tation detections, its general suitability was previously 
documented. For example, the studies by Abdullah et 
al. (2018) and by Adamczyk and Osberger (2015) state 
that based on spectrometer data, the red edge region 
of the electromagnetic spectrum is relatively sensitive 

Figure 14. Final infestation map for the Bavarian Forest National Park. Colors represent the detection date based on the Sentinel-2 
configuration using the CRE and the Bayesian approach with a probability threshold of 0.98. The black box indicates the subset 
illustrated in Figure 15.
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to bark-beetle-induced changes. Particularly, the red 
edge region is sensitive to losses in chlorophyll con
tent (Abdullah et al. 2018) which in turn is an early 
biophysical change after a bark beetle infestation 
(Wulder et al. 2006), such that red edge indices should 
be used in assessments of bark beetle disturbance, 
and especially in early detections. This is also docu
mented by a previous study utilizing multiple 
Sentinel-2-based indices (Dalponte et al. 2022), 
where the CRE, the best performing index in this 
study, achieved good results as well.

The best-performing multispectral indices were the 
NBR and the NDM, both of which incorporate the NIR 
and one of the two SWIR bands shared by Landsat 
and Sentinel-2. Their good performance is well in line 
with previous research showing that changes in nee
dle water content are closely associated with changes 
in SWIR reflectance, which both NDMI and NBR use 
(Foster et al. 2017; Gao 1996). A loss of needle water is 

among the early responses of a tree to a bark beetle 
infestation (Abdullah et al. 2019; Wulder et al. 2006). 
Hence, the NDMI has been routinely employed in 
satellite-based detections of bark beetle infestations 
(Fernandez-Carrillo et al. 2020; Goodwin et al. 2008; 
König et al. 2020; Meddens et al. 2013; Ye et al. 2021). 
While the NBR was initially developed for the detec
tion of burned areas (Chuvieco et al. 2019; López 
García and Caselles 1991) and is widely used in that 
setting, it has also frequently been applied to bark 
beetle detections (Meigs, Kennedy, and Cohen 2011; 
Ye et al. 2021).

Comparison of suitable sensors and sensor 
configurations

Despite their spectral similarities, the better perfor
mance of Sentinel-2 than Landsat is plausible, 
because Sentinel-2 offers a higher spatial resolution 

Figure 15. Subset of the infestation map for an area in the northwest region of the BFNP. Polygons represent the disturbance patches 
in the reference data, labeled according to the infestation year in each one. The three red rectangles delineate areas that were not 
successfully detected. The satellite-based assessment agreed well with the ground data.

GISCIENCE & REMOTE SENSING 19



and is thus better able to capture small-scale 
dynamics, resulting in higher spatial accuracies. The 
maximum overall accuracies achieved by Sentinel-2 
were very high compared to other studies with similar 
objectives. For example, in the study of Huo, Persson, 
and Lindberg (2021) the overall accuracy was 0.91, 
although only during late infestation stages (0.82 for 
earlier stages). In the study of Bárta, Lukeš, and 
Homolová (2021) the overall accuracy was 0.78, but 
only green-attack phases, which are more difficult to 
detect, were examined. Fernandez-Carrillo et al. 
(2020) reported accuracies of 0.95, but only for high- 
severity areas. Similar to our study, Dalponte et al. 
(2022) achieved maximum overall accuracies of 0.91 
(even for early attack stages), but with individually 
delineated tree crowns based on lidar data as an 
auxiliary data set. The maximum overall accuracies 
of this study are the highest so far achieved by studies 
in the BFNP, where Abdullah et al. (2019) achieved a 
producer’s accuracy of 0.67 for Sentinel-2 and 0.36 for 
Landsat, whereby green attack was specifically tar
geted. The usage of L-Band SAR for this task (Tanase 
et al. 2018) achieved maximum overall accuracies of 
0.88. An overall accuracy of 0.7 was achieved based 
on synthetic RapidEye data in an area in the northern 
part of the BFNP (Latifi et al. 2018).

Sentinel-2 also had a better temporal perfor
mance than Landsat, due to its higher temporal 
resolution. However, the performance differences 
between Sentinel-2 and the Landsat/Sentinel-2 
combination are more difficult to explain. 
Although the use of FORCE ensured consistent 
preprocessing and the harmonization of Landsat 
and Sentinel-2 data, differences may have per
sisted, such as due to limitations of the applied 
radiative transfer models (Doxani et al. 2018). 
Another explanation is the mixed pixel effects aris
ing from Landsat’s lower spatial resolution, which 
persisted even after Landsat was resampled to a 
10 m pixel size. The most likely explanation though 
is probably that the NBR was used in the Landsat/ 
Sentinel-2 configuration. This index was less able 
than the CRE of Sentinel-2 to separate healthy 
from infested areas, which is conductive to the 
hypothesis that a high spectral sensitivity to the 
physical processes induced by a bark beetle infes
tation is more important than a high temporal 
resolution in obtaining precise and rapid detec
tions. Namely, based on our results, we found out 

that the usage of Sentinel-2 alone with a lower 
observation density in the time series but the 
greatest physical sensitivity achieved better results 
than the combination of Landsat and Sentinel-2 
with more dense time series. This even holds true 
in a cloud-prone area like the BFNP and matches 
other studies reporting similar spatial accuracies in 
the detection of infested areas but utilized time 
series with lower temporal densities (Bárta, Lukeš, 
and Homolová 2021; Huo, Persson, and Lindberg  
2021). In addition, this hypothesis is supported by 
Figure 11: even though data availability for 
Sentinel-2 was lower in the 2016–17 period com
pared to 2018–19, the overall detection patterns 
are still similar. As long as basic time series density 
per season is guaranteed, detections are not occur
ring later. Fewer observations are still suitable to 
capture the infestation-induced changes in canopy 
reflectance.

Besides, the usage of the NBR vs. the CRE also 
explains the high similarity between the Landsat and 
Landsat/Sentinel-2 configurations, both relying on 
this index. The better performance of Sentinel-2 in 
larger, continuous forest patches than in patches 
represented by only a few pixels can be attributed 
to the lower share of mixed pixels along the edges of 
each patch, as previously reported (Fernandez-Carrillo 
et al. 2020; Zimmermann and Hoffmann 2020).

The relatively poor performance of the SAR data 
from Sentinel-1 can be explained by the low separ
ability between healthy and infested plots based on 
the calculated indices, as also reported by Huo, 
Persson, and Lindberg (2021). This can be attributed 
to the relatively low penetration depth of Sentinel-1’s 
C-band-based imaging (Reiche et al. 2018; 
Woodhouse 2006). Thus, the similarity in the infesta
tion probabilities for pixels representing healthy and 
infested plots resulted in only small changes in the 
infestation probability after an infestation had 
occurred. Hence, at low thresholds the detections 
based on Sentinel-1 data were removed if they 
occurred before the beginning of the bark beetle 
season whereas at high thresholds the infestations 
were not detected because the probabilities 
remained low. In the combination time series, the 
consistently medium probabilities of Sentinel-1 
added high variability to the time series if combined 
with multispectral probabilities that increased after an 
infestation. This reduced the probability of a 
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detection that has to be confirmed by two subse
quent observations.

The overall poor performances of the two sensor 
configurations that included Sentinel-1 data were in 
agreement with the study by Huo, Persson, and 
Lindberg (2021) in which the benefit of including 
Sentinel-1 data in their bark beetle infestation detec
tion approach was minimal. While this configuration 
had the highest observation density, it appears that, 
as discussed above, sensor suitability is more impor
tant than a high time series density in early detection, 
as long as a minimum time series density is available 
to capture bark beetle-induced changes, i.e. to ensure 
that recent changes in canopy reflectance (or back
scatter) are documented without the need for addi
tional observations within each infestation stage. The 
limited suitability of the combined sensor configura
tion can also be traced to two different sensor con
cepts (optical vs. radar) and thus to differences in the 
sensitivities of the different spectral traits: while opti
cal data is more sensitive to changes in leaf proper
ties, SAR is generally more sensitive to canopy 
structure (Reiche et al. 2018; Woodhouse 2006). 
Combining these different approaches will therefore 
yield inferior results despite overall accuracies that are 
higher than those obtained with Sentinel-1-alone, as 
in the latter case the detections are driven by optical 
data and are not disrupted by less well-suited SAR 
data. This explains the difference between our study 
and that by Reiche et al. (2018), in which Sentinel-1 
was used to capture logging, i.e. an activity resulting 
in more distinct structural change than that imposed 
by bark beetle infestations (Akbari and Solberg 2022; 
Reiche et al. 2015, 2018). In that study, both Sentinel-1 
and the longer-wavelength ALOS-PALSAR data were 
able to capture the changes, but the use of Sentinel-1 
data in the detection of bark beetle-infested areas, 
where tree trunks typically remain standing for years 
after tree die-off, is not possible. In summary, combin
ing Landsat and/or Sentinel-2 with Sentinel-1 at the 
data level to map forest disturbances that are not 
stand-replacing or otherwise result in only small struc
tural changes (e.g. bark beetle infestations), appears 
to be not possible using the methods applied here. 
This finding is backed up by the study by Balling et al. 
(2021) who assessed whether tropical forest fires – 
resulting in low structural changes as well – can be 
more easily captured with the combination of 
Landsat, Sentinel-2, and Sentinel-1, but also found 

that a data-level combination did not suit their analy
sis. This distinction may also explain while in our 
study, the simple thresholding of Bayesian and RF- 
derived probabilities provided better results than 
employing the iterative Bayesian updating of prob
abilities applied by the authors (Reiche et al. 2015,  
2018) available through the bayts R package (Reiche  
2019), which we also tested (see supplementary mate
rials). This procedure appears to be better suited to 
their research problem where both the SAR and multi
spectral probabilities changed relatively quickly. In 
addition, the results of the bayts package for the 
single-sensor time series are likely inferior to our 
results because the iterative Bayesian updating 
added additional complicacy to the detection proce
dure, leading to more detections being filtered out by 
our evaluation procedure.

The insufficient applicability of SAR data found in 
this study contrasts with the results of Tanase et al. 
(2018) who found that infested areas are detectable 
with L-Band data after needle loss due to the higher 
penetration depth and lower saturation of their L- 
band data (Woodhouse 2006). An additional limita
tion of SAR that led to the low detectability of the 
infested plots might have arisen from the combined 
use of ascending and descending orbits. The radio
metric terrain flattening according to Vollrath, 
Mullissa, and Reiche (2020) may not have fully 
accounted for the different viewing geometries 
between these two orbits, especially in steep terrain. 
In addition, the processing pipeline in Google Earth 
Engine relies on SRTM digital elevation data. Digital 
surface data (incorporating canopy height) would 
likely yield better results for side-looking SAR. In addi
tion, other SAR-based metrics, e.g. interferometric 
coherence, may be tested for the detection of bark 
beetle-infested areas as well and may result in a 
higher sensitivity to small structural changes (e.g. a 
higher coherence as trees without needless move less 
during wind). In addition, more polarimetric data may 
be tested as well as other evaluation algorithms, e.g. 
based on shadow effects (Bouvet et al. 2018).

Possibilities for the early detection of infestations

Regardless of the sensor configuration, both the spatial 
accuracies and the timeliness of detection should be 
interpreted jointly, because they will differ depending 
on the applied probability threshold. Low probability 
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thresholds typically result in much earlier detections, 
but if a detection occurs too early, i.e. before the onset 
of the infestation in the reference year, it will not be 
considered (see Methods). This effect may be due, e.g., 
to the small changes in the Sentinel-1-derived prob
ability time series, resulting in relatively high commis
sion errors for low thresholds. High thresholds – 
although they are less likely to be met even in the 
case of an infestation – reduce commission errors 
because there will be fewer detections before the 
infestation onset. This will hold true up until a certain 
threshold specific to each sensor configuration, after 
which the overall accuracy will sharply decline because 
omission errors distinctly increase at high thresholds 
(Figures 7, 8). A scenario not taken into account in this 
study is the possibility of earlier stressors that change a 
tree’s spectral traits even before an infestation occurs, 
such as drought, storm damage, or snow- and ice- 
related crown damage (Hlásny et al. 2021) which may 
result in detections before the estimated infestation 
onset. Hence, they will be filtered out by the proposed 
procedure. In the absence of information in the refer
ence data on these stressors, we cannot account for 
their influence in this study. This would have to be 
assessed with additional data.

While there is an empirically determined optimal 
probability threshold for all sensor configurations, 
there is a tradeoff, with low probability thresholds lead
ing to early detections, many of which will be false- 
positives and thus decrease the overall accuracy. Low 
thresholds will include fewer infested pixels than higher 
thresholds but the infestations will be detected earlier. 
Higher probability thresholds result in higher overall 
accuracies but at the cost of later detections. If the 
procedure proposed herein were to be used for opera
tional monitoring or in a NRT scenario, users could select 
a threshold that fits their needs: rapid, NRT detection 
with relatively high errors (which may lead to additional 
costs if larger areas are surveyed that are in fact not 
infested) or detections at later stages of an infestation 
and thus with lower error rates, such as may be pre
ferred for yearly infestation/damage inventories.

Although a detailed temporal assessment could not 
be performed based on the available reference data and 
we could only assess the temporal offset from the esti
mated beginning of the infestation in each year, infesta
tions were mostly detected several months after this date. 
Thus, while our approach is appropriate for relatively 
quick, automated inventories of areas infested by bark 

beetles, such as conducted by government agencies or 
protected area administrations, it likely lacks green-attack 
detection capabilities and cannot be applied for practical 
forest management. The generational development per
iod of the European spruce bark beetle is between 7 and 
11 weeks (Fahse and Heurich 2011), with the new gen
eration able to infest previously healthy trees. Thus, to 
limit bark beetle spread, infested trees have to be 
removed within this 7–11-week period. This implies the 
detection of infested trees within a few initial weeks, 
which cannot be accomplished with our approach, as 
most detections occur only after this period.

Comparison of the Bayesian and random forest 
methods

Generally, both the Bayesian and the RF approaches 
provided reliable results in detecting bark beetle 
infestations. However, the performance of the 
Bayesian approach was better in terms of the 
achieved spatial accuracies, perhaps because of its 
better adaptability to time series analyses (Reiche et 
al. 2015; Zhao et al. 2019) whereas, due to the internal 
bootstrap process, RF approaches are hampered by 
the arbitrary sub-selection of samples of different 
time steps (Belgiu and Drăguţ 2016; Breiman 2001). 
In addition, the probabilities based on the Bayesian 
approach were very close to zero for most of the 
included time series but after the infestation they 
typically increased to values close to one. By contrast, 
the RF-based probabilities were typically higher from 
the beginning and the respective increase after the 
infestation was less pronounced. In addition, some 
RF-based time series never reached the same maxi
mum probability values. Hence, at higher probability 
thresholds, the variability in the time series may have 
led to infestations not being detected as they would 
not have been confirmed by subsequent observa
tions. All of this may be caused by correlations 
between the different indices in the training dataset 
which we observed. However, as described in the 
methods, for each sensor configuration, we used the 
random forest model with the most predictors as it 
achieved the lowest OOB errors.

Limitations and future requirements

Although the methods applied in this study resulted in 
very accurate detections of infestations and, more 
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importantly, of infestation dates, several methodologi
cal adjustments might enhance the spatial and tem
poral accuracies. First, reference data with more 
detailed temporal information, including precise infes
tation dates for single trees or small stands, should be 
used in further studies. While temporal differences 
among the five different tested sensor configurations 
could be identified, we were not able to compare the 
detection dates computed here with any reference 
dates, such that several assumptions had to be made 
about the infestation dates in the reference data, e.g. 
no infestations before the modele onset of the infesta
tion according to the PhenIps model and that identi
fied patches in the reference data were infested the 
year before aerial imagery was acquired. Whether late 
detections stem from late (undocumented) infestation 
dates or the inability of the applied methods to detect 
early infestations is unclear. Similarly, the nature of the 
two distinct peaks obtained with most configurations 
(Figure 10) could not be resolved. The second peak 
may have represented infestations that occurred late 
in the year and thus remained undetected, due to the 
low observation densities during the winter, but which 
were then detected early in the next year, when obser
vation densities were higher. Thus, field data with high 
temporal resolution remains a prerequisite for fully 
valid temporal assessments of bark beetle infestations 
via remote sensing.

Future studies should investigate the possibility of 
using the procedure proposed here without smooth
ing the time series. Applying the LOESS smoothing was 
necessary in our case and improved the results (see 
supplementary materials). We hypothesize that this is 
due to multiple reasons. First, artifacts in the time series 
prevail due to steep and rugged terrain and an imper
fect co-registration between Landsat and Sentinel-2. 
Second, there was a mismatch of the reference poly
gons and the satellite imagery because the polygons 
were derived with a stereo workstation. This mismatch 
is difficult to account for, since it is not systematic. 
Third, the combined usage of ascending and descend
ing orbit Sentinel-1 data required some smoothing and 
should itself be omitted in the future (see above). 
However, this smoothing may have removed some 
(early) signs of bark beetle infestation. Hence, removing 
it may improve not only the overall detectability, but 
particularly the early detection of infestations.

Our approach grants users some control over the 
detection timing. While it does target the detection 

during the green attack stage, it does not specifically 
relate to a specific attack stage, in contrast to other, 
similar approaches (Abdullah et al. 2019; Bárta, Lukeš, 
and Homolová 2021). Instead, the infestation prob
abilities based on healthy and gray attack spruce 
increase overtime and allow users the selection of 
an appropriate probability threshold. Hence, it can 
be employed for the continuous monitoring of bark 
beetle infestations and, as it is not aimed at a parti
cular attack phase nor based on a change in a specific 
spectral trait (Lausch et al. 2016), in the detection and 
monitoring of other forest disturbances as well, if 
sufficient training data are available. If the focus is 
on the rapid detection of bark beetle infestations, 
other approaches that would also work in NRT may 
be more appropriate as well and should be tested, e.g. 
in which a baseline model of each pixel’s phenology 
or intra-annual variability is fit and then used as the 
basis for comparisons with newly acquired reflec
tance/index values (König et al. 2020; Löw and 
Koukal 2020; Mathieu et al. 2022). A possible improve
ment without completely altering our approach 
would be the use of minimum instead of median 
composites as the reference for infested areas; in 
this case the distance to index values representing 
healthy forests would likely be greater.

Our study showed that Sentinel-1’s C-band data are 
not well-suited to detect bark beetle infestations 
(although they have been successfully used to detect 
logging activity; Reiche et al. 2018), in contrast to SAR 
data with longer wavelengths (Tanase et al. 2018). 
However, there are currently no active SAR satellites 
offering the same continuous revisits as Sentinel-1, 
which means that SAR data cannot provide sensitive 
inputs for operational/NRT monitoring of bark beetle 
infestations: either the data are not suitable (Sentinel-1) 
or too few images are available to guarantee a basic 
time series density able to capture the different infes
tation stages (e.g. ALOS PALSAR; Reiche et al. 2018). 
New SAR satellites with L-band capabilities and consis
tent, frequent revisits, such as NISAR, would benefit 
forestry applications, especially studies of bark beetle 
infestation in areas with a high cloud cover probability.

Conclusions

In this study, we used full time series of multi-sensor 
satellite data, obtained from Landsat, Sentinel-2 (mul
tispectral), and Sentinel-1 (SAR) to map bark beetle 
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infestations in a mountainous forest in Central Europe 
and evaluated their respective performance. We 
applied a consistent evaluation procedure which 
made the comparison of the suitability of these dif
ferent sensors possible. Additionally, as a new techni
que in this context, the combination of Landsat and 
Sentinel-2 as well as all three sensors (i.e. Landsat, 
Sentinel-1, and Sentinel-2) was tested.

Our results showed that Sentinel-2 is best equipped 
for mapping bark beetle infestations, based on its high 
spectral sensitivity to bark-beetle-induced changes in 
spectral traits and especially due to its red edge bands, 
which have not yet commonly been used for this task. 
Sentinel-2 also had a distinct advantage over Landsat, 
which when combined with Sentinel-2 did not provide 
any benefits, evidenced by the increased time series 
variability and the lower spectral resolution. Sentinel- 
2's high spectral resolution, frequent revisits, and rela
tively high spatial resolution make it an invaluable tool 
for monitoring bark beetle infestations. The red edge 
capabilities of Sentinel-2 should be further explored, 
such as by testing other infestation detection algo
rithms based on red edge vegetation indices. Other 
types of satellites with red edge capabilities, notably, 
the newer generation of PlanetScope, which also 
includes a yellow spectral band that may be useful for 
infestation detections, e.g. if combined with the red 
edge band (Planet, Inc 2022), will provide valuable 
information as well. Sentinel-1's high spatiotemporal 
resolution did not compensate for its limited suitability 
for forestry applications. Satellites offering similar reso
lution and cloud cover-independence but which are 
equipped with sensors working with longer wave
lengths would greatly improve operational bark beetle 
infestation detections.

The high overall accuracies and low commission 
errors of Sentinel-2, especially in larger infestation 
patches, further recommend its use. In addition, our 
threshold-based classification allows users to select 
both a probability threshold based on the particular 
application and the optimal tradeoff between low 
commission errors and early detection. Hence, our 
approach can be operationally employed in NRT sce
narios and in the inventory of bark beetle infestations 
and other forest disturbances.
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