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Abstract

Induced fear by predation risk can alter prey behaviouf k a f j m~» " q qgqeb maoWwithdp bk
possible consequences on the population level.Alongside environmental changes and human dis-
turbance, Scandinavian moose flces alces) face mortality risk from multiple predators; mainly
wolves, which recently repopulated, and hunting, their primary cause of mortality, even within wolf
territories. Additionally, moose may not be able to distinguish actual hunting risk from general human
disturbance, which they likely perceive as akin to predation risk. Multiple studies have examinedthe
population-scale influence of wolf predation and hunting on mooseusing telemetry yetlack a behav-
ioural context to be able to assesspossible impacts on the moose energy budgebeyond alterations

in movement. By analysing activity budgets of female moose in relation to relative risk values derived
from moose mortality and human activity, this study attempted a qualitative estimation of possible
energetic costs of hunting and predation risk.In 2020 and 2021, we equipped five female moose in
south-central Scandinavia with multi-functional collars, which, for one year, remrded 20-second vid-
eos every two hours during daylight and logged hourly GPS positionsanalysed the presence-ab-
sence of four primary moose behaviours (lying, foraging, locomotion, alert), derived from video anal-
ysis using the eventlogging software BORIS, in relation to estimated mortality risk from wolf preda-
tion and hunting. According to my results, female moose prioritise energyaccumulating (foraging)
and preserving (lying) activities over riskavoiding and energydemanding activities (alert, locomotion)

in all seasons (prehunting, hunting and winter), as any variation in mortality risk from hunting or wolf
predation had a substantial effect on their activity budgets. | found only a weak response to human
disturbance predictors, contrary to earlier smallspatiotemporal scale studies, which tested possible
effects of human disturbance with direct approaches. Future studies could combine controlled dis-
turbance experiments and multi-functional collars with additional accelerometer-units and night-vi-
sion to get 24-hour, quantitative estimates of the energetic costs of different disturbances on a

broader scale.

Key words: camera collar, energybudget, human disturbance, predator-avoidance, perceived risk,

risk maps



Contents
Y 013 1 = Tod ST PP PPPPPPPP PP PP 1
L. INEFOTUCHION .o et ettt et e e e e e e e e e e e e e e e e e es aassneb bbb nrrrrrrreee teeeeeeeeeeeaaas 3
2. METNOAS ...t e e e e e e e e s aaaaaa 7
2.1 Study area and POPUIALION..........uuiiiiiiiiiiiiee e e rre e e s 7
2.2 (D= 1= Weto] | [Tt 1[0 o N o] (0171 (o] o P PUEERRRRR 9
2.2.1  Animal tagging and COIANNG........ccoiiiiiiiieiiiiiies e e e e 9
222 RISK MAPS. ... et cee e e a e e e e e teee e e 9
2.2.3 Environmental variabIEs.............cooo it e e 10
2.3 Data COMPIIALION ...eeiiiiiiiiiiie et ettt e e e eer e e e e s s e e e e s e e e e arrreeeas 10
2.4 DAta ANAIYSIS.....cciiiutiiiiie it e e e e a e hrrreeesa e 12
2.4.1  Video analysis and energy classification of behaviours...............cccccoovies v, 12
242 Data preparation and QUAIILY...........ccoouuiimiiieiiis ceeeiiiiiiee e ceeesaainneeeeens 13
2.4.3  Statistical analysis and MOdelliNg............oouuiiiiiiiiiiiies s e 14
G T = 1S U || 16
3.1 General ODSEIVALIONS. .. ..coiutiiiiie ittt e e e ettt e et e e e e e teeeeesaaian e e e e s rrr e e e e e 16
3.2 Activity budgets with spatially varying wolf predation risk between seasons.................. 18
3.3 Activity budgets with spatially varying hunting risk during the hunting season............... 19
3.4 Activity budgets and human diStUrbancCe...............eooeiiiiiiiiiies ciiiee e e 21
N I 1o U7 T o S 24
5. ACKNOWIEUGEMENLS ....uiiiiiiiiiiiiiiiiiiiiiiiiies oo errrerr e e e e e e e e e e e e e aaaaaaaaaans .. 30
LT = 1= =7 g o7 TS 31
7. SUPPIEBMENLS oot ettt es teeeaaaa e e e e e e s e erreeeaaeaee 42
A, MethodS SUPPIEMENTAIY ......ciiiiiiiiiiiie s ettt es abbrr e e e e e abb e e e e e aarneees as 42
B. General results SUPPIEMENTATY.........ouiiiiiiiiiiiiiiiiis e eree eerrirr e e e e e aeaeeeeeas 50

C. Statistical analysisS SUPPIEMENTATIY........ccuuiiiiiiiiiiiiie e e rreeeeeaarreeee s 58



1. Introduction

For prey,responses topredators are shaped mostly by costs with death as a possible consequence
of actual predation risk (Preisser et al., 2005) Toprevent such a terminal fate prey evolved antipred-
ator responses such as predatoravoiding habitat selection(Creel et al., 2005) activity patterns (Tam-
bling et al., 2015)and behaviourssuch as flight (Barnard, 1983)and predator surveillance (Tatte et
al., 2019). Optimally, prey risk perception should be selected to closely reflect the actual predation
risk, allowing them to adjust their antipredator responses precisely, thereby weighing the costs of
predation avoidance relative to the potential consequences of predationHelfman, 1989; Thurfjell et
al., 2017). Preyis expected to show antipredator responses depending on the magnitude oper-
ceivedrisk (fear) as opposed to the actual measurable risFraker, 2009; Smith et al., 2024)Mean-
while, the costs of anti-predator behaviours often constitute a trade-off with other essential behav-
iours, such as foraging and reproduction potentially impairinganf k a f s fitaess® On@lpg scale,
high perceived predation risk, can therebygreatly affect population and community dynamics(Cherry
et al., 2016; Khater et al., 2016) Additionally, most prey face multipredator systems and need to
trade-off multiple sources of risks, which can overlapin space and time (Ausilio et al., 2022; Cress-
well & Quinn, 2013; Willems & Hill, 2009)While humans are alreadybeing seen as supefpredators,
posing real predation risk by huntingwildlife can perceive human disturbanceas similar to predation
risk, exceeding the effects of natural predatorson their behaviour (Ciuti et al., 2012) Thishighlights
the importance of studying behavioural responsesof prey to perceived as well as actual predation
risk for wildlife conservation and management, contributing tothe understanding ofthe costs and
potential fitness consequences of such tradeoffs (Cooke et al., 2023; Fryxell et al., 2014)The costs
of perceived predation risk have rarely been quantified in other ways than the foraging tradeff (Gal-
lagher et al., 2017)and apart from the effects on reproduction, most fear-induced anti-predator be-
haviours impose energetic costs for the prey, rather than direct fithess cost¢Khater et al., 2016) To
survive, animals need to aim for a neutral or ideally positive energy balance over time, which is
achieved when their energy intake is equai or higher than their expenditure(Gurr, 1980) This study
aimed to give insight into the energetic costs ofctual and perceived predation risk on a prey animal,

the moose (Alces alces).

Asd > "kaf k”rsf "@p i N mabsepurentlyfakestregstuljchanges intheir environment
due to climate change (Hoy et al., 2018)and increasing anthropogenic disturbances(Kuvlesky Jr. et

al., 2007). Known as the king of the boreal forest, moose are of ecological, economic and cultural



significance (Storaas et al., 2001; Timmermann & Rodgers, 2005)hey are the primary big game spe-
cies harvested in ScandinaviagWikenros et al., 2020) with hunting being their leading cause of mor-
tality, even inside wolfterritories (Ausilio et al., 2022; Sand et al., 2006)Wolves (Canis lupus) and
bears (Ursus arctos)are the main nonhuman predators of moose in ScandinavigSand et al., 2008;
Swenson et al., 2007) yet brown bears were found to be the least important mortality factor in a
south-central Swedish moose population(Dahle et al., 2013) Wolves are only present in parts of the
Scandinavian moose distribution area(Svensson et al., 2021; Wabakken et al., 2020, 2022None-
theless, the recent wolf repopulation (Wabakken et al., 2001)has led to an increase in predation
pressure for moose inside wolf ranges in addition to the pre-existing hunting pressure(Wikenros et
al., 2015).

In the course ofassessing the spatial patterns of wolf predation risk and hunting riskon moose during
and after the hunting season,Ausilio et al. (2022)created risk maps using the locations of woltkilled
and hunter-killed moose from south-central Scandinavia They found that the associations of hunting
and predation risk to landscape features differed, likely due to dissimilar hunting modesComparing
moose habitat selection from GPS positions to the risk mapsAusilio (2022) found that moose
avoided areas of high hunting risk during the daybut did not respond to wolf predation risk(Ausilio,
2022). Similar to Ausilio (2022) most studies on the response of moose to wolf predation risk have
found weak (Mansson et al., 2017; Nicholson et al., 2014; Sand et al., 2021 none (Eriksen et al.,
2011; Sand et al., 2006)r factor-dependent evidence (Loosen et al., 2021)of wolf-avoiding behav-
iour in moose, such as specific habitat selection, increased movement or temporal predator avoid-
ance. Ausilio (2022)suggests, that moose might only respond to the stronger and more predictable
risk source: hunting. Moose avoid direct human disturbance(of which hunting is a part)(Kirchner,
2024), as well as human settlements and areas with human disturbance alikgNikula et al., 2004;
Tinoco Torres et al., 2011)Theydo not seem to be able to differentiatebetween actual risk posed by
humans (hunting risk) and general human disturbancéMehlhoop et al., 2022) which they are thought
to perceive as similar to predation risk (Neumann, 2009) possibly explaining their strong response to
hunting. Ausilio (2022)proposed that moose may be forced to select habitats with greater forage op-
portunities but higherwolf predation risk in the resource scarce winter season, representing a trade
off between foraging andpredator avoidance. Loosen et al.(2021) found that the presence of a wof
territory decreased moose browsing occurrence in young forestsjndicating possible heightened vig-
ilance at the expense ofdecreased foraging periods as a response to wolf predation riskn combina-
tion, the findings byAusilio (2022)and Loosen et al. (2021)suggesta trade-off between the energetic

cost of vigilance as an antipredator behaviour and the potential forage benefits within wolf territories



Similarly, Ericsson & Wallin (1996found that female moose with offspring increase movemenin the
daytime during hunting season, likely to avoid higtrisk areas, which is expected to lead to a decrease
in foraging and behaviourswith low energetic costssuch as lying(Khater et al., 2016) This highlights

the yet untested trade-off between predator-avoidance and energyconservation in moose.

Moose responses to hunting and wolf predation have already been intensively studiash large scales
using data from telemetry and hunting reports However, most studies lack a behavioural context

making itdifficult to identify the underlying mechanismsand implications for the energy budget(Au-
silio et al., 2022; Ericsson & Wallin, 1996; Neumann & Ericsson, 2018Jo complementthe work done
with telemetry data, this study sought to improve ourunderstanding ofthe behavioural responses of
moose to hunting and wolf predation risk | approached this, byinvestigating moose activity budgets
from camera collar data, combined with relative risk valuesextracted from the risk maps which Au-

silio et al. (2022)created for the same study areaUltilising video collars to study animal behaviour is
a swiftly evolving biologging technology, that enablesletailed behavioural studies of elusive and re-
motely living animals in their unaltered state(Egan, 2019) In use since the 1980g(Moll et al., 2007;
Wilmers et al., 2015) animal-borne video systems havemostly been applied to study foragingoehav-
iour and diet (Egan, 2019)which is also the case for the three previougpplications of camera collars

for studying moose (Astréom, 2022; Eriksson, 2023; Spitzer et al., 2023wo camera collar studies,
one on white-tailed deer (Odocoileus virginianug and one on woodland caribou Rangifer tarandus
caribou), demonstrated that understanding the time allocated to specific behaviours, the secalled

activity budget, is crucial for accurately modelling ecological energetics(Beringer et al., 2004,
Thompson et al., 2012) To my knowledge, thighesis is the first studyto analyse moose activity budg-

ets from camera collar data.

The goalof this study was toidentify possible energetic costs of hunting and predation risk by analys

ing activity budgets of female moose derived from camera collar datg in relation to relative risk val-
ues derived from moose mortality (estimated risk) and human activity (perceived risk).hypothesized
that areas with higherwolf predation risk would be associated with a reduction in energy intake due
to increased vigilance (H1) and | predicted moose to be alert more frequently in high wolf predation
risk areas at the expense of foraging, with no change in the frequencies of lying and locomotive be-
haviour. Moreover, | expected moose response to wolf predation risk to be mitigated during the
moose hunting season | also hypothesizel that moose would be forced to be more active during the

hunting season, leading to a reduced positive energy balance (H2and | predicted an increase in



energetically costly behaviours (alert, locomotion) and a decrease in energintake (foraging) anden-
ergy-preservingbehaviours (lying). During the hunting season, | further hypothesizéthat the increase
in moose activitywould be higher in areas of highhunting risk (H3 and| predicted a positive relation-
ship between spatial hunting risk andenergetically costly activities and a negative relationship with
activities associated with energy intake (foraging) or preservation (lyingjuring the hunting seasa.
However, the effect may be small as moosénave been foundto avoid highrisk areas (Ausilio et al.,
2022). Finally, I hypothesizel that moose would perceive human activity in general as risky anddapt
their activity budget in response to spatial variation in human disturbancgH4). Here, | prediced an
increase in alert and locomotion and a reduction in foraging and lying in areas of high human disturb-
ance. | further expeced this effect to be more pronounced during the hunting season when human

activity in moose habitat is high.



2. Methods

2.1 Study areaand population

The studywas conducted from the 10" of March 2020 to the 3* of April 2022in the south-central part

of the Scandinavian peninsula along the Swedish-Norwegian borderE (i ¢ - ® + 32 + ~1 6 0 @
+ g | &){FF@urel). On the Norwegian sideit spans across the fourmunicipalities, Elverum, Véler,

Asnes and Tysil in the county of Innlandet, covering an area of 1699 kfrand another 969 kn? of the
municipality of Torsby in the county of Varmlandn the Swedish side.Thearea has amean road den-

sity of 0.84 km/km?, which includes national, regional and gravel road (Ausilio et al., 2022) Due to
intensive forestry, the area hosts a distinctive gravel road networkSand et al., 2008)and as part of

the green transition, there are several wind power plants under construction or already completed
(Zimmermann et al., 2023) With less than one person per kn? the human density in the area is low
(Wabakken et al., 2001)

The area is charactersed by boreal forest,with the predominant tree species beingScots pine (Pinus
sylvestris), Norway spruce Picea abies), birch Betula spp.), and aspen (Populus tremula L). Less
dominant but important moose forageincludes rowan (Sorbus aucuparig) and willow Salix capreg).
Theother frequent land cover types are highest to lowest:bog, water bodies, agricultural fields, open
areas (e.g. mountains, boulders, fields) and buikup areas(Zimmermann et al., 2014)(Figure1). The
elevation ranges from ca. 200- 700 m a.s.l. The temperaturevariesfrom a mean of-10 °C in January
to 15 °C in July respectively, with snow covering the ground from late October to early Majn the
northern part, whereas in the southern part the snow persists only from December to March The
vegetation period lasts around 140- 170 days and the annual precipitation ranges from 600 1000

mm (Varsom SeNorge, senorge.no; Sveriges Meteorologiska Och Hydrologiska Institut, smhi.se)

The moose density in the area was estimated in the consecutiveinters of 2018/2019 and 2019/2020
with faecal pellet group counts tobe 1.25 - 1.27 moose kn? (Zimmermann et al., 2019) In summer,
the moose are evenly distribued throughout the study area, while in winter they migrate to common
and spatially limited areas at lower elevations with less snowivan Moorter et al., 2021)Moose abun-
dance varies through the yearjncreasingwith the birth of calves in spring and islecimated by hunting
in fall. In Norway the harvestasts from 25" of September to 23° of December, decimating the popu-
lation by ~25% (Jensen et al., 2020)In Sweden it lasts from the first week of September to the last

day of February(Wikenros et al., 2020) Hunting quotas were adapted after thewolf repopulation in



Scandinavia (Wikenros et al., 2020) over concerns about a potential decline when maintaining the

conventional hunting quotas (Jonzén et al., 2013; Nilsen et al., 2005)

{__] Study area
Swedish-Norwegian border
—— Road system

Moose home ranges
(1 E2001
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Habitat types
[ ] human activity

[ field
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|| water bodies

Open Street View (base map)

Figure 1. Left: Sudy area with colourfill of habitat types, overlaid with annual home ranges (996 kernel den-
sity) of the five study animad (E2001, E2002, E2003, E21) E21®). Allyear GPS data of thdive moosefemales
was used (1h resolution). For each moose the northernmost polygon represents summer area use, and th
southernmost polygon represents the winter area useTop-right: Southern part of the Scandinavian peninsuli
Norway (grey) and Sweden (light grey) with the location of the study area in the centre.

During the study period, thestudy area overlagped with the territories of two to four Scandinavian
wolf pairs or packs (Svensson et al., 2021; Wabakken et al., 2020, 2022Moose represent more than
95 % of the food biomass of Scandinavian wolveswith approximately 70% of moose killed by wolves
being calves(Sand et al., 2008, 2010)Nonetheless, hunting isstill the main death-cause of Scandi-

navian moose, even inside woltterritories (Ausilio et al., 2022)



2.2 Data collection, provision

2.2.1 Animal tagging and collaring

Thevideo footage and GPS dataised in this study stemmed from the Grensuvilt 2 and Elg i Endring
(Moose on the Move) research projects by the LARGE&search group fromthe Inland Norway Univer-
sity of Applied Sciences (INN). In the years 2020 and 2021, the team immobilized adult female moose
with darts from helicopters (Evans et al., 2012; Lian et al., 2014nd equipped them with collars (Ver-
tex Plus, Vectronic Aerospace GmbH, Berlin, Germanyontaining a GPYglobal positioning system)
device, and a triaxial accelerometer unit. According to handling protocols, the ethical requirements
for research on wild animals in Sweden (decisioa C281/6 and C315/6) and Norway (The Norwegian
Food Safety Authority, decision id 15370) were meflhe collars of eightfemale moose also contained

a camera unit with a front-facing camera and a microphone to recordvideo andsound. The GPS was
programmed to acquire hourly positions upon which every two hoursthe camera was activated to
record a 20-second video during daylighthours. After approximately one year of recording, the collars

could be retrieved using radio tracking after being dropped via drop-off function.
2.2.2 Risk maps

To investigate the influence of hunting and predation risk on moose activity budgets, | used risk maps
derived and provided byAusilio et al. (2022) As the risk maps overroughlythe same area asfocused
on in this study, Ichose to let those define my study areaFigure1). Ausilio et al. (2022)developed
raster files quantifyingmortality risk for moose from wolf predation and huntingfor fall (1% September
- 21% December) and winter (229 December - 30" April) of two consecutive years(2018/2019 and
2019/2020) for both day- and nighttime. For the predation riskmaps, they usedthe locations of wolf-
killed moose that were identified in the field during predation studies in the fall and winter of
2019/2020 to create machine-learning models, which identified likely wolf-kill sites (N = 162)from
GPS positionsoutside of the predation studies (Ausilio et al., 2022) For the hunting risk maps, they
surveyed 106 hunting teams within the study area for coordinates of all harvested moose kill sitgdl
=608) in the consecutive years 2018/2019 and 2019/2020Ausilio et al. (2022)used these data on
kill sites from hunting and predation together with habitat parameters, moose density from pellet
count surveys, and wolf utilization distribution (predation risk only) in logistic regressionsto model
the relative probability of dying either from predation or huntingfor a gven combination of environ-
mental covariates. Theythen used the best models of both hunting and predation to predicthe rela-

tive risk of a moose being killed by hunters or wolves for any given location in the study area (raster of
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25*25 m cell size)(Ausilio et al., 2022) For further information on the risk maps seeAusilio et al.
(2022). Risk maps were provided as spatial layersl extracted the risk values associated with moose
GPS points and prepared them as covariatesThe tunting risk values ranged from 026 - 1.66 with a
mean of 0.92 and the wolf predation risk values from the fall 2019 map ranged from < 01 - 4.77 with
a mean of 0.91and for the winter 2019 map from<0.01 - 5with a mean of 1.32.Arisk value represents
an x-fold increase in risk compared to the average, where x is the risk valuéusilio et al., 2022) A
visual inspection of the risk maps Figure 2 inAusilio et al. (2022) revealedthat hunting riskwas more
equally distributed, while wolf predation risk showed high peaks in specific areas especially in winter

(most likely reflecting wolf area use) surrounded by rather low risk.

2.2.3 Environmental variables

| extracted moose ID, date, and time from the video footage, along with several other variables (e.g.,
habitat type, snow condition, climate, forage type, social interaction, human structures, and calf
presence; supplements, Table A2), which | only used for general data explorationl extracted theen-
vironmental variables listed in Table 1, from spatial layers from external sources. Lastly, | acquired
the habitat type from the Corine Land Cover 2018 spatial layer, whereupon extractiqrdifferent
Corine land cover types were grouped into six relevant habitat types for simpler usagéupplements,
TableAl).

Table 1: Environmental covariates used in this study.

Pixel

Variable Range size Method Layer provider

Main (I) and sec-  (I) 0-8615m 25 m Shortest Euclidean  Kartverket www.kartverket.no;

ondary (Il) roads (1N 0-2522 m distance Lantmateriet www.lantmateriet.se
- . i Number of buildings  Matrikkeldata (Norwayy)

Building density 0-108 100m per km? Lantmateriet (Sweden)

Habitat type (seeTableAl) 20m - Corine Land Cover 2018;

Copernicus Land Monitoring 2018

Shortest Euclidean Kartverketwww.kartverket.no;

Distance buildings  0-u @ + p 50m distance Lantmateriet www.lantmateriet.se

2.3 Datacompilation

Pre-hunting was defined as a period of four weeks starting on the ¥8of August and ending on the

24™ of September. It is known that themain part of the harvest takes place at the beginning of the
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legal hunting season(Johan Solberg & Saether, 1999 hus, Idefined the hunting period to be four
weeks from 25" September until 25" October. Moose exhibit seasonal migration and select seasonal
home ranges as an adaption to the cyclic environmental changes and unevenly distributed resources
(Andersen, 1991) Thewinter period was therefore defined as the time between the arrival of the
moose in their winter home range until they leave for their summer home ranges agaitypically from

late Decemberor early January until late Marclor early April Table 2).

Table 2: Definition of seasons, corresponding risk mapgwolf_falll9 = wolf predation risk map from fall 2019,
wolf_win19 = wolf predation risk map from winter 2019, hunt_fall18 = hunting risk map from fall 201 &ycluded
individuals, periods and number of data pointg20-second videos fromcamera-collars) per seasonused in this

study.
Season Risk map Individuals Period '\'“’_“ber of
videos
, E2002, E2003, 2020/08/18 $2020/09/24
Pre-hunting wolf_fall19 = 1015
E2102, E2103 2021/08/18 02021/09/24
Huntin wolf_fall19; E2002, E2003, 2020/09/25 62020/10/31 797
g hunt_fall18 E2102, E21(B 2021/09/25 62021/10/31

2001 2020/03/10 2020/04/09
. i 2020/12/30 62021/03/20
Winter wolf winl19 ~ 791
- 2020/03/10 2020/04/05
E2002

2020/12/24 ©2021/03/20

This study only included the collar data (video footage and GPS points) of five female moose, as the
data of the three other female moose was retrieved too late tde included. Due to time constraints,
the footage of two moose cows was only analysed during the praunting and hunting seasons(Table
3). The moose spent thepre-hunting and hunting period entirely in their summer home ranges, as
checked visually. Videos corresponding to GPS points clearly outside the seasonal home ranges, pre-

sumably representing moose migration, were excluded from the analysis.

| used all-year hourly GPS dataE G 0 @ G @pointg) tb 4stablish seasonal andgeneralmoose home
ranges (95 % kernel density)for abetter overview and visualisation purposeqFigurel). In the further
analysis, | included only the GPS points connected to a videoComparing concurrent wolf territory
maps from wolf monitoring reports (winteis 2019/2020, 2020/2021 and 2021/2022) to theespective
moose home ranges revealed, that moose home rangeddid not always overlap with wolf territories
in the periods of interest Consequently, | excluded the data of moose female E2001during the pre-

hunting and hunting periodfrom the statistical analysis (Table2).
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Table 3: Meta-data of collared moosefemales (f), whose video data has been analysed in this study.

Moose Age Number Calf last . . . . .
D Sex (months) o calves seen on Video recording period Video period analysed
E2001 f 34 1 2020/06/08 2020/03/10 - 2021/03/20  all
2020/12/20*

E2002 f 34 2 2021/03/19 2020/03/10 - 2021/03/20  all

E2003 f 34 1 2021/03/06  2020/03/11 - 2021/03/19  all

E2102 f 39 2 2021/10/29 2021/02/20-2021/12/18  2021/08/18 - 2021/10/31
E2103 f 39 0 - 2021/02/20 - 2022/04/03 ~ 2021/08/18 - 2021/10/31

* E2002 had two calves, a male and a female. The male was missing from 2021/12/20 but possibly showed up
on 2021/03/19 again, together with the female calf whicthas been visiblein the meantime.

For this study, | only used the daytime wolf predation risk maps of fall and winter 2018/2019 and the
hunting risk map of fall 2018 Table 2). Overlayingthe risk maps with the moose home ranges re-
vealed, that some moose GPS points (and corresponding videosg.g., all E2003 winter dataTable2,
Figurel), lay outside the risk mapareaand would lack the risk values. Thus,| excludedthese videos
from the analysis. The predation risk maps had to match the data not only spatially but also tempo-
rally. The most current predation risk mapswere from fall 2019, while the moose footage stared in
March 2020 (Table 3), however, the wolf territories did only marginally change from 2019 to 2021,
such that predation risk map application was possible(Svensson et al., 2021; Wabakken et al., 2020,
2022). In contrast, the dataonly had to match the hunting risk map in space, sincet was established
with data from two consecutive years, and itis reasonable to assume that the spatial distribution of

hunting risk does not change much over time.

2.4 Data analysis
2.4.1 Video analysis and energy classification of behaviours

For this study, | analyseda total of 8163 videos(~ 45 h footage)in approximately 160 hours of work
(Table 3). I did the behaviour decodingof the videos using the event logging software BORIg/ersion
7.12.2) (Friard & Gamba, 2016)To define the behaviours and assign them with a short key, | estab-
lished an ethogram (supplements,Table A2). The key served as a shortcut to log the detected behav-
iours via keyboard, upon which BORIS created a detailed entry of the behaviours. In addition, | created
a coding map, where BORIS created a detailed entry upon clicking on an interactive panel on thap

(supplements, Figure A2). Behavioural analysis from video collar data is a relatively new approach in
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moose (Astrém, 2022; Eriksson, 2023; Spitzer et al., 2023)hich is why | chose abroad ethogram
(Table A2). | deemed behaviours from the same category as mutually exclusivee.g. standing and
lying, both body positions. Tocreate moose activity budgets | only considered thesesix primary be-

haviours: lying, standing, foraging, ruminating, locomotion and alert(Table4).

Table 4: Definition of sixprimary moose behavioursand assignment ofenergy classes Only behaviours in bold
were considered in the statistical analysis of this study.

Behaviour Energy class Definition

lying preserving Any form of lying on the ground, mostly resting

ruminating  accumulating Regurgitating forage, independnt of body position (lying/standing)
Interruption of current activity, raises head in a rushed manner, head

alert demanding stays high, tensed

standing demanding Standing, resting, showing no other behaviour
foraging accumulating Nutritional intake, including drinking oreating snow
locomotion  demanding Any form of locomotion including walking and running

Previous studies found that lying showed the lowest energy expenditure of all tested behaviours
(Kirchner, 2024; Renecker & Hudson, 1989and |, therefore, used it as a baseline for the other be-
haviours and assigned it as the onlgnergy-preservingbehaviour. Locomotionhas beenfound to have
the highest energy expenditureand | classified it asenergy-demandingbehaviour, together with alert
(Kirchner, 2024; Renecker & Hudson, 1989)As a necessity of survival ungulates need to aim for a
positive energy balanceand accumulate energy to weigh out energetiademands (Wickstrom et al.,
1984). Foraging and ruminatinghave been found to beenergy-accumulating (Dungan et al., 2010rnd
are here defined as such However, ruminating can be described as a byroduct of foraging and is
therefore of minor interest. Lastly, the definition of standinghas proven difficult, since it can overlap
with several other behaviours (e.g. alert, ruminating, foraging) and occurs scarcely on its owifrur-
ther, it is neither clearly a preserving behaviour nor very energetically cost{|Kirchner, 2024; Renecker
& Hudson, 1989) Thus, to address the research questions of this study | only investigated lying, for-

aging, locomotionand alert (Table4).

2.4.2 Data preparation and quality

Except for the video analysis, all data preparation and analysis steps were conducted iRStudio
(RStudio Team, 2022vith R version 4.3.3(R Core Team, 2024)l exported the raw behavioural data

from the video analysisform BORIS irCSVformat and merged itwith the GPS data andhe covariates
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from spatial layersin RStudia The process of data preparation included timestamp extraction and
calculation, sorting, merging and redefining behaviours, GPS data cleaning and joining with video
data, covariate extraction from spatial layers and preparing sukdatasets of periods of interest for the
statistical analysis. | extracted the date-time of each video from thevideo filename out of thefile
pathway, listed in the CSVfile exported from BORISUnfortunately, BORIS did not manage t@ssign
the correct video filename when a behaviour was loggedThisled to a mismatch between the actual
video start time andthe assigned video start time anda further mismatch with the joined (by moose
ID and date-time) GPS points | loaded videos into BORISIn stacks of 100 videos to prevent PC RAM
overload, such that the mismatch onlyoccurred within these stacks. In summary, the error could be
narrowed down to a mismatch in 10 of 8%sideo stacks (shift of 2 hours in 8 stacks andshift of 4 hours
in 2 stacks). The mismatchwas not problematic for the general activity budget, as time of daywas
not of particular interest in this study, however, it produced a shift between the observed behaviour
andthe corresponding GPS point and further thdabitat type and risk values(Table A). Further errors
occurred when | joined the GPS data: several videos at the end of the recording period of each moose
were recorded in irregular 2@minute intervals, where onlythe videos recorded at the full hour were
kept. Also, the GPQunit seemed to have failed several times during the data collection: missing GPS
points for 299 videos were detected which | had to discard. Most of the failures happened at the end
of the recording period of E2002 in February and March 202fpossibly the battery of the GPS unit ran
empty (Table 3). Finally, a total of 7762 observations (28second videos)were used in the further

analysis.
2.4.3 Statistical analysis and modelling

First, | explored thedata set for the statistical analysis (visually and with descriptive statistics)and
checked the data balance (supplements, Figure Al). The habitatcategories were imbalanced: Ut » O
terbodyU e”~a | ki v | kb | _ p bnd®rilflthe numbeo of obsep/dtisng per be-
haviour was < 52, potentially weakening the predictor in the modelsl. therefore omitted the habitat
qgvmb Ut~qgbo_| avU f k (TakeBd). &drther, "checkidpassible cqtlibegrity re-
tween continuous predictors of each analysis using a correlation matrix (ggpairgunction from GGally
package(Schloerke et al., 2024) and the Peason correlation coefficients table from the cor-function
(stats package).l defined asignificant correlation as any correlation coefficient |r|>0.6. In the analy-
sis of spatial variation inwolf predation risk andhunting risk, the predictors of wolf predation risk and
hunting risk did not significantly correlate (0.29). In thehuman disturbance analysis, the highest but

non-significant correlation was between the distance to main roadsand forest roads with 0.56.
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Originally, the idea was to transform the behavioural datafrom values between 0- 20 s per behaviour
and video, into proportions, and model all six behaviours as one response (partial proportions) with
a Dirichlet regression, such that the change in one behaviour relative to the others could be measured
(Douma & Weedon, 2019)The behavioural data distribution was skewed drastically toward® and 1,
since moose often did not change their behaviourwithin the 20 s duration of the videos |, therefore,
decided to use a binary term for the response wherellUspecifies the behaviour having occurred in

the video andWUthat it was absent.

With only five individuals, | expected to findindividual differences in the data, and therefore, | chose
mixed-effects models to account for possible pseudo-replication (Zuur et al., 2010) For the occur-
rence of each behaviour, | fitted a generalized linear mixed model (GLMM) with binomial family and
logit-link function using the gimmTMBpackage (Brooks et al., 2024) | tested the temporal autocorre-
lation for each response behaviourusing the acf- and pacf-functions from the stats package (R Core
Team, 2024)and found it to be neglectable. | also tested the noose ID as a random intercept in the
full model (supplements, Table A4) and included it only if it significantly improved the model fit. |
evaluatedthe model fit using Akaike information criterion for small sample sizegAlCc),with improve-
ments indicated by a lowerAlICc and dAICc< 4. | fitted the two full models with and without random
factor using the restricted maximum likelihood (REML) estimatiorof variance components, which
maximizes the likelihood of the data only for the random effect, being more suitable for the compari-
son of random effects than the maximum likelihood (ML) approach (defaulin gimmTMB) (Zuur et al.,
2009). | then prepared the resulting full model for automated model selection with the dredge-func-
tion from the MuMin package (Bartoz, 2024). | conducted model selection by comparing the best
models suggested bythe dredge-function, considered models with dAICc <4as equivalent and se-
lected those with the lowest AlCc. | further investigated and selected the nodels by fit, parsimony
and inclusion of covariates of interest. For the model selection and model fit,| estimated the fixed

effects using the ML approach.

Lastly, 1 conducted the nodel validation using the testDispersionfunction, while | conducted the
simulation and plotting of residuals against fitted with the simulateResiduals-function and plot-func-
tion from the DHARMapackage (Hartig & Lohse, 2022)I further explored the nodel results usingthe
prediction-, plot- and slopes-functions and conducted contrast analyses with the comparisons-func-
tion from the marginaleffects package (AreFBundock et al., 2024) | consideredthe results significant
if the 95% Wald confidence interval (Cl) did not include the value representing no effect.produced

visualisations using the ggplot2 package (Wickham et al., 2024)
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3. Results

3.1 Generalobservations

In the pooledall-yearactivity budgets of the three female moose (E2001, E2002 and E200R = 6816
videos), lying occurred most frequently, followed by ruminating and foraging while alert, standing
and locomotion occurred only occasionally (Figure2). Concerning the activity budget, individual dif-

ferences between the three femalesappearedto be small (supplements, Figure BL).

0.5
@ 0.4
: u
2 Behaviour
E 03 = alert
E ' locomotion
5 J == ruminating
E 0.2 ] TF 1 [ foraging
E [ 1 ﬁ\( == standing
o i lying
1™
o

T,

0.0

1.00
0.75 I
0.50
0.25
0.00
s 'G

Snow condition

. no snow
. < 50% cover
. > 50% cover

Proportion of snow condition

= full cover
o 3 S s & . unknown
x:f‘f’Q:F’ eﬁ‘c’?‘g@@r? S g & \é}é@aé@a
¥ & T ES A g
& o8 o
Month

Figure 2: Proportions of the occurrences of six primary moose behaviours (locomotion = walking + runnini
(top) and different snow conditions (bottom) per monthfrom pooled annual activity budgets of three female
moose (E2001, E2002, E2003)The proportions indicate the frequency of each behaviour relative to the tot
number of observed behavioursor each month. Error bars represent the standard error for each proportion.
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Mature forest was proportionally the most occurring habitat type, followed by bog and clearcut(sup-
plements, Table B1). The most visited habitat type varied among the three moose femalegsupple-
ments, FigureB2). Snow conditions recorded from the videos varied greatly during the yeaF{gure?2)

and resembled the snow conditions from the study area descriptionZ.1).

When investigatingthe full data set of all five moosefemales (7762 videos) human structures (roads,
buildings, undefined)were visiblein 82 videos in total,most of which wereroads. On average human
structures appeared in only 1.5 % of the videos per subjedisupplements, Table B). Calves occurred
in 534 videos (6.9 %) 48 videos of which showed physical interactions between cows and their
calf/calves. Most recorded occasions of other moose being present in the videosvere cows. Close
encounters occurred rarely and were mostlyrepulsive. During the rutting season, a handful of close
encounters with bulls occurred. Recorded interspecies encounters were rare (birds only),and no
predators or humans were caught on cameraThe occurrences of forage typesand other interesting

moments in the videosare given in the supplemens (Table B3, Table B}).
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Figure 3: Activity budget with dataof all five moose femalesincluded in this study, separated by the season
Data compilation further explained insection 2.3. The proportions indicate the frequency of each behaviot
relative to the total number of observed behaviourdor each season. Error bars indicate the standard error for
each proportion.
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3.2 Activity budgets with spatially varyingwolf predation risk between
seasons

Modelling the frequency of lying
Among the models b investigatehow the occurrence of 0.35-
lying varied with spatially varying wolf predation risk
(SWR and between seasons with and withouthunting, 0.30-
the best model included seasonand SWRas predictors
(supplements, Table C1). The frequency of lying ap-

peared to be slightly higher in winter than in other sea-
0.20-

Frequency of foraging

sons (Figure 3), yet the contrast analysis revealed no

significant differences in the predicted frequency of ly- oie
1aT

ing between the seasons(details not shown). | found no é--:—rqa"""'”z'""' wim |
bu

significant relationship between the occurrence of lying SWR

and SWR ) )
Figure 4: Predicted frequency of moose forag:-

ing behaviour occurring at different levels o

Modelling the frequency of foraging _ o
spatial wolf predation risk (SWR). Shaded are

The best model to describehow the occurrence of for- indicates 95 % confidence intervals. A risk
aging varied withSWRand between seasons(with and  value represents an xfold increase in preda:
without hunting) included only SWRand was consid- tion risk compared to the average, where x

ered equal to the null model (supplements, Table C2). the risk value. The rug plot along the xaxis rep-

_ _ _ _ resents the distribution of the observed dat:
Thefrequency of foragingpredicted from this model sig-

points.
nificantly decreased with increasingSWR(estimate =
-0.021, 95 % CI {0.041, -9.3 x 10%]; Figure4). Since the model includingonly season performed worse

than the null model (supplements, Table C2), the seasonwas not further investigated here.

Modelling the frequency of locomotion

None of the models describing the relationship between mooselocomotion (walking, running) SWR
and season(with and without hunting) performed better than the null model(supplements, TableC3),

suggesting that neitherfactor played an important role in describing the occurrence of moose loco-

motion. However, three models, the first including SWRonly, the second including season only and
the third including both season andSWRperformed equal to thenull model (supplements, TableC3).

| investigated all three but did not find anysignificant relationships between locomotion and season

(Figure 3) or SWR(supplements, Figure B1) (details not shown).
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Modelling the frequency of alert

To investigate the effects ofseason (with and without hunting)and SWRon the occurrence ofmoose
alert behaviour, the best model included only the interaction between season andSWRbut per-
formed only slightly better than the null model (supplements, Table C4). There was nosignificant
main effect of the season (details not shown), however SWRsignificantly decreased during the pre-
hunting season (estimate =-0.079, 95 % CI [0.11, -0.020]; Figure 5). Also, the main effect of SWR
was significantly negative(estimate =-0.035, 95 % CI {0.063, -0.0056]).
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Figure 5: Interaction plot of the predicted frequency of alert behaviour in mooseoccurring relative to spatially
varyingwolf predation risk andseparated by season. Colour shaded areas indicat€5 % confidence intervals.
A risk value represents an xold increase in predation risk compared to the average, where x is the risk vall
The rug plot along the »axis represents the distribution of the observed data points.

3.3 Activity budgets with gatially varyinghunting risk during the hunting
season

Modelling the frequency of lying

When investigating the effects of spatially varyinghunting risk (SHR)on the occurrence of lying be-
haviour in mooseduring the hunting season neither SHR nor anyof the other predictors did signifi-
cantly improve the null model (supplements, TableC5). The second listed model only includedSHR
as a predictor, but the variable was uninformative (o significant relationship, details not shown)

(supplements, Figure B).
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Modelling the frequency of foraging
The null model resulted in the best modelwhen investigatingthe effect of SHRon the occurrence of
foraging behaviourin moose (supplements, Table C6). The secondlisted model included only SHR

as a predictor, but the variable remained uninformative (details not shown)supplements, Figure B5).

Modelling the frequency of locomotion

Toinvestigate the effect of SHRon locomotion during the hunting season the model including only
SHRas a predictor waslisted on top, however, the null model was listed third and was considered
equally good(supplements, Table C7). | found no significant relationship between the occurrence of

locomotion and SHR(details not shown) (supplements, Figure B).

Modelling the frequency of alert

When investigatingthe possible effect of SHRon the occurrence of alert behaviourin moose, the best
model included the interaction between SHRand SWRand was significantly better than the null
model (supplements, Table C8). The interactionbetween SHRand SWRwas significant (estimate =
0.89, 95 % CI[0.67, 0.97]), with a positive relationship between SHR and the frequency of alert be-

haviour at maximum SWR, and a slightly negative relationship at minimum SWRigure6).
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Figure 6: Interaction plot of the estimated effect ofspatially varying hunting risk (SHR) and spatially varying w
predation risk (SWR) on the predicte@ccurrence frequency of alert behaviour in moose. The slopes are give
at different SWR quartiles from min to max (0.13.3), indicated in the legend.A risk value represents an old
increase inrisk compared to the average, where x is the risk valueColour shaded areas indicate the95 %
confidence intervals.
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3.4 Activity budgets and human disturbance

Modelling the frequency of lying

When investigating the relationship be-
tween human infrastructure and the oc-
currence of lying, he model including the
interactions between season and both
distance to the nearest forest road (dis-
foroad) and distance tothe nearest main
road (dismainro) was the best listed(sup-
plements, TableC9). Since the latter inter-
action did not occur in many other top
listed models, | focused on the second-
best model including the interaction of
disforoad and season and the building
density (densbuild). I found no significant
effect of densbuild on the occurrence of
lying (details not shown). Theeffect of dis-
foroad was significantly positive during
the hunting season(estimate < 0.001,

95 % CI R.9 x 10°%, 3.0 x 10]), negative

but uncertain during the pre-hunting sea-
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Figure 7: Interaction plot of distance to forest roads and sea
son on the predictedoccurrence frequency of lying behaviou
in moose. Colour shaded areas indicate the95 % confidence
intervals. The rug plotalong the xaxis represents the distribu
tion of the observed data points.

son (estimate >-0.001, 95 % CI [1.5 x 10, 6.3 x 10°°]), and none-existent during winter (details not

shown) (Figure7).

Dismainro seemed to be of importance, as it appeared in many togisted models. | investigated it

using the best model without any interactions which also included the season (supplements, Table

C9), however, dismainro remained uninformative (details not shown).
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Modelling the frequency of foraging
The best model to investigate theelation- 0e |10 L A 0 0
ship betweenhuman disturbance and for-

aging included the interaction between

0.4
disforoad and season as well as the dis- 2
tance to buildings (disbuild). The differ- ?
o 03 Season
ence between the null model and the best % — prehunting
: > — hunting
Q
models was only marginal(supplements, £ s —
TableC10). There was nasignificant effect =
@
of disbuild on the occurrence of foraging. %
0.1
The relationship between disforoad and
the occurrence of foraging was signifi-
00
cantly different during pre-hunting com- )
0 500 1000 1500

pared to the other two seasons(estimate
<0.001 95 % CI B.1x10°,1.7 x 10; Fig-

ure 8).
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Figure 8: Interaction plot of distance to forest roads and sea
son on the predictedoccurrence frequency of foraging behav

. . . . . iour in moose. Colour shaded areas indicate the95 % confi-
| investigated dsmainro, as itappeared in

dence intervals. The rug plotalong the xaxis represents the

many highranked models (supplements, distribution of the observed data points.

TableC10), usingthe model including dis-

mainro and disbuild. The predictor dismainro remained uninformative(details not shown).

Modelling the frequency of locomotion

Toinvestigate the effect of human disturbance on the occurrence of moose locomotive behaviour,
the top-listed model included dismainro only (supplements, Table C11). There was no effectof dis-
mainroad on the occurrence of locomotion (details not shown).The secondlisted model included
the interactions disforoad:season and dismainraseason, none of which showed anysignificant ef-

fects (details not shown). Both investigated modelsperformed equal to the null model.

Modelling the frequency of Alert

When investigatingthe effect of human disturbance on the occurrence of moose alert behaviour, the
best model included disbuild, disforoad and the interaction of season anddensbuild (supplements,
Table C12). | investigated this modelmainly for the interaction. The relationship betweendensbuild
and the occurrence ofalert was positive and significantly different during pre-hunting compared to
the other two seasons(estimate = 0.013,95 % CI D.0066, 0.020]; Figure9).
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Figure 9: Interaction plot of the building density (buildings pe
km?) and season on the predictedoccurrence frequency of alert
behaviour in moose.Colour shaded areas indicate thed5 % con-
fidence intervals. The rug plotalong the xaxis represents the dis
tribution of the observed data points.

The model including season, dens-
build, distbuild and disforoad was sec-
ond listed and equally rankedto the in-
teraction model (supplements, Table
C12). According to this model, the fre-
guency of alert significantly increased
with distbuild, but the effect was negli-
gibly small (estimate < 0.001, 95% CI
[9.1 x 10°, 9.8 x 10°]). There was no
significant relationship between the
occurrence of alert and disforoad (de-

tails not shown).
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4. Discussion

By investigating moose activity budgets from camera collar data in relation to moose mortality risk,
this study explored moose behavioural responses to hunting and predation risk and their energetic
implications. My estimates of moose activity budgets arecomparable to Renecker & Hudson (1989)
with lying ("bedded") being the most frequent behaviour, followed by foraging and ruminating, while
locomotion and alert were the least frequent. This suggests that sampling 28econd videos every
two hours during daylight is sufficient to capture all-year moose activity budgets since Renecker &
Hudson (1989)did continuous 24-hour sampling. However, the monthly fluctuations observed inmy
study differ from Renecker & Hudson (1989)likely due to their study being conducted with captive

moose, while we used wild moose.

Activity budgets with s patial ly varying wolf predation risk and seasonal ly varying hunt-
ing risk (H1, H2)

Contrary tomy predictions to H1 and H2, moose did not increase energglemanding behaviours like
locomotion and alert, nor did they decrease energypreserving and-accumulating behaviours like ly-
ing and foragingin areas of highspatial wolf predation risk. Also, the frequency ofthese behaviours
remained unchanged despite seasonal changes in hunting risk. bbse decreased foragingand alert

behaviour with increasing spatial wolf predation risk, though the effect on alert occurred only during
the pre-hunting period, and both results were inconclusive. Although these findings do not support

H1 or H2, resultsconcerning the spatially varyingwolf predation risk align with previous studies, find-

ing little evidence of predator-avoiding behaviours in moose (Ausilio et al., 2021; Wikenros et al.,
2016).

The unexpectedincrease in moose alert behaviour in low wolf predation risk areas during the pre
hunting season suggests a potential confounding effect, raising the possibility that a key explanatory
factor was overlooked in the study.A possible factor could be moose rutting,likely heightening the
occurrence of female moose alert behaviour regardless of wolf predation riskMysterud et al., 2004;
Neumann et al., 2009) However, the rutting seasonlasts roughly from the 23" September to the 3"
October (Solberg et al., 2006)and overlaps with both the pre-hunting and hunting season such that
the frequency ofalert behaviour would be expectedto be heightened through both seasons Another
factor could be whether females were accompanied by calves. Yet, previous studies found con-
trasting results on the sensitivity of female moose with calves towards disturbanceLykkja et al.,

2009; Neumann et al., 2009) Lastly, defining and detecting alert behaviour was challenginglue to
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thej I | pb@p behgvsiblkin the footage Subtle forms of alert/vigilance could not be de-

tected, potentially underestimating alert observations in this study.

The lowoccurrence of alert behaviour inhigh wolf predation risk areas could be due to a lackof data
points at high predation risk valuesduring the pre-hunting and hunting season.This might be because
the summer home ranges of the study animalhave no consistent overlapwith high-risk areas. Alter-
natively, moose may have avoided high wolbredation risk areas during prehunting and hunting sea-
son. However, evidence suggests that moose select for such areas during and after the hunting sea-
son, and browsing damagewas found positively correlated with wolf presence too (Ausilio, 2022;
Loosen et al., 2021) Therelatively high moose-to-wolf ratio inside the study area imples low preda-
tion risk for an individual moose anda weak selection pressure for moose toadopt wolf-avoiding
behaviours (Eriksen et al., 2009) Sudies suggestthat intensive harvest ha posed a consistently
higher riskto moose than wolves, which might explain moose showng little response to wolf preda-
tion risk (Nicholson et al., 2014; Sand et al., 2021)Additionally, wolves hunt mostly at night, while
hunting happens during the day, making it harder to detectesponses to wolf predation risk in this
study (Ausilio et al., 2022)

My results, indicating little change in moosewalking/running behaviour in response to seasonal hunt-
ing risk, werepartially unexpected, since three studies found evidence of moose increasing their day-
time movement during the hunting season(Ericsson & Wallin, 1996; Fritz, 2009; Hjort, 2020)Con-
trary, Neumann et al. (2009) and Neumann & Ericsson (2018pund unchangingor even decreasing
movement rates of female moose during the hunting seasonBesides, some individuals appeared
more sensitive to hunting disturbance than the overall population(Neumann et al., 2009) Nilsen &
Solberg (2006)found specific hunting pressures on different age classes and sexespossibly driving
higher anti-predator responses in the most pressurised classesAfter all, this study only included a
total of five study animals, neither representing the overall populationnor different demographic

groups well.

From an energetis point of view, these results suggesho influence of seasonally varying hunting risk
or spatially varying wolf predation risk on the moose energy budget on a large scaloose adapt to
cyclic environmental conditions with seasonal shifts intheir energy balance Theyincrease fat stor-
age in summer through higher forage intake (positive energy balance) and undergo hypometabolism
in winter which lowers their metabolic rate, heart rate, body temperature, and activity levelsto coun-
ter the negative energy balance during resourcescarce winter months (Greesli et al., 202(;

Schwartz, 1992) Given wolf predation risk being relativelylow for a single moose in Scandinavia



26

(Eriksen et al., 2009) moose might have to tradeoff their energy budgets in favour of other more

pressing factors such as rutting and seasonal changes

Activity budgets with s patial variation in hunting risk during the hunting season ( H3)

Against the prediction of H3,high spatial hunting risk did notdecrease energy-accumulating (forag-
ing)and energy-preservingbehaviours (lying)nor increase the frequency ofenergy-demanding behav-
iours (alert, locomotion), as lying, foraging and walking/runningemained unchanged Furthermore,
the occurrence of alert behaviour during the hunting season decreased with increasing hunting risk
at low wolf predation risk, but the relationship weakened with increasing wolf predation risk and
changed to a positive relationship at high wlf predation risks. Thissuggestsa confounding factor,
analogousto the explanation in theprevious chapter (H1, H2). Habitat was the least important pre-
dictor for the frequencies of the different behaviours even though noose are expected toadapt their
behaviour to different habitats (Dussault et al., 2005)and the risk of being killed by a hunter or wolf
differs between the habitat types(Ausilio et al., 2022) Potentially, the habitat variable has beendi-
vided into too many categories, with some having few observationaveakening it as a predictor. Be-

sides, habitat use showed high individual differences.

Moose in the same study area have been found to avoid high hunting risk aredsring the daytime of
the hunting season(Ausilio, 2022) which could reduce observationsin these areas weakening the
detection of potential effects of spatial hunting risk Yet, my data included a wide range of spatial
hunting risk values Apart from Ausilio (2022), several studies examined moose responses to hunting
risk, however, those focus primarily on seasonal (temporal) aspects(Ericsson & Wallin, 1996; Hjort,
2020; Neumann et al., 2009; Neumann & Ericsson, 2018)imiting comparison with the findings re-
lated to H3. Consistent with the results of seasonal hunting risk and spatial wolf predation risk, and
contrary to H3, my results suggest no clear effects of spatial variation in hunting risk on moose be-

haviour and hence energy budgets.

Activity budgets and h uman disturbance (H4)

General human disturbance may be a closerepresentation of what is perceived as risky from the
moosed point of view (POV) Although my results are inconclusive, | found limited evidence that the
moose may have responded more to human infrastructure than to estimated hunting riskMoose
seemed to bealert more oftenin areas of high building densityduring the pre-hunting season, which
only partially supports H4. | had expected moose to not only increase the frequency of alert imore

densely populated areas but also during periods of high humandivity, such as the hunting season.
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Previous studies foundthat moose tend to move further away from densely populated areasvhen
human activity increases (Lykkja et al., 2009) This could lead to an underrepresentation of data
points in more densely populated areas, during periods of high human activity, weadning a potential
effect of the building density onmoose alert behaviour. For the winter season there are indeed no
data points at building densities higher than threebuildings per kn?, still, the data seems well distrib-
uted for the pre-hunting and hunting seasors, not explaining the lack of an effect during the hunting

season.

Moose were more likely to be lyingfarther from forest roads during the hunting season, whichsup-
ports H4. Yet, they were also more likely to be foraging further away from roads during the pireunting
season, not fully supporting H4.l expected moose to avoid main roads and densely populated areas
and spend less time foraging or resting but increase locomotion when in proximity of such human
infrastructure. These expectations are supported by studies showing that moose browse less near
main roads (Loosen et al., 2021; Mehlhoop et al., 2022)andreduce movement insparsely populated
areas during the hunting seasor{Neumann et al., 2009) Despite that, neither main roads nor building
density or proximity to buildings seemed to affect the likelihood of foraging, lying or walking/running

in my resultsand therefore did not support H4

Particularly in late summer and autumn, moose are expected to follow the best foraging opportunities
to build fat reserves for winter(Schwartz, 1992) In Scandinavia,popular moose browsing areaswith
high-quality deciduous foragewere found close to secondary roadgEldegard et al., 2012; Loosen et
al., 2021). Nonetheless, this study found a decrease in foraging frequency near secondary road$he
only behaviour change that aligned with expectations was the decrease in the frequency of lying near
forest roads during the hunting seasonThis aligns with the expectation of moose avoiding both areas
of human disturbance and direct human disturbance(Kirchner, 2024; Tinoco Torres et al., 2018nd
may reflect moose perceiving higherrisk due toincreased human activity along forest roads,which
serve as starting points forthe moose harvest (Ausilio et al., 2022) Instead of completely avoiding
areas of high perceived risk, moose may adjust their behaviour by avoiding vulnerable activities like
lying, allowing them to still take advantage of beneficial foraging opportunities in the ared&iven that
hunters primarily access moose habitats via (forest) roads, moose may associate hunting risk more
closely with these roadsthan with buildings or settlements, possibly explaining the lack of effect from

building density during the hunting season.

The effect of human disturbanceon moose varied between behaviours, which had expected. | pre-

dicted from H4 that energy-demanding behaviours (alert, locomotion)would increase in proximity to
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human disturbance while energypreserving (lying) and -accumulating behaviours (foraging) would
decrease as a tradeoff. Additionally, | predicted the pattern to further increase during the hunting
season, when human disturbance intensifies.However, most of these predictions were not met by
the results or were explained by factors other than human disturbanceNonetheless, several studies
showed evidence of those expected behavioural changes in moose in relation to human disturbance
(recreational activities, disturbance by perceived hunting risk, other stimuliYBhardwaj et al., 2022;
Graesliet al., 2020a; Kirchner, 2024; Neumann et al., 2010, 2011)hough these studies focused on
responses to direct human disturbance atsmall spatiotemporal scales. Neumann (2009)investi-
gated moose responses to perceived (hunting) risk ona small spatial scale by direct approaches and
on alarge spatial scale using telemetryand remarked that it is complicated to monitor the impact on
a large scale due to thesmall spatial extent and short-term nature of the moose responses to dis-
turbance. The weak effects found in this studymay bedue to the scaleon which this study operated.
The behavioural observationswere on a fine scalg yet the sources of disturbance (proximity and den-
sity of infrastructure) were less direct and immediate than the direct approaches conducted bye.g.
Neumann et al. (2010, 2011) Also, the disturbance was neither controlled nor precisely measured
and the detection of moose response behaviour (alert) could be challengingOn the other side com-
pared to large-scale telemetry studies that assess moose spatial response to disturbancgAusilio et
al., 2022; Mehlhoop et al., 2022; Neumann et al., 2009)the responses measured in this study in-
cluded more nuanced behavioural information, with the possibility to identify whether a stationary
animal was resting, feeding or being vigilant. As such, detailed behavioural studies using camera foot-
age or acceleometer data can be a complementary source of information to largescale telemetry
studies. E.g.while Ausilio (2022)investigated moose habitat selection in relation to spatiotemporal
allocation of hunting and wolf predation risk, my study provides estimags of the behaviour frequen-
cies relative to those risks.Lastly, mismatches between behavioural observations (video data) and
GPS points (including associated risk values) in some parts of the dataset may have created noise,
which might havemitigated the detection of potential effects of human disturbance and varying risk

levels.

This study cannot undoubtedly link variation in moose activity budgets to human disturbanceso the
impact of human disturbance on moose energybudgets remains unclear. On a fine temporal scale,
three studies (Neumann, 2009; Neumann et al., 2010, 2011)testing moose response to different
types of human disturbancewith direct approaches (recreational activities, motorized activities and
hunting), found uniform responseacross all types. These shoriterm disturbances were assumed to

have a small ornegligible impact on the energy budget of healthy mooseHowever, more frequent
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disturbances could have a largerimpact. Graesli et al. (202@&) and Kirchner (2024found similar re-
sults, though suggestingclear negative impacts on individual moose energy budgets on the day of the
approach, with possible effects on moose body condition and reproductive rates if disturbance hap-

pens frequently.

Conclusion

This study demonstrated that it is possible to create coherent alyear activity budgets for female
moose using camera collar data and explore factors potentially influencing these budgets. By exam-
ining activity budgets alongside hunting and wolf predatiormortality risk estimates, | found that fe-
male moose prioritize energyaccumulating and energypreserving activities across alltested sea-
sons over riskavoiding and energydemanding behaviours. Variations in mortality risk from hunting
or wolf predation had no substantial impact on their activity budgets.Considering the results related
to all my hypotheses, the estimated risks of hunting or wolf predation derived from actual moose
mortality did not have clear direct effects on moose activity or energy budgets. Moose may not per-
ceive risks accurately but irstead react to general human activity. This study found limited evidence
that moose adjusted their activity budgets based on the distance and density of human structures.
However, the differences in the gale of observation as well as the nature of disturbance complicate
direct comparisons with other research, often testing either detailed responses to direct (controlled)
human disturbance or large spatiotemporal effects of proximity and density of infragucture using
only location data. The use of camera collars for sampling and activity budget creation is a promising
new approach that is complementary to telemetry studies but needs further refinement for large
scale applications. Future studies could incorporate day and nightvideo data, capturing potential
effects of predation risk during nighttime when wolves typically huntlUsing a combination of camera
collars, controlled experiments with known disturbance types and timings, and accelerometer data
could provide more precise estimates of the energetic costs ofhese disturbances. Further research
on the effects of human and predation disturbances on moose activity budgetsogether with accel-
erometer datamay provide valuable insights into the impact othese stressors on moose energy bal-

ance and daily routines at a broader scale.
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7. Supplements

A. Methods supplementary

Table Al: Corine Land Cover typeghat occurred in the study area, the associated labels and the corresponding habitat classifications defined for this study
(habitat type).

Code Label Habitat type
112 Discontinuous urban fabric human activity
142 Sport and leisure facilities human activity
211 Non-irrigated arableland field
231 Pastures field
243 Land principally occupied by agriculture with significant areas of natural vegetation field
311 Broad-leaved forest forest mature
312 Coniferous forest forest mature
313 Mixed forest forest mature
324 Transitional woodland-shrub clearcut
411 Inland marshes bog
412 Peat bogs bog
511 Water courses waterbodies

512 Water bodies waterbodies
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Figure Al: Number of videos (data points) per study anim
(moose female) and season, included in the statistical analy
sis of this study.
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Behaviour type Key  Behaviour code Definition of behaviour Behaviour category

point event Y a video start start of next video organisational

point event e z video end end of current video(last frame) organisational

state event u up head not visible or only the snouvisible in the video frame head position

state event n neutral underside of jaw and snout visible in video frame head position

state event d down/tucked jaw and snout visible with a bunch of hair in front head position

state event h lifting head head moving from down to neutral or from neutral to up head position

state event I lowering head head moving from up to neutral position or from neutral to down/tucked position head position
head visible on eitherside of the video frame or head turning from centre to the side of

state event q head turned sideways the frame head position

state event t turning head sideways movement of head to one side, stop there or move back to neutral position head position

state event b head back to centre head from a turned position back to a central one (head can be held high or low) head position

state event 0 lying ground and its vegetation visible close body position

state event 1 standing ground and vegetation visible from above body position
perspective of lying at start, leans forward when extending legs, lifts head and pulls

state event k stand up body up in head direction body position
often sniffs the ground first, then leans forward, front legs bend first (novisible) in a

state event o] lay down jerky motion and then the whole body descends body position

state event w walking camera wiggles in a slow rhythm up and down, moving slowly forward activity
camera shakes with a fast rhythm up/down andsideways, moving forward with a higher

state event r running speed compared to walking activity

state event 2 foraging feed intake directly followed by chewing/drinking/licking rock activity

state event 3 ruminating chewing of previously ingested food (position: lying ostanding) activity
interruption of current activity, head raised in a rushed manner, ending in a tensed posi-

state event 4 alert tion, head stays high (can be turned to side) activity

state event 5 puff out nostrils sniffing, breathing in air short andsharp while lifting nostrils activity

state event 6 lick and chew licking and chewing independent of foraging or ruminating activity

state event g body care shaking, scratching, rubbing against tree body care
stamping the floor rhythmically with the front extremities, lying down, wallowing (only

state event S wallowing for reproduction) social interaction

ddf kd

pl c
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state event
state event
state event
state event
state event
state event
state event
state event
point event
point event
point event
point event
point event
point event
point event
point event
point event
point event
point event
point event
point event
point event
state event
state event
state event
state event
state event
state event
state event
state event

- T un un un un

- 0

social general

cow

bull

multiple
present/visible
lying in front of cow
calf

physical interaction
open forest

forest mature
forest young

clear cut

field

bog

waters

sunny

cloudy
precipitation

full cover

patchy high

patchy low

no snow

water

snow

salt lick
supplemented feed
aquatic

ground vegetation
foliage

deciduous branches

social interaction with unknown

interaction with cow

interaction with bull

interaction with multiple

calf with present/visible

calf with lying in front of cow

social interaction with calf
licking/nudge/drinking etc.

open area with some high standing dead pines and young pines
min age 40- 120 yrs.(Breidenbach et al., 2020)
age 1- 54 yrs. (Breidenbach et al., 2020)

most or all trees in an area are uniformly cut down
agricultural area

marsh, swamp, an area of wet muddy ground
close by or in water bodies

less than 50 percent clouds

more than 50 percent clouds

snow, hail or rain

100 percent snow cover

patchy more than 50 percent

patchy less than 50 percent

no snow

snout dipped in the water, sucking

ingestion of snow

licking salt lick stone

ingestion of feed provided by humans

snout deep in the water, chewing

ingestions of ground vegetation

ingestions of foliage

ingestion of deciduous branches

social interaction
social interaction
social interaction
social interaction
calf

calf

calf

calf

habitat

habitat

habitat

habitat

habitat

habitat

habitat

climate

climate

climate

snow

show

snow

show

foraging

foraging

foraging

foraging

foraging

foraging

foraging

foraging
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state event
state event
state event
state event
state event
state event
state event

*

*

bark
coniferous
feces

road
building
wind turbine

else

ingestion of bark of dead or alive tree
ingestion of coniferous species
ingestions of feces; coprophagy

road close by (visible)

building close by (visible)

wind turbine close by (visible)

else close by (visible)

foraging
foraging
foraging
human structure
human structure
human structure

human structure

* Behaviours used for behaviours coding map
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Figure A2: Hand-drawn coding map with behaviours of five different categoriesused
for the video analysis in this study The behaviours lacking a key in the ethograrfTable
A2), were logged with the help of this coding map.
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Table A3: Extension ofTable 2 in section 2.3 in the main text. The erroiperiods indicate the periods in which a mismatch between the videos and the
corresponding GPS poing and risk values has appeared. The error periods only apply to the subject named on the same row, indicated by an asterisk.
Unfortunately, it was not possible to evaluatewhich specific videos were affected by the error.

Number of

Season Risk map Individuals Period videos Error periods
. E2002*, E2003, 2020/08/18 ©2020/09/24 2020/08/17 ©2020/08/29
Pre-hunting wolf_fall19 = 1015
E2102, E21® 2021/08/18 02021/09/24
Huntin wolf_fall19; E2002%, E2003, 2020/09/25 62020/10/31 797 2020/09/15 62020/10/01
g hunt_fall18 E2102, E21(B 2021/09/25 62021/10/31
2020/03/10 ©2020/04/09 ~
E2001* ~ 2020/03/10 ©2020/04/16
. ) 2020/12/30 02021/03/20
Winter wolf_win19 = 791
2020/03/10 O2020/04/05 ~
E2002 2021/02/24 02021/03/12

2020/12/24 62021/03/20
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Table A4: Full model set-up for each analysis part (a, b, ¢) of this studyPredictors and interactions in bold were of main interestthe type of variable is

indicated in brackets, cat = categorical variable and cont = continuous variable.

Response variable

Fixed effects

Random effects

a) Hypothesis | & II: Spatial wolf predation risk and seasonal hunting risk analysis

Response behaviour (binary)

season (cat)

habitat type (cat)

wolf predation risk (cont)
season:wolfrisk
season:habitat

moose ID ¢at)

b) Hypothesis Ill: Spatial hunting risk analysis

Response behaviour (binary)

spatial hunting risk (cont)
wolf predation risk

habitat type

huntrisk wolfrisk

moose ID

¢) Hypothesis IV: Human disturbance analysis

Response behaviour (binary)

season
distance to main road (cont)
distance to forest road (cont)
distance to buildings (cont)
building density (cont)
habitat type
dismainro:season
disforoad:season
densbuild:season

moose ID
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B. General results supplementary
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Figure B1: Predicted frequencies of six main moose behav
iours in comparison andseparated by the subject. All-year date
from camera collar footage of three females (E2001, E2002
E2003)was used. Vertical lines through the estimates indicate
the standard errors.
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Table B1: Habitat types derived fromGPS points, given are the count (number of videos showing the habitat type), proportion of habitat typeative to all
observed habitat typesand standard error (SE).

Habitat type Count  Proportion SE

forest mature 3359 0.493 0.0086
clearcut 1447 0.212 0.0108
bog 1929 0.283 0.0103
field 74 0.011 0.0120
waterbody 7 0.001 0.0121

Table B2: Occurrences of human structures on the video footage of all fivédemale moose (subject). Given are the total amount of videos per subject, the
count of observed human structures, the proportion of observed human structures relative to the total videosf a given subjectand the standard error (SE).

Subject Total videos  Count Proportion SE
E2001 2337 12 0.0051 0.0015
E2002 2143 12 0.0056 0.0016
E2003 2336 50 0.0214 0.0030
E2102 443 19 0.0429 0.0096

E2103 467 1 0.0021 0.0021
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Table B3: Forage types sampled fromall-yearvideo dataof three female moose (E2001, E2002, E2003yiven are thecount (number of videos showing the
forage type), proportion of forage typeelative to all forage types observedand standard error (SE).

Forage type Count  Proportion SE

aguatic 3 0.001 0.0219
bark 13 0.006 0.0219
coniferous 111 0.053 0.0213
deciduous branches 77 0.037 0.0215
foliage 369 0.177 0.0199
ground vegetation 1461 0.702 0.0120
salt lick 7 0.003 0.0219
snow 20 0.010 0.0218

water 20 0.010 0.0218
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Figure B2: Visited habitat types extracted from Corine Land Cover layer of annual GPS point records (1 hi
resolution) of three female moose (E2001, E2002, E2003)he proportions indicate the frequency of each hat
itat type relative to the total number of observed habitat typesfor each subject Theerror bars indicate the
standard error for each proportion.



54

Table B4: Notable eventsand behaviourscaptured in camera collar footage.

Description

newborn calves being licked by cow

cow chewing the afterbirth

calf visible while suckling milk

visible breathing of cow due to mist

assumingly visible heartbeat of cow due to rhythmically shaking camera

cow foraging aquatic plants in apond and mushrooms

cow sniffing a rut wallowing pit

cow E2102 being unusually often close to or on roads

cow and calf rest/sleep with their head sideways on the ground, eyes closed

cow sounds and bull rutting sounds were caught by the internal microphone of the camera collars
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Figure B3: Activity budget derived from camera collar data from three female moose (E2001, E2002, E20Gparated by
four different habitat types. The proportions indicate the frequency of each behaviour relative to the total number of o
served behavioursfor each habitat typeand are also indicated aspercentages on the bars.
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Figure B4: Activity budget derived from camera collar data of five female moose (E2001, E2002, E2003, E2102, E2
before- and after the hunting season as well as for winter, at different spatial wolf predation risk levels which correspond
the quatre percentilesfrom min to max (0.1- 5) wolf predation risk.A risk value represents an ¥old increase in predatior
risk compared to the average, where X is the risk valu&he proportions indicate the frequency of each behaviour relative
the total number of observal behavioursfor each risk leveland are also indicated as percentages on the bars.
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C. Statistical analysis supplementary

Model selection tables

Dark grey shading and bold font indicates the model regarded as most suitabbnd received the focus, light grey shade indicates models that were of interest

and were additionally investigated.

Spatial wolf predation risk and seasonal hunting risk analysis

Table C1: GLMM, family: logit (binomial), responselying, random term (all models): 1 |moose ID, models ranked by AICc

Model (Int) Habitat Season Wolfrisk Season:Habitat Season:Wolfrisk df logLik AlCc delta weight
3 + + 4 -1646.05 3300.11 0 0.250
7 + + 5 -1645.04 3300.11 0 0.250
5 + 3 -1647.06 3300.14 0.03 0.250

23 + + + 7 -1644.18 3302.41 2.3 0.080
4 + + + 8 -1643.72 3303.49 3.38 0.050
12 + + + + 14 -1637.83 3303.82 3.71 0.040
8 + + + + 9 -1643.32 3304.71 4.6 0.030
16 + + + + + 15 -1637.69 3305.57 5.46 0.020
6 + + + 7 -1645.83 3305.7 5.59 0.020
24 + + + + + 11 -1642.24 3306.59 6.48 0.010
1 + 2 -1651.67 3307.35 7.24 0.010
32 + + + + + + 17 -1637.31 3308.86 8.75 0.000
2 + 6 -1649.46 3310.95 10.85 0.000

Table C2: GLMM, family: logit (binomial), responseforaging, random term (all models): 1 moose ID, models ranked by AICc

Model (Int) Habitat Season Wolfrisk Season:Habitat Season:Wolfrisk df logLik AlCc delta weight
5 + + 3 -1502.32 3010.65 0.00 0.450
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1 + 2 -1504.53 3013.07 2.42 0.134
6 + + 7 -1499.73 3013.51 2.87 0.107
2 + 6 -1500.82 3013.66 3.02 0.100
7 + + + 5 -1501.95 3013.93 3.28 0.087
3 + + 4 -1503.54 3015.10 4.45 0.048
4 + + + 8 -1500.16 3016.37 5.72 0.026
8 + + + + 9 -1499.41 3016.88 6.23 0.020
23 + + 7 -1501.52 3017.09 6.44 0.018
24 + + + 11 -1498.68 3019.46 8.81 0.005
12 + + + + 14 -1496.28 3020.72 10.07 0.003
16 + + + + + 15 -1495.85 3021.90 11.25 0.002
32 + + + + + + 17 -1495.39 3025.01  14.37  0.000
Table C3: GLMM, family: logit (binomial), responsetocomotion , random term (all models): 1 [moose ID, models ranked by AlCc

Model (Int) Habitat Season Wolfrisk Season:Habitat Season:Wolfrisk df logLik AlCc delta weight
1 + 2 -787.03 1578.06 0.00 *
5 + + 3 -786.05 1578.11 0.05 *
3 + 4 -786.04 1580.09 2.03 *
7 + + 5 -785.10 1580.22 2.16 *
2 + 6 -784.34 1580.71 2.65 *
6 + + 7 -783.66 1581.36 3.30 *
4 + + 8 -783.28 1582.61 4.56 *
23 + + + + 7 -784.29 1582.62 4.56 *
8 + + + + 9 -782.75 1583.56 5.51 *
24 + + + + + 11 -781.89 1585.89 7.84 *
12 + + + 14 -779.02 1586.20 8.14 *
32 + + + + + 17 -778.54 1591.32 13.26 *
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16

15

* Model 16 did not converge, logLik, AICc, delta AICc and weightissing

Table C4: GLMM, family: logit (binomial), responsealert, random term (all models): 1 |moose ID, models ranked by AlCc

Model (Int) Habitat Season Wolfrisk Season:Habitat Season:Wolfrisk df logLik AlCc delta weight
23 + + + i 7 -861.95 1737.93 0.00 0.483
+ + 3 -867.18 1740.37 2.44 0.143

+ + 5 -865.56 1741.15 3.22 0.097

+ 4 -866.64 1741.30 3.36 0.090

24 + + + + 11 -859.88 1741.86 3.92 0.068
1 + 2 -869.44 1742.89 4.96 0.040
6 + + + 7 -865.03 1744.11 6.17 0.022
4 + + + 8 -864.11 1744.27 6.34 0.020
8 + + 9 -863.26 1744.59 6.65 0.017
32 + + + + 17 -855.64 1745.53 7.60 0.011
2 + + 6 -867.16 1746.35 8.41 0.007
12 + + 14 -861.05 1750.27 12.33 0.001
16 + + + 15 -860.56 1751.32 13.38 0.001
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Activity budgets with spatially varying hunting risk during the hunting season

Table C5: GLMM, family: logit (binomial), responselying, random term (all models): 1 [moose ID, models ranked by AICc

Model (Int) Habitat Huntrisk Wolfrisk Huntrisk :Wolfrisk df logLik AlCc delta weight
1 + 2 -486.39 976.80 0.00 0.337

3 i i 3 -485.71 977.45 0.65 0.243

5 + + 3 -486.12 978.27 1.47 0.162

7 + + + 4 -485.62 979.29 2.50 0.097

2 + + 6 -484.08 980.29 3.49 0.059
15 + + + + 5 -485.51 981.10 4.30 0.039
4 + + + 7 -483.83 981.81 5.02 0.027

+ + + 7 -484.07 982.30 5,51 0.021

+ + + + 8 -483.83 983.86 7.06 0.010

16 + + v + + 9 -483.78 985.82 9.02 0.004

Table C6: GLMM, family: logit (binomial), responseforaging, no random term (all models), models ranked by AICc

Model (Int) Habitat Huntrisk Wolfrisk Huntrisk :Wolfrisk df logLik AlCc delta weight
1 + 1 -426.70 855.40 0.00 0.427

3 + + 2 -426.29 856.59 1.19 0.236

5 + + 2 -426.60 857.21 1.81 0.173

7 + + + 3 -426.27 858.57 3.17 0.088
15 + + + + 4 -426.03 860.11 4.70 0.041
+ + 5 -425.91 861.91 6.51 0.017

+ + + 6 -425.60 863.32 7.92 0.008

+ + + 6 -425.82 863.76 8.36 0.007

+ + + + 7 -425.56 865.28 9.88 0.003

16 + + + + + 8 -425.33 866.85 11.45 0.001
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Table C7: GLMM, family: logit (binomial), responsetocomotion , random term (all models): 1 |moose ID, models ranked by AlCc

Model (Int) Habitat Huntrisk Wolfrisk Huntrisk :Wolfrisk df logLik AlCc delta weight
3 + + 3 -208.99 424.01 0.00 0.302
15 + + + + 5 -207.16 424.40 0.39 0.249
+ 2 -210.35 42471 0.70 0.213

+ + + 4 -208.83 425.71 1.70 0.129

+ + 3 -210.31 426.65 2.64 0.081

+ + + 7 -208.49 431.13 7.12 0.009

16 + + + + + 9 -206.56 431.37 7.36 0.008
+ + 6 -209.89 431.90 7.89 0.006

+ + + + 8 -208.43 433.06 9.05 0.003

+ + + 7 -209.87 433.89 9.88 0.002

Table C8: GLMM, family: logit (binomial), responsealert, random term (all models): 1 |moose ID, models ranked byAlCc

Model (Int) Habitat Huntrisk Wolfrisk Huntrisk :Wolfrisk df logLik AlCc delta weight
15 + + + -+ 5 -242.49 495.05 0.00 *
+ 2 -247.74 499.51 4.45 *
+ + 3 -246.87 499.78 4.72 *
+ + 3 -247.74 501.52 6.46 *
+ + + 4 -246.84 501.73 6.68 *
16 + + + + + 9 -242.27 502.79 7.73 *
4 + + + 7 -246.24 506.63 11.58 *
2 + + 6 -247.37 506.85 11.80 *
8 + + + + 8 -246.23 508.67 13.61 *
6 + + + 7 * * * *

* Model 6 did not converge, logLik, AlCc, delta AlICand weights missing
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Human disturbance analysis

Table C9: GLMM, family: logit (binomial), responselying, ho random term (all models), models ranked by AIC

Model (Int) Habitat Densbuild Disforoad Dismainro Distbuild Season Diizzzri]l;j DSi:f?)ngtzj D?:rﬁz?nnr:o df logLik AlCc delta weight
429 + + + + + + 9 -1638.11 329430 0.00 0.104
167 + + + + + 7 -1640.31 3294.66 0.36 0.087
431 + + + + + + + 10 -1637.54 3295.17 0.87 0.067
445 + + + + + + + 10 -1637.75 329560 1.30 0.054
173 + + + + + 7 -1640.80 3295.65 1.35 0.053
175 + + + + + + 8 -1639.95 329595 1.66 0.045
189 + + + + + + 8 -1640.05 3296.15 185 0.041
165 + + + + 6 -1642.19 3296.42 212 0.036
297 + + + + 6 -1642.21 3296.46 2.16 0.035
183 + + + + + + 8 -1640.22 3296.49 2.19 0.035
181 + + + + + 7 -164140 3296.85 255 0.029
447 + + + + + + + + 11 -1637.47 3297.05 2.76 0.026
191 + + + + + + + 9 -1639.73 329753 3.23 0.021
168 + + + + + + 11 -1637.83 3297.76 3.47 0.018
231 + + + + + + 9 -1639.86 3297.79 350 0.018
313 + + + + + 7 -1642.02 3298.09 3.79 0.016
301 + + + + + 7 -1642.07 3298.18 3.88 0.015
41 + + + 4  -1645.12 3298.26 3.96 0.014

Table C10: GLMM, family: logit (binomial), responseforaging, no random term (all models), models ranked by AICc

Model (Int) Habitat Densbuild Disforoad Dismainro Distbuild Season Dseiasstﬂi]:d DSi:fisrggczj D?senﬁ?nnr:o df logLik AlCc delta weight

181 + + + + + 7 -1496.49 3007.02 0.00 0.060












