• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Artikler, rapporter, filmer / Articles, reports, movies
  • Artikkel - fagfellevurdert vitenskapelig / Articles - peer-reviewed
  • Vis innførsel
  •   Hjem
  • Artikler, rapporter, filmer / Articles, reports, movies
  • Artikkel - fagfellevurdert vitenskapelig / Articles - peer-reviewed
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Building a mechanistic understanding of predation with GPS-based movement data

Merrill, Evelyn; Sand, Håkan; Zimmermann, Barbara; McPhee, Heather; Webb, Nathan; Hebblewhite, Mark; Wabakken, Petter; Frair, Jacqueline
Journal article, Peer reviewed
Thumbnail
Åpne
zimmermann.pdf (247.9Kb)
Permanent lenke
http://hdl.handle.net/11250/134178
Utgivelsesdato
2010
Metadata
Vis full innførsel
Samlinger
  • Artikkel - fagfellevurdert vitenskapelig / Articles - peer-reviewed [1666]
Originalversjon
Merrill, E., Sand, H., Zimmermann, B., McPhee, H., Webb, N., Hebblewhite, M., et al. (2010). Building a mechanistic understanding of predation with GPS-based movement data Philosophical Transactions of the Royal Society of London. Biological Sciences, 365(1550), 2279 - 2288   http://dx.doi.org/10.1098/rstb.2010.0077
Sammendrag
Quantifying kill rates and sources of variation in kill rates remains an important challenge in linking predators to their prey. We address current approaches to using GPS-based movement data for quantifying key predation components of large carnivores. We review approaches to identify kill sites from GPS-movement data as a means to estimate kill rates and address advantages of using GPS-based data over past approaches. Despite considerable progress, modeling the probability that a cluster of GPS points is a kill site is no substitute for field visits but can guide our field efforts. Once kill sites are identified, time spent at a kill site (handling time) and time between kills (killing time) can be determined. We show how statistical models can be used to investigate the influence of factors such as animal characteristics (e.g., age, sex, group size) and landscape features on either handling time or killing efficiency. If we know the prey densities along paths to a kill, we can quantify the “attack success” parameter in functional response models directly. Problems remain in incorporating the behavioural complexity derived from GPS movement paths into functional response models, particularly in multi-prey systems, but we believe that exploring the details of GPS-movement data has put us on the right path.
Beskrivelse
Artikkelen er en postprint av artikkelen utgitt i Philosophical Transactions of the Royal Society of London, Biological Sciences. Den publiserte versjonen av artikkelen kan du finne her: http://rstb.royalsocietypublishing.org/content/365/1550/2279.abstract
Utgiver
The Royal Society

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit