Vis enkel innførsel

dc.contributor.authorØstbye, Kjartan
dc.contributor.authorHassve, Marius Hagen
dc.contributor.authorTamayo, Ana-Maria Peris
dc.contributor.authorHagenlund, Mari
dc.contributor.authorVogler, Thomas
dc.contributor.authorPræbel, Kim
dc.coverage.spatialNorwayen_US
dc.date.accessioned2022-09-16T12:30:05Z
dc.date.available2022-09-16T12:30:05Z
dc.date.created2020-07-04T18:01:34Z
dc.date.issued2020
dc.identifier.issn1752-4571
dc.identifier.urihttps://hdl.handle.net/11250/3018485
dc.description.abstractThe origin of species is a central topic in biology. Ecological speciation might be a driver in adaptive radiation, providing a framework for understanding mechanisms, level, and rate of diversification. The Arctic charr Salvelinus alpinus L. is a polymorphic species with huge morphological and life-history diversity in Holarctic water systems. We studied adaptive radiation of Arctic charr in the 460-m-deep Lake Tinnsjøen to (a) document eco-morphology and life-history traits of morphs, (b) estimate reproductive isolation of morphs, and (c) illuminate Holarctic phylogeography and lineages colonizing Lake Tinnsjøen. We compared Lake Tinnsjøen with four Norwegian outgroup populations. Four field-assigned morphs were identified in Lake Tinnsjøen: the planktivore morph in all habitats except deep profundal, the dwarf morph in shallow-moderate profundal, the piscivore morph mainly in shallow-moderate profundal, and a new undescribed abyssal morph in the deep profundal. Morphs displayed extensive life-history variation in age and size. A moderate-to-high concordance was observed among morphs and four genetic clusters from microsatellites. mtDNA suggested two minor endemic clades in Lake Tinnsjøen originating from one widespread colonizing clade in the Holarctic. All morphs were genetically differentiated at microsatellites (FST: 0.12–0.20), associated with different mtDNA clade frequencies. Analyses of outgroup lakes implied colonization from a river below Lake Tinnsjøen. Our findings suggest postglacial adaptive radiation of one colonizing mtDNA lineage with niche specialization along a depth–temperature–productivity–pressure gradient. Concordance between reproductive isolation and habitats of morphs implies ecological speciation as a mechanism. Particularly novel is the extensive morph diversification with depth into the often-unexplored deepwater profundal habitat, suggesting we may have systematically underestimated biodiversity in lakes. The origin of species is a central topic in biology. Ecological speciation might be a driver in adaptive radiation, providing a framework for understanding mechanisms, level, and rate of diversification. The Arctic charr Salvelinus alpinus L. is a polymorphic species with huge morphological and life-history diversity in Holarctic water systems. We studied adaptive radiation of Arctic charr in the 460-m-deep Lake Tinnsjøen to (a) document eco-morphology and life-history traits of morphs, (b) estimate reproductive isolation of morphs, and (c) illuminate Holarctic phylogeography and lineages colonizing Lake Tinnsjøen. We compared Lake Tinnsjøen with four Norwegian outgroup populations. Four field-assigned morphs were identified in Lake Tinnsjøen: the planktivore morph in all habitats except deep profundal, the dwarf morph in shallow-moderate profundal, the piscivore morph mainly in shallow-moderate profundal, and a new undescribed abyssal morph in the deep profundal. Morphs displayed extensive life-history variation in age and size. A moderate-to-high concordance was observed among morphs and four genetic clusters from microsatellites. mtDNA suggested two minor endemic clades in Lake Tinnsjøen originating from one widespread colonizing clade in the Holarctic. All morphs were genetically differentiated at microsatellites (FST: 0.12–0.20), associated with different mtDNA clade frequencies. Analyses of outgroup lakes implied colonization from a river below Lake Tinnsjøen. Our findings suggest postglacial adaptive radiation of one coloniz-ing mtDNA lineage with niche specialization along a depth–temperature–productivity–pressure gradient. Concordance between reproductive isolation and habitats of morphs implies ecological speciation as a mechanism. Particularly novel is the extensive morph diversification with depth into the often unexplored deepwater profundal habitat, suggesting we may have systematically underestimated biodiversity in lakes.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectadaptive radiationen_US
dc.subjectecological speciationen_US
dc.subjectmicrosatellitesen_US
dc.subjectmorphsen_US
dc.subjectmtDNAen_US
dc.subjectnatural selectionen_US
dc.subjectniche specializationen_US
dc.subjectPleistocene ice ageen_US
dc.subjectpopulation divergenceen_US
dc.subjectSalvelinus alpinusen_US
dc.title“And if you gaze long into an abyss, the abyss gazes also into thee ”: four morphs of Arctic charr adapting to a depth gradient in Lake Tinnsjøenen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400en_US
dc.source.pagenumber1240-1261en_US
dc.source.volume13en_US
dc.source.journalEvolutionary Applicationsen_US
dc.identifier.doihttps://doi.org/10.1111/eva.12983
dc.identifier.cristin1818559
cristin.ispublishedfalse
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal