Vis enkel innførsel

dc.contributor.authorAvershina, Ekaterina
dc.contributor.authorSharma, Priyanka
dc.contributor.authorTaxt, Arne Michael
dc.contributor.authorSingh, Harpreet
dc.contributor.authorFrye, Stephan Alfons
dc.contributor.authorPaul, Kolin
dc.contributor.authorKapil, Arti
dc.contributor.authorNaseer, Mohammed Umaer
dc.contributor.authorKaur, Punit
dc.contributor.authorAhmad, Rafi
dc.date.accessioned2021-11-12T14:20:13Z
dc.date.available2021-11-12T14:20:13Z
dc.date.created2021-04-22T11:51:53Z
dc.date.issued2021
dc.identifier.citationComputational and Structural Biotechnology Journal. 2021, 19 1896-1906.en_US
dc.identifier.issn2001-0370
dc.identifier.urihttps://hdl.handle.net/11250/2829397
dc.description.abstractAntibiotic resistance poses a major threat to public health. More effective ways of the antibiotic prescription are needed to delay the spread of antibiotic resistance. Employment of sequencing technologies coupled with the use of trained neural network algorithms for genotype-to-phenotype prediction will reduce the time needed for antibiotic susceptibility profile identification from days to hours. In this work, we have sequenced and phenotypically characterized 171 clinical isolates of Escherichia coli and Klebsiella pneumoniae from Norway and India. Based on the data, we have created neural networks to predict susceptibility for ampicillin, 3rd generation cephalosporins and carbapenems. All networks were trained on unassembled data, enabling prediction within minutes after the sequencing information becomes available. Moreover, they can be used both on Illumina and MinION generated data and do not require high genome coverage for phenotype prediction. We cross-checked our networks with previously published algorithms for genotype-to-phenotype prediction and their corresponding datasets. Besides, we also created an ensemble of networks trained on different datasets, which improved the cross-dataset prediction compared to a single network. Additionally, we have used data from direct sequencing of spiked blood cultures and found that AMR-Diag networks, coupled with MinION sequencing, can predict bacterial species, resistome, and phenotype as fast as 1–8 h from the sequencing start. To our knowledge, this is the first study for genotype-to-phenotype prediction: (1) employing a neural network method; (2) using data from more than one sequencing platform; and (3) utilizing sequence data from spiked blood cultures.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectArtificial Neural Networksen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectMaskinlæringen_US
dc.subjectMachine learningen_US
dc.titleAMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniaeen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Genetikk og genomikk: 474en_US
dc.subject.nsiVDP::Genetics and genomics: 474en_US
dc.subject.nsiVDP::Genetikk og genomikk: 474en_US
dc.subject.nsiVDP::Genetics and genomics: 474en_US
dc.subject.nsiVDP::Genetikk og genomikk: 474en_US
dc.subject.nsiVDP::Genetics and genomics: 474en_US
dc.source.pagenumber1896-1906en_US
dc.source.volume19en_US
dc.source.journalComputational and Structural Biotechnology Journalen_US
dc.identifier.doi10.1016/j.csbj.2021.03.027
dc.identifier.cristin1905827
dc.relation.projectNorges forskningsråd: 273609en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal