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Abstract  

Induced fear by predation risk can alter prey behaviour ̂ ka fjm^`q qeb mobvØp bkbodv _^i^k`b, with 

possible consequences on the population level. Alongside environmental changes and human dis-

turbance, Scandinavian moose (Alces alces) face mortality risk from multiple predators; mainly 

wolves, which recently repopulated, and hunting, their primary cause of mortality, even within wolf 

territories. Additionally, moose may not be able to distinguish actual hunting risk from general human 

disturbance, which they likely perceive as akin to predation risk. Multiple studies have examined the 

population-scale influence of wolf predation and hunting on moose using telemetry yet lack a behav-

ioural context to be able to assess possible impacts on the moose energy budget beyond alterations 

in movement. By analysing activity budgets of female moose in relation to relative risk values derived 

from moose mortality and human activity, this study attempted a qualitative estimation of possible 

energetic costs of hunting and predation risk. In 2020 and 2021, we equipped five female moose in 

south-central Scandinavia with multi-functional collars, which, for one year, recorded 20-second vid-

eos every two hours during daylight and logged hourly GPS positions. I analysed the presence-ab-

sence of four primary moose behaviours (lying, foraging, locomotion, alert), derived from video anal-

ysis using the event-logging software BORIS, in relation to estimated mortality risk from wolf preda-

tion and hunting. According to my results, female moose prioritise energy-accumulating (foraging) 

and preserving (lying) activities over risk-avoiding and energy-demanding activities (alert, locomotion) 

in all seasons (pre-hunting, hunting and winter), as any variation in mortality risk from hunting or wolf 

predation had a substantial effect on their activity budgets. I found only a weak response to human 

disturbance predictors, contrary to earlier small spatiotemporal scale studies, which tested possible 

effects of human disturbance with direct approaches. Future studies could combine controlled dis-

turbance experiments and multi-functional collars with additional accelerometer-units and night-vi-

sion to get 24-hour, quantitative estimates of the energetic costs of different disturbances on a 

broader scale.  

Key words:  camera collar, energy budget, human disturbance, predator-avoidance, perceived risk, 

risk maps 
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1. Introduction  

For prey, responses to predators are shaped mostly by costs, with death as a possible consequence 

of actual predation risk (Preisser et al., 2005). To prevent such a terminal fate, prey evolved anti-pred-

ator responses such as predator-avoiding habitat selection (Creel et al., 2005), activity patterns (Tam-

bling et al., 2015) and behaviours such as flight (Barnard, 1983) and predator surveillance (Tätte et 

al., 2019). Optimally, prey risk perception should be selected to closely reflect the actual predation 

risk, allowing them to adjust their anti-predator responses precisely, thereby weighing the costs of 

predation avoidance relative to the potential consequences of predation (Helfman, 1989; Thurfjell et 

al., 2017). Prey is expected to show anti-predator responses depending on the magnitude of per-

ceived risk (fear) as opposed to the actual measurable risk (Fraker, 2009; Smith et al., 2024). Mean-

while, the costs of anti-predator behaviours often constitute  a trade-off with other essential behav-

iours, such as foraging and reproduction, potentially impairing an fkafsfar^iØp fitness. On a big scale, 

high perceived predation risk, can thereby greatly affect population and community dynamics (Cherry 

et al., 2016; Khater et al., 2016). Additionally, most prey face multi-predator systems and need to 

trade-off multiple sources of risks, which can overlap in space and time (Ausilio et al., 2022; Cress-

well & Quinn, 2013; Willems & Hill, 2009). While humans are already being seen as super-predators, 

posing real predation risk by hunting, wildlife can perceive human disturbance as similar to predation 

risk, exceeding the effects of natural predators on their behaviour (Ciuti et al., 2012). This highlights 

the importance of studying behavioural responses of prey to perceived as well as actual predation 

risk for wildlife conservation and management, contributing to the understanding of the costs and 

potential fitness consequences of such trade-offs (Cooke et al., 2023; Fryxell et al., 2014). The costs 

of perceived predation risk have rarely been quantified in other ways than the foraging trade-off (Gal-

lagher et al., 2017) and apart from the effects on reproduction, most fear-induced anti-predator be-

haviours impose energetic costs for the prey, rather than direct fitness costs (Khater et al., 2016). To 

survive, animals need to aim for a neutral or ideally positive energy balance over time, which is 

achieved when their energy intake is equal to or higher than their expenditure (Gurr, 1980). This study 

aimed to give insight into the energetic costs of actual and perceived predation risk on a prey animal, 

the moose (Alces alces). 

As 4`^kafk^sf^Øp i^odbpq i^ka j^jj^i, moose currently face stressful changes in their environment 

due to climate change (Hoy et al., 2018) and increasing anthropogenic disturbances (Kuvlesky Jr. et 

al., 2007). Known as the king of the boreal forest, moose are of ecological, economic and cultural 
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significance (Storaas et al., 2001; Timmermann & Rodgers, 2005). They are the primary big game spe-

cies harvested in Scandinavia (Wikenros et al., 2020), with hunting being their leading cause of mor-

tality, even inside wolf-territories (Ausilio et al., 2022; Sand et al., 2006). Wolves (Canis lupus) and 

bears (Ursus arctos) are the main non-human predators of moose in Scandinavia (Sand et al., 2008; 

Swenson et al., 2007), yet brown bears were found to be the least important mortality factor in a 

south-central Swedish moose population (Dahle et al., 2013). Wolves are only present in parts of the 

Scandinavian moose distribution area (Svensson et al., 2021; Wabakken et al., 2020, 2022). None-

theless, the recent wolf repopulation (Wabakken et al., 2001) has led to an increase in predation 

pressure for moose inside wolf ranges, in addition to the pre-existing hunting pressure (Wikenros et 

al., 2015).  

In the course of assessing the spatial patterns of wolf predation risk and hunting risk on moose during 

and after the hunting season, Ausilio et al. (2022) created risk maps using the locations of wolf-killed 

and hunter-killed moose from south-central Scandinavia. They found that the associations of hunting 

and predation risk to landscape features differed, likely due to dissimilar hunting modes. Comparing 

moose habitat selection from GPS positions to the risk maps, Ausilio (2022) found that moose 

avoided areas of high hunting risk during the day, but did not respond to wolf predation risk (Ausilio, 

2022). Similar to Ausilio (2022), most studies on the response of moose to wolf predation risk have 

found weak (Månsson et al., 2017; Nicholson et al., 2014; Sand et al., 2021), none (Eriksen et al., 

2011; Sand et al., 2006) or factor-dependent evidence (Loosen et al., 2021) of wolf-avoiding behav-

iour in moose, such as specific habitat selection, increased movement or temporal predator avoid-

ance. Ausilio (2022) suggests, that moose might only respond to the stronger and more predictable 

risk source: hunting. Moose avoid direct human disturbance (of which hunting is a part) (Kirchner, 

2024), as well as human settlements and areas with human disturbance alike (Nikula et al., 2004; 

Tinoco Torres et al., 2011). They do not seem to be able to differentiate between actual risk posed by 

humans (hunting risk) and general human disturbance (Mehlhoop et al., 2022), which they are thought 

to perceive as similar to predation risk (Neumann, 2009), possibly explaining their strong response to 

hunting. Ausilio (2022) proposed that moose may be forced to select habitats with greater forage op-

portunities but higher wolf predation risk in the resource-scarce winter season, representing a trade-

off between foraging and predator avoidance. Loosen et al. (2021) found that the presence of a wolf 

territory decreased moose browsing occurrence in young forests, indicating possible heightened vig-

ilance at the expense of decreased foraging periods as a response to wolf predation risk. In combina-

tion, the findings by Ausilio (2022) and Loosen et al. (2021) suggest a trade-off between the energetic 

cost of vigilance as an anti-predator behaviour and the potential forage benefits within wolf territories. 
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Similarly, Ericsson & Wallin (1996) found that female moose with offspring increase movement in the 

daytime during hunting season, likely to avoid high-risk areas, which is expected to lead to a decrease 

in foraging and behaviours with low energetic costs such as lying (Khater et al., 2016). This highlights 

the yet untested trade-off between predator-avoidance and energy-conservation in moose.  

Moose responses to hunting and wolf predation have already been intensively studied on large scales 

using data from telemetry and hunting reports. However, most studies lack a behavioural context, 

making it difficult  to identify the underlying mechanisms and implications for the energy budget (Au-

silio et al., 2022; Ericsson & Wallin, 1996; Neumann & Ericsson, 2018). To complement the work done 

with telemetry data, this study sought to improve our understanding of the behavioural responses of 

moose to hunting and wolf predation risk. I approached this, by investigating moose activity budgets 

from camera collar data, combined with relative risk values extracted from the risk maps which Au-

silio et al. (2022) created for the same study area. Utilising video collars to study animal behaviour is 

a swiftly evolving biologging technology, that enables detailed behavioural studies of elusive and re-

motely living animals in their unaltered state (Egan, 2019). In use since the 1980s (Moll et al., 2007; 

Wilmers et al., 2015), animal-borne video systems have mostly been applied to study foraging behav-

iour and diet (Egan, 2019), which is also the case for the three previous applications of camera collars 

for studying moose (Åström, 2022; Eriksson, 2023; Spitzer et al., 2023). Two camera collar studies, 

one on white-tailed deer (Odocoileus virginianus) and one on woodland caribou (Rangifer tarandus 

caribou), demonstrated that understanding the time allocated to specific behaviours, the so-called 

activity budget, is crucial for accurately modelling ecological energetics (Beringer et al., 2004; 

Thompson et al., 2012). To my knowledge, this thesis is the first study to analyse moose activity budg-

ets from camera collar data. 

The goal of this study was to identify possible energetic costs of hunting and predation risk by analys-

ing activity budgets of female moose, derived from camera collar data, in relation to relative risk val-

ues derived from moose mortality (estimated risk) and human activity (perceived risk). I hypothesized 

that areas with higher wolf predation risk would be associated with a reduction in energy intake due 

to increased vigilance (H1), and I predicted moose to be alert more frequently in high wolf predation 

risk areas, at the expense of foraging, with no change in the frequencies of lying and locomotive be-

haviour. Moreover, I expected moose response to wolf predation risk to be mitigated during the 

moose hunting season. I also hypothesized that moose would be forced to be more active during the 

hunting season, leading to a reduced positive energy balance (H2), and I predicted an increase in 
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energetically costly behaviours (alert, locomotion) and a decrease in energy intake (foraging) and en-

ergy-preserving behaviours (lying). During the hunting season, I further hypothesized that the increase 

in moose activity would be higher in areas of high hunting risk (H3) and I predicted a positive relation-

ship between spatial hunting risk and energetically costly activities and a negative relationship with 

activities associated with energy intake (foraging) or preservation (lying) during the hunting season. 

However, the effect may be small as moose have been found to avoid high-risk areas (Ausilio et al., 

2022). Finally, I hypothesized that moose would perceive human activity in general as risky and adapt 

their activity budget in response to spatial variation in human disturbance (H4). Here, I predicted an 

increase in alert and locomotion and a reduction in foraging and lying in areas of high human disturb-

ance. I further expected this effect to be more pronounced during the hunting season when human 

activity in moose habitat is high. 
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2. Methods  

2.1 Study area and population 

The study was conducted from the 10th of March 2020 to the 3rd of April 2022 in the south-central part 

of the Scandinavian peninsula along the Swedish-Norwegian border ÊüöİùùØ - ü÷İ÷ûØ /¾ ÷÷İúûØ - 

÷øİûûØ E) (Figure 1). On the Norwegian side, it spans across the four municipalities , Elverum, Våler, 

Åsnes and Trysil in the county of Innlandet, covering an area of 1699 km2 and another 969 km2 of the 

municipality of Torsby in the county of Värmland on the Swedish side. The area has a mean road den-

sity of 0.84 km/km2, which includes national, regional and gravel roads (Ausilio et al., 2022). Due to 

intensive forestry, the area hosts a distinctive gravel road network (Sand et al., 2008) and as part of 

the green transition, there are several wind power plants under construction or already completed 

(Zimmermann et al., 2023). With less than one person per km2 the human density in the area is low 

(Wabakken et al., 2001).  

The area is characterised by boreal forest, with the predominant tree species being Scots pine (Pinus 

sylvestris), Norway spruce (Picea abies), birch (Betula spp.), and aspen (Populus tremula L.). Less 

dominant but important moose forage includes rowan (Sorbus aucuparia) and willow (Salix caprea). 

The other frequent land cover types are highest to lowest: bog, water bodies, agricultural fields, open 

areas (e.g. mountains, boulders, fields) and built-up areas (Zimmermann et al., 2014) (Figure 1). The 

elevation ranges from ca. 200 - 700 m a.s.l. The temperature varies from a mean of -10 °C in January 

to 15 °C in July, respectively, with snow covering the ground from late October to early May in the 

northern part, whereas in the southern part, the snow persists only from December to March. The 

vegetation period lasts around 140 - 170 days and the annual precipitation ranges from 600 - 1000 

mm (Varsom SeNorge, senorge.no; Sveriges Meteorologiska Och Hydrologiska Institut, smhi.se). 

The moose density in the area was estimated in the consecutive winters of 2018/2019 and 2019/2020 

with faecal pellet group counts to be 1.25 - 1.27 moose km2 (Zimmermann et al., 2019). In summer, 

the moose are evenly distributed throughout the study area, while in winter, they migrate to common 

and spatially limited areas at lower elevations with less snow (van Moorter et al., 2021). Moose abun-

dance varies through the year, increasing with the birth of calves in spring and is decimated by hunting 

in fall. In Norway the harvest lasts from 25th of September to 23rd of December, decimating the popu-

lation by ~25 % (Jensen et al., 2020). In Sweden, it lasts from the first week of September to the last 

day of February (Wikenros et al., 2020). Hunting quotas were adapted after the wolf repopulation in 
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Scandinavia (Wikenros et al., 2020), over concerns about a potential decline when maintaining the 

conventional hunting quotas (Jonzén et al., 2013; Nilsen et al., 2005).  

During the study period, the study area overlapped with the territories of two to four Scandinavian 

wolf pairs or packs (Svensson et al., 2021; Wabakken et al., 2020, 2022). Moose represent more than 

95 % of the food biomass of Scandinavian wolves, with approximately 70 % of moose killed by wolves 

being calves (Sand et al., 2008, 2010). Nonetheless, hunting is still  the main death-cause of Scandi-

navian moose, even inside wolf-territories (Ausilio et al., 2022).  

Figure 1: Left: Study area with colour-fill of habitat types, overlaid with annual home ranges (95 % kernel den-

sity) of the five study animals (E2001, E2002, E2003, E2102, E2103). All-year GPS data of the five moose females 

was used (1 h resolution). For each moose, the northernmost polygon represents summer area use, and the 

southernmost polygon represents the winter area use. Top-right: Southern part of the Scandinavian peninsula, 

Norway (grey) and Sweden (light grey) with the location of the study area in the centre. 
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2.2 Data collection, provision 

2.2.1 Animal tagging and collaring  

The video footage and GPS data used in this study stemmed from the Grensvilt 2 and Elg i Endring 

(Moose on the Move) research projects by the LARGE research group from the Inland Norway Univer-

sity of Applied Sciences (INN). In the years 2020 and 2021, the team immobilized adult female moose 

with darts from helicopters (Evans et al., 2012; Lian et al., 2014) and equipped them with collars (Ver-

tex Plus, Vectronic Aerospace GmbH, Berlin, Germany) containing a GPS (global positioning system) 

device, and a tri-axial accelerometer unit. According to handling protocols, the ethical requirements 

for research on wild animals in Sweden (decisions C281/6 and C315/6) and Norway (The Norwegian 

Food Safety Authority, decision id 15370) were met. The collars of eight female moose also contained 

a camera unit with a front-facing camera and a microphone to record video and sound. The GPS was 

programmed to acquire hourly positions upon which every two hours the camera was activated to 

record a 20-second video during daylight hours. After approximately one year of recording, the collars 

could be retrieved using radio tracking after being dropped via a drop-off function.  

2.2.2 Risk maps 

To investigate the influence of hunting and predation risk on moose activity budgets, I used risk maps 

derived and provided by Ausilio et al. (2022). As the risk maps cover roughly the same area as focused 

on in this study, I chose to let those define my study area (Figure 1). Ausilio et al. (2022) developed 

raster files quantifying mortality  risk for moose from wolf predation and hunting for fall (1st September 

- 21st December) and winter (22nd December - 30th April) of two consecutive years (2018/2019 and 

2019/2020) for both day- and nighttime. For the predation risk maps, they used the locations of wolf-

killed moose that were identified in the field during predation studies in the fall and winter of 

2019/2020 to create machine-learning models, which identified likely wolf-kill sites (N = 162) from 

GPS positions outside of the predation studies (Ausilio et al., 2022). For the hunting risk maps, they 

surveyed 106 hunting teams within the study area for coordinates of all harvested moose kill sites (N 

= 608) in the consecutive years 2018/2019 and 2019/2020. Ausilio et al. (2022) used these data on 

kill sites from hunting and predation together with habitat parameters, moose density from pellet 

count surveys, and wolf utilization distribution (predation risk only) in logistic regressions, to model 

the relative probability of dying either from predation or hunting for a given combination of environ-

mental covariates. They then used the best models of both hunting and predation to predict the rela-

tive risk of a moose being killed by hunters or wolves for any given location in the study area (raster of 
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25*25 m cell size) (Ausilio et al., 2022). For further information on the risk maps see Ausilio et al. 

(2022). Risk maps were provided as spatial layers. I extracted the risk values associated with moose 

GPS points and prepared them as covariates. The hunting risk values ranged from 0.26 - 1.66 with a 

mean of 0.92 and the wolf predation risk values from the fall 2019 map ranged from < 0.01 - 4.77 with 

a mean of 0.91 and for the winter 2019 map from < 0.01 - 5 with a mean of 1.32. A risk value represents 

an x-fold increase in risk compared to the average, where x is the risk value (Ausilio et al., 2022). A 

visual inspection of the risk maps (Figure 2 in Ausilio et al. (2022)) revealed that hunting risk was more 

equally distributed, while wolf predation risk showed high peaks in specific areas, especially in winter 

(most likely reflecting wolf area use) surrounded by rather low risk.  

2.2.3 Environmental variables  

I extracted moose ID, date, and time from the video footage, along with several other variables (e.g., 

habitat type, snow condition, climate, forage type, social interaction, human structures, and calf 

presence; supplements, Table A2), which I only used for general data exploration. I extracted the en-

vironmental variables listed in Table 1, from spatial layers from external sources. Lastly, I acquired 

the habitat type from the Corine Land Cover 2018 spatial layer, whereupon extraction, different 

Corine land cover types were grouped into six relevant habitat types for simpler usage (supplements, 

Table A1).  

Table 1: Environmental covariates used in this study. 

Variable  Range 
Pixel 
size 

Method  Layer provider  

Main (I) and sec-
ondary (II) roads 

(I)  0 - 8615 m 
(II) 0 - 2522 m 

25 m 
Shortest Euclidean 
distance 

Kartverket www.kartverket.no; 
Lantmäteriet www.lantmateriet.se 

Building density 0 - 108 100 m 
Number of buildings 
per km2 

Matrikkeldata (Norway); 
Lantmäteriet (Sweden) 

Habitat type (see Table A1) 20 m - 
Corine Land Cover 2018; 
Copernicus Land Monitoring, 2018 

Distance buildings 0 - ùØü÷þ j 50 m 
Shortest Euclidean 
distance 

Kartverket www.kartverket.no; 
Lantmäteriet www.lantmateriet.se 

2.3 Data compilation  

Pre-hunting was defined as a period of four weeks starting on the 18th of August and ending on the 

24th of September. It is known that the main part of the harvest takes place at the beginning of the 
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legal hunting season (Johan Solberg & Saether, 1999). Thus, I defined the hunting period to be four 

weeks from 25th September until 25th October. Moose exhibit seasonal migration and select seasonal 

home ranges as an adaption to the cyclic environmental changes and unevenly distributed resources 

(Andersen, 1991). The winter period was therefore defined as the time between the arrival of the 

moose in their winter home range until they leave for their summer home ranges again, typically from 

late December or early January until late March or early April (Table 2).  

Table 2: Definition of seasons, corresponding risk maps (wolf_fall19 = wolf predation risk map from fall 2019, 

wolf_win19 = wolf predation risk map from winter 2019, hunt_fall18 = hunting risk map from fall 2018), included 

individuals, periods and number of data points (20-second videos from camera-collars) per season used in this 

study. 

Season Risk map Individuals  Period 
Number of 

videos 

Pre-hunting wolf_fall19 
E2002, E2003, 2020/08/18 Õ 2020/09/24 

1015 
E2102, E2103 2021/08/18 Õ 2021/09/24 

Hunting 
wolf_fall19; E2002, E2003, 2020/09/25 Õ 2020/10/31 

727 
hunt_fall18 E2102, E2103 2021/09/25 Õ 2021/10/31 

Winter wolf_win19 

E2001 
2020/03/10 Õ 2020/04/09 

791 
2020/12/30 Õ 2021/03/20 

E2002 
2020/03/10 Õ 2020/04/05 

2020/12/24 Õ 2021/03/20 

This study only included the collar data (video footage and GPS points) of five female moose, as the 

data of the three other female moose was retrieved too late to be included. Due to time constraints, 

the footage of two moose cows was only analysed during the pre-hunting and hunting seasons (Table 

3). The moose spent the pre-hunting and hunting period entirely in their summer home ranges, as 

checked visually. Videos corresponding to GPS points clearly outside the seasonal home ranges, pre-

sumably representing moose migration, were excluded from the analysis. 

I used all-year hourly GPS data ÊúùØúøø (14-points) to establish seasonal and general moose home 

ranges (95 % kernel density) for a better overview and visualisation purposes (Figure 1). In the further 

analysis, I included only the GPS points connected to a video. Comparing concurrent wolf territory 

maps from wolf monitoring reports (winters 2019/2020, 2020/2021 and 2021/2022) to the respective 

moose home ranges, revealed, that moose home ranges did not always overlap with wolf territories 

in the periods of interest. Consequently, I excluded the data of moose female E2001 during the pre-

hunting and hunting period from the statistical analysis (Table 2).  
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Table 3: Meta-data of collared moose females (f), whose video data has been analysed in this study. 

Moose 
ID 

Sex 
Age 

(months)  
Number 
of calves  

Calf last 
seen on 

Video recording period  Video period analysed  

E2001 f 34 1 2020/06/08 2020/03/10 - 2021/03/20 all 

E2002 f 34 2 
2020/12/20* 
2021/03/19 

2020/03/10 - 2021/03/20 all 

E2003 f 34 1 2021/03/06 2020/03/11 - 2021/03/19 all 

E2102 f 39 2 2021/10/29 2021/02/20 - 2021/12/18 2021/08/18 - 2021/10/31 

E2103 f 39 0 - 2021/02/20 - 2022/04/03 2021/08/18 - 2021/10/31 

* E2002 had two calves, a male and a female. The male was missing from 2021/12/20 but possibly showed up 
on 2021/03/19 again, together with the female calf which has been visible in the meantime. 

For this study, I only used the daytime wolf predation risk maps of fall and winter 2018/2019 and the 

hunting risk map of fall 2018 (Table 2). Overlaying the risk maps with the moose home ranges re-

vealed, that some moose GPS points (and corresponding videos), e.g., all E2003 winter data (Table 2, 

Figure 1), lay outside the risk map area and would lack the risk values. Thus, I excluded these videos 

from the analysis. The predation risk maps had to match the data not only spatially but also tempo-

rally. The most current predation risk maps were from fall 2019, while the moose footage started in 

March 2020 (Table 3), however, the wolf territories did only marginally change from 2019 to 2021, 

such that predation risk map application was possible (Svensson et al., 2021; Wabakken et al., 2020, 

2022). In contrast, the data only had to match the hunting risk map in space, since it was established 

with data from two consecutive years, and it is reasonable to assume that the spatial distribution of 

hunting risk does not change much over time.  

2.4 Data analysis 

2.4.1 Video analysis  and energy classification of behaviours  

For this study, I analysed a total of 8163 videos (~ 45 h footage) in approximately 160 hours of work 

(Table 3). I did the behaviour decoding of the videos using the event logging software BORIS (version 

7.12.2) (Friard & Gamba, 2016). To define the behaviours and assign them with a short key, I estab-

lished an ethogram (supplements, Table A2). The key served as a shortcut to log the detected behav-

iours via keyboard, upon which BORIS created a detailed entry of the behaviours. In addition, I created 

a coding map, where BORIS created a detailed entry upon clicking on an interactive panel on the map 

(supplements, Figure A2). Behavioural analysis from video collar data is a relatively new approach in 
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moose (Åström, 2022; Eriksson, 2023; Spitzer et al., 2023) which is why I chose a broad ethogram 

(Table A2). I deemed behaviours from the same category as mutually exclusive, e.g. standing and 

lying, both body positions. To create moose activity budgets, I only considered these six primary be-

haviours: lying, standing, foraging, ruminating, locomotion and alert. (Table 4).  

Table 4: Definition of six primary moose behaviours and assignment of energy classes. Only behaviours in bold 

were considered in the statistical analysis of this study.  

Behaviour  Energy class Definition  

lying  preserving Any form of lying on the ground, mostly resting 

ruminating accumulating Regurgitating forage, independent of body position (lying/standing) 

alert  demanding 
Interruption of current activity, raises head in a rushed manner, head 
stays high, tensed 

standing  demanding Standing, resting, showing no other behaviour 

foraging accumulating Nutritional intake, including drinking or eating snow 

locomotion  demanding Any form of locomotion including walking and running 

Previous studies found that lying showed the lowest energy expenditure of all tested behaviours 

(Kirchner, 2024; Renecker & Hudson, 1989), and I, therefore, used it as a baseline for the other be-

haviours and assigned it as the only energy-preserving behaviour. Locomotion has been found to have 

the highest energy expenditure, and I classified it as energy-demanding behaviour, together with alert 

(Kirchner, 2024; Renecker & Hudson, 1989). As a necessity of survival, ungulates need to aim for a 

positive energy balance and accumulate energy to weigh out energetic demands (Wickstrom et al., 

1984). Foraging and ruminating have been found to be energy-accumulating (Dungan et al., 2010) and 

are here defined as such. However, ruminating can be described as a by-product of foraging and is 

therefore of minor interest. Lastly, the definition of standing has proven difficult, since it can overlap 

with several other behaviours (e.g. alert, ruminating, foraging) and occurs scarcely on its own. Fur-

ther, it is neither clearly a preserving behaviour nor very energetically costly (Kirchner, 2024; Renecker 

& Hudson, 1989). Thus, to address the research questions of this study, I only investigated lying, for-

aging, locomotion and alert (Table 4). 

2.4.2 Data preparation and  quality  

Except for the video analysis, all data preparation and analysis steps were conducted in RStudio 

(RStudio Team, 2022) with R version 4.3.3 (R Core Team, 2024). I exported the raw behavioural data 

from the video analysis form BORIS in CSV format and merged it with the GPS data and the covariates 
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from spatial layers in RStudio. The process of data preparation included timestamp extraction and 

calculation, sorting, merging and redefining behaviours, GPS data cleaning and joining with video 

data, covariate extraction from spatial layers and preparing sub-datasets of periods of interest for the 

statistical analysis. I extracted the date-time of each video from the video filename out of the file 

pathway, listed in the CSV file exported from BORIS. Unfortunately, BORIS did not manage to assign 

the correct video filename when a behaviour was logged. This led to a mismatch between the actual 

video start time and the assigned video start time and a further mismatch with the joined (by moose 

ID and date-time) GPS points. I loaded videos into BORIS in stacks of 100 videos to prevent PC RAM 

overload, such that the mismatch only occurred within these stacks. In summary, the error could be 

narrowed down to a mismatch in 10 of 83 video stacks (shift of 2 hours in 8 stacks and shift of 4 hours 

in 2 stacks). The mismatch was not problematic for the general activity budget, as time of day was 

not of particular interest in this study, however, it produced a shift between the observed behaviour 

and the corresponding GPS point and further the habitat type and risk values (Table A3). Further errors 

occurred when I joined the GPS data: several videos at the end of the recording period of each moose 

were recorded in irregular 20-minute intervals, where only the videos recorded at the full hour were 

kept. Also, the GPS unit seemed to have failed several times during the data collection: missing GPS 

points for 299 videos were detected, which I had to discard. Most of the failures happened at the end 

of the recording period of E2002 in February and March 2021, possibly the battery of the GPS unit ran 

empty (Table 3). Finally, a total of 7762 observations (20-second videos) were used in the further 

analysis.  

2.4.3 Statistical analysis  and modelling  

First, I explored the data set for the statistical analysis (visually and with descriptive statistics) and 

checked the data balance (supplements, Figure A1). The habitat categories were imbalanced: Út^Ó

terbodyÚ e^a lkiv lkb l_pbos^qflk mbo _be^sflro and for ÙfieldÚ the number of observations per be-

haviour was < 52, potentially weakening the predictor in the models. I therefore omitted the habitat 

qvmb Ùt^qbo_lavÚ fk qeb dil_^i jlabi pbqrm (Table A4). Further, I checked possible collinearity be-

tween continuous predictors of each analysis using a correlation matrix (ggpairs-function from GGally 

package (Schloerke et al., 2024)) and the Pearson correlation coefficients table from the cor-function 

(stats package). I defined a significant correlation as any correlation coefficient |r| > 0.6. In the analy-

sis of spatial variation in wolf predation risk and hunting risk, the predictors of wolf predation risk and 

hunting risk did not significantly correlate (0.29). In the human disturbance analysis, the highest but 

non-significant correlation was between the distance to main roads and forest roads with 0.56.  
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Originally, the idea was to transform the behavioural data, from values between 0 - 20 s per behaviour 

and video, into proportions, and model all six behaviours as one response (partial proportions) with 

a Dirichlet regression, such that the change in one behaviour relative to the others could be measured 

(Douma & Weedon, 2019). The behavioural data distribution was skewed drastically towards 0 and 1, 

since moose often did not change their behaviour within the 20 s duration of the videos. I, therefore, 

decided to use a binary term for the response where Ù1Ú specifies the behaviour having occurred in 

the video and Ù0Ú that it was absent.  

With only five individuals, I expected to find individual differences in the data, and therefore, I chose 

mixed-effects models to account for possible pseudo-replication (Zuur et al., 2010). For the occur-

rence of each behaviour, I fitted a generalized linear mixed model (GLMM) with binomial family and 

logit-link function using the glmmTMB package (Brooks et al., 2024). I tested the temporal autocorre-

lation for each response behaviour using the acf- and pacf-functions from the stats package (R Core 

Team, 2024) and found it to be neglectable. I also tested the moose ID as a random intercept in the 

full model (supplements, Table A4) and included it only if it significantly improved the model fit . I 

evaluated the model fit using Akaike information criterion for small sample sizes (AICc), with improve-

ments indicated by a lower AICc and dAICc < 4. I fitted the two full models with and without random 

factor using the restricted maximum likelihood (REML) estimation of variance components, which 

maximizes the likelihood of the data only for the random effect, being more suitable for the compari-

son of random effects than the maximum likelihood (ML) approach (default in glmmTMB) (Zuur et al., 

2009). I then prepared the resulting full model for automated model selection with the dredge-func-

tion from the MuMin package (BartoƵ, 2024). I conducted model selection by comparing the best 

models suggested by the dredge-function, considered models with dAICc <4 as equivalent and se-

lected those with the lowest AICc. I further investigated and selected the models by fit, parsimony 

and inclusion of covariates of interest. For the model selection and model fit, I estimated the fixed 

effects using the ML approach.  

Lastly, I conducted the model validation using the testDispersion-function, while I conducted the 

simulation and plotting of residuals against fitted with the simulateResiduals-function and plot-func-

tion from the DHARMa package (Hartig & Lohse, 2022). I further explored the model results using the 

prediction-, plot- and slopes-functions and conducted contrast analyses with the comparisons-func-

tion from the marginaleffects package (Arel-Bundock et al., 2024). I considered the results significant 

if the 95 % Wald confidence interval (CI) did not include the value representing no effect. I produced 

visualisations using the ggplot2 package (Wickham et al., 2024).   
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3. Results  

3.1 General observations 

In the pooled all-year activity budgets of the three female moose (E2001, E2002 and E2003, N = 6816 

videos), lying occurred most frequently, followed by ruminating and foraging, while alert, standing 

and locomotion occurred only occasionally (Figure 2). Concerning the activity budget, individual dif-

ferences between the three females appeared to be small (supplements, Figure B1). 

Figure 2: Proportions of the occurrences of six primary moose behaviours (locomotion = walking + running) 

(top) and different snow conditions (bottom) per month from pooled annual activity budgets of three female 

moose (E2001, E2002, E2003). The proportions indicate the frequency of each behaviour relative to the total 

number of observed behaviours for each month. Error bars represent the standard error for each proportion. 
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Mature forest was proportionally the most occurring habitat type, followed by bog and clearcut (sup-

plements, Table B1). The most visited habitat type varied among the three moose females (supple-

ments, Figure B2). Snow conditions recorded from the videos varied greatly during the year (Figure 2) 

and resembled the snow conditions from the study area description (2.1).  

When investigating the full data set of all five moose females (7762 videos), human structures (roads, 

buildings, undefined) were visible in 82 videos in total, most of which were roads. On average human 

structures appeared in only 1.5 % of the videos per subject (supplements, Table B2). Calves occurred 

in 534 videos (6.9 %), 48 videos of which showed physical interactions between cows and their 

calf/calves. Most recorded occasions of other moose being present in the videos were cows. Close 

encounters occurred rarely and were mostly repulsive. During the rutting season, a handful of close 

encounters with bulls occurred. Recorded interspecies encounters were rare (birds only), and no 

predators or humans were caught on camera. The occurrences of forage types and other interesting 

moments in the videos are given in the supplements (Table B3, Table B4).  

Figure 3: Activity budget with data of all five moose females included in this study, separated by the season. 

Data compilation further explained in section 2.3. The proportions indicate the frequency of each behaviour 

relative to the total number of observed behaviours for each season. Error bars indicate the standard error for 

each proportion. 
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3.2 Activity budgets with spatially varying wolf predation risk between 
seasons 

Modelling the frequency of  lying 

Among the models to investigate how the occurrence of 

lying varied with spatially varying wolf predation risk 

(SWR) and between seasons with and without hunting, 

the best model included season and SWR as predictors 

(supplements, Table C1). The frequency of lying ap-

peared to be slightly higher in winter than in other sea-

sons (Figure 3), yet the contrast analysis revealed no 

significant differences in the predicted frequency of ly-

ing between the seasons (details not shown). I found no 

significant relationship between the occurrence of lying 

and SWR.  

Modelling the frequency of  foraging 

The best model to describe how the occurrence of for-

aging varied with SWR and between seasons (with and 

without hunting) included only SWR and was consid-

ered equal to the null model (supplements, Table C2). 

The frequency of foraging predicted from this model sig-

nificantly decreased with increasing SWR (estimate =  

-0.021, 95 % CI [-0.041, -9.3 × 10-4]; Figure 4). Since the model including only season performed worse 

than the null model (supplements, Table C2), the season was not further investigated here.  

Modelling the frequency of  locomotion  

None of the models describing the relationship between moose locomotion  (walking, running), SWR 

and season (with and without hunting) performed better than the null model (supplements, Table C3), 

suggesting that neither factor played an important role in describing the occurrence of moose loco-

motion. However, three models, the first including SWR only, the second including season only and 

the third including both season and SWR performed equal to the null model (supplements, Table C3). 

I investigated all three but did not find any significant relationships between locomotion and season 

(Figure 3) or SWR (supplements, Figure B4) (details not shown).  

Figure 4: Predicted frequency of moose forag-

ing behaviour occurring at different levels of 

spatial wolf predation risk (SWR). Shaded area 

indicates 95 % confidence intervals. A risk 

value represents an x-fold increase in preda-

tion risk compared to the average, where x is 

the risk value. The rug plot along the x-axis rep-

resents the distribution of the observed data 

points. 
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Modelling the frequency of  alert  

To investigate the effects of season (with and without hunting) and SWR on the occurrence of moose 

alert behaviour, the best model included only the interaction between season and SWR but per-

formed only slightly better than the null model (supplements, Table C4). There was no significant 

main effect of the season (details not shown), however, SWR significantly decreased during the pre-

hunting season (estimate = -0.079, 95 % CI [-0.11, -0.020]; Figure 5). Also, the main effect of SWR 

was significantly negative (estimate = -0.035, 95 % CI [-0.063, -0.0056]). 

3.3 Activity budgets with spatially varying hunting risk during the hunting 
season 

Modelling the frequency of  lying 

When investigating the effects of spatially varying hunting risk (SHR) on the occurrence of lying be-

haviour in moose during the hunting season, neither SHR, nor any of the other predictors did signifi-

cantly improve the null model (supplements, Table C5). The second listed model only included SHR 

as a predictor, but the variable was uninformative (no significant relationship, details not shown) 

(supplements, Figure B5).  

Figure 5: Interaction plot of the predicted frequency of alert behaviour in moose occurring relative to spatially 

varying wolf predation risk and separated by season. Colour shaded areas indicate 95 % confidence intervals. 

A risk value represents an x-fold increase in predation risk compared to the average, where x is the risk value. 

The rug plot along the x-axis represents the distribution of the observed data points. 
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Modelling the frequency of  foraging 

The null model resulted in the best model when investigating the effect of SHR on the occurrence of 

foraging behaviour in moose (supplements, Table C6). The second-listed model included only SHR 

as a predictor, but the variable remained uninformative (details not shown) (supplements, Figure B5).  

Modelling the frequency of  locomotion  

To investigate the effect of SHR on locomotion  during the hunting season, the model including only 

SHR as a predictor was listed on top, however, the null model was listed third and was considered 

equally good (supplements, Table C7). I found no significant relationship between the occurrence of 

locomotion  and SHR (details not shown) (supplements, Figure B5).  

Modelling the frequency of  alert  

When investigating the possible effect of SHR on the occurrence of alert behaviour in moose, the best 

model included the interaction between SHR and SWR and was significantly better than the null 

model (supplements, Table C8). The interaction between SHR and SWR was significant (estimate = 

0.89, 95 % CI [0.67, 0.97]), with a positive relationship between SHR and the frequency of alert be-

haviour at maximum SWR, and a slightly negative relationship at minimum SWR (Figure 6). 

Figure 6: Interaction plot of the estimated effect of spatially varying hunting risk (SHR) and spatially varying wolf 

predation risk (SWR) on the predicted occurrence frequency of alert behaviour in moose. The slopes are given 

at different SWR quartiles from min to max (0.1 - 3.3), indicated in the legend. A risk value represents an x-fold 

increase in risk compared to the average, where x is the risk value. Colour shaded areas indicate the 95 % 

confidence intervals. 
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3.4  Activity budgets and human disturbance 

Modelling the frequency of  lying 

When investigating the relationship be-

tween human infrastructure and the oc-

currence of lying, the model including the 

interactions between season and both 

distance to the nearest forest road (dis-

foroad) and distance to the nearest main 

road (dismainro) was the best listed (sup-

plements, Table C9). Since the latter inter-

action did not occur in many other top-

listed models, I focused on the second-

best model including the interaction of 

disforoad and season and the building 

density (densbuild). I found no significant 

effect of densbuild on the occurrence of 

lying (details not shown). The effect of dis-

foroad was significantly positive during 

the hunting season (estimate < 0.001,  

95 % CI [2.9 × 10-5, 3.0 × 10-4]), negative 

but uncertain during the pre-hunting sea-

son (estimate > -0.001, 95 % CI [-1.5 × 10-4, 6.3 × 10-6]), and none-existent during winter (details not 

shown) (Figure 7). 

Dismainro seemed to be of importance, as it appeared in many top-listed models. I investigated it 

using the best model without any interactions, which also included the season (supplements, Table 

C9), however, dismainro remained uninformative (details not shown).  

 

 

Figure 7: Interaction plot of distance to forest roads and sea-

son on the predicted occurrence frequency of lying behaviour 

in moose. Colour shaded areas indicate the 95 % confidence 

intervals. The rug plot along the x-axis represents the distribu-

tion of the observed data points. 
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 Modelling the frequency of  foraging 

The best model to investigate the relation-

ship between human disturbance and for-

aging included the interaction between 

disforoad and season as well as the dis-

tance to buildings (disbuild). The differ-

ence between the null model and the best 

models was only marginal (supplements, 

Table C10). There was no significant effect 

of disbuild on the occurrence of foraging. 

The relationship between disforoad and 

the occurrence of foraging was signifi-

cantly different during pre-hunting com-

pared to the other two seasons (estimate 

< 0.001, 95 % CI [3.1 × 10-5, 1.7 × 10-4]; Fig-

ure 8).  

I investigated dismainro, as it appeared in 

many high-ranked models (supplements, 

Table C10), using the model including dis-

mainro and disbuild. The predictor dismainro remained uninformative (details not shown).  

Modelling the frequency of  locomotion  

To investigate the effect of human disturbance on the occurrence of moose locomotive behaviour, 

the top-listed model included dismainro only (supplements, Table C11). There was no effect of dis-

mainroad on the occurrence of locomotion (details not shown). The second-listed model included 

the interactions disforoad:season and dismainro:season, none of which showed any significant ef-

fects (details not shown). Both investigated models performed equal to the null model. 

Modelling the frequency of  Alert  

When investigating the effect of human disturbance on the occurrence of moose alert behaviour, the 

best model included disbuild, disforoad and the interaction of season and densbuild (supplements, 

Table C12). I investigated this model mainly for the interaction. The relationship between densbuild 

and the occurrence of alert was positive and significantly different during pre-hunting compared to 

the other two seasons (estimate = 0.013, 95 % CI [0.0066, 0.020]; Figure 9).  

Figure 8: Interaction plot of distance to forest roads and sea-

son on the predicted occurrence frequency of foraging behav-

iour in moose. Colour shaded areas indicate the 95 % confi-

dence intervals. The rug plot along the x-axis represents the 

distribution of the observed data points. 



23 

The model including season, dens-

build, distbuild and disforoad was sec-

ond listed and equally ranked to the in-

teraction model (supplements, Table 

C12). According to this model, the fre-

quency of alert significantly increased 

with distbuild, but the effect was negli-

gibly small (estimate < 0.001, 95% CI 

[9.1 × 10-6, 9.8 × 10-5]). There was no 

significant relationship between the 

occurrence of alert and disforoad (de-

tails not shown).  

  Figure 9: Interaction plot of the building density (buildings per 

km2) and season on the predicted occurrence frequency of alert 

behaviour in moose. Colour shaded areas indicate the 95 % con-

fidence intervals. The rug plot along the x-axis represents the dis-

tribution of the observed data points. 
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4. Discussion  

By investigating moose activity budgets from camera collar data in relation to moose mortality risk, 

this study explored moose behavioural responses to hunting and predation risk and their energetic 

implications. My estimates of moose activity budgets are comparable to Renecker & Hudson (1989), 

with lying ("bedded") being the most frequent behaviour, followed by foraging and ruminating, while 

locomotion and alert were the least frequent. This suggests that sampling 20-second videos every 

two hours during daylight is sufficient to capture all-year moose activity budgets, since Renecker & 

Hudson (1989) did continuous 24-hour sampling. However, the monthly fluctuations observed in my 

study differ from Renecker & Hudson (1989), likely due to their study being conducted with captive 

moose, while we used wild moose. 

Activity budgets with s patial ly varying wolf predation risk and seasonal ly varying hunt-

ing risk (H1, H2) 

Contrary to my predictions to H1 and H2, moose did not increase energy-demanding behaviours like 

locomotion and alert, nor did they decrease energy-preserving and -accumulating behaviours like ly-

ing and foraging in areas of high spatial wolf predation risk. Also, the frequency of these behaviours 

remained unchanged despite seasonal changes in hunting risk. Moose decreased foraging and alert 

behaviour with increasing spatial wolf predation risk, though the effect on alert occurred only during 

the pre-hunting period, and both results were inconclusive. Although these findings do not support 

H1 or H2, results concerning the spatially varying wolf predation risk align with previous studies, find-

ing little evidence of predator-avoiding behaviours in moose (Ausilio et al., 2021; Wikenros et al., 

2016). 

The unexpected increase in moose alert behaviour in low wolf predation risk areas during the pre-

hunting season suggests a potential confounding effect, raising the possibility that a key explanatory 

factor was overlooked in the study. A possible factor could be moose rutting, likely heightening the 

occurrence of female moose alert behaviour regardless of wolf predation risk (Mysterud et al., 2004; 

Neumann et al., 2009). However, the rutting season lasts roughly from the 25th September to the 5th 

October (Solberg et al., 2006) and overlaps with both the pre-hunting and hunting season, such that 

the frequency of alert behaviour would be expected to be heightened through both seasons. Another 

factor could be whether females were accompanied by calves. Yet, previous studies found con-

trasting results on the sensitivity of female moose with calves towards disturbance (Lykkja et al., 

2009; Neumann et al., 2009). Lastly, defining and detecting alert behaviour was challenging due to 
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the jllpbØp b^op klq being visible in the footage. Subtle forms of alert/vigilance could not be de-

tected, potentially underestimating alert observations in this study.  

The low occurrence of alert behaviour in high wolf predation risk areas could be due to a lack of data 

points at high predation risk values during the pre-hunting and hunting season. This might be because 

the summer home ranges of the study animals have no consistent overlap with high-risk areas. Alter-

natively, moose may have avoided high wolf predation risk areas during pre-hunting and hunting sea-

son. However, evidence suggests that moose select for such areas during and after the hunting sea-

son, and browsing damage was found positively correlated with wolf presence too (Ausilio, 2022; 

Loosen et al., 2021). The relatively high moose-to-wolf ratio inside the study area implies low preda-

tion risk for an individual moose and a weak selection pressure for moose to adopt wolf-avoiding 

behaviours (Eriksen et al., 2009). Studies suggest that intensive harvest has posed a consistently 

higher risk to moose than wolves, which might explain moose showing little response to wolf preda-

tion risk (Nicholson et al., 2014; Sand et al., 2021). Additionally, wolves hunt mostly at night, while 

hunting happens during the day, making it harder to detect responses to wolf predation risk in this 

study (Ausilio et al., 2022). 

My results, indicating little change in moose walking/running behaviour in response to seasonal hunt-

ing risk, were partially unexpected, since three studies found evidence of moose increasing their day-

time movement during the hunting season (Ericsson & Wallin, 1996; Fritz, 2009; Hjort, 2020). Con-

trary, Neumann et al. (2009) and Neumann & Ericsson (2018) found unchanging or even decreasing 

movement rates of female moose during the hunting season. Besides, some individuals appeared 

more sensitive to hunting disturbance than the overall population (Neumann et al., 2009). Nilsen & 

Solberg (2006) found specific hunting pressures on different age classes and sexes, possibly driving 

higher anti-predator responses in the most pressurised classes. After all, this study only included a 

total of five study animals, neither representing the overall population nor different demographic 

groups well.  

From an energetics point of view, these results suggest no influence of seasonally varying hunting risk 

or spatially varying wolf predation risk on the moose energy budget on a large scale. Moose adapt to 

cyclic environmental conditions with seasonal shifts in their energy balance. They increase fat stor-

age in summer through higher forage intake (positive energy balance) and undergo hypometabolism 

in winter which lowers their metabolic rate, heart rate, body temperature, and activity levels, to coun-

ter the negative energy balance during resource-scarce winter months (Græsli et al., 2020b; 

Schwartz, 1992). Given wolf predation risk being relatively low for a single moose in Scandinavia 
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(Eriksen et al., 2009), moose might have to trade off their energy budgets in favour of other more 

pressing factors such as rutting and seasonal changes. 

Activity budgets with s patial  variation in  hunting risk during the hunting season ( H3) 

Against the prediction of H3, high spatial hunting risk did not decrease energy-accumulating (forag-

ing) and energy-preserving behaviours (lying) nor increase the frequency of energy-demanding behav-

iours (alert, locomotion), as lying, foraging and walking/running remained unchanged. Furthermore, 

the occurrence of alert behaviour during the hunting season decreased with increasing hunting risk 

at low wolf predation risk, but the relationship weakened with increasing wolf predation risk and 

changed to a positive relationship at high wolf predation risks. This suggests a confounding factor, 

analogous to the explanation in the previous chapter (H1, H2). Habitat was the least important pre-

dictor for the frequencies of the different behaviours, even though moose are expected to adapt their 

behaviour to different habitats (Dussault et al., 2005) and the risk of being killed by a hunter or wolf 

differs between the habitat types (Ausilio et al., 2022). Potentially, the habitat variable has been di-

vided into too many categories, with some having few observations, weakening it as a predictor. Be-

sides, habitat use showed high individual differences. 

Moose in the same study area have been found to avoid high hunting risk areas during the daytime of 

the hunting season (Ausilio, 2022), which could reduce observations in these areas, weakening the 

detection of potential effects of spatial hunting risk. Yet, my data included a wide range of spatial 

hunting risk values. Apart from Ausilio (2022), several studies examined moose responses to hunting 

risk, however, those focus primarily on seasonal (temporal) aspects (Ericsson & Wallin, 1996; Hjort, 

2020; Neumann et al., 2009; Neumann & Ericsson, 2018), limiting comparison with the findings re-

lated to H3. Consistent with the results of seasonal hunting risk and spatial wolf predation risk, and 

contrary to H3, my results suggest no clear effects of spatial variation in hunting risk on moose be-

haviour and hence energy budgets.  

Activity budgets and h uman disturbance  (H4) 

General human disturbance may be a closer representation of what is perceived as risky from the 

mooseØp point of view (POV). Although my results are inconclusive, I found limited evidence that the 

moose may have responded more to human infrastructure than to estimated hunting risk. Moose 

seemed to be alert more often in areas of high building density during the pre-hunting season, which 

only partially supports H4. I had expected moose to not only increase the frequency of alert in more 

densely populated areas but also during periods of high human activity, such as the hunting season. 
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Previous studies found that moose tend to move further away from densely populated areas when 

human activity increases (Lykkja et al., 2009). This could lead to an underrepresentation of data 

points in more densely populated areas, during periods of high human activity, weakening a potential 

effect of the building density on moose alert behaviour. For the winter season, there are indeed no 

data points at building densities higher than three buildings per km2, still , the data seems well distrib-

uted for the pre-hunting and hunting seasons, not explaining the lack of an effect during the hunting 

season.  

Moose were more likely to be lying farther from forest roads during the hunting season, which sup-

ports H4. Yet, they were also more likely to be foraging further away from roads during the pre-hunting 

season, not fully supporting H4. I expected moose to avoid main roads and densely populated areas, 

and spend less time foraging or resting, but increase locomotion  when in proximity of such human 

infrastructure. These expectations are supported by studies showing that moose browse less near 

main roads (Loosen et al., 2021; Mehlhoop et al., 2022), and reduce movement in sparsely populated 

areas during the hunting season (Neumann et al., 2009). Despite that, neither main roads nor building 

density or proximity to buildings seemed to affect the likelihood of foraging, lying or walking/running 

in my results and therefore did not support H4.  

Particularly in late summer and autumn, moose are expected to follow the best foraging opportunities 

to build fat reserves for winter (Schwartz, 1992). In Scandinavia, popular moose browsing areas with 

high-quality deciduous forage were found close to secondary roads (Eldegard et al., 2012; Loosen et 

al., 2021). Nonetheless, this study found a decrease in foraging frequency near secondary roads. The 

only behaviour change that aligned with expectations was the decrease in the frequency of lying near 

forest roads during the hunting season. This aligns with the expectation of moose avoiding both areas 

of human disturbance and direct human disturbance (Kirchner, 2024; Tinoco Torres et al., 2011) and 

may reflect moose perceiving higher risk due to increased human activity along forest roads, which 

serve as starting points for the moose harvest (Ausilio et al., 2022). Instead of completely avoiding 

areas of high perceived risk, moose may adjust their behaviour by avoiding vulnerable activities like 

lying, allowing them to still take advantage of beneficial foraging opportunities in the area. Given that 

hunters primarily access moose habitats via (forest) roads, moose may associate hunting risk more 

closely with these roads than with buildings or settlements, possibly explaining the lack of effect from 

building density during the hunting season.  

The effect of human disturbance on moose varied between behaviours, which I had expected. I pre-

dicted from H4 that energy-demanding behaviours (alert, locomotion) would increase in proximity to 
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human disturbance while energy-preserving (lying) and -accumulating behaviours (foraging) would 

decrease as a trade-off. Additionally, I predicted the pattern to further increase during the hunting 

season, when human disturbance intensifies. However, most of these predictions were not met by 

the results or were explained by factors other than human disturbance. Nonetheless, several studies 

showed evidence of those expected behavioural changes in moose in relation to human disturbance 

(recreational activities, disturbance by perceived hunting risk, other stimuli) (Bhardwaj et al., 2022; 

Græsli et al., 2020a; Kirchner, 2024; Neumann et al., 2010, 2011), though these studies focused on 

responses to direct human disturbance at small spatiotemporal scales. Neumann (2009) investi-

gated moose responses to perceived (hunting) risk on a small spatial scale by direct approaches and 

on a large spatial scale using telemetry and remarked that it is complicated to monitor the impact on 

a large scale due to the small spatial extent and short-term nature of the moose responses to dis-

turbance. The weak effects found in this study may be due to the scale on which this study operated. 

The behavioural observations were on a fine scale, yet the sources of disturbance (proximity and den-

sity of infrastructure) were less direct and immediate than the direct approaches conducted by e.g. 

Neumann et al. (2010, 2011). Also, the disturbance was neither controlled nor precisely measured 

and the detection of moose response behaviour (alert) could be challenging. On the other side, com-

pared to large-scale telemetry studies that assess moose spatial response to disturbance (Ausilio et 

al., 2022; Mehlhoop et al., 2022; Neumann et al., 2009), the responses measured in this study in-

cluded more nuanced behavioural information, with the possibility to identify whether a stationary 

animal was resting, feeding or being vigilant. As such, detailed behavioural studies using camera foot-

age or accelerometer data can be a complementary source of information to large-scale telemetry 

studies. E.g. while Ausilio (2022) investigated moose habitat selection in relation to spatiotemporal 

allocation of hunting and wolf predation risk, my study provides estimates of the behaviour frequen-

cies relative to those risks. Lastly, mismatches between behavioural observations (video data) and 

GPS points (including associated risk values) in some parts of the dataset may have created noise, 

which might have mitigated the detection of potential effects of human disturbance and varying risk 

levels.  

This study cannot undoubtedly link variation in moose activity budgets to human disturbance, so the 

impact of human disturbance on moose energy budgets remains unclear. On a fine temporal scale, 

three studies (Neumann, 2009; Neumann et al., 2010, 2011), testing moose response to different 

types of human disturbance with direct approaches (recreational activities, motorized activities and 

hunting), found uniform response across all types. These short-term disturbances were assumed to 

have a small or negligible impact on the energy budget of healthy moose. However, more frequent 
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disturbances could have a larger impact.  Græsli et al. (2020a) and Kirchner (2024) found similar re-

sults, though suggesting clear negative impacts on individual moose energy budgets on the day of the 

approach, with possible effects on moose body condition and reproductive rates if disturbance hap-

pens frequently.  

Conclusion  

This study demonstrated that it is possible to create coherent all-year activity budgets for female 

moose using camera collar data and explore factors potentially influencing these budgets. By exam-

ining activity budgets alongside hunting and wolf predation mortality risk estimates, I found that fe-

male moose prioritize energy-accumulating and energy-preserving activities across all tested sea-

sons over risk-avoiding and energy-demanding behaviours. Variations in mortality risk from hunting 

or wolf predation had no substantial impact on their activity budgets. Considering the results related 

to all my hypotheses, the estimated risks of hunting or wolf predation derived from actual moose 

mortality did not have clear direct effects on moose activity or energy budgets. Moose may not per-

ceive risks accurately but instead react to general human activity. This study found limited evidence 

that moose adjusted their activity budgets based on the distance and density of human structures. 

However, the differences in the scale of observation as well as the nature of disturbance complicate 

direct comparisons with other research, often testing either detailed responses to direct (controlled) 

human disturbance or large spatiotemporal effects of proximity and density of infrastructure using 

only location data. The use of camera collars for sampling and activity budget creation is a promising 

new approach that is complementary to telemetry studies but needs further refinement for large-

scale applications. Future studies could incorporate day and night video data, capturing potential 

effects of predation risk during nighttime when wolves typically hunt. Using a combination of camera 

collars, controlled experiments with known disturbance types and timings, and accelerometer data, 

could provide more precise estimates of the energetic costs of these disturbances. Further research 

on the effects of human and predation disturbances on moose activity budgets together with accel-

erometer data may provide valuable insights into the impact of these stressors on moose energy bal-

ance and daily routines at a broader scale. 
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7. Supplements  

A. Methods supplementary 

Table A1: Corine Land Cover types that occurred in the study area, the associated labels and the corresponding habitat classifications defined for this study 

(habitat type). 

Code Label  Habitat type  

112 Discontinuous urban fabric human activity 

142 Sport and leisure facilities human activity 

211 Non-irrigated arable land field 

231 Pastures field 

243 Land principally occupied by agriculture with significant areas of natural vegetation field 

311 Broad-leaved forest forest mature 

312 Coniferous forest forest mature 

313 Mixed forest forest mature 

324 Transitional woodland-shrub clearcut 

411 Inland marshes bog 

412 Peat bogs bog 

511 Water courses waterbodies 

512 Water bodies waterbodies 
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Figure A1: Number of videos (data points) per study animal 

(moose female) and season, included in the statistical analy-

sis of this study. 
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Table A2: #be^sflroØp bqeldo^j rpba clo qeb sfabl ^k^ivpfp fk qeb bsbkq ilddfkd plcqt^ob #03*4 for this study. 

Behaviour type  Key Behaviour code  Definition of behaviour  Behaviour category  

point event v a video start start of next video organisational 

point event e z video end end of current video (last frame) organisational 

state event u up head not visible or only the snout visible in the video frame head position 

state event n neutral underside of jaw and snout visible in video frame head position 

state event d down/tucked jaw and snout visible with a bunch of hair in front head position 

state event h lifting head head moving from down to neutral or from neutral to up head position 

state event l lowering head head moving from up to neutral position or from neutral to down/tucked position head position 

state event q head turned sideways 
head visible on either side of the video frame or head turning from centre to the side of 
the frame head position 

state event t turning head sideways movement of head to one side, stop there or move back to neutral position head position 

state event b head back to centre head from a turned position back to a central one (head can be held high or low) head position 

state event 0 lying ground and its vegetation visible close body position 

state event 1 standing ground and vegetation visible from above body position 

state event k stand up 
perspective of lying at start, leans forward when extending legs, lifts head and pulls 
body up in head direction body position 

state event o lay down 
often sniffs the ground first, then leans forward, front legs bend first (not visible) in a 
jerky motion and then the whole body descends body position 

state event w walking camera wiggles in a slow rhythm up and down, moving slowly forward activity 

state event r running 
camera shakes with a fast rhythm up/down and sideways, moving forward with a higher 
speed compared to walking activity 

state event 2 foraging feed intake directly followed by chewing/drinking/licking rock activity 

state event 3 ruminating chewing of previously ingested food (position: lying or standing) activity 

state event 4 alert 
interruption of current activity, head raised in a rushed manner, ending in a tensed posi-
tion, head stays high (can be turned to side) activity 

state event 5 puff out nostrils sniffing, breathing in air short and sharp while lifting nostrils activity 

state event 6 lick and chew licking and chewing independent of foraging or ruminating activity 

state event g body care shaking, scratching, rubbing against tree body care 

state event s wallowing 
stamping the floor rhythmically with the front extremities, lying down, wallowing (only 
for reproduction) social interaction 
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state event s social general social interaction with unknown social interaction 

state event s cow interaction with cow social interaction 

state event s bull interaction with bull  social interaction 

state event s multiple  interaction with multiple  social interaction 

state event p present/visible calf with present/visible calf 

state event f lying in front of cow calf with lying in front of cow calf 

state event c calf social interaction with calf calf 

state event i physical interaction licking/nudge/drinking etc. calf 

point event * open forest open area with some high standing dead pines and young pines habitat 

point event * forest mature min age 40 - 120 yrs. (Breidenbach et al., 2020) habitat 

point event * forest young age 1 - 54 yrs. (Breidenbach et al., 2020) habitat 

point event * clear cut most or all trees in an area are uniformly cut down habitat 

point event * field agricultural area habitat 

point event * bog marsh, swamp, an area of wet muddy ground  habitat 

point event * waters close by or in water bodies habitat 

point event * sunny less than 50 percent clouds  climate 

point event * cloudy more than 50 percent clouds climate 

point event * precipitation  snow, hail or rain  climate 

point event * full cover 100 percent snow cover snow 

point event * patchy high patchy more than 50 percent snow 

point event * patchy low patchy less than 50 percent snow 

point event * no snow no snow snow 

state event * water  snout dipped in the water, sucking foraging 

state event * snow ingestion of snow foraging 

state event * salt lick  licking salt lick stone foraging 

state event * supplemented feed ingestion of feed provided by humans foraging 

state event * aquatic snout deep in the water, chewing foraging 

state event * ground vegetation ingestions of ground vegetation foraging 

state event * foliage ingestions of foliage foraging 

state event * deciduous branches ingestion of deciduous branches foraging 
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state event * bark ingestion of bark of dead or alive tree foraging 

state event * coniferous ingestion of coniferous species foraging 

state event * feces ingestions of feces; coprophagy foraging 

state event * road road close by (visible) human structure 

state event * building building close by (visible) human structure 

state event * wind turbine wind turbine close by (visible) human structure 

state event * else else close by (visible) human structure 

* Behaviours used for behaviours coding map 
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Figure A2: Hand-drawn coding map with behaviours of five different categories, used 

for the video analysis in this study. The behaviours lacking a key in the ethogram (Table 

A2), were logged with the help of this coding map.  
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Table A3: Extension of Table 2 in section 2.3 in the main text. The error periods indicate the periods in which a mismatch between the videos and the 

corresponding GPS points and risk values has appeared. The error periods only apply to the subject named on the same row, indicated by an asterisk. 

Unfortunately, it was not possible to evaluate which specific videos were affected by the error. 

Season Risk map Individuals  Period 
Number of 

videos 
Error periods  

Pre-hunting wolf_fall19 
E2002*, E2003, 2020/08/18 Õ 2020/09/24 

1015 
2020/08/17 Õ 2020/08/29 

E2102, E2103 2021/08/18 Õ 2021/09/24  

Hunting 
wolf_fall19; E2002*, E2003, 2020/09/25 Õ 2020/10/31 

727 
2020/09/15 Õ 2020/10/01 

hunt_fall18 E2102, E2103 2021/09/25 Õ 2021/10/31  

Winter wolf_win19 

E2001* 
2020/03/10 Õ 2020/04/09 

791 

2020/03/10 Õ 2020/04/16 
2020/12/30 Õ 2021/03/20 

E2002* 
2020/03/10 Õ 2020/04/05 

2021/02/24 Õ 2021/03/12 
2020/12/24 Õ 2021/03/20 
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Table A4: Full model set-up for each analysis part (a, b, c) of this study. Predictors and interactions in bold were of main interest, the type of variable is 

indicated in brackets, cat = categorical variable and cont = continuous variable.  

Response variable  Fixed effects  Random effects  

a) Hypothesis I & II: Spatial wolf predation risk and seasonal hunting risk analysis 

Response behaviour (binary) 

season (cat) 

moose ID (cat) 

habitat type (cat) 

wolf predation risk  (cont) 

season:wolfrisk  

season:habitat 

b) Hypothesis III: Spatial hunting risk analysis 

Response behaviour (binary) 

spatial hunting risk  (cont) 

moose ID 
wolf predation risk  

habitat type 

huntrisk wolfrisk  

c) Hypothesis IV: Human disturbance analysis 

Response behaviour (binary) 

season 

moose ID 

distance to main road  (cont) 

distance to forest road  (cont) 

distance to buildings (cont) 

building density  (cont) 

habitat type 

dismainro:season  

disforoad:season  

densbuild:season  
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B. General results supplementary 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1: Predicted frequencies of six main moose behav-

iours in comparison and separated by the subject. All-year data 

from camera collar footage of three females (E2001, E2002, 

E2003) was used. Vertical lines through the estimates indicate 

the standard errors.  
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Table B1: Habitat types derived from GPS points, given are the count (number of videos showing the habitat type), proportion of habitat type relative to all 

observed habitat types and standard error (SE). 

Habitat type  Count  Proportion  SE 

forest mature 3359 0.493 0.0086 

clearcut 1447 0.212 0.0108 

bog 1929 0.283 0.0103 

field 74 0.011 0.0120 

waterbody 7 0.001 0.0121 

 

Table B2: Occurrences of human structures on the video footage of all five female moose (subject). Given are the total amount of videos per subject, the 

count of observed human structures, the proportion of observed human structures relative to the total videos of a given subject and the standard error (SE).  

Subject  Total videos  Count  Proportion  SE 

E2001 2337 12 0.0051 0.0015 

E2002 2143 12 0.0056 0.0016 

E2003 2336 50 0.0214 0.0030 

E2102 443 19 0.0429 0.0096 

E2103 467 1 0.0021 0.0021 
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Table B3: Forage types sampled from all-year video data of three female moose (E2001, E2002, E2003), given are the count (number of videos showing the 

forage type), proportion of forage type relative to all forage types observed and standard error (SE). 

Forage type Count  Proportion  SE 

aquatic 3 0.001 0.0219 

bark 13 0.006 0.0219 

coniferous 111 0.053 0.0213 

deciduous branches 77 0.037 0.0215 

foliage 369 0.177 0.0199 

ground vegetation 1461 0.702 0.0120 

salt lick 7 0.003 0.0219 

snow 20 0.010 0.0218 

water 20 0.010 0.0218 
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Figure B2: Visited habitat types extracted from Corine Land Cover layer of annual GPS point records (1 hour 

resolution) of three female moose (E2001, E2002, E2003). The proportions indicate the frequency of each hab-

itat type relative to the total number of observed habitat types for each subject. The error bars indicate the 

standard error for each proportion. 
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Table B4: Notable events and behaviours captured in camera collar footage.  

Description  

newborn calves being licked by cow 

cow chewing the afterbirth 

calf visible while suckling milk 

visible breathing of cow due to mist 

assumingly visible heartbeat of cow due to rhythmically shaking camera 

cow foraging aquatic plants in a pond and mushrooms 

cow sniffing a rut wallowing pit 

cow E2102 being unusually often close to or on roads 

cow and calf rest/sleep with their head sideways on the ground, eyes closed 

cow sounds and bull rutting sounds were caught by the internal microphone of the camera collars 

 

 

 

 

 

 

 

 



55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3: Activity budget derived from camera collar data from three female moose (E2001, E2002, E2003) separated by 

four different habitat types. The proportions indicate the frequency of each behaviour relative to the total number of ob-

served behaviours for each habitat type and are also indicated as percentages on the bars. 
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Figure B4: Activity budget derived from camera collar data of five female moose (E2001, E2002, E2003, E2102, E2103) 

before- and after the hunting season as well as for winter, at different spatial wolf predation risk levels which correspond to 

the quatre percentiles from min to max (0.1 - 5) wolf predation risk. A risk value represents an x-fold increase in predation 

risk compared to the average, where x is the risk value. The proportions indicate the frequency of each behaviour relative to 

the total number of observed behaviours for each risk level and are also indicated as percentages on the bars. 
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Figure B5: Activity budget derived from camera collar data of four female moose (E2002, E2003, E2102, E2103) 

during the hunting season at different spatial hunting risk levels which correspond to the quatre percentiles from 

min to max (0.3 - 1.7) hunting risk. A risk value represents an x-fold increase in hunting risk compared to the 

average, where x is the risk value. The proportions indicate the frequency of each behaviour relative to the total 

number of observed behaviours for each risk level and are also indicated as percentages on the bars. 
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C. Statistical analysis supplementary 

Model selection tables  

Dark grey shading and bold font indicates the model regarded as most suitable and received the focus, light grey shade indicates models that were of interest 

and were additionally investigated. 

Spatial wolf predation risk and seasonal  hunting risk analysis  

Table C1: GLMM, family: logit (binomial), response: lying , random term (all models): 1 | moose ID, models ranked by AICc 

Model  (Int)  Habitat  Season Wolfrisk  Season:Habitat  Season:Wolfrisk  df logLik AICc delta  weight  

3 +   +       4 -1646.05 3300.11 0 0.250 

7 +   + +     5 -1645.04 3300.11 0 0.250 

5 +     +     3 -1647.06 3300.14 0.03 0.250 

23 +   + +   + 7 -1644.18 3302.41 2.3 0.080 

4 + + +       8 -1643.72 3303.49 3.38 0.050 

12 + + +   +   14 -1637.83 3303.82 3.71 0.040 

8 + + + +     9 -1643.32 3304.71 4.6 0.030 

16 + + + + +   15 -1637.69 3305.57 5.46 0.020 

6 + +   +     7 -1645.83 3305.7 5.59 0.020 

24 + + + +   + 11 -1642.24 3306.59 6.48 0.010 

1 +           2 -1651.67 3307.35 7.24 0.010 

32 + + + + + + 17 -1637.31 3308.86 8.75 0.000 

2 + +         6 -1649.46 3310.95 10.85 0.000 

 

Table C2: GLMM, family: logit (binomial), response: foraging , random term (all models): 1 | moose ID, models ranked by AICc 

Model  (Int)  Habitat  Season Wolfrisk  Season:Habitat  Season:Wolfrisk  df logLik AICc delta  weight  

5 +     +     3 -1502.32 3010.65 0.00 0.450 
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1 +           2 -1504.53 3013.07 2.42 0.134 

6 + +   +     7 -1499.73 3013.51 2.87 0.107 

2 + +         6 -1500.82 3013.66 3.02 0.100 

7 +   + +     5 -1501.95 3013.93 3.28 0.087 

3 +   +       4 -1503.54 3015.10 4.45 0.048 

4 + + +       8 -1500.16 3016.37 5.72 0.026 

8 + + + +     9 -1499.41 3016.88 6.23 0.020 

23 +   + +   + 7 -1501.52 3017.09 6.44 0.018 

24 + + + +   + 11 -1498.68 3019.46 8.81 0.005 

12 + + +   +   14 -1496.28 3020.72 10.07 0.003 

16 + + + + +   15 -1495.85 3021.90 11.25 0.002 

32 + + + + + + 17 -1495.39 3025.01 14.37 0.000 

 

 

Table C3: GLMM, family: logit (binomial), response: locomotion , random term (all models): 1 | moose ID, models ranked by AICc 

Model  (Int)  Habitat  Season Wolfrisk  Season:Habitat  Season:Wolfrisk  df logLik AICc delta  weight  

1 +           2 -787.03 1578.06 0.00 * 

5 +     +     3 -786.05 1578.11 0.05 * 

3 +   +       4 -786.04 1580.09 2.03 * 

7 +   + +     5 -785.10 1580.22 2.16 * 

2 + +         6 -784.34 1580.71 2.65 * 

6 + +   +     7 -783.66 1581.36 3.30 * 

4 + + +       8 -783.28 1582.61 4.56 * 

23 +   + +   + 7 -784.29 1582.62 4.56 * 

8 + + + +     9 -782.75 1583.56 5.51 * 

24 + + + +   + 11 -781.89 1585.89 7.84 * 

12 + + +   +   14 -779.02 1586.20 8.14 * 

32 + + + + + + 17 -778.54 1591.32 13.26 * 
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16 + + + + +   15 * * * * 

* Model 16 did not converge, logLik, AICc, delta AICc and weights missing 

Table C4: GLMM, family: logit (binomial), response: alert , random term (all models): 1 | moose ID, models ranked by AICc 

Model  (Int)  Habitat  Season Wolfrisk  Season:Habitat  Season:Wolfrisk  df  logLik  AICc delta  weight  

23 +   + +   + 7 -861.95 1737.93 0.00 0.483 

5 +     +     3 -867.18 1740.37 2.44 0.143 

7 +   + +     5 -865.56 1741.15 3.22 0.097 

3 +   +       4 -866.64 1741.30 3.36 0.090 

24 + + + +   + 11 -859.88 1741.86 3.92 0.068 

1 +           2 -869.44 1742.89 4.96 0.040 

6 + +   +     7 -865.03 1744.11 6.17 0.022 

4 + + +       8 -864.11 1744.27 6.34 0.020 

8 + + + +     9 -863.26 1744.59 6.65 0.017 

32 + + + + + + 17 -855.64 1745.53 7.60 0.011 

2 + +         6 -867.16 1746.35 8.41 0.007 

12 + + +   +   14 -861.05 1750.27 12.33 0.001 

16 + + + + +   15 -860.56 1751.32 13.38 0.001 
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Activity budgets with spatially varying hunting risk  during the hunting season  

Table C5: GLMM, family: logit (binomial), response: lying , random term (all models): 1 | moose ID, models ranked by AICc 

Model  (Int)  Habitat  Huntrisk  Wolfrisk  Huntrisk :Wolfrisk  df logLik AICc delta  weight  

1 +         2 -486.39 976.80 0.00 0.337 

3 +   +     3 -485.71 977.45 0.65 0.243 

5 +     +   3 -486.12 978.27 1.47 0.162 

7 +   + +   4 -485.62 979.29 2.50 0.097 

2 + +       6 -484.08 980.29 3.49 0.059 

15 +   + + + 5 -485.51 981.10 4.30 0.039 

4 + + +     7 -483.83 981.81 5.02 0.027 

6 + +   +   7 -484.07 982.30 5.51 0.021 

8 + + + +   8 -483.83 983.86 7.06 0.010 

16 + + v + + 9 -483.78 985.82 9.02 0.004 

 

Table C6: GLMM, family: logit (binomial), response: foraging , no random term (all models), models ranked by AICc 

Model  (Int)  Habitat  Huntrisk  Wolfrisk  Huntrisk :Wolfrisk  df  logLik  AICc delta  weight  

1 +         1 -426.70 855.40 0.00 0.427 

3 +   +     2 -426.29 856.59 1.19 0.236 

5 +     +   2 -426.60 857.21 1.81 0.173 

7 +   + +   3 -426.27 858.57 3.17 0.088 

15 +   + + + 4 -426.03 860.11 4.70 0.041 

2 + +       5 -425.91 861.91 6.51 0.017 

4 + + +     6 -425.60 863.32 7.92 0.008 

6 + +   +   6 -425.82 863.76 8.36 0.007 

8 + + + +   7 -425.56 865.28 9.88 0.003 

16 + + + + + 8 -425.33 866.85 11.45 0.001 
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Table C7: GLMM, family: logit (binomial), response: locomotion , random term (all models): 1 | moose ID, models ranked by AICc 

Model  (Int)  Habitat  Huntrisk  Wolfrisk  Huntrisk :Wolfrisk  df  logLik  AICc delta  weight  

3 +   +     3 -208.99 424.01 0.00 0.302 

15 +   + + + 5 -207.16 424.40 0.39 0.249 

1 +         2 -210.35 424.71 0.70 0.213 

7 +   + +   4 -208.83 425.71 1.70 0.129 

5 +     +   3 -210.31 426.65 2.64 0.081 

4 + + +     7 -208.49 431.13 7.12 0.009 

16 + + + + + 9 -206.56 431.37 7.36 0.008 

2 + +       6 -209.89 431.90 7.89 0.006 

8 + + + +   8 -208.43 433.06 9.05 0.003 

6 + +   +   7 -209.87 433.89 9.88 0.002 

 

Table C8: GLMM, family: logit (binomial), response: alert , random term (all models): 1 | moose ID, models ranked by AICc 

Model  (Int)  Habitat  Huntrisk  Wolfrisk  Huntrisk :Wolfrisk  df  logLik  AICc delta  weight  

15 +   + + + 5 -242.49 495.05 0.00 * 

1 +         2 -247.74 499.51 4.45 * 

3 +   +     3 -246.87 499.78 4.72 * 

5 +     +   3 -247.74 501.52 6.46 * 

7 +   + +   4 -246.84 501.73 6.68 * 

16 + + + + + 9 -242.27 502.79 7.73 * 

4 + + +     7 -246.24 506.63 11.58 * 

2 + +       6 -247.37 506.85 11.80 * 

8 + + + +   8 -246.23 508.67 13.61 * 

6 + +   +   7 * * * * 

* Model 6 did not converge, logLik, AICc, delta AICc and weights missing 
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Human disturbance  analysis  

Table C9: GLMM, family: logit (binomial), response: lying , no random term (all models), models ranked by AIC 

Model  (Int)  Habitat  Densbuild  Disforoad  Dismainro  Distbuild  Season 
Season: 

Densbuild  
Season: 

Disforoad  
Season: 

Dismainro  
df logLik AICc delta  weight  

429 +     + +   +   + + 9 -1638.11 3294.30 0.00 0.104 

167 +   + +     +   +   7 -1640.31 3294.66 0.36 0.087 

431 +   + + +   +   + + 10 -1637.54 3295.17 0.87 0.067 

445 +     + + + +   + + 10 -1637.75 3295.60 1.30 0.054 

173 +     + +   +   +   7 -1640.80 3295.65 1.35 0.053 

175 +   + + +   +   +   8 -1639.95 3295.95 1.66 0.045 

189 +     + + + +   +   8 -1640.05 3296.15 1.85 0.041 

165 +     +     +   +   6 -1642.19 3296.42 2.12 0.036 

297 +       +   +     + 6 -1642.21 3296.46 2.16 0.035 

183 +   + +   + +   +   8 -1640.22 3296.49 2.19 0.035 

181 +     +   + +   +   7 -1641.40 3296.85 2.55 0.029 

447 +   + + + + +   + + 11 -1637.47 3297.05 2.76 0.026 

191 +   + + + + +   +   9 -1639.73 3297.53 3.23 0.021 

168 + + + +     +   +   11 -1637.83 3297.76 3.47 0.018 

231 +   + +     + + +   9 -1639.86 3297.79 3.50 0.018 

313 +       + + +     + 7 -1642.02 3298.09 3.79 0.016 

301 +     + +   +     + 7 -1642.07 3298.18 3.88 0.015 

41 +       +   +       4 -1645.12 3298.26 3.96 0.014 

 

Table C10: GLMM, family: logit (binomial), response: foraging , no random term (all models), models ranked by AICc 

Model  (Int)  Habitat  Densbuild  Disforoad  Dismainro  Distbuild  Season 
Season: 

Densbuild  
Season: 

Disforoad  
Season: 

Dismainro  
df  logLik  AICc delta  weight  

181 +     +   + +   +   7 -1496.49 3007.02 0.00 0.060 








