Vis enkel innførsel

dc.contributor.authorKlausen, Sarah J.
dc.contributor.authorFalck-Ytter, Anne Bergljot
dc.contributor.authorStrætkvern, Knut Olav
dc.contributor.authorMartin, Carlos
dc.date.accessioned2024-02-02T09:58:45Z
dc.date.available2024-02-02T09:58:45Z
dc.date.created2023-06-30T11:59:32Z
dc.date.issued2023
dc.identifier.issn1431-5157
dc.identifier.urihttps://hdl.handle.net/11250/3115228
dc.description.abstractThe extraction of bioactive compounds and cellulose saccharification are potential directions for the valorization of spent mushroom substrate (SMS). Therefore, investigating the suitability of different extraction methods for recovering bioactive compounds from SMS and how the extractionmaffects the enzymatic saccharification is of uppermost relevance. In this work, bioactive compounds were extracted from Pleurotus spp. SMS using four extraction methods. For Soxhlet extraction (SoE), a 40:60 ethanol/water mixture gave the highest extraction efficiency (EE) (69.9–71.1%) among the seven solvent systems assayed. Reflux extraction with 40:60 ethanol/water increased the extraction yield and EE compared to SoE. A shorter reflux time yielded a higher extraction of carbohydrates than SoE, while a longer time was more effective for extracting phenolics. The extracts from 240 min of reflux had comparable antioxidant activity (0.3–0.5 mM GAE) with that achieved for SoE. Ultrasound-assisted extraction (UAE) at 65 ◦C for 60 min allowed an EE (~82%) higher than that achieved by either reflux for up to 150 min or SoE. Subcritical water extraction (SWE) at 150 ◦C resulted in the best extraction parameters among all the tested methods. Vanillic acid and chlorogenic acid were the primary phenolic acids identified in the extracts. A good correlation between the concentration of caffeic acid and the antioxidant activity of the extracts was found. Saccharification tests revealed an enhancement of the enzymatic digestibility of SMS cellulose after the extraction of bioactive compounds. The findings of this initial study provide indications on new research directions for maximizing the recovery of bioactive compounds and fermentable sugars from SMS.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectspent mushroom substrateen_US
dc.subjectPleurotus ostreatusen_US
dc.subjectbioactive compoundsen_US
dc.subjectultrasound-assisted extractionen_US
dc.subjectsubcritical-water extractionen_US
dc.subjectenzymatic saccharificationen_US
dc.subjectcelluloseen_US
dc.titleEvaluation of the Extraction of Bioactive Compounds and the Saccharification of Cellulose as a Route for the Valorization of Spent Mushroom Substrateen_US
dc.title.alternativeEvaluation of the Extraction of Bioactive Compounds and the Saccharification of Cellulose as a Route for the Valorization of Spent Mushroom Substrateen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 by the authors.en_US
dc.subject.nsiVDP::Teknologi: 500::Bioteknologi: 590en_US
dc.source.volume28en_US
dc.source.journalMoleculesen_US
dc.source.issue13en_US
dc.identifier.doi10.3390/molecules28135140
dc.identifier.cristin2159818
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal