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Abstract 

Obtaining fine-scale accurate temperature data can be a difficult prospect. Due to variances in 

environmental factors like topography and vegetation cover, stationary weather stations and 

satellites may fail to adequately represent the full range of temperatures across a landscape. 

Wildlife equipped with temperature recording GPS telemetry collars may be a valuable source 

for this fine-scale temperature data, but the factors influencing temperature differences 

between animal collars and air temperature must be determined to accurately record and model 

temperature. Likewise, choice of species would need to be evaluated for their suitability to 

serve as “mobile weather stations”. Two commonly monitored terrestrial mammal species 

were selected to compare differences in temperature offset. Data collected from 15 roe deer 

(Capreolus capreolus) over 3 years and 11 brown bears (Ursus arctos) over 14 years equipped 

with temperature logging GPS telemetry collars were compared with corresponding historical 

temperature data from nearby weather stations. Data was analyzed using generalized linear 

mixed modeling (GLMM) to identify variables most impactful to temperature offsets, such as 

animal weight and wind speed. Results indicate that the temperatures obtained from roe deer 

equipped with GPS collars are highly correlated to the temperatures reported by nearby 

weather stations. With an average (mean ± 2SD) temperature difference of 7.69 ± 3.23 °C 

year-round (6.30 ± 3.02 °C in summer and 8.98 ± 2.85 °C in winter). When fitted to a 

predictive model roe deer collar measurements were able to successfully predict temperature 

of nearby weather stations R²=0.83. It was discovered that body size and activity level were 

most impactful for accounting for temperature offsets. Brown bears showed greater 

temperature discrepancies with a difference of 14.58 ± 4.11 C° year-round (10.36 ± 3.87 °C 

in summer, and 17.0 ± 4.58 °C in winter, during their denning period). When modeled, brown 

bear collar measurements were less able to accurately predict nearby weather station 

temperature R²=0.52. We demonstrate that wildlife telemetry collars have the capability to 

accurately gather fine-scale temperature data, but species selection plays a vital role as well as 

what variables are most important to account for temperature offsets. prior knowledge of key 

variables and species selection play a vital role in predicting temperature. 

Key Words: Capreolus capreolus, fine-scale, micro-climate, telemetry collar, Ursus arctos, 

weather station 
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1. Introduction 

As climate models become more sophisticated, researchers look for ways to measure 

fine-scale climate variables in historically unmonitored or remote places (Franklin et al., 2013; 

Rummukainen, 2010). Traditional meteorological data is obtained from stationary weather 

stations and an array of orbiting satellites (Mendelsohn et al., 2007). While these remain 

reliable sources of data, they are limited in their complete depiction of on-the-ground 

temperature ranges. Topographic features like canyons and tree canopy found in dense forests 

create distinct microclimates (Chen et al., 1999; De Frenne & Verheyen, 2016). Temperature 

recording devices on wildlife telemetry collars are a potential source of information to fill this 

data gap and better tailor climate and weather prediction models on a local scale. However, 

the choice of species serving as these 'mobile weather stations' may be important in the 

reliability of obtaining accurate and useful data. Differences in physiology, phenology, and 

life history traits such as metabolism, collar placement, and hibernation can cause drastic 

variation in recorded body temperature between shifting seasons and species. (Clarke & 

Rothery, 2008; Geiser, 2004; Heinrich, 1977) 

Fine-scale temperature data have numerous applications in ecological studies. For 

instance, species distribution models (SDM) (Ford et al., 2013; Franklin et al., 2013), can be 

used to predict the change in a species distribution in the future under changing climate 

conditions (Elith et al., 2009). This type of data may also aid researchers and wildlife managers 

in determining thermal refuges or hotspots in landscapes, especially in relation to wildlife’s 

response to intense weather events like heat waves (Alibright et al., 2011). On a smaller scale, 

habitats may possess features including changes in vegetation cover or topography overlooked 

by traditional temperature measuring methods (Ford et al., 2013). Retrieving this fine-scale 

data can be difficult and costly for researchers if they need to deploy temperature sensors and 
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perform surveys in person. Wildlife already equipped with temperature sensors may offer a 

more feasible, dynamic, and cost-efficient data source. 

Boreal and alpine systems face considerable shifts due to climate change caused by 

factors like alterations in snowpack, annual precipitation, and temperatures (Price et al., 2013; 

Gobiet et al., 2014; IPCC, 2023). These conditions can lead to a range of issues like wildfires, 

altered timber growth, crop failure, and animal fatalities, both wild and domestic. This creates 

challenges for forestry industries, wildlife managers, farmers, and landowners (Kasischke et 

al., 2012; Stocks, 1998; Venäläinen et al., 2022; Volney et al., 2020). Due to their mountainous 

nature, these ecosystems often have dense forests and highly varying topological features 

(Dirnböck et al., 2003). This makes recording accurate fine-scale temperature data difficult 

for the varied weather stations present in a landscape. Since weather stations are only able to 

measure the temperature in their immediate vicinity and are often too few in between, getting 

a complete coverage of the variability in landscape temperatures can be challenging (Martin 

et al., 2019). 

In addition, satellites can be a useful tool in monitoring temperature and creating 

climate models. They are excellent in providing consistent data over large areas over long time 

spans. However, satellites are currently less accurate in determining true temperature 

conditions at a given point than a traditional weather station, as they measure the brightness 

of the atmosphere and then convert that to a temperature reading with accuracy hindered by 

topography and latitude (Climate NASA, 2023; Palmer et al., 2018). They also struggle with 

fine-scale temperature changes throughout a landscape and are unable to provide temperature 

readings in areas under dense vegetation canopy or anywhere else where direct visibility is 

hindered, such as under intense cloud cover or in deep ravines (Dubovik et al., 2021). Despite 

this, there are efforts to compensate for these challenges using modeling techniques (Kearney 

et al., 2020). 
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Over the last decade, GPS (Global Positioning System) telemetry collars have become 

more sophisticated, affordable, and available in wildlife research and management, and are 

starting to replace or complement older technology such as VHF (Very High Frequency) 

collars (Allan, 2013). These GPS collars allow researchers to track and record the location and 

movement of individuals and groups of animals over large distances and lengths of time, 

making them excellent sources of long-term data (Dussault et al., 1999; Habib et al., 2014; 

Johansson et al., 2016). Recent advances in GPS telemetry collars allow for additional data 

streams to be collected, including temperature data when collars are equipped with 

temperature sensors. This enables the recording of temperatures in the animals' immediate 

vicinity at regular intervals. These collar sensors can be used to establish the external 

temperature of a given animal, or to record air temperature adjacent to the collar (Whitford & 

Klimley, 2019; Weaver, 2021). 

Such data has the potential to answer a variety of research questions related to 

physiological, ecological, and behavioral topics. In marine environments, wildlife has been 

used to gather environmental temperature data for years, but this method remains underutilized 

in terrestrial environments (Simmons et al., 2011; McMahon et al., 2021). A challenge to this 

use is the possibility that a collared animal's ambient body heat may influence the temperature 

readings. Body heat can influence temperature readings to a varying degree depending on 

multiple factors, such as body position, denning, collar position, activity level, or weather 

conditions. (Harlow et al., 2004). Previous studies have investigated the offsets between 

telemetry collar temperature sensors and air temperature (Messeri et al., 2019; Ericsson et al., 

2015; Schwartz et al., 2009; Maier, 1996), and some have even attempted to reduce the effects 

of body temperature of sensors (Jiang et al., 2012). The different factors contributing to this 

offset, as well as how it varies between species, is not well known. The effects that differences 

in biology, behavior, and weather conditions play must be investigated further if wildlife 

telemetry collars are to be used to gather accurate temperature data. 
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This study investigates the viability of using wildlife telemetry collars equipped with 

temperature sensors for gathering accurate climate data by assessing the drivers of temperature 

offset between collars and nearby weather stations. Our goal is to establish what conditions 

should be accounted for when using terrestrial wildlife equipped with telemetry collars to 

gather useful air temperature measurements. We also investigate which species may be better 

suited to accurately predict air temperature. To do this we use data obtained from two 

commonly monitored wildlife species: brown bear (Ursus arctos) and roe deer (Capreolus 

capreolus) to determine how species selection may affect temperature offsets.  

We hypothesize that knowing a collared animal's weight, as well as the wind speed of 

the area will be among the most impactful in explaining temperature differences between 

collar and true air temperature. Because animals with lower body weight generally produce 

more heat due to higher metabolic rates (MacNab, 1970), smaller individuals may produce a 

larger temperature difference between the collar’s recorded value and the actual air 

temperature. Higher wind speeds may move warmer ambient air away from collars, reducing 

the effect of the animal's body heat on the collar’s temperature sensor (Dematteo & Harlow, 

1997; Messeri et al., 2019). Additionally, we hypothesize that roe deer are a more reliable 

source of accurate temperature data than brown bears. This is for several reasons, first, the 

greater variance in weight in brown bears throughout a year than roe deer (Pettorelli et al., 

2002; Swenson et al., 2007). We theorize that wind will have a stronger effect of dissipating 

body heat around roe deer collar sensors due to differences in collar fit because of neck size 

and fur (Hennig et al., 2020; Morrant et al., 2022). Finally, the act of denning during winter in 

brown bears will make them less useful for year-round temperature monitoring (Schwartz et 

al., 2010). We believe that if certain biological traits and climatic conditions such as weight 

and wind speed are adequately considered, these collars could provide an additional source of 

accurate fine-scale temperature data. 
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2. Materials and Methods 

2.1 Study Areas 

The brown bear population in this study is primarily situated within Dalarna, 

Gävleborg, and Jämtland counties in Sweden (Fig. 1). This area is within the boreal forest 

biome (Östlund, 1997) and faces pressures from agriculture and timber harvesting (Angelstam, 

2021). All recorded GPS locations ranged between latitudes 60.79° N and 64.27° N. The 

northern and western regions of the study area are characterized by the rugged terrain of the 

Scandinavian mountains, while the eastern and southern portions of the region include open 

plains, hills, and forested areas with numerous rivers and lakes (Kullman, 2004). This is a 

landscape that has widely separated weather stations, creating gaps in temperature monitoring 

(Friedly, 2009; Martin, 2019). 

 Figure 1: Brown Bear Study Area with movement of the 11 bears included in the study spanning from 8 April 2008 to 29 

Sept. 2022 
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Table 1: Number of data points per closest weather station by bear. Showing which bears 
were closest to which station 

Bear ID Delsbo Edsbyn Hamra Sarna Sveg Ytter 

Bytras 0 0 108 0 53 1035 

Hampyra 0 11589 0 0 0 0 

Hummel 0 0 2928 67 16 136 

Kil-Kalle 0 26812 111 0 89 25 

Kroken 1291 77 0 0 0 0 

Kulla 0 0 0 21686 0 0 

Kvass 0 0 0 772 0 0 

Noen 0 0 8622 3 0 1408 

Ottala 0 0 11936 0 0 0 

Rosenda 0 0 0 8447 0 0 

Tensvalla 0 0 4761 0 0 0 

 

 

Table 2:Mean, minimum, and maximum distance in kilometers bears were from their closest 
weather station during the study 

 

 

 

 

 

Bear ID Mean Distance (km) Min. Distance(km) Max. Distance(km) 

Bytras 12.14 2.43 28.07 

Hampyra 5.64 0.66 13.82 

Hummel 22.87 4.35 66.62 

Kil-Kalle 18.48 0.35 65.18 

Kroken 33.26 2.27 75.86 

Kulla 18.39 3.62 38.65 

Kvass 31.26 18.90 43.21 

Noen 22.84 2.77 55.84 

Ottala 10.75 1.99 23.36 

Rosenda 15.57 1.93 33.68 

Tensvalla 13.24 3.87 22.85 
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The roe deer population is located in Canton Zürich, Switzerland. Their habitat is 

largely a mix of agricultural, suburban, and reserved forested areas, in this instance the Zurich 

Wilderness Park Sihlwald. Three locations surround the study area: Aeugst am Albis, 

Uetliberg, and Wädenswil and their respective weather stations were used in the analysis 

(MMAEU, UEB, WAE). This area is mountainous and is characterized by steep hills (Swiss 

Federal Statistical Office, 2012). Open farmland, suburban and forested areas may allow for a 

variety of thermal ranges as well (Shen et al., 2019).  

Figure 2: Roe deer study area with movement of the 15 deer included in the study spanning from 12  Sept. 2013 

to 4 June. 2016 
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2.2 Brown Bear and Swedish Weather Station Dataset 

The brown bear dataset was provided by the Scandinavian brown bear research project 

as part of a long-term ecological study. A smaller subset of that data was obtained for use in 

this research project, consisting of 11 Scandinavian brown bears with 6 males and 5 females 

between 1 to 24 years old, all of which resided in the Dalarna, Gävleborg, and Jämtland 

counties in Sweden. These bears were selected due to having home ranges closest to active 

weather monitoring stations. Each animal was equipped with Vertex Plus telemetry collars 

that featured GPS, dual-axis motion sensors, VHF transmitters, Global System for mobile 

communication modem, and temperature loggers (Vectronic-aerospace, Berlin, Germany). 

The collars recorded positional data as well as temperature readings (°C) every hour. 

Deer ID Mean Distance (km) Min. Distance (km) Max. Distance (km) 

RE01 3.39 2.26 4.36 

RE02 1.12 0.89 4.84 

RE03 0.82 0.44 1.39 

RE04 6.32 5.22 6.86 

RE05 2.02 1.05 2.73 

RE06 1.97 1.35 2.48 

RE07 1.52 0.90 1.90 

RE08 1.91 1.32 2.43 

RE09 8.08 6.71 9.02 

RE10 4.69 3.94 5.28 

RE11 7.80 6.50 8.13 

RE12 2.09 1.56 8.06 

RE13 1.86 0.81 2.65 

RE14 7.92 6.17 8.34 

RE15 6.74 6.22 7.50 

Table 3: Mean, minimum, maximum distance in kilometer of each deer from their closest 
weather station throughout the study *All deer except RE09 & RE11 were closest to MMAEU 
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As part of the ongoing research project involving these bears, various biometrics 

were recorded during collaring, such as each individual's weight. To explore the biological 

drivers of temperature difference between collar and weather station, these variables were 

included as in analysis (Table 4). The earliest data was recorded on 8 April 2008 and the last 

data obtained was on 29 September 2022, providing 14 years of monitoring. However, bears 

were captured and collared throughout the study period and provided data for differing 

lengths of time. The shortest monitoring period for an individual bear was only 2 months, 

while the longest period an individual was monitored was nearly 8 years. (Fig. 3) 

 

 

Swedish weather station data was provided by the Swedish Meteorological Service 

(SMHI) and is available for public use and download from their website: 

(https://www.smhi.se). Along with temperature, several metrological variables were chosen 

as potential drivers of temperature offsets (Table 4). Historical meteorological data was 

downloaded and then standardized to match the same time frame as our monitored bears. 

The weather stations Delsbo A, Edsbyn A, Hamra A, Sveg A, Särna A, and Ytterhogdal 

were the stations that geographically close with our selected bear population’s home ranges.  

Figure 3: Gannt chart deplicting the duration each bear was recording data for the duration of 
the study 
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Table 4: List of variables included in analysis of brown bear collar temperature 

 

2.3 Roe Deer and Swiss Weather Station Dataset 

The roe deer dataset was provided through the Zurich University of Applied Science 

(ZHAW) by the Wildlife Management Research Group (WILMA). This dataset consists of 15 

individual roe deer with 2 yearlings and 13 adults (6 males, 9 females). Each deer was 

equipped with the same model of GPS Plus telemetry collars, from Vectronic Aerospace. 

These collars provided positional data as well as temperature readings (°C) at a time interval 

of every 3 hours. As with the brown bear, various biometric data was recorded when each deer 

was collared. We selected a portion of these biometrics we thought would be drivers of 

temperature offset (Table 5). The available telemetry collar GPS and temperature data began 

on 12 September 2013 and went through until 4 June 2016, spanning 3 years. Not all collared 

individuals were monitored for the same amount of time throughout the study period (Fig. 4). 

Variable Units Type Source 

Distance km Continuous Station-Bear collar 

Elevation Difference km Continuous Station-Bear collar 

Temperature (Station) °C Continuous Station 

Precipitation Rate mm(daily total) Continuous Station 

Wind Speed m/s Continuous Station 

Wind direction Degrees Continuous Station 

Sex M/F Categorical Bear collar 

Weight Kg Continuous Bear collar 

Family Status Solitary/cubs Categorical Bear collar 

Age Years Continuous Bear collar 

Temperature (bear collar) °C Continuous Bear collar 

Time 00:00-24:00 Continuous UTC Standard 
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Figure 4: Gannt chart depicting the duration each deer was recording data for the duration of the study 

Three weather stations considered to be geographically close to the roe deer study area 

were considered (MMAEU, UEB, WAE). The weather station data was provided through the 

Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland and is available for 

public download through their website (https://www.meteoswiss.admin.ch). Historic 

meteorological data was downloaded and then matched to the same timeframe that the roe 

deer were monitored for.  

Table 5: Variables used in analysis of roe deer collar temperature 

Variable Units Type Source 

Distance km Continuous Station-Deer 

Elevation Difference km Continuous Station-Deer 

Temperature (Station) °C Continuous Station 

Precipitation Rate mm Continuous Station 

Wind Speed m/s Continuous Station 

Wind direction 0-360°  Continuous Station 

Temperature (Deer) °C Continuous Station 

Sex M/F Categorical Deer 

Weight kg Continuous Deer 

Hind leg length cm Categorical Deer 

Neck circumference cm Continuous Deer 

Chest circumference cm Continuous Deer 

Lower jaw length cm Continuous Deer 

Activity m/day Continuous Deer 

Time 00:00-24:00 Continuous UTC Standard 
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Finally, the same model of telemetry collar the roe deer population was equipped with 

was placed onto the WAE weather station from January 18th to May 5th, 2023. This collar was 

intended to act as a control to determine if the temperature sensors of the collars are as sensitive 

as the weather station sensors, and to determine if there is an inherent temperature difference 

between the technologies. Unfortunately, logistical constraints prevented a similar treatment 

with the brown bear telemetry collars and any local weather stations. 

2.4 Data Analysis 

Data analysis was performed using the R programming language version 4.2 (R Core 

Team, 2021) with the package lme4 (Bates et al., 2023) along with base R functions being 

used for modeling. For a complete list of packages used in data manipulation, cleaning, and 

visualization see appendix. 

In order to conduct a uniform analysis our telemetry collar datasets and weather 

station datasets were cleaned and formatted by ensuring there were no missing values, 

looking for aberrant values and ensuring matching coordinate systems by converting both to 

the Swiss Coordinates System EPSG2056 (https://epsg.io/2056/) for ease of comparison, as 

it was the system used in initial analysis. The telemetry collar data was then combined and 

matched with their corresponding counties’ weather station data. Each species had differing 

data recording regimes which required aligning with the recording regime of their respective 

weather stations. The bear collars recorded every hour with some small variance, therefore 

each bear value that was within 5 minutes of the hour was rounded to its hour mark to match 

the more consistent weather station recording interval. The deer collar uploads were every 3 
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hours, which were then rounded in the same manner to match their respective Swiss weather 

stations. 

The earliest date with a single bear telemetry collar recording (8 April 2008) was 

chosen as our start time. We then split each year into two periods; denning and non-denning, 

both to represent the differences in temperature during the warmer and colder periods of the 

year and to represent the hibernating/denning behavior of these bears. We define the non-

denning season as 6 April to 29 October and the denning season as 30 October to 5 April. 

These dates were selected based on the median den entry and exit dates found in Evans et al. 

(2016). 

As with our bear analysis, our start date for the deer analysis was determined by the 

earliest recorded values for our monitored deer population (12 September 2013). With uniform 

formatting as our bear dataset, deer collar data was then matched with their respective closest 

weather station. For sake of comparison, we also split the year by using the denning dates to 

analyze the differences in temperature offset in warmer and colder periods of the year and 

compare those differences to our bear analysis. 

One of the initial parameters considered was the distance of the individual animal from 

their closest weather station. This was done using the coordinates of the respective weather 

stations in each study area and the GPS locations provided by the telemetry collars. Then 

calculating the distance to each GPS point and the coordinates of the closest weather station 

at the time. We calculated Euclidean distance, elevational difference (altitude), and absolute 

distance (elevational and Euclidean distance). 
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Euclidean distance was defined as: 

d(P,Q) = √(𝑥2 − 𝑥1)2  + (𝑦2 − 𝑦1)2 

And absolute distance defined as: 

d(P,Q) = √(𝑥2 −  𝑥1)2  +  (𝑦2 −  𝑦1)2  + (𝑧2 − 𝑧1)2 

Where d(P,Q) is the Euclidean distance between two given points (P and Q). 𝑥1,𝑦1,𝑧1 

represent the coordinates of point P while 𝑥2,𝑦2,𝑧2 represent the coordinates of point Q. Z in 

this instance representing elevation. 

2.5 Modeling 

Due to the discrepancy in the scale of values for some of our variables, all values except 

temperatures were normalized so that each variable is between a scale of 0 and 1, where 0 is 

the lowest recorded value possible and 1 is the highest. This was done so that a difference in 

scale did not result in some variables being favored over others when modeling. The closest 

weather station’s temperature was the response variable in each model, with the various 

meteorological, biological, and geographical distance variables acting as our explanatory 

variables. Due to the size of each dataset, to account for repeated measurements a random 

effect (collar/animal ID) was used in model creation. 

Using the parameters we expected to be impactful on temperature offsets (Table 4 & 

5), a range of candidate Generalized Linear Mixed Models (GLMMs) were created that 

incorporated different combinations of our variables. This was done by calculating Akaike’s 

information criterion (AIC) for each set of parameters. AIC was used as the primary criterion 

for model selection due to it being a commonly accepted tool for comparing and selecting 

models (Arnold, 2010). After calculating AIC for each potential model, those with 4 or less 
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parameters were selected for our model testing with the goal of producing low AIC scores 

while including the fewest parameters. Reviewing our lists of models, we noted diminishing 

returns regarding lower AIC values when more than 4 parameters were used. (Fig. 6). Models 

with fewer variables were prioritized due to the penalization of overparameterization when 

using AIC (Bozdogan H., 1987), and in order to balance goodness of fit and model complexity.  

 

Figure 5: Plot depicting minimum AIC scores per model based on number of parameters used 
in model. Diminishing returns noted after 4 parameters used 

 

We therefore primarily examined models using 2 to 4 parameters to focus on those 

explanatory variables that would be most important in accounting for temperature differences. 

A final feature selection was done based on our AIC score. We selected the best performing 

model out of those with 4 or less explanatory variables while maintaining the relative lowest 

AIC score. Predicted temp was calculated based on the model output and plotted against the 

recorded temperature of the nearest weather station.  

We decided to create another set of GLMMs that excluded distance and elevational 

difference to determine how effective the temperature prediction could be without knowledge 
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of the location of the closest weather station. Considering one of the goals of this study is to 

determine whether these GPS collars could be used as sources of data to supplement or even 

replace traditional weather stations, it is necessary to determine whether accurate temperature 

data can be obtained without any auxiliary information from local weather stations. 

 

3. Results 

3.1 Chosen Parameters 

The recorded temperature of the telemetry collar was included in each model as it was 

understandably the strongest predictor of temperature offset. Weight, distance from weather 

stations, as well as elevation difference were most often included in our best performing 

models for brown bears (Table 6). Chest circumference, activity level, and time of day were 

most included in the best performing models for roe deer. (Table 7) 

Table 6: List of best candidate brown bear collar temperature models based on AIC score 
with corrosponding ΔAIC compared to the highest rank model and each parameter used in 
said model 

AIC ΔAIC Model Parameters Used in Brown Bear GLMMs 

442206.5 0 Distance + Elevation Difference + Weight + Bear collar temp 

442973.3 766.7 Elevation Difference + Time + Weight + Bear collar temp 

442984 777.4 Distance + Time + Weight + Bear collar temp 

443223.8 1017.2 Distance + Wind Speed + Weight + Bear collar temp 

443240.2 1033.6 Elevation Difference + Wind Speed + Weight + Bear collar temp 

443478.9 1272.3 Distance + Family Status + Weight + Bear collar temp 

443479.5 1272.9 Distance + Wind Direction + Weight + Bear collar temp 

443504.7 1298.1 Elevation Difference + Wind Direction + Weight + Bear collar temp 

443675.9 1469.3 Distance + Sex + Weight + Bear collar temp 

443699.3 1492.7 Elevation Difference + Weight + Age + Bear collar temp 
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Table 7: List of best candidate roe deer temperature models based on AIC score with 
corrosponding ΔAIC compared to the highest rank model and each parameter used in said 
model 

AIC ΔAIC Model Parameters Used in Roe Deer GLMMs 

336634.8 0 Activity + Hindleg Height + Chest Circumference + Deer Temp 

337388.2 753.3 Activity + Jaw Height + Chest Circumference + Deer Temp 

338061.5 1426.7 Elevation Difference + Activity + Chest Circumference + Deer Temp 

338634 1999.2 Time + Activity + Chest Circumference + Deer Temp 

338967.3 2332.51 Time + Hindleg Height + Chest Circumference + Deer Temp 

339258.7 2623.9 Elevation Difference + Activity + Sex + Deer Temp 

339587.3 2952.5 Time + Jaw Height + Chest Circumference + Deer Temp 

339675.8 3041.0 Elevation Difference + Time + Chest Circumference + Deer Temp 

339771.5 3136.7 Activity + Neck Circumference + Chest Circumference + Deer Temp 

339816.9 3182.1 Activity + Sex + Chest Circumference + Deer Temp 

 

3.2 Temperature Offsets 

After analyzing brown bear collar temperatures by comparing them to their closest 

weather station, an average (mean ± 2SD) temperature difference of 14.58 ± 4.11 C° was found 

throughout the whole year. This difference is exacerbated during the colder denning period, 

with an average difference of 17.0 ± 4.58 °C. The difference during the warmer non-denning 

portion of the year was an average of 10.36 ± 3.87 °C. 

 

Roe deer were analyzed in an identical fashion. They had an average (mean ± 2SD) 

temperature difference of 7.69 ± 3.23 °C year-round. During the colder part of the year and 

our bear denning season they had a higher average temperature difference of 8.98 ± 2.85 °C, 

while during the warmer part of the year they had an average difference of 6.30 ± 3.02 °C. 

Temp [°C] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Collar Temp 15.8 16.7 15.5 15.5 18.5 22.1 23.1 23.4 22.6 20.1 16.4 15.6 

Nearest Station Temp -8.03 -2.12 -0.987 3 8.05 13.4 14.8 13.2 9.06 4.43 -0.244 -2.94 

Temp Difference 23.8 19.9 16.5 12.5 10.4 8.76 8.23 10.1 13.6 15.7 16.7 18.8 

Table 8: Mean temperatures for brown bears by month 
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3.3 Model Outputs 

Based on our model selection, the best performing brown bear model (Table 6) to 

predict the temperature of the closest weather station contained the parameters distance, 

elevation difference, bear collar temperature, and bear weight (Y = 0.93x – 1.3, R²=0.52, Fig. 

7A). When the difference in location of the closest weather station was omitted, the next best 

performing model contained bear collar temperature, bear weight, wind speed and time of day  

(Y = 0.92x +0.39, R²=0.51, Fig. 7A). 

 

Figure 6: Plot of brown bear collar temp. model outputs. Y-Axis is the recorded temperature 
of the closest weather stations, X-axis is the models’ predicted temp. Red line is Y=X, when 
model predicted temperature is the same as recorded weather station temp. Green line is the 
best fit line when comparing the model predicted temperature with the record temperature.  

When it comes to our best performing roe deer model (R²=0.83) chest circumference, 

activity level, hindleg height, and deer collar temperature were included as parameters (Y = 

Temp [°C] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Collar Temp 11.7 11.4 15.1 18.3 20.6 23.4 23.9 22.7 20.8 18.4 13 11.2 

Nearest Station 

Temperature 
2.01 1.67 6.53 10.1 12.7 17.7 19.5 17.7 14.8 11.8 4.98 2.36 

Temp Difference 9.66 9.77 8.54 8.2 7.9 5.68 4.4 4.97 6.31 6.66 8.07 8.88 

Table 9: Mean temperature for roe deer by month 
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0.98x + 1.05, R²=0.83, Fig. 8B). Considering two of the parameters that were most indictive 

of temperature difference in our brown bear collar models was distance and elevation 

difference we wanted to compare how those parameters would perform in our roe deer collar 

models with their smaller distance and elevation difference from the closest weather stations 

(Tables 2 & 3). That model including those two parameters, along with deer collar 

temperature, was less correlated with the weather station temperature (Y = 0.92x + 1.05, 

R²=0.76, Fig. 8A).

 

Figure 7: Plot of roe deer temp. model outputs. Y-Axis is the recorded temperature of the 
closest weather stations, X-axis is the models predicted temp. Red line is Y=X, when model 
predicted temperature is the same as recorded weather station temp. Green line is the best 
fit equation for model output.  

 

3.4 Control Collar 

Finally, the output of the collar that was placed on the WAE weather station to act as 

our control was analyzed to determine if the collar sensors had any systemic offset from the 

weather station’s instruments. Initial analysis showed a considerable offset from the WAE 

weather station’s temperature and was not strongly correlated to the stations temperature 

reading (Y =1.8x + 1.7, R²=0.67, Fig.5A). Upon investigation, it appeared that the discrepancy 
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was mostly limited to the brightest hours of the day (Fig. 5A). When non-peak daylight hours 

were analyzed, the correlation between the temperatures recorded by the weather station and 

the collar became much closer (Y = 0.97x + 0.38, R²=0.96, Fig 5B). The collar was positioned 

in such a way that the electronic housing containing the temperature sensor was pointing 

straight up with the battery pack hanging below, putting the temperaure sensor in direct 

sunlight. This is most often how telemetry collars are worn in the field by wildlife (Vectronic 

Aerospace, n.d., 2022) 

 

Figure 8A: Line plot showing temperature recordings of control collar compared to the average 
temperature of the WAE weather station (red line). 5B: Only showing values for collar 
recordings from 18:00 to 06:00 to show effect of daylight on temperature difference 
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4. Discussion 

This study indicates that of our two test species, roe deer are more accurately able to 

model air temperature (Fig. 8). While our brown bear models are not strongly correlated to 

their closest weather station (Fig. 7) even when omitting winter denning periods. Roe deer 

also showed less temperature offsets compared to brown bears (Table 8&9). However, our 

deer population was spread over a much smaller area and stayed much closer to a single 

weather station, having an average (mean ± 2SD) distance of 3.89 ± 0.19 km. With an 

average distance of 18.6 ± 6.81 km away from their closest weather station, it is likely there 

were numerous instances where a bear collar was sampling different air temperature then 

what was being recorded at their closest weather station, especially considering the terrain of 

the area (Fig.1). 

Regarding what variables are important factors to know beforehand when attempting 

to model ambient temperature with wildlife, part of our initial hypothesis appears correct. In 

both species cases it seems knowing the size of the individual is valuable. Weight was the 

primary measure of body size we had reference for brown bears and appeared in all our 

highest-ranking models (Table 6). However, for roe deer we had multiple measurements 

regarding body size. Chest circumference, hindleg length, and lower jaw length were 

included in our top models while weight was omitted (Table 7). It has been shown that chest 

circumference is a good predictor of weight in deer (Bundy et al. 1991). It may be that chest 

circumference is more correlated with surface area which would have a more direct impact 

on skin temperature and therefore affect the collar sensor more than weight alone (Porter & 

Gates 1969). We found it interesting that the previous body measurements were included 

more often in our better performing models than neck circumference. We had assumed that 
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neck circumference would play a more prominent role as the temperature sensor is in more 

direction contact with the neck. 

Our hypothesis that wind speed would be impactful in calculating temperature offset 

appears dependent on species. While wind speed, as well as wind direction, was included in 

some of the best performing models for our brown bear analysis, it was omitted from all our 

best performing roe deer models. Since the bear population was so much further on average 

from their weather stations than roe deer (Table 2 & 3), and given how impactful topography 

is on wind speed and direction (Helbig et al., 2017; Ravazzani et al., 2020) it is likely the 

bears were experiencing larger differences in wind speed as distance from station increase, 

especially in mountainous areas such as our study site. This may be due to physiological 

differences between these two species. Denser and longer fur require higher wind speeds to 

result in surface level heat loss (Tregear, 1965). As brown bears possess longer and denser 

coats than roe deer (Elgmork & Riiser, 1991; Bubenik, 1996), that may at least partially 

explain why wind speed was more impactful in explaining temperature differences for the 

bear population than deer. 

Time of day was a parameter that appears in both species higher ranking models 

(Table 6 & 7). While not directly measured in this study, we suspect the importance of time 

of day is related to the amount of solar radiation the temperature sensor is exposed to. We 

can see from our control collar that temperature offsets are greatest during the portion of the 

day when the sun is highest (Fig. 5). Due to the position of the electronic housing of the 

collar, it is meant to sit on the back of the animal's neck (Vectronic Aerospace, n.d., 2022). 

This means it is directly exposed to solar radiation, which has been found to influence 

temperature readings in collars. (Messeri et al., 2019). 
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Species selection for use as accurate air temperature monitoring and to act as “mobile 

weather stations” is a complex topic in need of more research than this one study, but the 

initial hypothesis that deer may provide a better source of accurate temperature data appears 

true. We show that roe deer have less temperature differences to nearby weather stations 

year-round than brown bears (Table 8 & 9) and are able to more closely predict the 

temperature of those weather stations (Fig. 7 & 8). However, the discrepancies in the types 

of variables used in each species analysis and foremost, the difference in proximity to their 

respective weather stations (Table 2&3) make it difficult to give a concrete conclusion to 

that question. 

 Cervids, as a whole, may be useful in this role, as the average offset of our deer 

population was 7.69 ± 3.23 °C, which is close to the average temperature offset of 7.2 °C 

found in moose (Alces alces) to their closest weather station (Ericcson et al., 2015, results 

section). Temperature recordings from telemetry collars worn by red deer (Cervus elaphus  

L.) Messeri et al., 2015 were similarly able to successfully create predictive temperature 

models matching nearby weather stations.  

However, the landscape and scope a researcher wants temperature data for may 

inform their decision on which species to use. Our deer had a small geographic range, which 

may have been in part due to their semi-urban environment, and it has been shown in 

previous studies that roe deer have limited sized home ranges (Tufto et al., 1996; Saïd, & 

Servanty, 2005). Our bears on the other hand had much wider ranges (Table 2&3), and as a 

species have much larger home ranges on average (Dahle & Swenson, 2003). This may 

mean that despite roe deer potentially offering more accurate temperature data, if a 

researcher wants data over a larger area, they may choose a species with a larger home range 

such moose. 
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4.1 Limitations 

Before any concrete conclusions can be drawn from these results, multiple limitations 

in this study should be examined. Firstly, the discrepancies between the sample size and 

monitoring duration of our two species should be mentioned. The brown bear dataset was 

larger and consisted of measurements over the course of 14 years, whereas the deer dataset 

had a little over 3 years’ worth of data. While monitoring, some individuals in both our bear 

and deer populations were only recording values for a short span in either particularly warm 

or cold months which could further skew analysis. The number of animals monitored was 

suboptimal as well. With only 11 bears and 15 deer, it would have been beneficial to have a 

larger number of individuals monitored. 

Another element that may have provided interesting results is if monitored animals 

had internal bio-loggers that were able to record internal body temperature. The temperature 

offsets between bio-loggers and collars would have provided another measure of temperature 

in this study. However, research has shown that for some species, collar temperature is an 

accurate reflection of internal temperatures (Dausmann, 2005). Another variable that would 

have been informative is a measure of solar radiation. Previous studies have found it to be an 

important explanatory variable when investigating temperature offsets between telemetry 

collars and weather stations (Messeri et al., 2015). While time of day may have acted as 

proxy for such (Fig. 5) a direct measurement would have been ideal. 

Since one objective was to determine how suitable wildlife may be to act as sources 

of reliable air temperature data, using an animal's closest weather station was only a proxy 

for true air temperature. There were no doubt instances where there was a difference in air 

temperature at the animal’s location versus that of its closest weather station. Ideally if we 

could have somehow been able to record temperature at the animal’s location but isolated 
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from the animals body heat, at the same time as the collar it would have provided a better 

snapshot of the differences in true air temperature and that recorded by the collar. 

 

4.2 Possible Implications and further research 

We hope that the results of this study may inform and aid future researchers in a 

variety of research objectives. Knowing what variables affect temperature readings of 

telemetry collars may lead to developments in future collar temperature sensor designs to 

provide more precise measurements, whether the goal is more accurate wildlife body 

temperatures readings, or to mitigate body heat's effect to gather more precise air 

temperature (Jiang et al., 2012). Primarily, we hope that this study can offer insight into what 

metrics should be known about an individual animal and the environment they live in if they 

are to be used to gather air temperature data.  

The application of using wildlife as proxies for weather stations may not be as useful 

in countries or areas with dense weather station networks, but for those areas that are lacking 

in that infrastructure it could provide a valuable source of temperature data in an otherwise 

under-monitored area. This may aid in constructing more precise species distribution maps, 

which will only become more important in the age of a changing climate. It could also help 

conservation efforts in monitoring temperature changes in sensitive habitats like rainforests. 

While we have only looked at two possible species to act as sources of temperature 

data, numerous other species of wildlife are commonly monitored using telemetry collars 

and could be used to collect temperature data. Likewise, we only examined a handful of 

metrics to help explain temperature offset and more research is needed to have a fuller 

understanding of that relationship. 
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4.3 Conclusion 

Our research objectives were multifaceted, with the goal of investigating if wildlife 

could be used to accurately record air temperature while aiming to identify the factors 

contributing to the offset between telemetry collars sensors and their closest weather station 

temperature.  We hoped to shed light on the possibility of utilizing what we believed to be an 

overlooked source of temperature data. We showed that it is possible to accurately predict air 

temperature based on wildlife equipped with temperature sensors and what factors should be 

known beforehand to more accurately compensate for our two sample species.  

This demonstrates how valuable non-traditional sources of data can be and may 

further encourage researchers to look for alternative routes to answer their questions. In a 

time with a rapidly changing climate, fine-scale temperature data will only become more 

valuable to a range of fields like ecology and meteorology. The potential for wildlife to serve 

as dynamic weather stations to help us better understand the climates they reside in is a 

fascinating possibility that we believe will be more commonplace as other researchers are 

made aware of the possibilities. 
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Appendix 

R packages used in cleaning, data manipulation, analysis, and visualization:  

 

dplyr (Wickham, 2022), lubridate (Grolemund & Wickham, 2011), ggplot2 (Wickham, 

2011), ggpmisc (Pedro, 2016), ggridges (Wilke, 2023), ggmap (Kahle & Wickham, 2013), 

scales (Wickham, 2022), tidyverse (Wickham et al., 2019), candela (Kitware, 2016), sf 

(Pebesma & Bivand, 2021), (Bates et al., 2023), and RColorBrewer (Neuwirth, 2022), lme4 

(Bates et al., 2023). 
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