Show simple item record

dc.contributor.authorPerroud, Pierre-francois
dc.contributor.authorDemko, Viktor
dc.contributor.authorAko, Ako Eugene
dc.contributor.authorKhanal, Rajendra
dc.contributor.authorBokor, Boris
dc.contributor.authorPavlovic, Andrej
dc.contributor.authorJasik, Jan
dc.contributor.authorJohansen, Wenche
dc.date.accessioned2022-05-05T13:15:58Z
dc.date.available2022-05-05T13:15:58Z
dc.date.created2021-09-21T08:36:35Z
dc.date.issued2021
dc.identifier.issn0167-4412
dc.identifier.urihttps://hdl.handle.net/11250/2994393
dc.description.abstractKey message In Physcomitrium patens, PpRH1/PpRH2 are GUCT-domain-containing DEAD-BOX RNA helicases localize to the nucleus. They are implicated in cell and tissue development in all stages of the moss life cycle. Abstract The DEAD-box-containing RNA helicase family encompasses a large and functionally important group of enzymes involved in cellular processes committed to the metabolism of RNA, including its transcription, processing, transport, trans lation and decay. Studies indicate this protein family has implied roles in plant vegetative and reproductive developmental processes as well as response to environmental stresses such has cold and high salinity. We focus here on a small conserved sub-group of GUCT domain-containing RNA helicase in the moss Physcomitrium patens. Phylogenetic analysis shows that RNA helicases containing the GUCT domain form a distinct conserved clade across the green lineage. In this clade, the P. patens genome possesses two closely related paralogues RNA helicases predicted to be nuclear, PpRH1 and PpRH2. Using in-locus gene fuorescent tagging we show that PpRH1 is localized to the nucleus in protonema. Analysis of PpRH1 and PpRH2 deletions, individually and together, indicates their potential roles in protonema, gametophore and sporophyte cellular and tissue development in P. patens. Additionally, the ultrastructural analysis of phyllid chloroplasts in Δrh2 and Δrh1/2 shows distinct starch granule accumulation under standard growth conditions associated with changes in photosyn thetic activity parameters. We could not detect efects of either temperature or stress on protonema growth or PpRH1 and PpRH2 expression. Together, these results suggest that nuclear GUCT-containing RNA helicases play a role primarily in developmental processes directly or indirectly linked to photosynthesis activity in the moss P. patens.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectRNA helicaseen_US
dc.subjectDevelopmenten_US
dc.subjectPhyscomitrium patensen_US
dc.subjectGametophyteen_US
dc.subjectSporophyteen_US
dc.subjectStarch accumulationen_US
dc.titleThe nuclear GUCT domain-containing DEAD-box RNA helicases govern gametophytic and sporophytic development in Physcomitrium patensen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber307-325en_US
dc.source.journalPlant Molecular Biologyen_US
dc.source.issue107en_US
dc.identifier.doi10.1007/s11103-021-01152-w
dc.identifier.cristin1936378
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal