Vis enkel innførsel

dc.contributor.authorKhezri, Abdolrahman
dc.contributor.authorAvershina, Ekaterina
dc.contributor.authorAhmad, Rafi
dc.date.accessioned2022-06-21T12:36:16Z
dc.date.available2022-06-21T12:36:16Z
dc.date.created2021-12-13T11:27:27Z
dc.date.issued2021
dc.identifier.citationMicroorganisms. 2021, 9 (12), 1-18.en_US
dc.identifier.issn2076-2607
dc.identifier.urihttps://hdl.handle.net/11250/2999843
dc.description.abstractEmerging new sequencing technologies have provided researchers with a unique opportunity to study factors related to microbial pathogenicity, such as antimicrobial resistance (AMR) genes and virulence factors. However, the use of whole-genome sequence (WGS) data requires good knowledge of the bioinformatics involved, as well as the necessary techniques. In this study, a total of nine Escherichia coli and Klebsiella pneumoniae isolates from Norwegian clinical samples were sequenced using both MinION and Illumina platforms. Three out of nine samples were sequenced directly from blood culture, and one sample was sequenced from a mixed-blood culture. For genome assembly, several long-read, (Canu, Flye, Unicycler, and Miniasm), short-read (ABySS, Unicycler and SPAdes) and hybrid assemblers (Unicycler, hybridSPAdes, and MaSurCa) were tested. Assembled genomes from the best-performing assemblers (according to quality checks using QUAST and BUSCO) were subjected to downstream analyses. Flye and Unicycler assemblers performed best for the assembly of long and short reads, respectively. For hybrid assembly, Unicycler was the top-performing assembler and produced more circularized and complete genome assemblies. Hybrid assembled genomes performed substantially better in downstream analyses to predict putative plasmids, AMR genes and β-lactamase gene variants, compared to MinION and Illumina assemblies. Thus, hybrid assembly has the potential to reveal factors related to microbial pathogenicity in clinical and mixed samples.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectOxford Nanoporeen_US
dc.subjectIlluminaen_US
dc.subjectshort-readen_US
dc.subjectlong-readen_US
dc.subjecthybrid assemblyen_US
dc.subjectantimicrobial resistanceen_US
dc.subjectvirulence factorsen_US
dc.subjectclinical isolatesen_US
dc.subjectblood cultureen_US
dc.subjectplasmidsen_US
dc.titleHybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolatesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400en_US
dc.source.pagenumber1-18en_US
dc.source.volume9en_US
dc.source.journalMicroorganismsen_US
dc.source.issue12en_US
dc.identifier.doi10.3390/microorganisms9122560
dc.identifier.cristin1967679
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal