Vis enkel innførsel

dc.contributor.authorHenrich, Maik
dc.contributor.authorBurgueño, Mercedes
dc.contributor.authorHoyer, Jacqueline
dc.contributor.authorHaucke, Timm
dc.contributor.authorSteinhage, Volker
dc.contributor.authorKühl, Hjalmar S.
dc.contributor.authorHeurich, Marco Dietmar
dc.date.accessioned2024-03-07T12:53:01Z
dc.date.available2024-03-07T12:53:01Z
dc.date.created2023-09-12T10:27:02Z
dc.date.issued2023
dc.identifier.citationRemote Sensing in Ecology and Conservation. 2023, .en_US
dc.identifier.issn2056-3485
dc.identifier.urihttps://hdl.handle.net/11250/3121437
dc.description.abstractCamera traps have become important tools for the monitoring of animal populations. However, the study-specific estimation of animal detection probabilities is key if unbiased abundance estimates of unmarked species are to be obtained. Since this process can be very time-consuming, we developed the first semi-automated workflow for animals of any size and shape to estimate detection probabilities and population densities. In order to obtain observation distances, a deep learning algorithm is used to create relative depth images that are calibrated with a small set of reference photos for each location, with distances then extracted for animals automatically detected by MegaDetector 4.0. Animal detection by MegaDetector was generally independent of the distance to the camera trap for 10 animal species at two different study sites. If an animal was detected both manually and automatically, the difference in the distance estimates was often minimal at a distance about 4 m from the camera trap. The difference increased approximately linearly for larger distances. Nonetheless, population density estimates based on manual and semi-automated camera trap distance sampling workflows did not differ significantly. Our results show that a readily available software for semi-automated distance estimation can reliably be used within a camera trap distance sampling workflow, reducing the time required for data processing, by >13-fold. This greatly improves the accessibility of camera trap distance sampling for wildlife research and management.en_US
dc.language.isoengen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectartificial Intelligenceen_US
dc.subjectcamera trap distance samplingen_US
dc.subjectdetection probabilityen_US
dc.subjectobservation distancesen_US
dc.subjectpopulation density estimationen_US
dc.subjectwildlife monitoringen_US
dc.titleA semi-automated camera trap distance sampling approach for population density estimationen_US
dc.title.alternativeA semi-automated camera trap distance sampling approach for population density estimationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder2023 The Authors.en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480en_US
dc.source.pagenumber16en_US
dc.source.journalRemote Sensing in Ecology and Conservationen_US
dc.identifier.doi10.1002/rse2.362
dc.identifier.cristin2174215
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal